锆石U-Pb协和图及协和年龄加权平均值计算方法ppt课件

合集下载

锆石U_Pb同位素定年的原理_方法及应用_高少华

锆石U_Pb同位素定年的原理_方法及应用_高少华

立年龄; 定年方法各有优缺点,应用时应根据从样品中分选出的锆石数量、粒度、内部结构、定年精度等因素,
灵活选择; 锆石 U-Pb 年龄常用于沉积盆地物源分析、岩体的年代约束及成矿年代学与韧性剪切带定年中,应
用时要结合地质背景,对定年结果进行合理解释。
关键词: 锆石; U-Pb 同位素; 原理; 定年方法; 地质应用
收稿日期: 2013 - 04 - 11; 修订日期: 2013 - 05 - 30 作者简介: 高少华( 1986 - ) ,男,在读硕士,专业方向: 沉积盆地物源分析研究。
·364·
江西科学
2013 年第 31 卷
1 锆石的地球化学特征和内部结构
1. 1 锆石的地球化学特征 锆石 的 氧 化 物 中 ω ( ZrO2 ) 占 67. 2% 、ω
Abstract: This article discusses geochemical characteristics and internal structure of zircon,the principle of zircon U-Pb isotopic dating,the advantages and disadvantages of dating method and the application of geological problems through consulting a large number of Chinese and foreign literature and combined with the author's experiments. The results show that magmatic zircon and metamorphic zircon in geochemical and internal structure have different characteristics. Principle is that by using of the U-Pb decay equation getting three independent ages of 206 Pb / 238 U、207 Pb / 235 U and 207 Pb / 206 Pb. Dating methods have advantages and disadvantages,please accord to the quantity,size,internal structure and factors such as accuracy of sorting out the zircons from samples,selecting dating methods flexibly. Zircon U-Pb age is often used in the analysis of the sedimentary basin provenance,in the age constraint of some rock and metallogenic chronology and ductile shear zone. The dating results are reasonable explanation to combined with the geological background. Key words: Zircon,U-Pb isotope,The principle,Dating method,The geological applications

第六讲 U-Th-Pb法

第六讲 U-Th-Pb法
今与初始时期的同位素比值差值。
应用条件

当样品形成时其初始Pb的量可以忽略或因较小 而可以较准确地扣除时,采用方程a进行定年。 这实际上为锆石U-Pb定年方程; 当样品形成时其初始Pb的含量较高时,其初始 比值相对较大,采用方程b进行定年。事实上, 等式b为线性方程,通过相同地质体多个样品分 析,可获得一条直线,称为Pb-Pb等时线(自己 推导方程)。
其离子半径为1.32 Å ; Pb的独立矿物为方铅矿,而在硅酸盐矿物 中,多与元素K形成类质同象而趋向存在于 钾长石等矿物中; 通常条件下Pb性质稳定,但在高温和酸性 条件下可形成氯或硫的化合物,易溶解于 热液中而发生迁移。
地球化学性质(四)
不同物质中U、Th、Pb的元素含量
Material Chondrites Troilite Basalt Galena Zircon Carbonates 0.009 U(ppm) 0.01 <.01 0.43 trace HUGE 1.9 1.6 trace HUGE 1.2 Th 0.04 5.9 3.7 HUGE trace 5.6 Pb 1.0
ZIRCON ZrSiO4
ZIRCON ZrSiO4
Zircon, Italy
ZIRCON ZrSiO4, Russia
ZIRCON ZrSiO4
ZIRCON ZrSiO4
ZIRCON ZrSiO4
ZIRCON ZrSiO4
锆石是十二月生日石
6.2 地球化学性质(一)
U和Th均属锕系元素,常为+4价,但在地
U (e
235t
232t
208
208
Pb 0
232
Th (e
6.5

