圆内接正多边形画法

合集下载

怎样利用几何画板画圆内接正七边形[宝典]

怎样利用几何画板画圆内接正七边形[宝典]

怎样利用几何画板画圆内接正七边形0
由正七边形的特征,我们知道,每一个点都相当于前面的点逆时针旋转360°/7,抓住这个规律,我们可以用几何画板迭代功能来解决。

下面将详细介绍几何画板圆内接正七边形的绘制方法。

0
具体的操作步骤如下:0
1.利用“圆工具”画圆O,在圆O上任取一点A。

0
利用“圆工具”画圆O并取圆上的点A0
2.双击圆心O作为旋转中心。

选中A点,选择菜单“变换”——“旋转”,旋转参数选为选择固定角度,然后在框中输入360/7,然后点击“旋转”按钮,将旋转得到的点标签改为B。

连接线段AB。

利用旋转得到点B并构造线段AB0
3.选择A点,选择“变换”——“迭代”,点击B点作为初像。

此时屏幕上显示出迭代的像是正七边形的4条边(因为系统默认非深度迭代的迭代次数是3次)。

单击迭代框的“显示”按钮,选择“增加迭代”。

(或者按键盘的‘+’或‘-’)。

增加三次迭代后,我们可以看到一个完整的正七边形。

此时的迭代次数为6次。

0
选择“变换”——“迭代”命令构造圆内接正七边形0
注意:单击迭代框的“显示”按钮下的“最终迭代”,得到的图像仅是最后一条边。

0
4.点击迭代框“结构”按钮,我们可以设置创建的对象,选择“仅保留非点类象”,则迭代的像只有正多边形的各条边,而没有顶点,反之则有。

0
构造的没有顶点的圆内接正七边形示例0
以上给大家介绍了几何画板圆内接正七边形的构造方法,其实构造圆内接正多边形的教程还有很多,比如圆内接正五边形,可参考几何画板官网教程:如何在几何画板中绘制正多边形。

0。

正五边形尺规作图的画法及其他(精品)

正五边形尺规作图的画法及其他(精品)

正五边形尺规作图的画法与其他正五边形的画法第一种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.第二种作法:1. 以O为圆心,半径长为R画圆,并作互相垂直的直径MN和AP;2. 平分半径OM于K,得OK=KM;3. 以K为圆心,KA为半径画弧与ON交于H, AH即为正五边形的边长;4. 以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连结这些点.五边形ABCDE即为所求.第三种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段.正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi 〔i为右下角标〕=22i〔底数2指数2的i次幂〕+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n 边形可尺规作图的充分且必要的条件是n=2k〔2的k次幂〕或2k×p1×p2×…×ps,〔1,2…s为右下角标〕其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路<他早期曾在语言学与数学之间犹豫过>,而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数<3=F0,5=F1>;对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。

圆内接正五边形的画法原理证明

圆内接正五边形的画法原理证明

圆内接正五边形的画法原理证明
首先我们需要明确一下,正多边形外接圆的半径为正多边形边长的一半,也就是说如果我们要画出一个内接正五边形,那么我们需要先确定它的外接圆。

接下来我们就可以用正五边形的对称性来确定各个顶点的位置了。

我们可以将外接圆分成五个相等的扇形,在每个扇形的两个交点处分别作出正五边形的顶点,这些顶点构成的形状就是所求的内接正五边形。

具体的画法如下:
1.画出外接圆并确定圆心。

2.用直线连接圆心与圆上任意一个点的连线。

3.将圆心与圆上所连接的点称为顶点A。

4.从顶点A开始,沿着圆周的方向逆时针或顺时针依次找到另外四个顶点B、C、D、E。

5.依次连接相邻的顶点,最终得到一个内接正五边形。

画法原理的证明可以通过数学知识进行证明。

我们可以证明,在正五边形中,五个角的大小相等,每个角的大小是108度。

同时我们可以证明,在五个相邻的顶点之间的连线上,两两之间的夹角都是36度。

因此当我们按照一定的方式确定出五个相邻的顶点后,它们构成的图形一定是一个内接正五边形,因为五个顶点与圆心所形成的五个扇形的角度总和为360度,而五个相邻顶点之间的夹角也是相等的,因此五个顶点所组成的内角总和一定是540度,也即五个角的大小之和为540度,因此每个角的大小都是108度,符合正五边形的定义。

