九年级数学上册 二次函数 单元测试题(含答案)
九年级上册数学《二次函数》单元检测题(含答案)
【考试时间:90分钟分数:120分】
一、选择题(共10小题,每小题3分,共30分)、
1.下列函数1个B.2个C.3个D.4个
2.已知二次函数 图象如图所示,给出以下结论:① ;② ;③ ;④ ,其中结论正确有()个.
A.2个B.3个C.4个D.5个
C.10D.无法确定
【答案】C
【解析】
【分析】
根据抛物线 自变量的取值范围问题,可得出二次函数的最值,再求和即可.
【详解】∵函数y=2(x−3)2−4的对称轴为x=3,
当x=3时,函数有最小值−4,
∵1≤x≤6,
∴当x=6时,函数的最大值为14,
∴最大值与最小值的和为−4+14=10.
故答案选C.
【点睛】本题考查了二次函数的最值,解题的关键是根据抛物线与取值范围求出最值.
17.若抛物线y=2x2-px+4p+1中不管p取何值时都通过定点,则定点坐标为_________.
18.如图,利用一面墙(墙的长度不超过 ),用 长的篱笆围一个矩形场地,当 ________ 时,矩形场地的面积最大.
19.将一条长为20 cm 铁丝剪成两段并用每一段铁丝刚好围成一个正方形,则这两个正方形面积之和的最小值是____________.
14.已知二次函数 的图象如图所示,对称轴是直线 ,下列结论:① ;② ;③ ;④ .正确的是________.
15.如图所示,有一根长 的铁丝,用它围成一个矩形,写出矩形面积 与它的一边长 之间的函数关系式________.
16.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为______.
人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)
第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册
第二十二章 二次函数一、选择题(每题3分,共24分)1.下列各式中,y 是x 的二次函数的是( )A .y =1x 2B .y =x 2+1x +1C .y =2x 2−1D .y =x 2−12.下列抛物线中,与y =−3x 2+1抛物线形状、开口方向完全相同,且顶点坐标为(−1,2)的是( )A .y =−3(x +1)2+2B .y =−3(x−1)2+2C .y =3(x +1)2+2D .y =−3(x +1)2+23.在平面直角坐标系中,将二次函数y =3x 2的图象向下平移3个单位长度,所得函数的解析式为( )A .y =3x 2−1B .y =3x 2+1C .y =3x 2−3D .y =3x 2+34.若A (−1,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y =−(x−2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 3<y 2<y 15.二次函数y =−x 2−2x +c 2−2c 在−3≤x ≤2的范围内有最小值为−5,则c 的值( )A .3或−1B .−1C .−3或1D .36.已知二次函数y =x 2−3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2−3x +m =0的两实数根是( )A .x 1=0,x 2=−1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=37.如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的解析式是( )A .y =−13x 2B .y =13x 2C .y =−3x 2D .y =3x 28.如图,已知经过原点的抛物线y =a x 2+bx +c(a ≠0)的对称轴是直线x =−1,下列结论中:①ab >0,②a +b +c >0,③当−2<x <0时y <0.正确的个数是( )A.0个B.1个C.2个D.3个二、填空题(每题4分,共20分)9.抛物线y=−3(x−1)2−2的对称轴是直线 .10.若y=(m−2)x m2−2+x−3是关于x的二次函数.则m的值为 .11.抛物线y=a x2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点为(3,0),对称轴为直线x=1,则当y≤0时,x的取值范围是 .12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m处达到最高,高度为5m,水柱落地处离池中心距离为6m,则水管的长度OA是 m.13.如图,在平面直角坐标中,抛物线y=a x2+bx(a>0)和直线y=kx(k>0)交于点O和点A,则不等式a x2 +bx<kx的解集为 .三、解答题(共56分)14.如图所示,二次函数y=a x2+bx+c(a≠0)的图保与x轴相交于A,B两点,其中点A的坐标为(−1,0),M(2,9)为抛物线的顶点.(1)求抛物线的函数表达式.(2)求△MCB的面积.15.如图所示,在平面直角坐标系中,二次函数y=a x2+4x−3的图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后的图象所对应的二次函数的表达式. 16.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.17.第十九届亚运会在杭州隆重举办,政府鼓励全民加强体育锻炼,李明在政府的扶持下投资销售一种进价为每件50元的乒乓球拍.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+900.(1)设月利润为W(元),求W关于x的函数表达式.(2)销售单价定为每件多少元时,所得月利润最大?最大月利润为多少元?(3)若物价部门规定这种乒乓球拍的销售单价不得超过75元,李明想使获得的月利润不低于3000元,求销售单价x的取值范围.18.如图,二次函数y=a x2+bx+c的图象交x轴于A(−1,0),B(2,0),交y轴于C(0,−2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内一个动点,求点M运动过程中,四边形ACMB面积的最大值;(3)点P在该二次函数图象的对称轴上,且使|PB−PC|最大,求点P的坐标。
九年级上册数学《二次函数》单元测试(附答案)
(2)要使商场平均每天赢利最多,请你帮助设计方案.
25.已知二次函数y=ax2+bx+c的图象抛物线G经过(﹣5,0),(0, ),(1,6)三点,直线l的解析式为y=2x﹣3
(1)求抛物线G的函数解析式;
(2)求证:抛物线G与直线L无公共点;
【详解】解:根据题意得:AD=BC= ,上边三角形的面积为: (5﹣x) ,右侧三角形的面积为: x(12﹣ ),所以y=30﹣ (5﹣x) ﹣ x(12﹣ ),整理得:y=﹣ x2+12x,∴y=﹣ (x﹣ )2+15.
∵﹣ <0,∴长方形面积有最大值,此时边长x应为 m.
故要使长方形的面积最大,其边长 m.
故选D.
【点睛】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.
7.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是()
19.若点P(1,a),Q(-1,b)都在抛物线y=-x2+1上,则线段PQ的长为_____.
20.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是_____.
三、解答题
21.―抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8).
人教版九年级数学上册第22章《二次函数》单元测试题含答案
人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
2024年九年级数学上册《二次函数》单元测试及答案解析
第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 23.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的大致图象可能是()A. B.C. D.4.坐标平面上有两个二次函数的图像,其顶点M、N皆在x轴上,且有一水平线与两图像相交于A、B、C、D四点,各点位置如图所示,若AB=12,BC=4,CD=6,则MN的长度是()A.8B.9C.10D.115.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+c =n -1有两个不相等的实数根;⑤若方程ax 2+bx +c =0的两根分别为x 1,x 2,则x 1+x 2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.437.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界8.如图,抛物线G :y 1=a (x +1)2+2与抛物线H :y 2=-(x -2)2-1交于点B (1,-2),且分别与y 轴交于点D ,E .过点B 作x 轴的平行线,交抛物线于点A ,C .则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.49.设二次函数y=a x+mx+m-k(a<0,m,k是实数),则()A.当k=2时,函数y的最大值为-4aB.当k=2时,函数y的最大值为-2aC.当k=4时,函数y的最大值为-4aD.当k=4时,函数y的最大值为-2a10.如图,已知点A-1,0,点B2,3.若抛物线y=ax2-x+2(a为常数,a≠0)与线段AB有两个不同的公共点,则a的取值范围是()A.a≥3B.a≤-3或34≤a<1C.-3<a<1或a≥3D.34≤a<1二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm3与温度t°C之间的关系满足二次函数V=18t2+104t>0,则当温度为4°C时,水的体积为cm3.12.已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P2,y1,Q3,y2在抛物线C 上,则y1y2(填“>”或“<”);13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y1=a1x2+b1x+c1,y2=a2x2+b2x+c2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y2与直线y=32x+7的交点坐标为.14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4.为顶点,且过点B2,-5(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.(1)求该函数的解析式;(2)请结合平面直角坐标系中给出的点,画出符合题意的函数图象,并写出飞机降落后滑行到停下来前进了多远?19.已知一次函数y=ax+b的图像上有两点A、B,它们的横坐标分别是2、-1,若二次函数y=x 2的图像经过A、B两点.(1)求一次函数解析式并在平面直角坐标系内画出两个函数的图像;(2)若P m,y1两点都在二次函数y=x 2的图像上,试比较y1与y2的大小. ,Q m+1,y220.在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A-1,0两点,交y轴于点C,点P m,n,B3,0在抛物线上.(1)求抛物线的表达式及顶点坐标;(2)若此抛物线点P右侧的部分(不含点P)上恰好有三个点到x轴的距离均为2,请直接写出m的取值范围.四、(本大题共3小题,每小题8分,共24分)21.如图,在平面直角坐标系xOy中,已知抛物线的解析式是y1=x2,直线l的解析式是y2=-14,点F0,1 4,点P是在该抛物线上的动点,连接PF,过P作PN⊥l.(1)求证:PF=PN;(2)设点E-2,6,求PE+PF的最小值及此时点P的坐标.22.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出,如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车,另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;在两公司租出的汽车数量相等且都为x(单位:辆,0<x≤50)的条件下,甲的利润用y1表示(单位:元),乙的利润用y2(单位:元)表示,根据上述信息,解决下列问题:(1)分别表示出甲、乙的利润,什么情况下甲、乙的利润相同?(2)甲公司最多比乙公司利润多多少元?(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且仅当两公司租出的汽车均为16辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.23.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(Ⅰ)列表:①②③④⑤⑥x023456y01 2.254 6.259(Ⅱ)描点:请将表格中的x,y描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a x-h2+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a x-h2+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax2.①此时点B 的坐标为;②将点B 坐标代入y=ax2中,解得a=;(用含m,n的式子表示)方案二:设C点坐标为h,k①此时点B的坐标为;②将点B坐标代入y=a x-h2+k中解得a=;(用含m,n的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy中有A,B两点,AB=4,且AB∥x轴,二次函数C1:y1=2x+h2+k和C2:y2=a x+h2+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之和为10,求a的值.五、(本大题共2小题,每小题12分,共24分)24.中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵位列第二,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的270C(向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy.如果她从点A3,10起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系式y=a x-h.2+k a<0(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x与竖直高度y的几组数据如下:水平距离x/m03 3.54 4.5竖直高度y/m1010k10 6.25根据上述数据,直接写出k的值为,直接写出满足的函数关系式:;(2)比赛当天的某一次跳水中,全红婵的竖直高度y与水平距离x近似满足函数关系y=-5x2+40x-68,记她训练的入水点的水平距离为d1,比赛当天入水点的水平距离为d2,请通过计算比较d1与d2的大小;(3)在(2)的情况下,全红婵起跳后到达最高点B开始计时,若点B到水平面的距离为c,则她到水面的距离y与时间t之间近似满足y=-5t2+c,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的270C动作,请通过计算说明,她当天的比赛能否成功完成此动作?25.综合与实践问题提出某兴趣小组开展综合实践活动,如图1,在正方形ABCD中,E,F分别是AB,AD上一点,且AF=2AE.点M从点E出发,沿正方形ABCD的边顺时针运动;点N同时从点F出发,沿正方形ABCD的边逆时针运动.若两动点的运动速度相同,都为每秒1个单位长度,相遇时M,N两点都停止运动,设点M运动的时间为t秒,△AMN的面积为S,探究S与t的关系.初步感知根据运动的变化,绘制了如图2所示的图象,按不同的函数解析式,图象可分为四段,还有最后一段未画出.(1)AE的长为,AB的长为.(2)a的值为,S的最大值为.延伸探究(3)请求出图2中未画出的最后一段图象对应的函数解析式,并将图象补充完整.(4)求b的值,并求出当S>3时,t的取值范围.第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米【答案】B【分析】本题考查了待定系数法求函数解析式的运用,求出函数的解析式是解答本题的关键.设y=kx2,由待定系数法就可以求出解析式,把y=3.2×105代入函数解析式就可以求出结论.【详解】解:设y=kx2,∵当x=3时,y=18,∴9k=18,k=2,∴y=2x2,当成本为3.2×105元时,有2x2=3.2×105,x2=1.6×105,x=4×102.故选:B.2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 2【答案】C【分析】本题考查了待定系数法求二次函数解析式,二次函数的图象和性质等知识点,学会根据表格中的信息求得函数的解析式是解题的关键.由表格中的几组数求得二次函数的解析式,然后通过函数的性质即可得出结果.