锆石U-Pb定年工作原理及方法

锆石U-Pb定年工作原理及方法

“同位素年代学=提供年龄数据”。
许多地质学家的想法,一种错误的认识!
同位素年代学需要同位素和地质两方面 的知识结构。
年龄表
数据内容 数据排列顺序 有效位数 样品多时,最好一个样品有一个表头 表注 >1.2Ga (or >1.4 Ga)锆石,尽可能用 7/6年龄,而不是上交点年龄
科学性和有利于读者阅读
鲁西地区新太古代晚期岩浆事件 (Wan et al., 2010)
鲁西地区新太古代早期岩浆事件 (万渝生未发表)
滹沱群底砾岩中石英岩砾石的碎屑锆石阴极发光图像 (万渝生等,2010)
万东 渝焦 生群 等浅 ,变 质 碎 屑 )沉 积 岩 中 碎 屑 锆 石 特 征
( 2010
长城系
所有数据
鞍山地区古元古代变质辉长岩的斜锆石 和锆石阴极发光图像(董春艳等,2012)
鞍山地区古元古代变质辉长岩的斜锆石 和锆石二次电子图像(董春艳等,2012)
鞍山地区古元古代变质辉长岩的斜锆石 和锆石年龄图(董春艳等,2012)
鲁西新太古代变质辉石岩的锆石阴极发光和年龄图 (万渝生等,未发表)
大青山地区变质超基性岩石的锆石阴极发光和年龄图 (Wan et al., 2013)
锆石U-Pb定年
万渝生
为什么锆石U-Pb定年可信?
1、U-Pb体系 2、锆石
Zircons are forever!
锆石是最理想的测年对象
最常见副矿物,广泛存在于不同地质体中 抗风化能力强 无或很低的普通铅,而U含量适当 U-Pb同位素体系保存良好 可判断体系是否封闭 应用CL等方法,可对锆石进行成因研究 SHRIMP等原位分析方法应用
胶东中生代玲珑超单元二长花岗岩中锆石阴极发光图像

锆石U-PB测年-PPT课件-PPT精品文档

锆石U-PB测年-PPT课件-PPT精品文档

图5 麻粒岩相变质锆石CL特征 (a)扇形分带, (b)面状分带, (c)冷杉状分带,
(d) 弱分带或无分带
榴辉岩相变质增生锆石一般为半自形、椭圆形 和它形等,内部分带特征主要有无分带(6(a))、弱 分带(6(b))、云雾状分带(图6(c))或片状分带(图6}d) 等。角闪岩相变质增生锆石通常具有规则的外形, 且以柱面发育为其主要特点,在CL图像中一般为 无分带或弱分带的特征(图7)。
但是锆石发生重结晶作用的区域不仅仅是发生过蜕晶化作用的区
域,在没有发生蜕晶化作用的晶质锆石区域同样可以发生重结晶作 用,只是发生重结晶作用需要较高的温度和、或较长的流体作用时 间。
由于变质重结晶过程中只是锆石晶格的重新调整,没有新的锆石
生成,因此重结晶锆石往往为自形到半自形,且外形与原岩岩浆锆 石环带形状相似,与原岩锆石之间没有明显的生长界限。同时,变 质重结晶锆石区域的CL强度比原岩锆石明显增强,内部结构一般为 无分带、弱分带、斑杂状分带或海绵状分带等,局部有岩浆环带的 残留, 见这些变质特征的锆石区域切割原岩锆石的振荡环带(图 12(a) 。在重结晶锆石与原岩锆石之间有时会出现弱CL强度的重结 晶前锋(图12(b)),而变质增生锆石则是指变质过程中发生成核和结 晶作用,有新的锆石从周围的介质中结晶出来。所以变质新生锆石 具有多晶面状-不规则状-规则外形,与原岩残留锆石之间界限清楚, 不同变质环境中增生的锆石有其特征的外形和内部结构,且受变质 锆石形成时的温度条件和寄主岩石的化学性质制约(图12(c), (d))。
岩浆锆石通常为半自形到自形,粒径20~ 250μm。产于金伯利岩及其相关岩石中的锆石常 为它形(少数情况下为半自形),较大的粒径(毫米级 到厘米级)。部分基性一超基性岩中的锆石同样具

SIMS锆石U-Pb定年方法-中国科学院地质与地球物理研究所

SIMS锆石U-Pb定年方法-中国科学院地质与地球物理研究所

SIMS锆石U-Pb定年方法用于U-Pb年龄测定的样品(号码)用常规的重选和磁选技术分选出锆石。

将锆石样品颗粒和锆石标样Plésovice (Sláma et al., 2008) (或TEMORA, Black et al., 2004)和Qinghu (Li et al., 2009)粘贴在环氧树脂靶上,然后抛光使其曝露一半晶面。