3.8 圆内接正多边形 课件 (29张PPT) 2023-2024学年北师大版数学九年级下册

3.8 圆内接正多边形  课件 (29张PPT)  2023-2024学年北师大版数学九年级下册

归纳
圆内接正多边形的辅助线
F
E
A

D
rR
BMC
1.连半径,得中心角; 2.作边心距,构造直角三角形.
半径R
O 中心角一半 边心距r
C
M
边长一半
例2 如图2,正六边形的边长为2,分别以正六边形的六条边为直径向外
作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分
面积)是( A ) A.6 3-π
.O
分析:因为正六边形每条边所对的圆心角为 60º ,所以正六边形的边长 与圆的半径 相等 .因此, 在半径为r的圆上依次截取等于 r 的弦, 即可将圆六等分.
作法:(1)作⊙O的任意一条直径FC;
(2)分别以F,C 为圆心,以 r 为半径作弧,与⊙O 交于点E,A和D,B;
(3)依次连接AB、BC、CD、DE、EF、FA,便得到正六边形ABCDEF
2
2
F
E
A
O
D
4m
r
B PC
5.(2023武汉)如图,在圆内接四边形ABCD中,AB=AD,
即为所求.
E
D
F
.O C
A
B
针对训练
1.下列说法中,不正确的是( D ) A.正多边形一定有一个外接圆和一个内切圆 B.各边相等且各角相等的多边形是正多边形 C.正多边形的内切圆和外接圆是同心圆 D.正多边形既是轴对称图形,又是中心对称图形
二 圆内接正多边形的有关计算
正n边形的一个内角的度数是多少? 中心角呢?正多边形的中心角与外角 的大小有什么关系?
A. 2
B. 4
C. 2 2
D. 4 2
A
D
O

正五边形尺规作图的画法及其他

正五边形尺规作图的画法及其他

正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。

以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。

正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。

北师大版九年级数学下册第三章8圆内接正多边形

北师大版九年级数学下册第三章8圆内接正多边形
⑤正n边形的中心角αn= 360? ,且与每一个外角相等.
n
其中正确的命题有 ( ) A.2个 B.3个 C.4个 D.5个
答案 A ①正多边形都有一个内切圆和一个外接圆,这两个圆是同心圆, 圆心是正多边形的中心,故①正确;②各边相等的圆外切多边形的各内角不 一定相等,故不一定是正多边形,如菱形,故②错误;③圆内接矩形的各内角 相等,但不是正多边形,故③错误;④边数是偶数的正多边形既是轴对称图 形又是中心对称图形,而边数是奇数的正多边形只是轴对称图形,不是中心
2.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20 cm2,则正八边
形的面积为
cm2.
答案 40 解析 如图,连接AD、HE,分别交BG、CF于点O、P、M、N, 则△ABO,△CDP,△EFN,△HGM均为全等的等腰直角三角形,四边形 BCPO、四边形GFNM为全等的矩形. 设正八边形的边长为a cm,
初中数学(北师大版)
九年级 下册
第三章 圆
知识点一 圆内接正多边形 顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正
多边形的外接圆. 把一个圆n(n≥3)等分,依次连接各分点,我们就可以作出一个圆内接正n边 形. (1)相关定义:
名称 中心
半径 中心角 边心距
概念
图形
ห้องสมุดไป่ตู้
一个正多边形的外接圆的圆心 叫做这个正多边形的中心
1.正六边形的边心距与边长之比为 ( ) A. 3 ∶3 B. 3 ∶2 C.1∶2 D. 2 ∶2
答案 B 如图,设正六边形ABCDEF的边长为2a,O为正六边形的中心,连 接OA、OB,作OM⊥AB于M, ∴△OAB是等边三角形, ∴OA=OB=AB=2a,AM=BM=a. 在Rt△OAM中,由勾股定理可得OM= 3 a, 则正六边形的边心距与边长之比为OM∶AB= 3 a∶2a= 3 ∶2,故选B.