【详解】解:设二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),由题意可知a-b+c=0c=-59a+3b+c=-8 ,解得a=1b=-4 c=-5 ,∴二次函数的解析式为y=x2-4x-5 =x-5x+1=x -2 2-9,∴函数的图象开口向上,顶点为2,-9 ,图象与x 轴的交点分别为-1,0 和5,0 ,∴图象的对称轴是x =2,函数有最小值-9,∴选项A 、B 、D 不符合题意,选项C 符合题意.故选:C .3.一次函数y =ax +b 和二次函数y =ax 2+bx 在同一平面直角坐标系中的大致图象可能是()A. B.C. D.【答案】B 【分析】本题考查抛物线和直线的性质,本题可先由一次函数y =ax +b 图象得到字母系数的正负,再与二次函数y =ax 2+bx 的图象相比是否一致.【详解】解:A 、由抛物线可知,a <0,x =-b 2a<0,得b <0,由直线可知,a >0,b >0,故本选项不符合题意;B 、由抛物线可知,a >0,x =-b 2a <0,得b >0,由直线可知,a >0,b >0,故本选项符合题意;C 、由抛物线可知,a <0,x =-b 2a <0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意;D 、由抛物线可知,a >0,x =-b 2a>0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意.故选:B4.坐标平面上有两个二次函数的图像,其顶点M 、N 皆在x 轴上,且有一水平线与两图像相交于A 、B 、C 、D 四点,各点位置如图所示,若AB =12,BC =4,CD =6,则MN 的长度是()A.8B.9C.10D.11【答案】B 【分析】本题考查了二次函数的图像与性质,线段长度的相关计算,熟练掌握以上知识点是解题的关键.由AB ,BC ,CD 的长度以及根据二次函数的对称性可以知道,M 和C ,N 和B ,C 和B 横坐标的差,从而推出M 和N 的横坐标之差,得到MN 的长度.【详解】由A、B、C、D四点在同一水平线,可以知道四点纵坐标相同∵AB=12,BC=4,CD=6,∴AC=AB+BC=16,BD=4+6=10∴x C-x M=AC2=8,x N-x B=BD2=5又∵x C-x B=BC=4∴MN=x N-x M=(x N-x B)+(x C-x M)-(x C-x B)=5+8-4=9.故选:B.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+ c=n-1有两个不相等的实数根;⑤若方程ax2+bx+c=0的两根分别为x1,x2,则x1+x2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个【答案】B【分析】本题主要考查了二次函数图象与其系数的关系,二次函数的性质等等,根据开口向下得到a<0,再根据顶点坐标结合对称轴公式得到b=-2a>0,即b+2a=0,则可判断②;由对称性可得当x=-1时,y=a-b+c>0,则可判断②;根据函数图象可知抛物线与直线y=n-1有两个交点,则可判断④;根据二次函数与一元二次方程之间的关系可判断④.【详解】解:∵抛物线开口向下,∴a<0,∵顶点坐标为1,n,∴抛物线对称轴为直线x=-b2a=1,∴b=-2a>0,即b+2a=0,∴3a+b=2a+b+a=a<0,②错误;∵当x=3时y>0,抛物线对称轴为直线x=1,∴当x=-1时,y=a-b+c>0,①正确;∵抛物线顶点纵坐标为n,∴4ac-b24a=n,∴b2=4ac-4an=4a c-n,③正确;由图象可得抛物线与直线y=n-1有两个交点,∴ax2+bx+c=n-1有两个不相等的实数根,④正确;∵抛物线对称轴为直线x=1,方程ax2+bx+c=0的两根分别为x1,x2,,∴x1+x22=1,∴x1+x2=2,⑤正确.故选:B .6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.43【答案】B【分析】本题考查二次函数与几何的综合应用,作BE ⊥x 轴,DF ⊥x 轴,证明△BEC ≌△CFD ,进而求出D 点坐标,代入解析式进行求解即可.【详解】解:如图所示,作BE ⊥x 轴,DF ⊥x 轴,则:∠BEO =∠CFD =90°,∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∴∠BCE =∠CDF =90°-∠DCF ,∴△BEC ≌△CFD ,∴CF =BE ,DF =CE ,∵点B ,C 的坐标分别是(-2,1),(2,0),∴BE =CF =1,OC =2,DF =CE =2+2=4,∴OF =3,∴D 3,4 ,∵点D 在抛物线y =13x 2+bx 的图像上,∴4=13×32+3b ,∴b =13;故选B .7.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界【答案】D【分析】本题主要考查了二次函数的实际应用.根据顶点式的特点可知球运行的最大高度为2.6m,由此即可判断A;求出当x=9时,y的值,再与2.43m进行比较即可判断B;求出当x=18时,y的值,再与0比较即可判断C、D.【详解】解:∵抛物线解析式为y=-160x-62+2.6,∴球运行的最大高度为2.6m,故A说法错误,不符合题意;在y=-160x-62+2.6中,当x=9时,y=-1609-62+2.6=2.45>2.43,∴球会过球网,故B说法错误,不符合题意;在y=-160x-62+2.6中,当x=18时,则y=-16018-62+2.6=0.2>0,∴球会过球网且会出界,故C说法错误,不符合题意,D说法正确,符合题意;故选D.8.如图,抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B(1,-2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.4【答案】C【分析】①先求抛物线G的解析式,再根据抛物线G,H的顶点坐标,判断平移方向和平移距离即可判断②;②根据非负数的相反数或者直接由图像判断即可;③先根据题意得出-3<x<1时,观察图像可知y1 >y2,然后计算y1-y2,进而根据一次函数的性质即可判断;④分别计算出A,E,C,D的坐标,根据正方形的判定定理进行判断即可.【详解】①∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B1,-2,∴x=1,y=-2,即-2=a(1+1)2+2,解得a=-1,∴抛物线G:y1=-x+12+2,∴抛物线G的顶点(-1,2),抛物线H的顶点为(2,-1),将(-1,2)向右平移3个单位,再向下平移3个单位即为(2,-1),即抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到,故①正确;②∵(x-2)2≥0,∴-(x-2)2≤0,∴y2=-x-22-1≤-1,∴无论x取何值,y2总是负数,故②正确;③∵B1,-2,∵将y=-2代入抛物线G:y1=-x+12+2,解得x1=-3,x2=1,∴A(-3,-2),将y=-2代入抛物线H:y2=-x-22-1,解得x1=3,x2=1,∴C(3,-2),∵-3<x<1,从图像可知抛物线G的图像在抛物线H图像的上方,∴y1>y2∵y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6∴当-3<x<1,随着x的增大,y1-y2的值减小,故③不正确;④设AC与y轴交于点F,∵B1,-2,∴F(0,-2),由③可知∴A(-3,-2),C(3,-2),∴AF=CF,AC=6,当x=0时,y1=1,y2=-5,即D(0,1),E(0,-5),∴DE=6,DF=EF=3,∴四边形AECD是平行四边形,∵AC=DE,AC⊥DE,∴四边形AECD是正方形,故④正确,综上所述,正确的有①②④,故选:C .【点睛】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.9.设二次函数y =a x +m x +m -k (a <0,m ,k 是实数),则()A.当k =2时,函数y 的最大值为-4aB.当k =2时,函数y 的最大值为-2aC.当k =4时,函数y 的最大值为-4aD.当k =4时,函数y 的最大值为-2a【答案】C【分析】此题考查了二次函数的图象和性质、求二次函数的最值,求出二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .得到二次函数的对称轴是直线x =-m -m +k 2=-2m +k 2.根据开口方向进一步求出最值即可.【详解】解:由题意,令y =0,∴a x +m (x +m -k )=0,∴x 1=-m ,x 2=-m +k .∴二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .∴二次函数的对称轴是:直线x =-m -m +k 2=-2m +k 2.∵a <0,∴y 有最大值.当x =-2m +k 2,y 最大,即y =a -2m +k 2+m -2m +k 2+m -k =-k 24a 当k =4时,函数y 的最大值为-4a ;当k =2时,函数y 的最大值为-a .综上,C 选项正确.故选:C .10.如图,已知点A -1,0 ,点B 2,3 .若抛物线y =ax 2-x +2(a 为常数,a ≠0)与线段AB 有两个不同的公共点,则a 的取值范围是()A.a ≥3B.a ≤-3或34≤a <1C.-3<a <1或a ≥3D.34≤a <1【答案】B【分析】本题考查了二次函数和一次函数的综合问题,先求出直线AB 的解析式,令x +1=ax 2-x +2,根据有两个交点求出a 的取值范围,再分a >0和a <0两种情况讨论即可得到答案;【详解】解:设AB 所在直线为y =kx +b ,∵A -1,0 ,B 2,3 ,∴-k +b =02k +b =3,解得:k =1b =1 ,∴y =x +1,当x +1=ax 2-x +2时,∵二次函数与线段AB 有两个不同的公共点,∴(-2)2-4a ×1>0,解得:a <1,①当0<a <1时,此时函数的开口向上,∴a ×(-1)2-(-1)+2≥0,a ×22-2+2≥3,解得:34≤a <1,②当a <0时此时函数的开口向下,∴a ×(-1)2-(-1)+2≤0,a ×22-2+2≤3,解得:a ≤-3,综上所述得:34≤a <1,a ≤-3,故选:B .二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm 3 与温度t °C 之间的关系满足二次函数V =18t 2+104t >0 ,则当温度为4°C 时,水的体积为cm 3.【答案】106【分析】本题考查二次函数的应用,细心计算是解题的关键.将t =4代入解析式求值即可.【详解】解:∵V =18t 2+104t >0 ,当t =4°C 时,V =18×42+104=106cm 3 ,∴水的体积为106cm 3.故答案为:106.12.已知二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,点P 2,y 1 ,Q 3,y 2 在抛物线C 上,则y 1y 2(填“>”或“<”);【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为y =x +1 2,再利用二次函数图象的性质可得出答案.【详解】解:y =x 2-2x +1=x -1 2,∵二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,∴抛物线C 的解析式为y =x +1 2,∴抛物线开口向上,对称轴为x =-1,∴当x >-1时,y 随x 的增大而增大,∵2<3,∴y 1<y 2,故答案为:<.13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y 1=a 1x 2+b 1x +c 1,y 2=a 2x 2+b 2x +c 2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y 2与直线y =32x +7的交点坐标为.【答案】关于点-32,0 成中心对称-1,112 ,8,19 【分析】本题主要考查了二次函数的图像和性质,以及二次函数与一次函数的交点等知识.(1)根据抛物线图像可求出y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,根据点坐标与二次函数的图像可得出答案.(2)用待定系数法求出抛物线y 2的函数解析式,再令32x +7=12x -2 2+1,进一步求解即可求出y 2与直线y =32x +7的交点坐标.【详解】解:由图象可得抛物线y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,∵点-5,-1 与点2,1 关于点-32,0对称,∴抛物线y 1与抛物线y 2关于点-32,0成中心对称.设抛物线y 2解析式为y 2=a x -2 2+1,由图象可得抛物线经过(4,3),将(4,3)代入y 2=a x -2 2+1得3=4a +1,解得a =12,∴y 2=12x -2 2+1,令32x +7=12x -2 2+1,解得x 1=-1,x 2=8,将x 1=-1代入y =32x +7得y =112,把x 2=8代入y =32x +7得y =19,∴y 2与直线y =32x +7的交点坐标为-1,112 ,8,19 ,故答案为:-1,112 ,8,19 .14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.【答案】b >134或-3<b <1【分析】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,也考查了抛物线与直线的交点问题.解决本题的关键是利用数形结合的思想的运用.通过解方程x 2-2x -3=0得到A 、B 的坐标,利用二次函数的性质得到顶点的坐标,可写出图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,然后求出直线y =x +b 与y =-x 2+2x +3-1<x <3 相切b 的值,直线y =x +b 过A 和过B 点所对应的b 的值,再利用图象可判断直线y =x +b 与此图象有且只有两个公共点时b 的取值范围.【详解】解:当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3,则A -1,0 ,B 3,0 ,y =x 2-2x -3=x -1 2-4,则顶点坐标为1,-4 ,把图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,如图,当直线y =x +b 与y =-x 2+2x +3-1<x <3 相切时,直线与新函数图象有三个交点,此时x +b =-x 2+2x +3有两个相等的实数解,方程整理得x 2-x +b -3=0,Δ=(-1)2-4(b -3)=0,解得b =134,∴当b >134时,直线y =x +b 与图像C 1恰有两个公共点,当直线y =x +b 过A -1,0 时,-1+b =0,解得b =1,当直线y =x +b 过B 3,0 时,3+b =0,解得b =-3,所以,当-3<b <1时,直线y =x +b 与此图象有且只有两个公共点.综上可知,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是b >134或-3<b <1.故答案为:b >134或-3<b <1.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.【答案】-32≤t ≤2【分析】本题考查了二次函数的性质,两点距离公式,轴对称的性质,三角形三边关系,先求出点A ,点B ,点C 坐标,分三种情况讨论,由两点间距离公式和三角形三边关系可求解.【详解】解:∵二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C 当x =0时,y =3,当y =0时,33x 2-433x +3=0,解得:x 1=1,x 2=3∴A 1,0 ,B 3,0 ,C 0,3 ,对称轴为直线x =2如图所示,∵线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等∴P A =PB 或PB =PC 或PC =P A ,∵段DE 在直线y =32上移动,∴点P 的纵坐标为32,设P x ,32①若PC =P A ,∴x 2+3-322=x -1 2+32 2解得:x =12∴P 12,32∴P A =PC =1,PC =7∵P A +PB =2<7∴不能构成三角形,舍去;②若PB =PC ,∴x 2+3-322=x -3 2+32 2解得:x =32∴P 32,32∵PB =PC =3,P A =1∴能构成三角形,③若P A =PB∴x-12+322=x-32+322解得:x=2∴P A=PB=72,PC=194∵P A+PB>PC,∴P A,PB,PC能组成三角形;∵点P在长为3的线段DE上,∴线段DE左端点D的横坐标为t的取值范围为32-3≤t≤2,即-32≤t≤2故答案为:-32≤t≤2.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4为顶点,且过点B2,-5.(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.【答案】(1)与y轴的交点坐标为(0,3);与x轴的交点坐标为(-3,0),(1,0)(2)向左平移1个单位,该函数图象恰好经过原点【分析】本题考查了二次函数的图象和性质,待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.(1)设顶点式y=a(x+1)2+4,然后把(2,-5)代入求出a的值即可得出二次函数解析式;通过解方程-(x+1)2+4=0可得抛物线与x轴的交点坐标,通过计算自变量为0时的函数值可得到抛物线与y轴的交点坐标;(2)由于抛物线与x轴的交点坐标为(-3,0),(1,0),把点(1,0)向左平移1个单位到原点,所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.【详解】(1)解:设抛物线解析式为y=a(x+1)2+4,把(2,-5)代入得9a+4=-5,解得a=-1,所以抛物线解析式为y=-(x+1)2+4;当x=0时,y=-(x+1)2+4=-1+4=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,-(x+1)2+4=0,解得x1=1,x2=-3,则抛物线与x轴的交点坐标为(-3,0),(1,0);(2)解:因为抛物线与x轴的交点坐标为(-3,0),(1,0),所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.。