对锆石进行透射光和反射光显微照相以及阴极发光图象分析,以检查锆石的内部结构、帮助选择适宜的测试点位。

样品靶在真空下镀金以备分析。

U、Th、Pb的测定在中国科学院地质与地球物理研究所CAMECA IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见Li et al. (2009)。

锆石标样与锆石样品以1:3比例交替测定。

U-Th-Pb同位素比值用标准锆石Plésovice (337Ma, Sláma et al., 2008(或TEMORA (417Ma, Black et al., 2004))校正获得,U含量采用标准锆石91500 (81 ppm, Wiedenbeck et al., 1995) 校正获得,以长期监测标准样品获得的标准偏差(1SD = 1.5%, Li et al., 2010)和单点测试内部精度共同传递得到样品单点误差,以标准样品Qinghu (159.5 Ma, Li et al., 2009) 作为未知样监测数据的精确度。

普通Pb校正采用实测204Pb值。

由于测得的普通Pb含量非常低,假定普通Pb主要来源于制样过程中带入的表面Pb污染,以现代地壳的平均Pb同位素组成(Stacey and Kramers, 1975)作为普通Pb组成进行校正。

同位素比值及年龄误差均为1σ。

数据结果处理采用ISOPLOT软件(文献)。

参考文献Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbel, I.H., Korsch, R.J., Williams, I.S., Foudoulis, Chris., 2004.Improved 206Pb/238U microprobe geochronology by the monitoring of atrace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS andoxygen isotope documentation for a series of zircon standards. Chem. Geol.,205: 115-140.Jiří Sláma, Jan Košler, Daniel J. Condon, James L. Crowley, Axel Gerdes, John M.Hanchar, Matthew S.A. Horstwood, George A. Morris, Lutz Nasdala, Nicholas Norberg, Urs Schaltegger, Blair Schoene, Michael N. Tubrett , Martin J.Whitehouse, 2008. Plešovice z ircon —A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1–35Li, Q.L., Li, X.H., Liu, Y., Tang, G.Q., Yang, J.H., Zhu, W.G., 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen floodingtechnique. Journal of Analytical Atomic Spectrometry 25, 1107-1113.Li, X.-H., Y. Liu, Q.-L. Li, C.-H. Guo, and K. R. Chamberlain (2009), Precise determination of Phanerozoic zircon Pb/Pb ageby multicollector SIMS without external standardization, Geochem. Geophys. Geosyst., 10, Q04010,doi:10.1029/2009GC002400.Ludwig, K.R., 2001. Users manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Centre Special Publication. No. 1a, 56 pp.Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26, 207-221.Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., V onquadt, A., Roddick, J.C., Speigel, W., 1995. Three natural zircon standards for U-Th-Pb,Lu-Hf, trace-element and REE analyses. Geostand. Newsl. 19: 1-23.SIMS U-Pb dating methodsSamples XXX for U-Pb analysis were processed by conventional magnetic and density techniques to concentrate non-magnetic, heavy fractions. Zircon grains, together with zircon standard 91500 were mounted in epoxy mounts which were then polished to section the crystals in half for analysis. All zircons were documented with transmitted and reflected light micrographs as well as cathodoluminescence (CL) images to reveal their internal structures, and the mount was vacuum-coated with high-purity gold prior to secondary ion mass spectrometry (SIMS) analysis.Measurements of U, Th and Pb were conducted using the Cameca IMS-1280 SIMS at the Institute of Geology and Geophysics, Chinese Academy of Sciences in Beijing. U-Th-Pb ratios and absolute abundances were determined relative to the standard zircon 91500 (Wiedenbeck et al., 1995), analyses of which were interspersed with those of unknown grains, using operating and data processing procedures similar to those described by Li et al. (2009). A long-term uncertainty of 1.5% (1 RSD) for 206Pb/238U measurements of the standard zircons was propagated to the unknowns (Li et al., 2010), despite that the measured 206Pb/238U error in a specific session is generally around 1% (1 RSD) or less. Measured compositions were corrected for common Pb using non-radiogenic 204Pb. Corrections are sufficiently small to be insensitive to the choice of common Pb composition, and an average of present-day crustal composition (Stacey and Kramers, 1975) is used for the common Pb assuming that the common Pb is largely surface contamination introduced during sample preparation. Uncertainties on individual analyses in data tables are reported at a 1 level; mean ages for pooled U/Pb (and Pb/Pb) analyses are quoted with 95% confidence interval. Data reduction was carried out using the Isoplot/Ex v. 2.49 program (Ludwig, 2001).。