正多边形和圆-ppt课件

正多边形和圆-ppt课件

“各边相等,各内角相等”是正多边形的两
个基本特征,当边数n>3时,二者必须同时具备,
缺一不可,否则多边形就不是正多边形.
感悟新知
3. 正多边形的有关概念
知1-讲
(1)正多边形的中心: 一个正多边形的外接圆的圆心叫作正
多边形的中心 .
(2)正多边形的半径: 正多边形的外接圆的半径叫作正多边形
的半径 .
心,OA 为半径作⊙ O,直径 FC ∥ AB, AO, BO
的延长线交⊙ O 于点 D, E.
求证:六边形 ABCDEF 为圆内接
正六边形 .
感悟新知
知1-练
思路导引:
感悟新知
知1-练
证明: ∵三角形 AOB 是正三角形,
∴∠ AOB= ∠ OAB= ∠ OBA=60°, OB=OA.
∴点 B 在⊙ O 上 .
(1)作半径为 0.9 cm 的⊙ O;
(2)用量角器画∠ AOB = ∠ BOC=120°,其中 A, B,C
均为圆上的点;
(3)连接 AB, BC, CA,则△ ABC 为
所求作的正三角形 ,如图 24. 3-4所示.
感悟新知
作法二
(1)作半径为 0.9 cm 的⊙ O;
知3-练
(2)作⊙ O 的任一直径 AB;




︵ ︵
∴BDE-CDE=CDA-CDE,即BC=AE.∴BC=AE.
同理可证其余各边都相等,
∴五边形 ABCDE 是正五边形.
感悟新知
知识点 2 正多边形的有关计算
1. 正 n 边形的每个内角都等于
(-)· °
.

2. 正 n 边形的每个中心角都等于

《圆内接正多边形》圆PPT教学课件

《圆内接正多边形》圆PPT教学课件

【检查评价】
北京师范大学出版社 九年级 | 下册
布置作业: 1、教科书习题3.10第1题,第2题,第3题.(必做题) 2、教科书习题3.10第4题,第5题.(选做题)
谢谢观看!
第三章 圆
3.8 圆内接正多边形
学习目标
1.掌握正多边形和圆的关系; 2.理解正多边形的中心、半径、中心角、边心距等概念;(重点) 3.能运用正多边形的知识解决圆的有关计算问题; (难点) 4.会运用多边形知和圆的有关知识画多边形.
若n为偶数,则其为中心对称图形.
A
B O
A
E
B
F
O
C
D
C
E
D
知识讲解
【归纳】正多边形的性质
1.各边相等,各角相等. 2.圆的内接正n边形的各个顶点把圆分成n等份. 3.圆的外切正n边形的各边与圆的n个切点把圆分成n等份. 4.每个正多边形都有一个内切圆和外接圆,这两个圆是同心圆,圆心就是正 多边形的中心.
追问1:除了上述方法作圆的内接正六边形外,你还有其他方法吗?
北京师范大学出版社 九年级 | 下册
【讲授新知】
追问2:你会用用圆规和直尺来作一个已知圆的内接正方形吗?你是怎么做的? 与同伴交流.
【| 下册
学生练习1:课本98页随堂练习. 学生练习2:用等分圆周的方法画出下列图案.
__各__边__相__等___,___各__角__也__相__等__的多边形叫做正多边形.
正n边形:如果一个正多边形有n条边,那么这个正多边形叫做正n边
形.
合作探究
怎样找圆的内接正三角形?
怎样找圆的外切正三角形?
H
A
D
E
0
B
C

3.8 圆内接正多边形

3.8  圆内接正多边形
以作出一个圆内接正多边形. 如图,五边形ABCDE是⊙O的内接 正五边 形,圆心O叫做这个正五边形 的中心;OA是这个正五边 形的半径;
∠ AOB是这个正五边形的中心角;OM丄BC,垂足
为M,OM是这个正五边形圆心距.
(来自教材)
知1-讲
1.圆内接正多边形:顶点都在同一圆上的正多边形叫做圆 内接正多边形,这个圆叫做正多边形的外接圆.
6
(2015· 随州)如图,⊙O是正五边形ABCDE的外接圆, 这个正五边形的边长为a,半径为R,边心距为r,则 下列关系式错误的是( )
A.R2-r2=a2
B.a=2Rsin 36° C.a=2rtan 36° D.r=Rcos 36°
(来自《典中点》)
知2-导
知识点
2 圆内接正多边形的画法
利用尺规作一个已知圆的内接正六边形.
(来自《典中点》)
知1-练
2
(2016· 南京)已知正六边形的边长为2,则它的内切圆
的半径为( A.1 ) B. 3 C.2 D.2 3
3
一个圆的内接正四边形和外切正四边形的面积的比是 ( )
A.1∶ 2
B.1∶2
C.2∶3
D.2∶π
(来自《典中点》)
知1-练
4
(2015· 青岛)如图,正六边形ABCDEF内接于⊙O,
⊙O于点C,F和D,E;(4)连接AD,DE,EA.
则△ADE为所求作的正三角形,如图所示.
(来自《点拨》)
知2-讲
总 结
解决这类问题通常有两种方法:
(1)用量角器等分圆周法;
(2)用尺规等分圆周法.
(来自《点拨》)
知2-讲
例4 如图①②③…,M,N分别是⊙O的内接正三角形ABC、正