第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册
二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。
九年级数学二次函数测试题含答案(精选5套)
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
(完整word版)九年级数学上册二次函数单元测试题(含答案)
二次函数单元测试题、选择题:1、已知二次函数、、,- -;.-.的图象与X 轴有交点,则k 的取值范围是()A.; •一丨 B.且:一D.」且:二2、抛物线y=2 ( X - 3)的顶点在( )A .第一象限B .第二象限C . X 轴上D . y 轴上3、 函数.. . 的顶点坐标是().A.(1 ,;)B.( - , 3)C.(1 , -2)D. (-1 , 2)4、 把抛物线y= - 2X 2+4X +1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是 ( )A.y=-2 (X -1 ) 2+6B.y= - 2 ( X -1 ) 2-6C.y=-2 ( X +1 ) 2+6D.y=-2 ( X +1 ) 2-65、 如图,正方形ABCD 勺边长为5,点E 是AB 上一点,点F 是AD 延长线上一点,且BE=DF 四边形AEGF 是矩形, 则矩形AEGF 的面积y 与BE 的长X 之间的函数关系式为()2 2A . y=5 - XB . y=5 - X C. y=25 - X D . y=25 - X6、若二次函数 …:的对称轴是X =3,则关于X 的方程J*:;--.,的解为(A. =0, 口 =6B.'广1, =7C.」日,7、二次函数y=ax 2+bx+c 的图象如图所示,则一次函数 图象大致为()=_ 7 D. ' ] =— 1 , i =7y=bx+b 2- 4ac 与反比例函数y= 在同一坐标系内的x8、抛物线y= - x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x-2-1012y04664从上表可知,下列说法中,错误的是()A. 抛物线于x轴的一个交点坐标为(-2, 0)B. 抛物线与y轴的交点坐标为(0, 6)C. 抛物线的对称轴是直线x=0D. 抛物线在对称轴左侧部分是上升的9、在同一直角坐标系中,函数"二匚-:?:和函数| 、■ ■(,:是常数,且y.)的图象可能是()10、如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A . 3B . 2 一一 C. 3 … D. 211、生产季节性产品的企业,当它的产品无利润时就会及时停产•现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是()A.5月B.6月C.7月D.8月12、已知二次函数一:':-r(「0)的图象如图所示,有下列5个结论:①abc>0;②b>a+c;③9a+3b+c>0;④< .-■:;⑤”,其中正确的有()A.2个B.3 个C.4个D.5个二、填空题:13、抛物线y=4x2- 3x与y轴的交点坐标是.14、二次函数y=x2- 2x+3的图象向左平移一个单位,再向上平移两个单位后,得二次函数解析式为.15、如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A (3, 0),则由图象可知,不等式ax2+bx+c v 0的解集是___________________ .16、如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y (m), BC为x ( m),则y与x之间的函数关系式为.17、一位运动员投掷铅球,如果铅球运行时离地面的高度为y (米)关于水平距离x (米)的函数解析式为y=- ,■:' -j-',那么铅球运动过程中最高点离地面的距离为米.18、当K x< 6 时,函数y=a (x- 4) 2+2- 9a (a>0)的最大值是.三、解答题:19、已知函数是关于的二次函数,求:(1) 满足条件m的值。
九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)
九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数中,是二次函数的是( )A .y =−8xB .y =8xC .y =8x 2D .y =8x −4 2.二次函数y=x 2的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.若抛物线y =ax 2经过点P(−√7,4),则该抛物线一定还经过点( )A .(4,−√7)B .(√7,4)C .(−4,√7)D .(−√7,−4)4.已知二次函数表达式为y =−(x +2)2−1,则下列结论中正确的是( )A .对称轴为直线x =2B .最大值是-1C .顶点坐标为(2,−1)D .图象开口向上5.二次函数y =x 2+bx+3满足当x <﹣2时,y 随x 的增大而减小,当x >﹣2时,y 随x 的增大而增大,则x =1时,y 的值等于( )A .﹣8B .0C .3D .86.点A(−2,y 1),B(4,y 2),C(6,y 3)均在二次函数y =x 2−2x −3的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 1=y 2>y 3C .y >1y 2>y 3D .y >3y 1=y 2 7.二次函数y =ax 2−bx −5与x 轴交于(1,0)、(-3,0),则关于x 的方程ax 2−bx =5的解为( )A .1,3B .1,-5C .-1,3D .1,-38.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,则下列描述正确的是( )A.小球抛出3秒后,速度越来越快B.小球在空中经过的路程是40mC.小球抛出3秒时速度达到最大D.小球的高度h= 30m时,t=1.5s二、填空题9.若二次函数y=ax2的图象开口向上,则a的取值范围是.10.已知抛物线y=−x2+4x+m,若顶点在x轴上,则m=.11.当−2≤x≤1时,二次函数y=(x+m)2+m2+1有最大值4,则实数m的值为.12.二次函数y=−x2+bx+c的部分图像如图所示,由图像可知,方程−x2+bx+c=0的解为.13.某商场经营一种文具,进价为20元/件,当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.那么该文具定价为元时每天的最大销售利润最大.三、解答题14.如图,若二次函数y=x2−x−2的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点.(1)求A、B两点的坐标:(2)若P(m,−2)为二次函数y=x2−x−2图象上一点,求m的值.15.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为6m,桥洞的跨度为12m,如图建立直角坐标系.(1)求这条抛物线的函数表达式.(2)求离对称轴2m处,桥洞离水面的高是多少m?16.如图,抛物线y1=ax2−2x+c与x轴交于A(−1,0)和B(3,0)两点.(1)求此抛物线的解析式;(2)过点A的直线y2=mx+n与抛物线在第一象限交于点D,若点D的纵坐标为5,请直接写出当y2<y1时,x的取值范围是.17.新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?18.如图,抛物线y=−x2+bx+c与x轴交于A、B两点,与y轴交于C点,点A的坐标为(3,0),点C的坐标为(0,3).(1)求b与c的值;(2)求函数的最大值;时,利用函数图象写出m的取值范围.(3)M(m,n)是抛物线上的任意一点,当n≥7419.如图,抛物线y=x2+bx+c与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式及顶点坐标;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)抛物线上是否存在点P使得S△PAB=6?如果存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.C2.A3.B4.B5.D6.D7.D8.A9.a >010.-411.1−√22或−12+√5212.x 1=5 x 2=−113.3514.(1)解:当y=0时,即x 2−x −2=0解得:x 1=-1,x 2=2∴A 点坐标和B 点坐标为 A(−1,0),B(2,0) ;(2)解:把x=m,y=-2代入 y =x 2−x −2 即m 2−m −2=-2,解得:m 1=0,m 2=1.15.(1)解:由题意可得,抛物线顶点坐标为(6,6)设抛物线解析式为y =a(x −6)2+6∵抛物线过点(0,0)∴0=a(0−6)2+6解得a =−16∴这条抛物线所对应的函数表达式为y =−16(x −6)2+6=−16x 2+2x(2)解:由题意可知该抛物线的对称轴为x =6,则对称轴右边2m 处为x =8 将x =8代入y =−16x 2+2x可得y =−16×82+2×8,解得y =163答:离对称轴2m 处,桥洞离水面的高是163m .16.(1)解:把A(−1,0)和B(3,0)代入y 1=ax 2−2x +c得{a +2+c =09a −6+c =0∴{a =1c =−3∴y 1=x 2−2x −3;(2)x >4或x <-117.(1)解:由题意可知:y =(140−x −100)(20+2x)=−2x 2+60x +800∴y 与x 的函数关系式为y =−2x 2+60x +800.(2)解:令−2x 2+60x +800=1200解得x 1=10∴140−x 1=130答:要书店每天盈利1200元,每套书销售定价应定为130元或120元.(3)解:y =−2x 2+60x +800=−2(x −15)2+1250∵−2<0∴当x =15时,y 有最大值1250,此时140−x =140−15=125答:当每套书销售定价为125元时,书店每天可获最大利润。
人教版(2024年)九年级上册第22章 二次函数 单元检测卷 (含详解)
人教版(2024年)九年级(上)单元检测卷第22章《二次函数》时间:100分钟满分:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列函数中,y是x的二次函数的是( )A.y=3x+1B.xy=8C.D.y=x2﹣x﹣52.二次函数y=(x﹣1)2+2的顶点坐标是( )A.(﹣2,1)B.(1,2)C.(﹣1,2)D.(1,﹣2)3.二次函数y=x2﹣4x+7的图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.要得到二次函数y=﹣(x﹣2)2+1的图象,需将y=﹣x2的图象( )A.向左平移2个单位,再向下平移1个单位B.向右平移2个单位,再向上平移1个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位5.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系xOy中,抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c=0根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法准确判断7.在二次函数y=﹣x2+2x+3中,当0<x<3时,y的取值范围是( )A.0<y<3B.1<y<4C.0<y≤4D.﹣4≤y<08.某厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=10(1+x)3B.y=10+10(1+x)+10(1+x)2C.y=10+10x+x2D.y=10(1+x)29.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为( )元.A.50B.90C.80D.7010.如图;二次函数y=ax2+bx+c(a<0)的图象与x轴分别交于,两点,与y 轴正半轴交于点C,下列判断:①abc<0;②4ac﹣b2>0;③c﹣a<0;④2a+b=0;⑤若,(3,y2)是抛物线上的两个点,则y1>y2.其中正确的是( )A.①②③B.①②④C.③④⑤D.①④⑤二.填空题(共6小题,满分18分,每小题3分)11.抛物线y=﹣3x2的开口 .(填“向上”或“向下”)12.若y=(1﹣m)是二次函数,则m= .13.抛物线y=(x﹣1)2﹣1与y轴交点的纵坐标是 .14.已知二次函数y=ax2+bx+c(a>0)的图象上有四点A(﹣1,y1),B(3,y1),C(2,y2),D (﹣2,y3),则y1,y2,y3的大小关系是 .(从小到大排列)15.某段公路上汽车紧急刹车后前行的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=30t﹣5t2,遇到刹车时,汽车从刹车后到停下来前进了 m.16.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:x﹣1013y﹣3131①抛物线的开口向下;②其图象的对称轴为直线x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有 .三.解答题(共8小题,满分72分)17.(6分)已知抛物线y=x2﹣kx﹣3k与x轴的一个交点为(﹣2,0)(1)求k的值;(2)求抛物线与x轴的另一个交点坐标.18.(6分)已知二次函数y=x2+px+q的图象经过A(0,1),B(2,﹣1)两点.(1)求p,q的值.(2)试判断点P(﹣1,2)是否在此函数的图象上.19.(8分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)这个二次函数的解析式是 ;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<0时,y的取值范围为 .20.(8分)用100米长的篱笆在地上围成一个长方形,当长方形的宽由小到大变化时,长方形的面积也随之发生变化.设长方形的宽为x(米),长方形的面积为y(平方米).(1)求长方形的面积y(平方米)与长方形的宽x(米)之间的关系式;(2)当长方形的宽由1米变化到20米时,长方形面积由y1(平方米)变化到y2(平方米),求y1和y2的值.21.(10分)“动若脱兔”是一个汉语成语,这个成语的含义是在行动时变得敏捷迅速,就像脱逃的兔子一样.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.(1)野兔一次跳跃的最远水平距离为2.8m,最大竖直高度为0.98m,以其起跳点为原点,建立平面直角坐标系,求满足条件的抛物线的解析式;(无需写出取值范围)(2)若在野兔起跳点2米处有一个高度为0.65米的树桩,请问野兔是否能成功越过木桩,避免守株待兔的故事再次上演?22.(10分)如图,抛物线y=﹣x2+2x+c经过坐标原点O和点A,点A在x轴上.(1)求此抛物线的解析式,并求出顶点B的坐标;(2)连接OB,AB,求S△OAB;(3)若点C在抛物线上,且S△OAC=8,求点C的坐标.23.(10分)如图,抛物线与x轴交于A(﹣2,0),B(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)P是抛物线在第一象限的一个动点,点Q在线段BC上,且点Q始终在点P正下方,求线段PQ的最大值.24.(14分)综合与探究如图,抛物线y=ax2+bx﹣2与x轴交于A(﹣2,0),B(4,0),与y轴交于点C,作直线BC,P 是抛物线上的一个动点.(1)求抛物线的函数表达式并直接写出直线BC的函数表达式.(2)当点P在直线BC下方时,连接CP,BP,OP.当时,求点P的坐标.