锆石U-Pb定年1

锆石U-Pb定年1

锆石U-Pb定年方法
1. Sensitive High Resolution Ion Microprobe
高灵敏度高分辨率离子探针质谱计(SHRIMP)法
2. Laser ablation-inductively coupled plasma-mass spectrometry 激光剥蚀电感耦合等离子体质谱计(LAM ICPMS) 3. Isotope dilution thermal ionization mass spectrometry 同位素稀释热电离质谱仪(ID TIMS),也称溶液法或稀释 法。多颗粒,单颗粒,化学流程,离子交换柱分离 4. Single zircon evaporation, using thermal ion mass
o
b
87Rb
86Sr
c
to
Rb-Sr矿物-全岩等时线示意图 注意含钾矿物与不含钾矿物在等时线上的位置
Rb-Sr同位素体系特征
87Rb=27.83% 85Rb=72.17% 88Sr=82.53% 87Sr=7.04% 86Sr=9.87% 84Sr=0.56%
Rb由两个同位素组成,其 中87Rb经-衰变成为87Sr。 85Rb为稳定同位素。
Sr由四个同位素组成,均为稳 定同位素,其中87Sr为87Rb的 放射成因同位素。
幔源岩浆具有与地幔相 同的Sr初始同位素比值
形成的岩石与地幔的初 始同位素比值相同,但 不同的结晶矿物却具有 不同的Rb/Sr比值
MANTLE 87Sr/86Sr = 0.702
t=Time of crystallization
Rb/Sr= Rb/Sr=1.2 0.8 ROCK (87Sr/86Sr) i= 0.702 Rb/Sr=0.6

锆石U-Pb协和图及协和年龄加权平均值计算方法ppt课件

锆石U-Pb协和图及协和年龄加权平均值计算方法ppt课件

选择该组数据, 不要选择标题
1-选择Isoplot下拉菜单中的开始(计 算与作图)
2-弹出初始化Leabharlann 置对话框,按照下图 选择相应内容-确定
3-弹出Weighted Average对话框,点 击OK
出图了,剩下的自己编辑图标吧!
怎样获得年龄平均值
使用
206Pb/238U年龄 及其误差作图
需要关注206Pb/238U 年龄及其所对应的协和 度,一般协和度小于 90%的数据不使用。 每一个206Pb/238U年 龄对应了该激光剥蚀点 所对应的锆石年龄,可 写为133±3.5Ma。这在 做单点锆石年龄时很重 要
数据协和度较低, 则将该组数据加上删 除线,该组数据在进 行作图时,就不会参 与作图。
锆石U-Pb协和图及协和年龄加 权平均值计算方法
怎样获得锆石U-Pb协和图
你需要处理好的锆石数据
这五个数据, Ratio=摩尔比值 1sigma=1σ=误差 rho代表协和图中单点 误差红圈的半径,如果 数据中没有,一般选取 0.6~0.8。 这五个数据按照这个 顺序进行排列,进行作 图
1-选择数据区,不要选择标题
2-选择Isoplot下拉菜单中的开始(计 算与作图)
3-弹出初始化设置对话框,按照下图 选择相应内容-OK
4-弹出X-Y Weighted Mean对话框, 点击OK
5-弹出Concordia Age对话框,点击确 认
6-协和图OK了,里面的线条等等, 需要自己修改调整

锆石微区原位U-Pb定年的测定位置选择方法

锆石微区原位U-Pb定年的测定位置选择方法

第38卷第3期地质调查与研究Vol.38No.32015年09月GEOLOGICAL SURVEY AND RESEARCHSep.2015锆石微区原位U-Pb 定年的测定位置选择方法张永清,王国明,许雅雯,叶丽娟(中国地质调查局天津地质调查中心,天津300170)摘要:锆石微区原位U-Pb 定年时,测定位置的选择至关重要,直接影响锆石测年结果。

锆石内部结构研究是锆石测定位置选择的重要依据,本文结合不同成因锆石的内部结构特征及其年代学意义,总结了岩浆锆石、变质锆石、热液锆石以及蜕晶化锆石的测定位置选择方法,认为组成单一的岩浆锆石是理想的U-Pb 定年对象,对于成因复杂的锆石尽量选取单一成因的颗粒或晶域,避免跨晶域选择测定位置。