第一章环境艺术设计制图基本知识

第一章环境艺术设计制图基本知识
尺寸标注的基本规则 1.建筑形体的真实大小应以图样上所注的尺寸数值为依
据,与图形的比例大小及绘图的准确度无关。 2.图样中的尺寸,以毫米为单位时,不需标注计量单位
的代号或名称。 3.建筑形体上的每一尺寸,一般只标注一次,并应标注
在反映该尺寸最清晰的图形上。
五 尺寸标注
尺寸的组成 尺寸界线、尺寸线、尺寸起止符号、尺寸数字
的距离五等分
CD上,摆动尺身,使刻
度5落在AB上,截得1、
2、3、4各等分点
(c)过各等分点作AB的 平行线,即为所求
圆内接正多边形的画法 (一)作圆内接正方形
(a)画出正方形的外接圆,用 45°三角尺的斜边对准圆心,作 圆的直径交圆周于A、B两点
(b)同样的方法作另 一侧的直径,交圆周于 C、D两点
(a)画出半径为R的正六边形的 (b)用半径R划分圆周
外接圆
为六等分
(c)顺序将各等分点用 直线段连接,即为所求
圆内接正多边形的画法 (一)作圆内接正n边形
(a)将已知圆的直径AB等分 n等分(本例为七等分),得 到1、2、3、4…n等点
(b)以A为圆心, AB 长为半径作圆弧,交水 平直径的延长线于Ⅰ、 Ⅱ两点
尺寸的简化标注
2.相同构造要素的尺寸标注 相同构造要素的尺寸
可仅标注其中一个要素的尺寸,并在尺寸数字签 名加上“个数×”的内容,如图。
8× 6
尺寸的简化标注
3.坡度的尺寸标注 标注坡度尺寸时,应在尺寸数字前 加注坡度符号“ ”,箭头应指向下坡方向,数字用百 分数或比数形式表示,方法如图。
第三节 几何作图
投影制图
专业施工图
本课程的特点
(1) 实践性强 (2) 名词众多 (3) 关联性强 (4) 习题量大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得A,B,C,D,E各点,顺 次连接这些点即得正五边形。
C
A O
P
E
H
N
D
课堂小结
画正多边形的方法
1.用量角器等分圆 2.尺规作图等分圆
作业:P108:3、8
先作出正六边形,则可作正 三角形,正十二边形,正二十四
边形………
B
C
探索新知
圆内接正五边形的画法:
① 以O为圆心,定长R为半径 画圆,并作互相垂直的直径 MN和AP。
② 平分半径ON,得OK=KN。 B
③ 以K为圆心,KA为半径画 M
弧与OM交于H,AH即为正五
K
边形的边长。
④ 以AH为弦长,在圆周上截
=120°,得A、B、C
120 ° O
② 顺次连接AB、BC、 CA。
得圆内接正三角形ABC
C
B
探索新知
你能用以上方法画出正四边形、正 五边形、正六边形吗?
A
A
D
F
E
·O
BEO·来自AO ·D
90°
72°
60°
B
C
C
D
B
C
探索新知
你能尺规作出正六边形、正三角形、正 十二边形吗?
F
E
O
A
·
D
以半径长在圆周上截取六段相 等的弧,依次连结各等分点,则 作出正六边形.
当堂训练
正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通 过n边形的中心。
当堂训练
边数是偶数的正多边形还是中心对称图形, 它的中心就是对称中心。
探索新知
怎样画一个正多边形呢? 问题1:已知⊙O的半径为2cm,求作 圆的内接正三角形.
A
①用量角器度量,使
∠AOB=∠BOC=∠COA
相关文档
最新文档