(3)在抛物线的对称轴上是否存在点Q,使以P,Q,B,C为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、y是x的一次函数,故此选项不合题意;B、y是x的反比例函数,故此选项不合题意;C、y是x2的反比例函数,故此选项不合题意;D、y是x的二次函数,故此选项符合题意;故选:D.2.解:二次函数y=(x﹣1)2+2的顶点坐标是(1,2).故选:B.3.解:∵y=x2﹣4x+7=(x﹣2)2+3,∴顶点坐标为(2,3),∴顶点在第一象限.故选:A.4.解:二次函数y=﹣x2的图象向右平移2个单位,再向上平移1个单位即可得到二次函数y=﹣(x﹣2)2+1的图象.故选:B.5.解:根据二次函数y=ax2+bx的图象可知,a<0,﹣>0,∴b>0,∴一次函数y=ax+b的图象经过第一、二、四象限,不经过第三象限.故选:C.6.解:∵y=ax2+bx+c的图象与x轴没有交点,且方程ax2+bx+c=0的根就是抛物线y=ax2+bx+c(a ≠0)的图象与x轴的交点的横坐标,∴关于x的方程ax2+bx+c=0的根的情况是没有实数根.故选:C.7.解:y=﹣x2+2x+3=﹣(x﹣1)2+4,∵﹣1<0,对称轴为直线x=1,∴当x=1时,y有最大值,最大值为4,∵3﹣1>1﹣0,∴当x=3时,y有最小值0,∴当0<x<3时,y的取值范围是0<y≤4,故选:C.8.解:∵该厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,∴该厂今年二月份新产品的研发资金为10(1+x)万元,三月份新产品的研发资金为10(1+x)2万元.根据题意得:y=10+10(1+x)+10(1+x)2.故选:B.9.解:设利润为w元,每顶头盔的售价为x元,由题意可得:w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,故选:D.10.解:由图象可得,a<0,c>0,∵二次函数y=ax2+bx+c(a<0)的图象与x轴分别交于,两点,∴对称轴为直线,∴b=﹣2a,∴2a+b=0,b>0,∴abc<0,∴故①④正确;∴二次函数y=ax2+bx+c(a<0)的图象与x轴有两个不同的交点,∴b2﹣4ac>0,∴4ac﹣b2<0,故②错误;∵a<0,c>0,∴c﹣a>0,故③错误;由图象可得,y1>0,y2<0,∴y1>y2,故⑤正确;∴①④⑤正确,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵抛物线y=﹣3x2,a=﹣3<0,∴抛物线y=﹣3x2的开口向下,故答案为:向下.12.解:∵y=(1﹣m)是二次函数,∴1﹣m≠0且m2+1=2,解得:m=﹣1.故答案为:﹣1.13.解:将x=0代入y=(x﹣1)2﹣1,得y=0,所以抛物线与y轴的交点坐标是(0,0).故答案为:0.14.解:依题意,A(﹣1,y1),B(3,y1),在二次函数y=ax2+bx+c(a为常数,且a>0)的图象上,∴对称轴为直线x==1,抛物线开口向上,∵2﹣1=1,1﹣(﹣2)=3,∴点C(2,y2)到对称轴的距离为1,点D(﹣2,y3)到对称轴的距离为3,点B(3,y1)到对称轴的距离为2,∴y2<y1<y3,故答案为:y2<y1<y3.15.解:∵s=﹣5t2+30t=﹣5(t﹣3)2+45,∴汽车刹车后到停下来前进了45m,故答案为:45.16.解:∵抛物线经过点(0,1),(3,1),∴抛物线的对称轴为直线,所以②错误;而x=﹣1时,y=﹣3,∴抛物线开口向下,所以①正确;当x<1时,函数值y随x的增大而增大,所以③正确;∵抛物线经过(﹣1,﹣3)和(0,1),∴抛物线与x轴的一个交点在(﹣1,0)和(0,0)之间,∴抛物线与x轴的一个交点在(3,0)和(4,0)之间,∴方程ax2+bx+c=0的根小于4.所以④错误.故答案为:①③.三.解答题(共8小题,满分72分)17.解:(1)根据题意得,4+2k﹣3k=0,所以k=4;得抛物线的解析式为y=x2﹣4x﹣12;(2)∵x2﹣4x﹣12=0,解得x1=﹣2,x2=6,∴抛物线与x轴的另一个交点坐标(6,0).18.解:(1)把A(0,1),B(2,﹣1)代入y=x2+px+q,得,解得,∴p,q的值分别为﹣3,1;(2)把x=﹣1代入y=x2﹣3x+1,得y=5,∴点P(﹣1,2)不在此函数的图象上.19.解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(x+1)2﹣4,把点(0,﹣3)代入y=a(x+1)2﹣4,得a=1,故抛物线解析式为y=(x+1)2﹣4,即y=x2+2x﹣3;(2)如图所示:(3)∵y=(x+1)2﹣4,∴当x=﹣4时,y=(﹣4+1)2﹣4=5,当x=﹣0时,y=﹣3,又对称轴为x=﹣1,∴当﹣4<x<0时,y的取值范围是﹣4≤y<5.20.解:(1)由题意得:y=x(50﹣x)=﹣x2+50x,∴长方形的面积y(平方米)与长方形的宽x(米)之间的关系式为y=﹣x2+50x.(2)当x=1时,;当x=20时,.21.解:(1)依题意,由x=0,y=0和x=2.8,y=0可知,对称轴为直线.∴当x=1.4时,y有最大值0.98.即顶点坐标为(1.4,0.98).∴设抛物线的解析式为y=a(x﹣1.4)2+0.98.由题知函数图象过原点(0,0),把x=0,y=0代入y=a(x﹣1.4)2+0.98,得a(0﹣1.4)2+0.98=0,解得.∴抛物线的解析式为.(2)依题意,将x=2代入,得.∵0.8>0.65,∴野兔能成功越过木桩.22.解:(1)把(0,0)代入y=﹣x2+2x+c得c=0,∴抛物线解析式为y=﹣x2+2x,∵y=﹣x2+2x=﹣(x﹣1)2+1,∴顶点B的坐标为(1,1);(2)当y=0时,﹣x2+2x=0,解x1=0,x2=2,∴A(2,0),∴S△OAB=×2×1=1;(3)设C点坐标为(t,﹣t2+2t),∵S△OAC=8,∴×2×|﹣t2+2t|=8,即t2﹣2t=8或t2﹣2t=﹣8,解方程t2﹣2t=8得t1=﹣2,t2=4,∴C点坐标为(﹣2,﹣8),或(4,﹣8),方程t2﹣2t=﹣8无实数解,综上所述,C点坐标为(﹣2,﹣8),或(4,﹣8).23.解:(1)∵抛物线经过点C(0,4),∴可设抛物线解析式为y=ax2+bx+4,将点A(﹣2,0),B(4,0)代入,得,解得,∴抛物线解析式为:.(2)设经过点B、C的直线解析式为y=mx+n,将点B(4,0),C(0,4)代入,得,解得,∴经过点B、C的直线解析式为y=﹣x+4,设点,点Q(x,﹣x+4),∴,∴当x=2时,PQ有最大值2.24.解:(1)由题意得:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8)=ax2+bx﹣2,则﹣8a=﹣2,解得:a=,则抛物线的表达式为:y=x2﹣x﹣2;由抛物线的表达式知,点C(0,﹣2),由点B、C的坐标得,直线BC的表达式为:y=x﹣2;(2)设点P(t,x2﹣t﹣2),过点P作直线PN∥BC交y轴于点N,由点P、B的坐标得,直线PB的表达式为:y=(t+2)(x﹣4),则点N(0,﹣t﹣2),当时,则CN:ON=2:5,即CN=CO=,则点N(0,﹣),即﹣t﹣2=﹣,解得:t=,则点P(,﹣);(3)存在,理由:由抛物线的表达式知,其对称轴为直线x=1,设点Q(1,m),点P(t,t2﹣t﹣2),当BC为对角线时,由中点公式得:,解得:,则点Q(1,﹣);当BQ或BP为对角线时,则或,解得:m=或,则点Q(1,)或(1,),综上,Q(1,﹣)或(1,)或(1,).。
九年级数学上册《第二十二章 二次函数》单元测试卷附答案(人教版)
九年级数学上册《第二十二章二次函数》单元测试卷附答案(人教版)一、单选题1.下列各式中表示二次函数的是()+1B.y=2−x2A.y=x2+1x−x2D.y=(x−1)2−x2C.y=1x22.将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=5(x+2)2+3B.y=5(x+2)2−3C.y=5(x−2)2+3D.y=5(x−2)2−33.抛物线y=x2−2x−3与x轴的两个交点间的距离是()A.-1 B.-2 C.2 D.44.已知(2,5)、 (4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是()B.x=2 C.x=4 D.x=3A.x=−ab5.不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A.y=2x2B.y=-x C.y=-2x D.y=x6.已知函数y=1x2-x-12,当函数y随x的增大而减小时,x的取值范围是()2A.x<1 B.x>1 C.x>-4 D.-4<x<67.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x …−20 1 3 …y … 6 −4−6−4…下列选项中,正确的是()A.这个函数的开口向下B.这个函数的图象与x轴无交点C.当x>2时,y的值随x的增大而减小D.这个函数的最小值小于68.二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是 ( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1,3D.当-1<x<3时,y<09.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5 B.10 C.1 D.210.如图,是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面上升1m时,水面的宽为()A.2 m B.2m C. m D.3m二、填空题11.不论m取任何实数,抛物线y=x2+2mx+m2+m−1的顶点都在一条直线上,则这条直线的解析式是.12.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).13.抛物线y=x2−6x+c与x轴只有一个交点,则c=.14.已知抛物线y=a(x﹣h)2+k与x轴交于(﹣2,0)、(4,0),则关于x的一元二次方程:a(x ﹣h+3)2+k=0的解为.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.三、解答题16.已知二次函数的图象经过(-6,0),(2,0),(0,-6)三点.(1)求这个二次函数的表达式;(2)求这个二次函数的顶点坐标.17.在平面直角坐标系xOy中,抛物线y=ax2−4ax+1 .(1)若抛物线过点A(−1,6),求二次函数的表达式;(2)指出(1)中x为何值时y随x的增大而减小;(3)若直线y=m与(1)中抛物线有两个公共点,求m的取值范围.18.如图,抛物线y=a x2 +c与直线y=3相交于点A,B,与y相交于点C(0,-1),其中点A的横坐标为-4.(1)计算a,c的值;(2)求出抛物线y=ax 2 +c与x轴的交点坐标;19.如图一,抛物线y=ax2+bx+c过A(−1,0)B(3.0),C(0,√3)三点(1)求该抛物线的解析式;(2)P(x1,y1),Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD,CB,点F为线段CB的中点,点M,N分别为直线CD和CE上的动点,求ΔFMN周长的最小值.20.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55 60 65 70销售量y(千克)70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A.点B重合),过点P作直线PD⊥x轴于点D,交直线AB 于点E.当PE=2ED时,求P点坐标;(3)点P是直线上方的抛物线上的一个动点,求ΔABP的面积最大时的P点坐标.参考答案1.B2.B3.D4.D5.B6.A7.D8.D9.D10.A11.y=−x−112.<13.914.x1=−515.2516.(1)解:设抛物线y=ax2+bx+c把(-6,0),(2,0),(0,-6)三点代入解析式,得{36a+6b+c=0 4a+2b+c=0c=−6解得∴抛物线的解析式为:y=12x2+2x−6(2)解:y=12x2+2x−6=12(x+2)2−8∴抛物线的顶点坐标为:(-2,-8).17.(1)解:把点A(-1,6),代入y=ax2−4ax+1得:6=a×(−1)2−4a×(−1)+1解得a=1∴二次函数的表达式y=x2−4x+1(2)解:二次函数y=x2−4x+1对称轴x=2∵a=1>0∴二次函数在对称轴左边y随x的增大而减小∴当x≤2是y随x的增大而减小;(3)解:∵直线y=m与y=x2−4x+1有两个公共点∴一元二次方程m=x2−4x+1有两不等根即一元二次方程x2−4x+1−m=0有两不等根∴Δ>0∴42−4×1×(1−m)>0解得m>−318.(1)解:设y=a x2 -1把(-4,3)代入得:3=a(-4) 2 -1∴a= 14∴y= 14x 2 -1∴a= 14,c=-1(2)解:y= 14x 2 -1=0∴x=±2∴(-2,0),(2,0)19.(1)解:∵抛物线y=ax2+bx+c过A(−1,0)B(3,0) C(0,√3)三点∴{a−b+c=09a+3b+c=0c=√3解得:a=−√33,b=2√33,c=√3;∴抛物线的解析式为:y=−√33x2+2√33x+√3(2)解:抛物线的对称轴为x=1,抛物线上与Q(4,y2)相对称的点Q′(−2,y2) P(x1,y1)在该抛物线上y1≤y2,根据抛物线的增减性得:∴x1≤−2或x1≥4答:P点横坐标x1的取值范围:x1≤−2或x1≥4.(3)解:∵C(0,√3),B(3,0)∴OC=√3,OB=3∵F是BC的中点∴F(32,√3 2)当点 F 关于直线 CE 的对称点为 F ′ ,关于直线 CD 的对称点为 F ′′ ,直线 F ′F ′′ 与 CE 、 CD 交点为 M,N ,此时 ΔFMN 的周长最小,周长为 F ′F ′′ 的长,由对称可得到: F ′(32,3√32) , F ′′(0,0) 即点 O F ′F ′′=F ′O =(32)(3√32)=3即: ΔFMN 的周长最小值为320.(1)解:设y 与x 之间的函数表达式为 y =kx +b ( k ≠0 ),将表中数据(55,70)、(60,60)代入得:{55k +b =7060k +b =60解得: {k =−2b =180∴y 与x 之间的函数表达式为 y =−2x +180 ;(2)解:由题意得: (x −50)(−2x +180)=600整理得 :x 2−140x +4800=0解得 x 1=60,x 2=80答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)解:设当天的销售利润为w 元,则:w =(x −50)(−2x +180)=−2(x ﹣70)2+800∵﹣2<0∴当 x =70 时w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.21.(1)解:∵点B (4,m )在直线y =x +1上∴m =4+1=5∴B (4,5)把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =025a +5b +c =0解得{a =−1b =4c =5∴抛物线解析式为y =−x 2+4x +5;(2)解:设P (x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|∵PE =2ED∴|−x 2+3x +4|=2|x +1|当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (2,9);当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (6,−7);综上可知P 点坐标为(2,9)或(6,−7);(3)解:∵点P 是直线上方的抛物线上的一个动点设(x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =−x 2+4x +5−(x +1)=−x 2+3x +4∴ΔABP = S ΔAEP + S ΔEBP = 12×PE ×(x B −x A ) = 12×(−x 2+3x +4)×5= −52(x −32)2+1258 ∴当x= 32 , ΔABP 的面积最大把x= 32 代入y =−x 2+4x +5,解得y= 354故P ( 32 , 354 ).。
九年级数学二次函数测试题含答案(精选5套)
九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
数学九年级上学期《二次函数》单元测试卷(附答案)
12.若实数A、B满足A+B2=2,则A2+5B2的最小值为_____.
13.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为__________元时,获得的利润最多.
(1)求抛物线的表达式;
(2)若在抛物线上存在点Q,使得C D平分∠A CQ,请求出点Q 坐标;
(3)在直线C D的下方的抛物线上取一点N,过点N作NG∥y轴交C D于点G,以NG为直径画圆在直线C D上截得弦GH,问弦GH的最大值是多少?
(4)一动点P从C点出发,以每秒1个单位长度的速度沿C﹣A﹣D运动,在线段C D上还有一动点M,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t的值;若不存在,请说明理由.