对于跨晶域选择测定位置测定得到的年龄结果必须做适当的(如不一致线的方法)校正,才可以用于地质成因的解释,否则得到的是没有地质意义的混合年龄。

关键词:微区原位;锆石U-Pb 定年;选点方法中图分类号:P597+.1文献标识码:A文章编号:1672-4135(2015)03-0233-06收稿日期:2015-1-14基金项目:中国地质调查“锆石、磷灰石微区原位U-Pb 同位素测试方法研究(12120114001701)”作者简介:张永清(1982-),女,硕士,高级工程师,从事同位素地球化学和地质年代学研究,E-mail:zhangyq823@。

锆石具有较强的抵抗风化、蚀变和变质作用影响的能力,封闭温度高,分布广泛,普通铅含量低,是U-Pb 定年的理想对象[1-2]。

微区原位定年技术由于避免了常规方法中冗长、烦琐的化学处理过程,能对固体样品直接进行微区原位的同位素分析,可以揭示单颗粒尺度或者颗粒不同部位的年龄信息,效率明显提高,被广泛应用于锆石U-Pb 定年[3-5]。

常用的锆石微区原位U-Pb 定年方法包括二次离子质谱法(SIMS )及激光剥蚀等离子体质谱法(LA-ICPMS )[6-9]。

离子探针锆石U-Pb定年的高U效应”

离子探针锆石U-Pb定年的高U效应”

离子探针锆石U-Pb定年的高U效应”锆石 U-Pb 定年是大型离子探针 ( SIMS,包括SHRIMP 系列和CAMECA 系列仪器) 的主要应用之一,特点是空间分辨率高,以10 nA 的一次 O2-束流,在一个常规束斑20 × 30μm 椭圆面积上剥蚀12min,剥蚀深度小于1μm,总消耗锆石量在 2ng左右。

如此低的样品量而要获得高精度的数据,从统计学角度分析,二次离子计数越多,分析误差则会越小。

按这个思路,相同仪器条件下分析年龄相近的样品,锆石 U( Pb) 含量越高,理论上获得的数据精确度更高。

然而,研究中越来越多的实例显示,理论上年龄一致的锆石,如简单岩浆岩中的锆石,在较低 U 含量范围(<1000 × 10-6) 的锆石 U-Pb表观年龄相对一致,而在 U 含量高到一定程度之后,U-Pb 表观年龄经常随 U 含量( 一般大于 2000 × 10-6) 有明显的偏高现象,被称为“高 U 效应”图1 高U锆石离子探针U-Pb定年的实际表现(a) 年龄较老的锆石,U 含量越高放射成因 Pb 丢失越多;( b) 一般“高 U 效应”表现为随 U 含量升高而 Pb /U 表观年龄偏老;( c,d) 高 U 锆石可同时存在偏老的“高 U 效应”和偏年轻的 Pb 丢失效应图2 离子探针锆石测试 U+计数与相应 UO2+ /U+值关系中国科学院地质与地球物理研究所李秋立研究员从 U-Pb 衰变过程可造成锆石晶格的损伤、后期热愈合作用造成损伤锆石的结构变化、离子探针Pb/U 离子化效率差异等三个因素进行研究,表明离子探针锆石 U-Pb 定年引发的“高 U 效应”使得 U-Pb 表观年龄变老,但部分样品也会同时受 Pb丢失影响而变小。

对于单个高 U 锆石测点来说,离子探针 U-Pb 年龄偏差较大,需要根据一组高 U 锆石测点 U-Pb 年龄和 U 含量的相关性给出更为合理的年龄结果。

东昆仑中段沙松乌拉地区花岗闪长岩锆石U-Pb年龄及其地质意义

东昆仑中段沙松乌拉地区花岗闪长岩锆石U-Pb年龄及其地质意义

第42卷 第4期 化工 矿 产 地 质 V ol.42 No.42020年12月 GEOLOGY OF CHEMICAL MINERALS Dec. 2020东昆仑中段沙松乌拉地区花岗闪长岩锆石U-Pb 年龄及其地质意义❶付军 董进生 孙宏亮 白建海青海省地质调查院 青海省青藏高原北部地质过程与矿产资源重点实验室,青海 西宁 810012摘 要 沙松乌拉地区地处北昆仑岩浆弧和南昆仑结合带的结合部位;通过LA-ICP-MS 方法对研究区的花岗闪长岩进行锆石的U-Pb 同位素年龄测试,结果表明206Pb/238U年龄加权平均值为Mean=246.7±1.2Ma ,即花岗闪长岩的结晶年龄,该花岗闪长岩形成的地质时期为早三叠世;花岗闪长岩产于中生代岩浆弧环境,成岩时代的确定对于在该区寻找构造蚀变型金矿具有重要的地质意义。