人教版数学九年级上学期
《二次函数》单元测试
(满分120分,考试用时120分钟)
第Ⅰ卷(选择题)
一.选择题(共9小题)
1.对于二次函数y=2(x﹣2)2+1,下列说法中正确的是( )
A.图象的开口向下B.函数的最大值为1
C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小
2.抛物线y=﹣3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为( )
A.8Cm2B.9Cm2C.16Cm2D.18Cm2
6.在抛物线y=Ax2-2Ax-3A上有A(-0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为()
数学九年级上学期《二次函数》单元测试(含答案)
人教版数学九年级上学期《二次函数》单元测试考试总分: 120 分考试时间: 120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1.函数(是常数)是二次函数的条件是( )A .B .C .D .2.如图,二次函数的图象经过点和,下列关于此二次函数的叙述,正确的是( )A . 当时,的值小于B . 当时,的值大于C . 当时,的值等于D . 当时,的值大于3.函数的图象大致为( )A .B .C .D .4.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的条件下,与其对应的函数值y的最小值为5,则h的值为( ).A . 1或-5B . -1或5C . 1或-3D . 1或35.抛物线的顶点坐标是( )A . (3, 1)B . (-3, 1)C . (1, -3)D . (1, 3)6.二次函数的图象的对称轴是直线,其图象的一部分如图所示则:①;②;③;④;⑤当时,.其中判断正确的有( )个.A . 2B . 3C . 4D . 57.如图所示为二次函数的图象,在下列选项中错误的是( )A .B . 时,随的增大而增大C .D . 方程的根是,8.二次函数、、是常数的大致图象如图所示,抛物线交轴于点,.则下列说法中,正确的是( )A . ABC >0 B . B -2A =0C . 3A +C >0D . 9A +6B +4C >09.二次函数的图象如图所示,若点,是图象上的两点,则与的大小关系是( )A . y1<y2B . y1=y2C . y1>y2D . 不能确定10.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为( )A .B .C .D .二、填空题(共10 小题,每小题 3 分,共30 分)11.已知某商品销售利润(元)与该商品销售单价(个)满足,则该商品获利最多为________元.12.已知二次函数y=A x 2+B x +C 中,函数y与自变量x的部分对应值如下表:x …-4-3-2-10…y…3-2-5-6-5…则x<-2时, y的取值范围是▲ .13.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当,,,时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是________.14.将二次函数配方成的形式,则y=_________________.15.如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为、,其中,,下列结论:①;②;③;④.其中正确的结论有________.(填写正确结论的序号)16.已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)17.如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.18.二次函数的部分对应值如下表:…………①抛物线的顶点坐标为;②与轴的交点坐标为;③与轴的交点坐标为和;④当时,对应的函数值为.以上结论正确的是________.19.已知点、三点都在抛物线的图象上,则、的大小关系是________.(填“、、”)20.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)三、解答题(共6 小题,每小题10 分,共60 分)21.某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.22.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润(万元)和月份之间满足函数关系式.若利润为万元,求的值.哪一个月能够获得最大利润,最大利润是多少?当产品无利润时,企业会自动停产,企业停产是哪几个月份?23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为米,矩形区域的面积为米.求证:;求与之间的函数关系式,并写出自变量的取值范围;为何值时,有最大值?最大值是多少?24.已知二次函数的图象与坐标轴交点的坐标分别为,,.求此函数的解析式;求抛物线的开口方向、对称轴及顶点坐标;根据图象直接写出时的取值范围.25.如图,已知二次函数的图象过点和点,对称轴为直线.求该二次函数的关系式和顶点坐标;结合图象,解答下列问题:①当时,求函数的取值范围.②当时,求的取值范围.26.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.函数(是常数)是二次函数的条件是( )A .B .C .D .[答案]D[解析]试题解析:根据二次函数定义中对常数A ,B ,C 的要求,只要A ≠0,B ,C 可以是任意实数,故选D .2.如图,二次函数的图象经过点和,下列关于此二次函数的叙述,正确的是()A . 当时,的值小于B . 当时,的值大于C . 当时,的值等于D . 当时,的值大于[答案]B[解析][分析]根据抛物线与y轴的交点位置对A 进行判断;根据二次函数的性质,当x=-2时,y=1,则x=-3时,y>1,于是可对B 进行判断;根据图象,当x=5时,不能确定函数值等于0,则可对C 进行判断;根据二次函数图象上点的坐标特征对D 进行判断.[详解]解:A 、抛物线与y轴的交点在x轴下方,且在点(1,-1)上方,所以x=0时,-1<y<0,所以A 选项错误;B 、当x=-3时,y>1,所以B 选项正确;C 、当x=5时,不能确定函数值等于0,所以C 选项错误;D 、当x=1时,y=-1,所以D 选项错误.故选:B .[点睛]本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.3.函数的图象大致为()A .B .C .D .[答案]B[解析]分析:本题考查二次函数的图形问题.解析:函数的二次项系数为-1,所以开口向下,抛物线与y轴的交点为(0,1).故选B .4.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的条件下,与其对应的函数值y的最小值为5,则h的值为().A . 1或-5B . -1或5C . 1或-3D . 1或3[答案]B[解析]分析:由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.详解:本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.5.抛物线的顶点坐标是()A . (3, 1)B . (-3, 1)C . (1, -3)D . (1, 3)[答案]A[解析][分析]直接根据二次函数的顶点式可得出结论.[详解]解:∵抛物线的解析式为:y=2(x-3)2+1,∴其顶点坐标为(3,1).故选:A .[点睛]本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.6.二次函数的图象的对称轴是直线,其图象的一部分如图所示则:①;②;③;④;⑤当时,.其中判断正确的有()个.A . 2B . 3C . 4D . 5[答案]C[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点判断C 与0的关系,然后根据对称轴判定B 与0的关系以及2A +B =0;当x=-1时,y=A -B +C ;然后由图象确定当x取何值时,y>0.[详解]解:①∵开口向下,∴A <0,∵对称轴在y轴右侧,∴->0,∴B >0,∵抛物线与y轴交于正半轴,∴C >0,∴A B C <0,故正确;②∵对称轴为直线x=1,抛物线与x轴的一个交点横坐标在2与3之间,∴另一个交点的横坐标在0与-1之间;∴当x=-1时,y=A -B +C <0,故正确;③∵对称轴x=-=1,∴2A +B =0;故正确;④∵2A +B =0,∴B =-2A ,∵当x=-1时,y=A -B +C <0,∴A -(-2A )+C =3A +C <0,故正确;⑤如图,当-1<x<3时,y不只是大于0.故错误.∴正确的有4个.故选:C .[点睛]此题考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.7.如图所示为二次函数的图象,在下列选项中错误的是()A .B . 时,随的增大而增大C .D . 方程的根是,[答案]C[解析][分析]由抛物线的开口方向判断A 的符号,由抛物线与y轴的交点得出C 的值,根据开口方向及对称轴判断二次函数的增减性,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.[详解]解:A 、由二次函数的图象开口向上可得A >0,由抛物线与y轴交于x轴下方可得C <0,所以A C <0,正确;B 、由A >0,对称轴为x=1,可知x>1时,y随x的增大而增大,正确;C 、把x=1代入y=A x2+B x+C 得,y=A +B +C ,由函数图象可以看出x=1时二次函数的值为负,错误;D 、由二次函数的图象与x轴交点的横坐标是-1或3,可知方程A x2+B x+C =0的根是x1=-1,x2=3,正确.故选:C .[点睛]由图象找出有关A ,B ,C 的相关信息以及抛物线的交点坐标,会判断二次函数的增减性,会利用特殊值代入法求得特殊的式子,如:y=A +B +C ,y=A -B +C ,然后根据图象判断其值.8.二次函数、、是常数的大致图象如图所示,抛物线交轴于点,.则下列说法中,正确的是()A . ABC >0 B . B -2A =0C . 3A +C >0D . 9A +6B +4C >0[答案]D[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点判断C 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.[详解]解:A 、∵根据图示知,抛物线开口方向向下,∴A <0;∵抛物线交x轴于点(-1,0),(3,0),∴对称轴x==-=1,∴B =-2A >0.∵根据图示知,抛物线与y轴交于正半轴,∴C >0,∴A B C <0.故本选项错误;B 、∵对称轴x==-=1,∴B =-2A ,∴B +2A =0.故本选项错误;C 、根据图示知,当x=-1时,y=0,即A -B +C =A +2A +C =3A +C =0.故本选项错误;D 、∵A <0,C >0,∴-3A >0,4C >0,∴-3A +4C >0,∴9A +6B +4C =9A -12A +4C =-3A +4C >0,即9A +6B +4C >0.故本选项正确.故选:D .[点睛]本题考查了二次函数图象与系数的关系.二次函数y=A x2+B x+C 系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.二次函数的图象如图所示,若点,是图象上的两点,则与的大小关系是()A . y1<y2B . y1=y2C . y1>y2D . 不能确定[答案]C[解析][分析]直接利用二次函数的性质得出其增减性,再利用A ,B 点横坐标得出答案.[详解]解:如图所示:x>-3时,y随x的增大而减小,∵1<2,∴y1>y2.故选:C .[点睛]此题主要考查了二次函数的性质,正确得出二次函数增减性是解题关键.10.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为()A .B .C .D .[答案]B[解析][分析]先根据函数关系式为h=gt2确定图象属于那一类函数的图象,再根据g、t的取值范围确定图象的具体形状.[详解]解:t为未知数,关系式h=gt2为二次函数,∵g为正常数∴抛物线开口方向向上,排除C 、D ;又∵时间t不能为负数,∴图象只有右半部分.故选:B .[点睛]根据关系式判断属于哪一类函数,关键要会判断未知数及未知数的指数的高低.二、填空题(共10 小题,每小题 3 分,共30 分)11.已知某商品销售利润(元)与该商品销售单价(个)满足,则该商品获利最多为________元.[答案][解析][分析]由题意知利润y(元)与销售的单价x(元)之间的关系式,化为顶点式求出y的最大值.[详解]解:利润y(元)与销售的单价x(元)之间的关系为y=-20x2+1400x-2000=-20(x-35)2+22500.∵-20<0∴当x=35元时,y最大为22500元.即该商品获利最多为22500元.故答案为:22500.[点睛]本题考查二次函数的实际应用,借助二次函数的顶点式解决实际问题.12.已知二次函数y=A x2+B x+C 中,函数y与自变量x的部分对应值如下表:x …-4-3-2-10…y…3-2-5-6-5…则x<-2时, y的取值范围是▲.[答案]y>-5[解析]考点:待定系数法求二次函数解析式;二次函数的性质.分析:根据图表知二次函数的顶点坐标是(-1,-6),可将二次函数的解析式设为顶点式,任取一点坐标代入即可求得二次函数的解析式,然后根据二次函数的性质填空.解:由图表知,二次函数的顶点坐标是(-1,-6),可设二次函数的解析式为:y=A (x+1)2-6;∵二次函数经过点(0,-5),∴-5=A -6,解得,A =1,∴二次函数的解析式为:y=(x+1)2-6;∴当x<-2时,y>-5;故答案为:y>-5.13.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当,,,时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是________.[答案][解析][分析]已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去A 得出x、y的关系式.[详解]解:y=x2-4A x+4A 2+A -1=(x-2A ) 2+A -1,∴抛物线顶点坐标为:(2A ,A -1),设x=2A ①,y=A -1②,①-②×2,消去A 得,x-2y=2,即y=x-1.故答案为:y=x-1.[点睛]此题主要考查了根据顶点式求顶点坐标的方法,消元的思想.主要利用x、y代表顶点的横坐标、纵坐标,消去A 得出是解题关键.14.将二次函数配方成的形式,则y=_________________.[答案][解析]试题解析:利用配方法将一次项和二次项组合,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式,即=x2-2x+1+2=(x-1)2+2.15.如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为、,其中,,下列结论:①;②;③;④.其中正确的结论有________.(填写正确结论的序号)[答案]①②[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点判断C 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.[详解]解:①根据图象知,当x=-2时,y<0,即4A -2B +C <0;故①正确;②∵该函数图象的开口向下,∴A <0;又∵对称轴-1<x=-<0,∴2A -B <0,故②正确;③∵A <0,-<0,∴B <0.∵抛物线交y轴与正半轴,∴C >0.∴A B C >0,故③错误.④∵y=>2,A <0,∴4A C -B 2<8A ,即B 2+8A >4A C ,故④错误.综上所述,正确的结论有①②.故答案为:①②.[点睛]本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.16.已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)[答案]②④⑤[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点得出C 的值,然后根据抛物线与x轴交点的个数及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.[详解]解:①由二次函数的图象开口向下可得A <0,由抛物线与y轴交于x轴上方可得C >0,由对称轴0<x<1,得出B >0,则A B C <0,故①错误;②∵对称轴0<x<1,-<1,A <0,∴-B >2A ,∴2A +B <0,故②正确;③把x=-1时代入y=A x2+B x+C =A -B +C ,结合图象可以得出y>0,即A -B +C >0,故③错误;④把x=-1时代入y=A x2+B x+C =A -B +C ,结合图象可以得出y>0,即A -B +C >0,A +C >B ,∵B >0,∴A +C >0,故④正确;⑤∵图象与x轴有两个交点,∴B 2-4A C >0,∴B 2>4A C ,故⑤正确;⑥当x>1时,y随x的增大而减小,故⑥错误;故答案为:②④⑤.[点睛]此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=A +B +C ,然后根据图象判断其值.17.如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.[答案][解析][分析]根据正方形对角线平分一组对角可得OB 1与y轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.[详解]解:∵OA 1C 1B 1是正方形,∴OB 1与y轴的夹角为45°,∴OB 1的解析式为y=x联立,解得或,∴点B 1(1,1),OB 1==,∵OA 1C 1B 1是正方形,∴OC 1=OB 1=×=2,∵C 1A 2C 2B 2是正方形,∴C 1B 2的解析式为y=x+2,联立,解得,或,∴点B 2(2,4),C 1B 2==2,∵C 1A 2C 2B 2是正方形,∴C 1C 2= C 1B 2=×2=4,∴C 2B 3的解析式为y=x+(4+2)=x+6,联立,解得,或,∴点B 3(3,9),C 2B 3==3,…,依此类推,正方形C 2010A 2011C 2011B 2011的边长C 2010B 2011=2011.