关键词 沙松乌拉地区 锆石U-Pb 年龄 花岗闪长岩 地质意义中图分类号:P588.12;P597 文献标识码:A 文章编号:1006–5296(2020)04–0298–05沙松乌拉地区位于青藏高原北部,柴达木盆地南缘,东昆仑山脉中段。

东昆仑造山带位于华北板块的南缘,东昆仑造山带沿东昆仑-鄂拉山一线分布,呈近东西向展布(图1),南端以昆南缝合带为界,南邻巴颜喀拉,北端以昆北断裂为界与柴达木地块分界,西端延入新疆被阿尔金大型走滑断裂所截,东端大体以唐格木断裂和赛什塘-苦海断裂为界与秦岭弧盆系分界。

潘桂棠等以昆中断裂为界将东昆仑划分为祁漫塔格地块、昆北地块、昆南结合带三个构造单元,该区基底集中分布[1,2]。

笔者以沙松乌拉地区花岗闪长岩的地质特征、岩石学及年代学研究为基础,进而讨论了研究区早三叠世花岗闪长岩的地质意义。

1 区域地质背景大地构造位置属东昆仑造山带的中东段,是北昆仑岩浆弧和南昆仑结合带的结合部位(图1)。

出露地层有古元古界金水口岩群、新元古界万保沟群,下寒武统沙松乌拉组,奥陶-志留系纳赤台群,志留系赛什腾组,上泥盆统牦牛山组、下三叠统洪水川组、下-中三叠统闹仓坚沟组、中三叠统希里可特组及上三叠统八宝山组。

锆石U-Pb定年

锆石U-Pb定年

1. SHRIMP
SHRIMP是高灵敏高分辨率离子探针,从仪器类型看也有 称之为高分辨率高灵敏度二次离子质谱仪。
第一台SHRIMP是于1980年在澳大利亚国立大学研制建成。 由地球科学院的物理和同位素专家W Compston教授和他的 博士生S Clement于1973年开始立项研究,先后参加人员还 包括F Burden(机械), N Schram(电子), D Millar(技术负责人), G Newstead(磁铁)和D Kerr(计算机控制)。
1238204238204206204206???????????????????tiepbupbpbpbpb?1235204235204207204207???????????????????tiepbupbpbpbpb?1232204232204208204208???????????????????tiepbthpbpbpbpb?理论上上述等时线也能象rbsr和smnd体系一样进行岩石定年
我国工作者得到的最年轻的是青藏高原碱性玄武岩的加权 平均年龄是3.82±0.08 Ma (MSWD = 1.16),不一致曲线与 谐和线的交点是3.80±0.11 Ma (MSWD = 1.15)(万渝生等, 2004)。
世界上获得的最年轻的是美国Oregon州的一个晚更新世的 花岗闪长岩(112 ±24 Ka, Bacon et al, 2000)
锆石年代学 Zircon Geochronology
锆石的组成
锆石(zircon)是一个极其常见的副矿物。 它的化学成分是ZrSiO4,在Zr位置会有Hf, U, Th, Y等置换,Si位置会有少量P的置换。
一般锆石中含ZrO2 = 65.9%, SiO2 = 32%, HfO2 =1.0 2.0%, Th, U, HREE, P微量。

锆石的成因和U_Pb同位素定年的某些进展_谢桂青

锆石的成因和U_Pb同位素定年的某些进展_谢桂青

文章编号:1008-0244(2002)01-0064-07锆石的成因和U 2Pb 同位素定年的某些进展谢桂青1,2,胡瑞忠1,蒋国豪1,2,赵军红1,2(1.中科院地球化学研究所矿床开放实验室,贵州贵阳550002;2.中科院研究生院,北京100039)摘 要:锆石是岩浆岩、变质岩、沉积岩和月岩中最重要的副矿物。

本文分别从锆石的形态、以及影响锆石形态的因素、锆石的主量、微量、稀土元素地球化学和氧同位素特征等方面进行系统综述。

同时,论述了目前国内外有关锆石U 2Pb 法定年的研究进展,并对各种方法的局限性加以总结。

关键词:锆石;地球化学特征;U 2Pb 法中图分类号:P597;P581 文献标识码:A收稿日期:2001204205;修回日期:2001208229基金项目:国家杰出青年科学基金(49925309);国家重大基础研究规划项目(G 1999043200)第一作者简介:谢桂青(19752),男,现正在攻读博士学位,地球化学专业。

锆石是岩浆岩、变质岩、沉积岩和月岩中最重要的副矿物。

由于锆石具有特殊的矿物性质,能够用来讨论岩石成因和地质事件的形成时代。

为了深入讨论锆石的成因,不少学者分别从锆石的形态、主量、微量和稀土元素以及氧同位素等方面进行了一系列研究[1~29],特别是近十几年离子探针开发以来,人们逐渐认识到同一地质体的不同锆石颗粒以及同一锆石颗粒内部的不同区域,均可能具有不同的成因,故只有对大量锆石颗粒进行全面分析,才可以得出具有地质意义的锆石成因,在此方面已取得了一定研究进展。

同时,因锆石具有富含U 和Th 、普通铅含量低及封闭温度高的特征,是U 2Pb 法确定地质事件时代最理想的矿物。

由于离子探针和激光等离子质谱的技术发展,特别后者近几年取得很大进展,利用颗粒锆石微区的U 2Pb 法讨论地质事件形成时代成为国际地质学界研究热点[30~56]。

本文就国内外关于锆石以上方面的研究成果进行综述。

LA-ICP-MS锆石年代学数据处理

LA-ICP-MS锆石年代学数据处理
锆石标样年龄在6033ma1检查各元素背景值的峰值2检查锆石点的有效区间3先调整锆石标样91500然后调整所测的锆石样品1各元素背景值峰值的检查2检查锆石点的有效区间3先锆石标样91500后所测的锆石样品报告中比较重要的部分锆石upb协和曲线锆石年龄直方分布图锆石upb平均年龄锆石upb年代学最终结果谢谢大家
优点:样品制备简单,低空白,分析时间<3分钟)。
ICP-MS Data Cal
ICP-MS Data Cal 是LA-ICP-MS数 据处理的专用软件,主要包括微量元 素组成,U-Th-Pb同位素,Pb同位素 以及Hf同位素等数据的处理。
Isoplot 软件
1,各元素背景值峰值的检查
2,检查锆石点的有效区间
3,先锆石标样(91500),后所测的锆石样品
报告中比较重要的部分
锆石U-Pb协和曲线
锆石年龄直方分布图
锆石U-Pb平均年龄
锆石U-Pb年代学最终结果
谢谢大家!
包括 文件
ICP-MS CAL 数据处理的界面 NISTDATA SRM 610 :人造硅酸盐玻璃标样
91500:锆石标样,年龄在1062±4Ma GJ-1:锆石标样,年龄在603 ±3Ma
各个元素 背景值 各种U、 Pb比值
年龄数据 U-Pb协和图 锆石稀土特征
1,检查各元素背景值的峰值 2,检查锆石点的有效区间 3,先调整锆石标样(91500),然后调整所测的锆石样品
LA-ICP-MS锆石年代学 数据处理
报 告 人:蒋 幸 福 指导老师: 彭 松 柏 教授 Kusky T M教授
时间:2012年03月03日
提 纲
1)LA-ICP-MS技术介绍
2)ICP-MS Data Cal软件 3)isoplot软件