故答案为:2011.[点睛]本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.18.二次函数的部分对应值如下表:…………①抛物线的顶点坐标为;②与轴的交点坐标为;③与轴的交点坐标为和;④当时,对应的函数值为.以上结论正确的是________.[答案]①②④[解析][分析]由上表得与y轴的交点坐标为(0,-8);与x轴的一个交点坐标为(-2,0);函数图象有最低点(1,-9);有抛物线的对称性可得出可得出与x轴的另一个交点坐标为(4,0);当x=-1时,对应的函数值y为-5.从而可得出答案.[详解]根据上表可画出函数的图象,由图象可得,①抛物线的顶点坐标为(1,-9);②与y轴的交点坐标为(0,-8);③与x轴的交点坐标为(-2,0)和(4,0);④当x=-1时,对应的函数值y为-5.故答案是:①②④.[点睛]考查了用函数图象法求一元二次方程的近似根,体现了数形结合的思想方法.19.已知点、三点都在抛物线的图象上,则、的大小关系是________.(填“、、”)[答案][解析][分析]本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y1与y2的大小关系.[详解]解:∵二次函数y=x2+2的图象的对称轴是y轴,在对称轴的左面y随x的增大而减小,∵点A (-4,y1)、B (-3,y2)是二次函数y=x2+2的图象上两点,-4<-3,∴y1>y2.故答案为:y1>y2.[点睛]本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键.20.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)[答案]①③[解析][分析]由图象可知过(1,0),代入得到A +B +C =0;根据-=-1,推出B =2A ;根据图象关于对称轴对称,得出与X 轴的交点是(-3,0),(1,0);由A -2B +C =A -2B -A -B =-3B <0,根据结论判断即可.[详解]解:由图象可知:过(1,0),代入得:A +B +C =0,∴①正确;-=-1,∴B =2A ,∴②错误;根据图象关于对称轴x=-1对称,与X轴的交点是(-3,0),(1,0),∴③正确;∵B =2A >0,∴-B <0,∵A +B +C =0,∴C =-A -B ,∴A -2B +C =A -2B -A -B =-3B <0,∴④错误.故答案为:①③.[点睛]本题主要考查对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三、解答题(共6 小题,每小题10 分,共60 分)21.某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.[答案][解析][分析]设小路的宽为x米,那么长方形花圃的长为(15-2x),宽为(10-x),花圃面积为y平方米,根据长方形面积公式即可列出方程,进而求出函数的定义域.[详解]解:设小路的宽为米,那么长方形花圃的长为,宽为,根据题意得,由,解得.[点睛]本题考查了根据实际问题列二次函数关系式,关键是设出小路的宽,表示出长方形花圃的长和宽,根据面积这个等量关系可列出方程.22.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润(万元)和月份之间满足函数关系式.若利润为万元,求的值.哪一个月能够获得最大利润,最大利润是多少?当产品无利润时,企业会自动停产,企业停产是哪几个月份?[答案](1)或;(2)月能够获得最大利润,最大利润是万;(3) 该企业一年中应停产的月份是月、月、月[解析][分析](1)把y=21代入,求出n的值即可;(2)根据解析式,利用配方法求出二次函数的最值即可;(3)根据解析式,求出函数值y等于0时对应的月份,依据开口方向以及增减性,再求出y小于0时的月份即可解答.[详解]解:由题意得:,解得:或;,∵,∴开口向下,有最大值,即时,取最大值,故月能够获得最大利润,最大利润是万;)∵,当时,或者.又∵图象开口向下,∴当时,,当时,,当时,,则该企业一年中应停产的月份是月、月、月.[点睛]此题主要考查了二次函数的应用,难度一般,解答本题的关键是熟练运用配方法求二次函数的最大值,借助二次函数解决实际问题.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为米,矩形区域的面积为米.求证:;求与之间的函数关系式,并写出自变量的取值范围;为何值时,有最大值?最大值是多少?[答案](1)见解析;(2)y=;(3)当时,有最大值,最大值为平方米[解析][分析](1)根据三个矩形面积相等,得到矩形A EFD 面积是矩形B C FE面积的2倍,可得出A E=2B E;(2)设B E=A ,则有A E=2A ,表示出A 与2A ,进而表示出y与x的关系式,并求出x的范围即可;(3)利用二次函数的性质求出y的最大值,以及此时x的值即可.[详解]解:∵三块矩形区域的面积相等,∴矩形面积是矩形面积的倍,又∵是公共边,∴;设,则,∴,∴,,∴,∵,∴,∴∵,且二次项系数为,∴当时,有最大值,最大值为平方米.[点睛]此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.24.已知二次函数的图象与坐标轴交点的坐标分别为,,.求此函数的解析式;求抛物线的开口方向、对称轴及顶点坐标;根据图象直接写出时的取值范围.[答案](1)函数的解析式即;(2)抛物线的开口向上,对称轴为直线=1, 顶点坐标;(3)当时,.[解析][分析](1)设抛物线的解析式为y=A (x-x1)(x-x2),再把A (-1,0),B (3,0),C (0,-3)代入即可得出此函数的解析式;(2)根据A 的符号判断抛物线的开口方向、由顶点公式得出对称轴及顶点坐标;(3)由题意把函数转化为不等式,得x2-2x-3>0,从而求出x的取值范围.[详解]解:设抛物线的解析式为,把,,代入得,解得,∴此函数的解析式即;∵,∴抛物线的开口向上,对称轴为直线,,顶点坐标;∵,即图象在轴的下方,∴由图象可知:当时,.[点睛]本题考查了二次函数的性质,以及用待定系数法求二次函数的解析式,求抛物线的顶点坐标的方法,是中考的常见题型.25.如图,已知二次函数的图象过点和点,对称轴为直线.求该二次函数的关系式和顶点坐标;结合图象,解答下列问题:①当时,求函数的取值范围.②当时,求的取值范围.[答案](1)抛物线的顶点坐标为;(2)①当时,;②当时,或.[解析][分析](1)把A 点和C 点坐标代入y=A x2+B x+C 得到两个方程,再加上对称轴方程即可得到三元方程组,然后解方程组求出A 、B 、C 即可得到抛物线解析式,再把解析式配成顶点式即可得到顶点坐标;(2)①先分别计算出x为-1和2时的函数值,然后根据二次函数的性质写出对应的函数值的范围;②先计算出函数值为3所对应的自变量的值,然后根据二次函数的性质写出y<3时,x的取值范围.[详解]解:根据题意得,解得,所以二次函数关系式为,因为,所以抛物线的顶点坐标为;①当时,;时,;而抛物线的顶点坐标为,且开口向下,所以当时,;②当时,,解得或,所以当时,或.[点睛]本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.[答案](1)抛物线的解析式为:;(2) 当时,的面积最大,最大值,的坐标为:;(3) 点的坐标为:,,,[解析][分析](1)由平行四边形A B OC 绕点O顺时针旋转90°,得到平行四边形A ′B ′O C ′,且点A 的坐标是(0,4),可求得点A ′的坐标,然后利用待定系数法即可求得经过点C 、A 、A ′的抛物线的解析式;(2)首先连接A A ′,设直线A A ′的解析式为:y=kx+B ,利用待定系数法即可求得直线A A ′的解析式,再设点M的坐标为:(x,-x2+3x+4),继而可得△A MA ′的面积,继而求得答案;(3)分别从B Q为边与B Q为对角线去分析求解即可求得答案.[详解]解:∵平行四边形绕点顺时针旋转,得到平行四边形,且点的坐标是,∴点的坐标为:,∵点、的坐标分别是、,抛物线经过点、、,。
人教新版九年级数学上册第22章《 二次函数》单元测试卷【含答案】
人教新版九年级数学上册第22章《二次函数》单元测试卷一.选择题1.若y=(2﹣m)是二次函数,则m等于()A.±2B.2C.﹣2D.不能确定2.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x23.下列函数中是二次函数的是()A.y=3x﹣1B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣14.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.5.抛物线y=x2﹣2x+3的对称轴为()A.直线x=﹣1B.直线x=﹣2C.直线x=1D.直线x=26.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣17.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.二.填空题11.若是二次函数,则m=.12.如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是.13.如图所示,在同一坐标系中,作出①y=3x2;②y=x2;③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).14.若y=(m﹣1)x|m|+1﹣2x是二次函数,则m=.15.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.16.若y=(m2+m)是二次函数,则m的值等于.17.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.18.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.19.已知抛物线y=ax2与y=2x2的形状相同,则a=.20.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.三.解答题21.函数是关于x的二次函数,求m的值.22.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?23.画出二次函数y=x2的图象.24.已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m,c的值;(2)求二次函数图象的对称轴和顶点坐标.25.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?26.已知是x的二次函数,求出它的解析式.27.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?答案与试题解析一.选择题1.解:根据二次函数的定义,得:m2﹣2=2解得m=2或m=﹣2又∵2﹣m≠0∴m≠2∴当m=﹣2时,这个函数是二次函数.故选:C.2.解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选:D.3.解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.4.解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是直线x=0,∴只有B符合要求.故选:B.5.解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选:C.6.解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选:A.7.解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.二.填空题11.解:∵是二次函数,∴,解得m=﹣2.故﹣2.12.解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.故2π.13.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.14.解:由y=(m﹣1)x|m|+1﹣2x是二次函数,得,解得m=﹣1.故﹣1.15.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.16.解:根据二次函数的定义,得:,解得:m=2.故2.17.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.18.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.19.解:∵抛物线y=ax2与y=2x2的形状相同,∴|a|=2,∴a=±2.故答案为±2.20.解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.三.解答题21.解:由题意可知解得:m=2.22.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.23.解:函数y=x2的图象如图所示,24.解:(1)∵点A(﹣1,m)在函数y=﹣2x的图象上,∴m=﹣2×(﹣1)=2,∴点A坐标为(﹣1,2),∵点A在二次函数图象上,∴﹣1﹣2+c=2,解得c=5;(2)∵二次函数的解析式为y=﹣x2+2x+5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6,∴对称轴为直线x=1,顶点坐标为(1,6).25.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.26.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.27.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:X﹣10123y03430图象如右.(2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.。
九年级上册数学《二次函数》单元测试题(含答案)
九年级上册数学《二次函数》单元测试卷(满分120分,考试用时120分钟)一、单选题(共10题;共30分)1.下列函数中是二次函数的是( )A. y=2(x﹣1)B. y=(x﹣1)2﹣x2C. y=a(x﹣1)2D. y=2x2﹣12.二次函数的最小值是A. B. 1 C. D. 23.抛物线y=2(x+3)2﹣4的顶点坐标是( )A. (3,4)B. (3,﹣4)C. (﹣3,4)D. (﹣3,﹣4)4.函数y=ax2+bx+c的图像如图所示,那么关于x的方程ax2+bx+c-4=0的根的情况是( )A. 有两个不相等的实数根B. 有两个异号的实数根C. 有两个相等的实数根D. 没有实数根5.已知二次函数y=2(x﹣3)2﹣2,下列说法:①其图象开口向上;②顶点坐标为(3,﹣2);③其图象与y轴的交点坐标为(0,﹣2);④当x≤3时,y随x的增大而减小,其中正确的有( )A. 1个B. 2个C. 3个D. 4个6.二次函数y=x2-6x+5的图像的顶点坐标是( )A. (-3,4)B. (3,4)C. (-1,2)D. (3,-4)7.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是( )A. B.C. D.8.点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A. ②④B. ②③C. ①③④D. ①②④9.如图1,菱形纸片ABCD的边长为2,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P(如图2),则六边形AEFCHG面积的最大值是()A. B. C. 2﹣ D. 1+10.已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是( )A. ①②B. ①③C. ②③④D. ①②④二、填空题(共10题;共30分)11.若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为________.12.二次函数y=-2x2+3的开口方向是_________.13.抛物线与轴只有一个公共点,则的值为.14.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是_________.(只需写一个)15.已知,当_______时,函数值随x的增大而减小.16.若将二次函数y = x2- 2x + 3配方为y = ( x - h )2 + k的形式,则y = ________.17.已知抛物线y=x2+2(m+2)+m2与x轴有两个交点,则m的取值范围________.18.如果A(﹣1,y1),B(﹣2,y2)是二次函数y=x2+m图象上的两个点,那么y1________y2(填“<”或者“>”)19.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t= .20.对于一个函数,如果它的自变量 x 与函数值 y 满足:当−1≤x≤1 时,−1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=−x 均是“闭函数”. 已知 y = ax2+ bx + c(a≠0) 是“闭函数”,且抛物线经过点A(1,−1)和点 B(−1,1),则 a 的取值范围是______________.三、解答题(共8题;共60分)21.抛物线y=-x2+bx+c过点(0,-3)和(2,1),试确定抛物线的解析式,并求出抛物线与x轴的交点坐标.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.24.如图,已知二次函数y=ax2+bx+c(a,b,c为常数)的对称轴为x=1,与y轴的交点为c(0,4),y的最大值为5,顶点为M,过点D(0,1)且平行于x轴的直线与抛物线交于点A,B.(Ⅰ)求该二次函数的解析式和点A、B的坐标;(Ⅱ)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,求出所有点P的坐标.25.