锆石U-Pb协和图及协和年龄加权平均值计算方法

锆石U-Pb协和图及协和年龄加权平均值计算方法
精品
➢数据协和度较低, 则将该组数据加上 删除线,该组数据 在进行作图时,就 不会参与作图。
精品
选择该组数据, 不要选择标题
精品
1-选择Isoplot下拉菜单中的开始 (计算与作图)
精品
2-弹出初始化设置对话框,按照 下图选择相应内容-确定
精品
3-弹出Weighted Average对话框, 点击OK
精品
2-选择Isoplot下拉菜单中的开始 (计算与作图)
精品
3-弹出初始化设置对话框,按照 下图选择相应内容-OK
精品
4-弹出X-Y Weighted Mean对话框, 点击OK
精品
5-弹出Concordia Age对话框,点 击确认
精品
6-协和图OK了,里面的线条等等, 需要自己修改调整
精品
出图了,剩下的自己编辑图标吧!
精品
进行锆石U-Pb年龄的协和图处理
精品
怎样获得锆石U-Pb协和图
精品
你需要处理好的锆石数据
➢这五个数据, ➢Ratio=摩尔比值 ➢1sigma=1σ=误差 ➢rho代表协和图中单点 误差红圈的半径,如果 数据中没有,一般选取 0.6~0.8。 ➢这五个数据按照这个 顺序进行排列,进行作 图
精品
1-选择数据区,不要选择标题
精品
怎样ห้องสมุดไป่ตู้得年龄平均值
精品
➢使用
206Pb/238U年 龄 ➢需及要其关注误差作图
206Pb/238U年龄及 其所对应的协和度, 一➢每般一协个和度小于 9200%6P的b/数23据8U不年使龄用对。 应了该激光剥蚀点 所对应的锆石年龄, 可写为133±3.5Ma。 这在做单点锆石年 龄时很重要

锆石u-pb同位素定年的原理,方法及应用

锆石u-pb同位素定年的原理,方法及应用

锆石u-pb同位素定年的原理,方法及应用
锆石U-Pb同位素定年是一种广泛使用的放射性同位素定年方法,应用于地质科学中,用于测定岩石、矿物的年龄。

以下是其原理、方法和应用:
原理
锆石晶体中自然存在的微量铀和钍,通过自然放射性衰变过程,最终分别转变为稳定的铅同位素。

锆石U-Pb同位素定年,即利用锆石中铀和铅之间的放射性衰变关系,测定锆石的年龄。

具体来说,是利用锆石晶体中铀(^238U)自然放射性衰变成铅(^206Pb),以及钍(^232Th)自然放射性衰变成铅(^208Pb)的过程中释放出的α粒子造成的连锁反应计算锆石形成的时间。

方法
锆石U-Pb同位素定年的方法通常有两种:碰撞法和非碰撞法。

碰撞法利用离子束将样品表面剥蚀,将离子轰击区域的同位素进行测量。

非碰撞法则是利用激光将样品表面打在一个小点上,使表面物质的离子化并被聚焦和加速,最终进行同位素测量。

应用
锆石U-Pb同位素定年可用于测定岩石和矿物的年龄、形成时期等,并广泛应用于地质学、矿床学、构造地质学等领域。

例如,在岩石学中,可以通过锆石U-Pb同位素定年来了解岩石的形成历史和演化过程;在矿床学中,可以通过锆石U-Pb同位素定年来确定矿床形成的年龄和矿床类型;在构造地质学中,可以通过同位素定年来研究大地构造演化过程等方面。

同时,锆石U-Pb同位素定年也可以与其他定年方法相结合,以提高年代学的精度和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-选择数据区,不要选择标题
2-选择Isoplot下拉菜单中的开始(计 算与作图)
3-弹出初始化设置对话框,按照下图 选择相应内容-OK
4-弹出X-Y Weighted Mean对话框, 点击OK
5-弹出Concordia Age对话框,点击确 认
6-协和图OK了,里面的线条等等, 需要自己修改调整
选择该组数据, 不要选择标题
1-选择Isoplot下拉菜单中的开始(计 算与作图)
2-弹出初始化设置对话框,按照下图 选择相应内容-确定
3-弹出Weighted Average对话框,点 击OK
出图了,剩下的自己编辑图标吧!
怎样获得年龄平均值
使用
206Pb/238U年龄 及其误差作图
需要关注206Pb/238U 年龄及其所对应的协和 度,一般协和度小于 90%的数据不使用。 每一个206Pb/238U年 龄对应了该激光剥蚀点 所对应的锆石年龄,可 写为133±3.5Ma。这在 做单点锆石年龄时很重 要
数据协和度较低, 则将该组数据加上删 除线,该组数据在进 行作图时,就不会参 与作图。
锆石U-Pb协和图及协和年龄加 权平均值计算方法
怎样获得锆石Байду номын сангаас-Pb协和图
你需要处理好的锆石数据
这五个数据, Ratio=摩尔比值 1sigma=1σ=误差 rho代表协和图中单点 误差红圈的半径,如果 数据中没有,一般选取 0.6~0.8。 这五个数据按照这个 顺序进行排列,进行作 图
相关文档
最新文档