如图是一座古拱桥的截面图.在水平面上取点为原点,以水平面为轴建立直角坐标系,桥洞上沿形状恰好是抛物线的图像.桥洞两侧壁上各有一盏距离水面4米高的景观灯.请求出这两盏景观灯间的水平距离.26.已知:如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.过点C作CD∥x轴,交抛物线的对称轴于点D.(1)求该抛物线的解析式;(2)若将该抛物线向下平移m个单位,使其顶点落在D点,求m的值.27.已知二次函数的图象的顶点在原点O,且经过点A(1,).(1)求此函数的解析式;(2)将该抛物线沿着y轴向上平移后顶点落在点P处,直线x=2分别交原抛物和新抛物线于点M和N,且S△PMN=, 求:MN的长以及平移后抛物线的解析式.28.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500 .(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?参考答案一、单选题(共10题;共30分)1.下列函数中是二次函数的是( )A. y=2(x﹣1)B. y=(x﹣1)2﹣x2C. y=a(x﹣1)2D. y=2x2﹣1【答案】D【解析】根据二次函数的概念,形如y=ax2+bx+c(a≠0)的函数是二次函数,可知:A、y=2x﹣2,是一次函数,B、y=(x﹣1)2﹣x2=﹣2x+1,是一次函数,C、当a=0时,y=a(x﹣1)2不是二次函数,D、y=2x2﹣1是二次函数.故选:D.2.二次函数的最小值是A. B. 1 C. D. 2【答案】D【解析】试题分析:∵(x-1)2>O∴(x-1)2+2≥2 ∴当x=1时,y有最小值,y=2考点:二次函数的顶点解析式点评:要求学生熟练的掌握二次函数的三种表达式,有一般式,两点式,顶点式.属于基础题.3.抛物线y=2(x+3)2﹣4的顶点坐标是( )A. (3,4)B. (3,﹣4)C. (﹣3,4)D. (﹣3,﹣4)【答案】D【解析】∵y=2(x+3)2﹣4,∴抛物线顶点坐标为(﹣3,﹣4),故选:D.4.函数y=ax2+bx+c的图像如图所示,那么关于x的方程ax2+bx+c-4=0的根的情况是( )A. 有两个不相等的实数根B. 有两个异号的实数根C. 有两个相等的实数根D. 没有实数根【答案】D【解析】试题分析:二次函数y=ax2+bx+c对应的方程为:ax2+bx+c=0,方程ax2+bx+c-4=0对于的二次函数为y=ax2+bx+c-4.则此第一方程对于的二次函数向下移动4个单位即可得到第二个方程对于的函数图象.根据函数图象与x轴的交点数判断对应方程根的个数.将二次函数y=ax2+bx+c的图象向下移动4个单位得方程ax2+bx+c-4=0对应的二次函数图象,分析题干中的图象可知:当其向下移动4个单位时,图象与x轴有无交点则方程没有实根.故选D.考点:二次函数图像的平移点评:此类试题属于数形结合类题目,考生在解答时要注意图形的下移等基本知识5.已知二次函数y=2(x﹣3)2﹣2,下列说法:①其图象开口向上;②顶点坐标为(3,﹣2);③其图象与y轴的交点坐标为(0,﹣2);④当x≤3时,y随x的增大而减小,其中正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】根据二次函数的解析式知a=2>0,函数的开口向上,故①正确;根据顶点式可知顶点为(3,-2),故②正确;由y=2(x﹣3)2﹣2=2x2-12x+18-2=2x2-12x+16,所以图象与y轴的交点坐标为(0,-2),故③不正确;当x≤3时,y 随x的增大而减小,故④正确.故选:C.6.二次函数y=x2-6x+5的图像的顶点坐标是( )A. (-3,4)B. (3,4)C. (-1,2)D. (3,-4)【答案】D【解析】试题分析:二次函数基本形式,则有,点的坐标(3,-4)考点:本题考查了二次函数的坐标的基本形式点评:此类试题属于难度很大的试题,考生在解答此类试题一定要注意解答此类的基本形式7.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是( )A. B.C. D.【答案】B【解析】由二次函数y=ax2+bx+c与一次函数y=ax+b的图象得到字母系数的正负,再互相比较看是否一致即可得出答案.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选:B.点睛:本题主要考查二次函数与一次函数的图象与字母系数的关系.解题的关键在于要根据图象准确判断出系数的正负性.8.点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A. ②④B. ②③C. ①③④D. ①②④【答案】A【解析】∵点A,B的坐标分别为(−2,3)和(1,3),∴线段AB与y轴的交点坐标为(0,3),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c⩽3,(顶点在y轴上时取“=”),故①错误;∵抛物线的顶点在线段AB上运动,∴当x<−2时,y随x的增大而增大,因此,当x<−3时,y随x的增大而增大,故②正确;若点D的横坐标最大值为5,则此时对称轴为直线x=1,根据二次函数的对称性,点C的横坐标最小值为−2−4=−6,故③错误;根据顶点坐标公式,=3,令y=0,则ax²+bx+c=0,CD²=(−)² −4×=,根据顶点坐标公式, =3,∴=−12,∴CD²=×(−12)=,∵四边形ACDB为平行四边形,∴CD=AB=1−(−2)=3,∴=3²=9,解得a=−,故④正确;综上所述,正确的结论有②④.故选A.9.如图1,菱形纸片ABCD的边长为2,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P(如图2),则六边形AEFCHG面积的最大值是()A. B. C. 2﹣ D. 1+【答案】A【解析】【分析】由六边形AEFCHG面积=菱形ABCD的面积﹣△EBF的面积﹣△GDH的面积.得出函数关系式,进而求出最大值.【详解】六边形AEFCHG面积=菱形ABCD的面积﹣△EBF的面积﹣△GDH的面积.∵菱形纸片ABCD的边长为2,∠ABC=60°,∴AC=2,∴BD=2,∴S菱形ABCD AC•BD2×2,设AE=x,则六边形AEFCHG面积=2(2﹣x)•(2﹣x)x•xx2(x﹣1)2,∴六边形AEFCHG面积的最大值是.故选A.【点睛】本题考查了翻折变换(折叠问题),二次函数最值问题,本题关键是设出未知数表示六边形面积,把图形问题转化为函数问题,有一定的难度.10.已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是( )A. ①②B. ①③C. ②③④D. ①②④【答案】D【解析】【分析】①利用抛物线与x轴的交点个数可对①进行判断;②利用抛物线的顶点坐标可对②进行判断;③由顶点坐标得到抛物线的对称轴为直线x=﹣3,则根据二次函数的增减性可对③进行判断;④根据抛物线的对称性:得到抛物线y=ax2+bx+c上的对称点(﹣1,﹣4),则可对④进行判断.【详解】①如图1,当a>0,顶点为(﹣3,﹣6)时,与x轴有两个交点,所以△>0,即b2>4ac;故①正确;②如图1,当a>0时,则y≥﹣6,∴ax2+bx+c≥﹣6;故②正确;③∵抛物线的对称轴为直线x=﹣3,∴点(﹣2,m)与(﹣4,m)是对称点,当a>0时,x<﹣3时,y随x的增大而减小,当a<0时,x<﹣3时,y随x的增大而增大,而点(﹣2,m),(﹣5,n)在抛物线上,所以m与n的大小不能确定;故③错误;④如图2,若关于x的一元二次方程ax2+bx+c=﹣4的一根为﹣5,由对称性可得:另一根为﹣1.所以④正确.其中正确的是:①②④.故选D.【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与x轴的交点,二次函数与不等式的关系.二、填空题(共10题;共30分)11.若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为________.【答案】4【解析】试题分析:,令y=0,,解得:,所以A(-1,0),B(3,0),所以AB=4.考点:抛物线与x轴的交点.12.二次函数y=-2x2+3的开口方向是_________.【答案】向下.【解析】试题分析:根据二次项系数的符号,直接判断抛物线开口方向.试题解析:因为a=-2<0,所以抛物线开口向下.考点:二次函数的性质.13.抛物线与轴只有一个公共点,则的值为.【答案】8.【解析】试题分析:∵抛物线与x轴只有一个公共点,∴△=0,∴=-4×2×m=0;∴m=8.故答案为8.考点:抛物线与x轴交点的坐标.14.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是_________.(只需写一个)【答案】y=2x2﹣1【解析】试题分析:由题意设该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.考点:待定系数法求函数解析式15.已知,当_______时,函数值随x的增大而减小.【答案】<-1【解析】抛物线y=3(x+1)2−2,可知a=3>0,开口向上,对称轴x=−1,∴当x<−1时,函数值y随x的增大而减小.故答案为:<−1.16.若将二次函数y = x2- 2x + 3配方为y = ( x - h )2 + k的形式,则y = ________.【答案】y=(x-1)2+2【解析】试题分析:利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2故本题答案为:y=(x﹣1)2+2.考点:二次函数的三种形式.17.已知抛物线y=x2+2(m+2)+m2与x轴有两个交点,则m的取值范围________.【答案】m>﹣1【解析】【分析】抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.【详解】∵抛物线y=x2﹣2x+m与x轴有两个交点,∴△=b2﹣4ac>0,即4(m+2)2﹣4m2>0,解得:m>﹣1.故答案为:m>﹣1.【点睛】本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>0;②抛物线与x轴无交点,则△<0;③抛物线与x轴有一个交点,则△=0.18.如果A(﹣1,y1),B(﹣2,y2)是二次函数y=x2+m图象上的两个点,那么y1________y2(填“<”或者“>”)【答案】<【解析】【分析】根据函数解析式的特点,其对称轴为x=0,图象开口向上;利用对称轴左侧y随x的增大而减小,可判断y1<y2.【详解】∵二次函数y=x2+m中a=1>0,∴抛物线开口向上.∵x0,﹣1<﹣2,∴A(﹣1,y1),B(﹣2,y2)在对称轴的左侧,且y随x的增大而减小,∴y1<y2.故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特点,熟知二次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t= .【答案】1.6.【解析】设各自抛出后1.1秒时到达相同的最大离地高度为h,这个最大高度为h,则小球的高度y=a(t−1.1)2+h,由题意a(t−1.1)2+h=a(t−1−1.1)2+h,解得t=1.6.故第一个小球抛出后1.6秒时在空中与第二个小球的离地高度相同.故答案为1.6.20.对于一个函数,如果它的自变量 x 与函数值 y 满足:当−1≤x≤1 时,−1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=−x 均是“闭函数”. 已知 y = ax2+ bx + c(a≠0) 是“闭函数”,且抛物线经过点A(1,−1)和点 B(−1,1),则 a 的取值范围是______________.【答案】或【解析】分析:分别把点A、B代入函数的解析式,求出a、b、c的关系,然后根据抛物线的对称轴x=,然后结合图像判断即可.详解:∵y = ax2+ bx + c(a≠0)经过点 A(1,−1)和点 B(−1,1)∴a+b+c=-1,a-b+c=1∴a+c=0,b=-1则抛物线为:y = ax2+ bx –a∴对称轴为x=①当a<0时,抛物线开口向下,且x=<0,如图可知,当≤-1时符合题意,所以;当-1<<0时,图像不符合-1≤y≤1的要求,舍去;②当a>0时,抛物线的开口向上,且x=>0,由图可知≥1时符合题意,∴0<a≤;当0<<1时,图像不符合-1≤y≤1的要求,舍去.综上所述,a的取值范围是:或.故答案为:或.点睛:本题考查的是二次函数的性质,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题;共60分)21.抛物线y=-x2+bx+c过点(0,-3)和(2,1),试确定抛物线的解析式,并求出抛物线与x轴的交点坐标.【答案】抛物线的解析式为y=-x2+4x-3;抛物线与x轴的交点坐标为(1,0)、(3,0)【解析】分析:把(0,-3)和(2,1)代入抛物线,得出方程组,求出方程组的解,即可得出抛物线的解析式,把y=0代入解析式,求出x的值,即可得出抛物线与x轴的交点坐标.详解:∵抛物线y=-x2+bx+c过点(0,-3)和(2,1),∴,解得,抛物线的解析式为y=-x2+4x-3,令y=0,得-x2+4x-3=0,即 x2-4x+3=0,∴x1=1,x2=3,∴抛物线与x轴的交点坐标为(1,0)、(3,0).点睛:本题考查了用待定系数法求二次函数的解析式,抛物线与x轴的交点问题,解二元一次方程组和解一元二次方程等知识点的应用,主要考查学生运用性质进行计算的能力,题目较好,难度适中.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.【答案】y=﹣0.5x2+25x.【解析】【分析】根据已知条件,用x表示出矩形的宽,再利用矩形的面积公式即可求解.【详解】设与墙平行的边的长为x(m),则垂直于墙的边长为: =(25﹣0.5x)m,根据题意得出:y=x(25﹣0.5x)=﹣0.5x2+25x.【点睛】本题考查了根据实际问题列二次函数关系式,根据题意表示出矩形的宽是解决问题的关键.23.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.【答案】(1)(1,0);(2)y=x(x﹣2),即y=x2﹣2x.【解析】【分析】(1)把(2,1)代入y=x2-2x+c中求出c的值即可得到抛物线解析式,然后配成顶点式得到顶点坐标;(2)先确定抛物线y=x2-2x+1的对称轴,再利用抛物线的对称性得到A(0,0),B(2,0),然后利用交点式可写出新抛物线的表达式.【详解】(1)把(2,1)代入y=x2﹣2x+c得4﹣4+c=1,解得c=1,所以抛物线解析式为y=x2﹣2x+1=(x﹣1)2;∴抛物线的顶点坐标为(1,0).(2)由(1)知抛物线的对称轴为直线x=1,而新抛物线与x轴交于A、B两点,AB=2,所以A(0,0),B(2,0),所以新抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.24.如图,已知二次函数y=ax2+bx+c(a,b,c为常数)的对称轴为x=1,与y轴的交点为c(0,4),y的最大值为5,顶点为M,过点D(0,1)且平行于x轴的直线与抛物线交于点A,B.(Ⅰ)求该二次函数的解析式和点A、B的坐标;(Ⅱ)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,求出所有点P的坐标.【答案】(Ⅰ)y=﹣x2+2x+4,B(﹣1,1),A(3,1);(Ⅱ)P点坐标为(3,1)或(﹣3,7)或()或().【解析】【分析】(Ⅰ)先确定顶点M的坐标,再设顶点式y=a(x﹣1)2+5,然后把C点坐标代入求出a即可得到抛物线解析式;在计算函数值为1所对应的自变量的值即可得到A、B点的坐标;(Ⅱ)先计算出CD=3,BD=1,AM=2,CM,AC=3,则利用勾股定理的逆定理得到△ACM为直角三角形,∠ACM=90°,然后分两种情况讨论:①当时,△MCP∽△BDC,即,解得PC=3,设此时P(x,﹣x+4),利用两点间的距离公式得到x2+(﹣x+4﹣4)2=(3)2,求出x从而得到此时P点坐标;②当时,△MCP∽△CDB,即,解得PC,利用同样方法求出对应的P点坐标.【详解】(Ⅰ)根据题意得抛物线的顶点M的坐标为(1,5),设抛物线的解析式为y=a(x﹣1)2+5,把C(0,4)代入y=a(x﹣1)2+5得:a+5=4,解得:a=﹣1,所以抛物线解析式为y=﹣(x﹣1)2+5,即y=﹣x2+2x+4;当y=1时,﹣x2+2x+4=1,解得:x1=﹣1,x2=3,则B(﹣1,1),A(3,1);(Ⅱ)CD=3,BD=1,AM,CM,易得直线AC的解析式为y=﹣x+4.∵CM2+AC2=AM2,∴△ACM为直角三角形,∠ACM=90°,∴∠BDC=∠MCP,分两种情况讨论:①当时,△MCP∽△BDC,即,解得:PC=3,设此时P(x,﹣x+4),∴x2+(﹣x+4﹣4)2=(3)2,解得:x=±3,则此时P点坐标为(3,1)或(﹣3,7);②当时,△MCP∽△CDB,即,解得:PC,设此时P(x,﹣x+4),∴x2+(﹣x+4﹣4)2=()2,解得:x=±,则此时P点坐标为()或();综上所述:满足条件的P点坐标为(3,1)或(﹣3,7)或()或().【点睛】本题考查了二次函数的综合题:熟练掌握二次函数的性质和相似三角形的判定;会利用待定系数法求一次函数和二次函数的解析式;理解坐标与图形性质,记住两点间的距离公式.25.如图是一座古拱桥的截面图.在水平面上取点为原点,以水平面为轴建立直角坐标系,桥洞上沿形状恰好是抛物线的图像.桥洞两侧壁上各有一盏距离水面4米高的景观灯.请求出这两盏景观灯间的水平距离.【答案】两景观灯间的距离为5米.【解析】试题分析:要求灯的距离,只需要把纵坐标为4代入,求出x,然后两者相减,就是他们的距离.试题解析:由已知得两景观灯的纵坐标都是4,∴∴(x﹣5)2=1∴x1=7.5,x2=2.5,∴两景观灯间的距离为7.5﹣2.5=5米.考点:二次函数的应用.26.已知:如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.过点C作CD∥x轴,交抛物线的对称轴于点D.(1)求该抛物线的解析式;(2)若将该抛物线向下平移m个单位,使其顶点落在D点,求m的值.【答案】(1);(2)1.【解析】试题分析:(1)利用待定系数法即可求得解析式;(2)根据抛物线的解析式先求得C的坐标,然后把抛物线的解析式转化成顶点式,求得抛物线的顶点,即可求得D的坐标,从而求得m的值.试题解析:解:(1)将A(-1,0),B(3,0)代入中,得:−1−b+c=0,−9+3b+c=0,解得:b=2,c=3.则抛物线解析式为;当x=0,y=3,即OC=3,∵抛物线解析式为=-(x-1)2+4,∴顶点坐标为(1,4),∵对称轴为直线x=1,∴CD=1,∵CD∥x轴,∴m=4-3=1.考点:二次函数图象的平移变换;求二次函数的解析式.27.已知二次函数的图象的顶点在原点O,且经过点A(1,).(1)求此函数的解析式;(2)将该抛物线沿着y轴向上平移后顶点落在点P处,直线x=2分别交原抛物和新抛物线于点M和N,且S△PMN=,求:MN的长以及平移后抛物线的解析式.【答案】(1)y=x2;(2)3,y=x2+3.【解析】【分析】(1)根据题意可直接设y=ax2把点(1,﹣3)代入得a=﹣3,所以y=﹣3x2;(2)设平移后y x2+d(d>0),则MN=d,根据题意得出S2×d=3,即可求得d的值,从而求得平移后的解析式.【详解】(1)∵抛物线顶点是原点,可设y=ax2,把点A(1,)代入,得:a=,所以这个二次函数的关系式为y x2;(2)设平移后y x2+d(d>0),∴MN=d,S2×d=3,∴d=3,∴y x2+3.【点睛】本题考查了用待定系数法求函数解析式以及二次函数的图象与几何变换,熟练掌握待定系数法和平移的规律是解题的关键.28.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500 .(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?【答案】(1)政府这个月为他承担的总差价为元;(2)当销售单价定为元时,每月可获得最大利润元;(3)销售单价定为元时,政府每个月为他承担的总差价最少为元.【解析】试题分析:(1)把x=20代入y=-10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价-成本价,得w=(x-10)(-10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令-10x2+600x-5000=3000,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.试题解析:(1) 在y=-10x+500中,x=20 y=300 300(12-10)=600 承担总差价为600元(2) W=(-10x+500)(x-10)=-10(x-30)+4000x=30时,W有最大值4000(3) W=-10(x-30)+4000 令W≥3000画出草图,由图像可知有20≤x≤40 ∵x≤25∴20≤x≤25在y=-10x+500中,-10<0 ∴y随x的增大而减小∴x=25时,y最小为250∴政府为他承担总差价最少为250(12-10)=500元【此处有视频,请去附件查看】。
初中数学人教版九年级上册 第二十二章 二次函数单元测试(含简单答案)
第二十二章二次函数一、单选题1.下列函数关系中,不属于二次函数的是( )A.y=1﹣x2B.y=(3x+2)(4x﹣3)﹣12x2C.y=ax2+bx+c(a≠0)D.y=(x﹣2)2+22.抛物线y=−3(x+2)2的对称轴是直线()A.x=3B.x=−3C.x=2D.x=−23.抛物线y=−(x−3)2−5的顶点坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)4.二次函数y=x2+bx+1的图象与x轴只有一个公共点,则此公共点的坐标是( )A.(1,0)B.(2,0)C.(﹣1,0)或(﹣2,0)D.(﹣1,0)或(1,0)5.已知A(2,y1),B(2,y2),C(−2,y3)是二次函数y=3(x−1)2+k图象上三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y1 6.长方形的周长为24cm,其中一边为x cm(其中x 0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=12x2C.y=(12−x)x D.y=2x(12−x)7.如图,一条抛物线与x轴相交于M,N点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(−2,3),(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为( )A.−1B.−3C.−5D.−78.雁门关,位于我省忻州市雁门山中,是长城上的重要关隘,以“险”著称,被誉为“中华第一关”,由于地理环境特殊,行车高速路上的隧道较多,如图①是雁门关隧道,其截面为抛物线型,如图②为截面示意图,线段OA 表示水平的路面,以O 为坐标原点,OA 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直直角坐标系.经测量OA =10m ,抛物线的顶点P 到OA 的距离为9m ,则抛物线的函数表达式为( )A .y =−19(x +5)2B .y =−125(x−5)2C .y =−125(x +5)2+9D .y =−925(x−5)2+99.如图,已知二次函数y 1=ax 2+bx +c 与一次函数y 2=kx +m 的图像相交于点A (-3,5),B (7,2),则能使y 1≤y 2 成立的x 的取值范围是( )A .2≤x ≤5B .x ≤−3或x ≥7C .−3≤x ≤7D .x ≥5或x ≤210.抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表: x…−2−1012…y …04664…从上表可知,下 列说法:①抛物线与x 轴的一个交点为(3,0);②函数y =ax 2+bx +c 的最大值为6;③抛物线的对称轴是x =12④在对称轴左侧,y 随x 增大而增大.其中正确的是( )A .①②③B .①③④C .①②④D .②③④二、填空题11.二次函数y=(m+1)x2的图象开口向下,则m .12.已知二次函数y=−x2+4x+5,若﹣3≤x≤8,则y的取值范围是.13.已知点A(1,y1),B(2,y2)在抛物线y=x2−3上,则y1y2.(填“<”或“>”或“=”)14.请写出一个开口向下,对称轴为直线x=−3,且与y轴的交点为(0,2)的二次函数的解析式:.15.已知:在平面直角坐标系中,A(−1,0),B(4,0),抛物线y=x2−2x+n与线段AB有唯一公共点,则n可以取(写出所有正确结论的序号).①n=1;②n=2;③n≤−8;④−8≤n<−3;⑤−8≤n≤−3,16.已知抛物线y=ax2−4ax与x轴交于点A、B,顶点C的纵坐标是−2,那么a=. 17.如图所示,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴交于负半轴,给出六个结论:①a>0;②b>0;③c>0;④a+b+c=0;⑤b2﹣4ac >0;⑥2a﹣b>0,其中正确结论序号是.三、解答题18.已知二次函数的图象以A(−1,4)为顶点,且过点B(2,−5).(1)求该函数的表达式;(2)求该函数图象与x轴、y轴的交点坐标.19.某厂生产一种玩具,成本价是8元∕件,经过调查发现,每天的销售量y(件)与销售单价x(元)存在一次函数关系y=−10x+600.(1)销售单价定为多少时,该厂每天获得的利润最大?最大利润是多少?(2)若物价部门规定,该产品的最高销售单价不得超过30元,那么销售单价如何定位才能获得最大利润?20.如图,已知二次函数y=ax2+bx+3的图像经过点A(1,0),B(−2,3).(1)求该二次函数的表达式;(2)当x取何值时,该二次函数取得最大值?最大值是多少?(3)当y>3时,请写出x的取值范围.21.为响应广州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边露墙,可利用的墙长不超过16m,另外三边由36m长的栅栏围成,设矩形ABCD空地中,垂直于墙的边AB=x m,面积为y m2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)x为何值时,y有最大值?最大值是多少?22.如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,抛物线的对称轴为直线x =﹣1,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点;①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,过点Q作QD∥y轴交抛物线于点D,求线段QD长度的最大值.23.如图,二次函数y=ax2+bx+c(a≠0)与x轴交于A,B两点,其中点A在点B的左侧,A 为(−1,0),抛物线与y轴交于点C(0,4),对称轴为x=1,连接BC.(1)求抛物线的解析式;(2)若点G为直线BC上方的抛物线上的一动点,试计算以A,B,G,C为顶点的四边形的面积的最大值;(3)若点H为对称轴上的一个动点,点P为抛物线上的一个动点,当以H,P,B,C四点为顶点的四边形为平行四边形时,求出点H的坐标.参考答案:1.B2.D3.A4.D5.C6.C7.C8.D9.C10.B11.<﹣112.﹣27≤y ≤913.<14.y =-(x +3)2-7(答案不唯一)15.①④16.1217.①④⑤⑥18.(1)y =−x 2−2x +3(2)与x 轴的交点坐标(−3,0),(1,0),与y 轴的交点坐标(0,3)19.(1)34,6760元;(2)当销售单价定为30元时,才能获得最大利润.20.(1)y =−x 2−2x +3(2)x =−1,最大值为4(3)−2<x <021.(1)y =−2x 2+36x (10≤x <18)(2)x =10(3)x =10,y 有最大值,最大值是16022.(1)点B 的坐标为(1,0);(2)①点P 的坐标为(4,21)或(﹣4,5),②9423.(1)y =−43x 2+83x +4(2)252(3)(1,−323)、(1,−83)或(1,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数单元测试题一、选择题:1、已知二次函数的图象与x轴有交点,则k的取值范围是()A. B. C.且 D.且2、抛物线y=2(x﹣3)2的顶点在()A.第一象限 B.第二象限 C.x轴上 D.y轴上3、函数的顶点坐标是().A.(1,)B.(,3)C.(1,-2)D.(-1,2)4、把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=-2(x-1)2+6B.y=﹣2(x-1)2-6C.y=-2(x+1)2+6D.y=-2(x+1)2-65、如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为()A.y=5﹣x B.y=5﹣x2C.y=25﹣x D.y=25﹣x26、若二次函数的对称轴是x=3,则关于x的方程的解为()A.=0,=6B.=1,=7C.=1,=-7D.=-1,=77、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.8、抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x…﹣2﹣1012…y…04664…从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的9、在同一直角坐标系中,函数和函数(是常数,且)的图象可能是( )10、如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2C.3D.211、生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月12、已知二次函数(≠0)的图象如图所示,有下列5个结论:①abc>0;②b>a+c;③9a+3b+c>0; ④; ⑤≥,其中正确的有()A.2个B.3个C.4个D.5个二、填空题:13、抛物线y=4x2﹣3x与y轴的交点坐标是.14、二次函数y=x2﹣2x+3的图象向左平移一个单位,再向上平移两个单位后,得二次函数解析式为.15、如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.16、如图,一农户要建一个矩形猪舍,猪舍的一边利用住房墙,另外三边用25m长的建筑材料围成,为方便进出,在CD边上留一个1m宽的门,若设AB为y(m),BC为x(m),则y与x之间的函数关系式为.17、一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣,那么铅球运动过程中最高点离地面的距离为米.18、当1≤x≤6时,函数y=a(x﹣4)2+2﹣9a(a>0)的最大值是.三、解答题:19、已知函数是关于的二次函数,求:(1)满足条件m的值。
(2)m为何值时,抛物线有最底点?求出这个最底点的坐标,这时为何值时y随的增大而增大?(3)m为何值时,抛物线有最大值?最大值是多少?这时为何值时,y随的增大而减小.20、已知二次函数的图象与x轴交于A、B两点,点A的坐标为,求点B的坐标.21、已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:(1)根据上表填空:①这个抛物线的对称轴是,抛物线一定会经过点(﹣2,);②抛物线在对称轴右侧部分是(填“上升”或“下降”);(2)如果将这个抛物线y=ax2+bx+c向上平移使它经过点(0,5),求平移后的抛物线表达式.22、甜甜水果批发商销售每箱进价为30元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱40元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)如果批发商平均每天获得的销售利润为1008元,那么每箱苹果的销售价是多少元?23、为了给草坪喷水,安装了自动旋转喷水器,如图所示.设直线AD所在位置为地平面,喷水管AB高出地平面1.5m,在B处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B与水流最高点C的连线与地平面成45°的角,水流的最高点C离地平面3.5m,水流的落地点为D.在建立如图所示的直角坐标系中:(1)求抛物线的函数解析式;(2)求水流的落地点D到A点的距离.24、在平面直角坐标系中,抛物线经过点A(0,-3),B(4,5).(1)求此抛物线表达式及顶点M的坐标;(2)设点M关于y轴的对称点是N,此抛物线在A,B两点之间的部分记为图象W(包含A,B两点),经过点N的直线l:与图象W恰一个有公共点,结合图象,求m的取值范围.25、如图(1),在平面直角坐标系中,抛物线经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.(1)求该抛物线的解析式及点C、D的坐标;(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F为顶点的四边形是平行四边形,求点F的坐标;(3)如图(2)P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ的最大面积和此时Q 点的坐标.参考答案1、D2、C3、A4、C5、D6、D7、D8、C9、D10、B11、C12、B13、故答案为:(0,0).14、答案为:y=x2+4.15、16、答案为y=13﹣x.17、答案为:3.18、答案为:2.19、解:(1)由已知得:解得:∴(2)当m=2时,抛物线有最低点,最低点的坐标为(0,0)当时,y随的增大而增大。
(3)当m= ―3时,抛物线有最大值,最大值为0,当时,y随的增大而减小。
20、解:∵二次函数的图象与x轴交于点A ,∴.∴.∴二次函数解析式为.即.∴二次函数与x轴的交点B的坐标为.21、【解答】解:(1)①∵当x=0和x=2时,y值均为2,∴抛物线的对称轴为x=1,∴当x=﹣2和x=4时,y值相同,∴抛物线会经过点(﹣2,10).故答案为:x=1;10.②∵抛物线的对称轴为x=1,且x=2、3、4时的y的值逐渐增大,∴抛物线在对称轴右侧部分是上升.故答案为:上升.(2)将点(﹣1,5)、(0,2)、(2,2)代入y=ax2+bx+c中,,解得:,∴二次函数的表达式为y=x2﹣2x+2.∵点(0,5)在点(0,2)上方3个单位长度处,∴平移后的抛物线表达式为y=x2﹣2x+5.22、解:(1)y= 90-3(x-40) = -3x+210 ∴ y= -3x+210(2)w=(x-30)(-3x+210) =∴(3)由(2)得:解得:(不合题意,舍去)∴每箱苹果的销售价是42元.23、解:在如图所建立的直角坐标系中,由题意知,B点的坐标为(0,1.5),∠CBE=45°,∴△BEC为等腰直角三角形,∴BE=2,∴C点坐标为(2,3.5),(1)设抛物线的函数解析式为y=ax2+bx+c(a≠0),则抛物线过点(0,1.5)顶点为(2,3.5),∴当x=0时,y=c=1.5由﹣,得b=﹣4a,由,得,解之,得a=0(舍去),a=﹣,∴b=﹣4a=2.所以抛物线的解析式为y=﹣x2+2x+;(2)∵D点为抛物线y=﹣x2+2x+的图象与x轴的交点,∴当y=0时,即:﹣x2+2x+=0,解得x=2±,x=2﹣不合题意,舍去,取x=2+.∴D点坐标为(2+,0),∴AD=(2+)(m).答:水流的落地点D到A点的距离是(2+)m.24、(1)将 A(0,-3),B(4,5)代入中 c=-316+4b+c=5∴c=-3 ,b=-2∴抛物线的表达式是顶点坐标是(1,-4)(2) M关于y 轴的对称点N(-1.-4),由图象知m=0符合条件,又设NA 表达式y=kx+b将 A(0,-3),N(-1,-4)代入 y=kx+b 中得b=-3,-k+b=-4 得k=1, b=-3∴y=x-3再设NB 表达式y=tx+s,得 4t+s=5-t+s=-4, 得t=, s=y=x由图示知1<m≤或m=0 25、解:(1)∵抛物线经过A(-1,0)、B(0,3)两点,∴解得:,,抛物线的解析式为:∵由,解得:∴∵由∴D(1,4)(2)∵四边形AEBF是平行四边形,∴BF=AE.设直线BD的解析式为:,则∵B(0,3),D(1,4)∴解得:,,∴直线BD的解析式为:当y=0时,x=-3 ∴E(-3,0),∴OE=3,∵A(-1,0)∴OA=1,∴AE=2 ∴BF=2,∴F的横坐标为2,∴y=3,∴F(2,3);(3)如图,设Q,作PS⊥x轴,QR⊥x轴于点S、R,且P(2,3),∴AR=+1,QR=,PS=3,RS=2-a,AS=3∴S△PQA=S四边形PSRQ+S△QRA-S△PSA==∴S△PQA=∴当时,S△PQA的最大面积为,此时Q。