实验三 贪心算法与回溯法

合集下载

算法设计与分析中的贪心算法与回溯法

算法设计与分析中的贪心算法与回溯法

算法设计与分析中的贪心算法与回溯法算法设计与分析领域中,贪心算法和回溯法是两种常用的解题方法。

本文将介绍这两种算法,并比较它们在不同场景下的优势和劣势。

一、贪心算法贪心算法是一种在每一步都选择当前最优解的策略,希望通过局部最优解的选择最终达到全局最优解。

贪心算法的实现较为简单,时间复杂度较低,适用于解决一些最优化问题。

贪心算法的基本思想是每次都选择当前状态下的最优解,并将其加入到解集中。

例如,在求解最小生成树的问题中,贪心算法会选择当前具有最小权值的边,并将其添加到最终结果中,直到生成树完成。

然而,贪心算法的局限性在于它只考虑了当前的最优解,无法保证找到全局最优解。

在某些问题中,贪心算法可能会陷入局部最优解而无法跳出。

因此,需要在具体问题中综合考虑问题的性质和约束条件来确定是否适合采用贪心算法。

二、回溯法回溯法是一种通过不断尝试可能的步骤来寻找问题解的方法。

它通常基于递归的思想,在每一步都尝试所有的可能选择,并逐步构建解空间,直到找到解或确定无解。

回溯法的核心思想是深度优先搜索,通过遍历解空间树来寻找解。

在每一步,回溯法都会考虑当前状态下的所有可能选择,并递归地进入下一步。

如果某一步的选择无法达到目标,回溯法会回退到上一步进行其他可能的选择。

回溯法常用于解决一些全排列、子集和组合等问题。

例如,在解决八皇后问题时,回溯法通过逐个放置皇后并进行合法性判断,直到找到所有解或遍历完所有可能的情况为止。

然而,回溯法的缺点在于其时间复杂度较高,其搜索过程包含了大量的重复计算。

因此,在使用回溯法解决问题时,需注意适当剪枝以减少搜索空间,提高算法效率。

三、贪心算法与回溯法的比较贪心算法和回溯法都是常用的算法设计与分析方法,但其适用场景和效果有所差异。

贪心算法在解决问题时能够快速找到局部最优解,并且具有较低的时间复杂度。

它适用于一些满足最优子结构性质的问题,例如最小生成树、单源最短路径等。

然而,贪心算法无法保证一定能找到全局最优解,因此需根据具体问题的特点来判断是否使用。

实验3贪心算法(定稿)

实验3贪心算法(定稿)

实验3贪心算法(定稿)第一篇:实验3 贪心算法(定稿)《算法设计与分析》实验报告实验3贪心算法姓名学号班级实验日期实验地点一、实验目的1、掌握贪心算法的设计思想。

2、理解最小生成树的相关概念。

二、实验环境1、硬件环境 CPU:酷睿i5 内存:4GB 硬盘:1T2、软件环境操作系统:Windows10 编程环境:jdk 编程语言:Java三、实验内容:在Prim算法与Kruskal算法中任选一种求解最小生成树问题。

1、你选择的是:Prim算法2、数据结构(1)图的数据结构——图结构是研究数据元素之间的多对多的关系。

在这种结构中,任意两个元素之间可能存在关系,即结点之间的关系可以是任意的,图中任意元素之间都可能相关。

图形结构——多个对多个,如(2)树的数据结构——树结构是研究数据元素之间的一对多的关系。

在这种结构中,每个元素对下(层)可以有0个或多个元素相联系,对上(层)只有唯一的一个元素相关,数据元素之间有明显的层次关系。

树形结构——一个对多个,如3、算法伪代码 Prim(G,E,W)输入:连通图G 输出:G的最小生成树T 1.S←{1};T=∅ 2.While V-S ≠∅ do3.从V-S中选择j使得j到S中顶点的边e的权最小;T←T∪{e}4.S←S∪{j}3、算法分析时间复杂度:O(n)空间复杂度:O(n^2)4、关键代码(含注释)package Prim;import java.util.*;publicclass Main { staticintMAXCOST=Integer.MAX_VALUE;staticint Prim(intgraph[][], intn){ /* lowcost[i]记录以i为终点的边的最小权值,当lowcost[i]=0时表示终点i加入生成树 */ intlowcost[]=newint[n+1];/* mst[i]记录对应lowcost[i]的起点,当mst[i]=0时表示起点i加入生成树 */ intmst[]=newint[n+1];intmin, minid, sum = 0;/* 默认选择1号节点加入生成树,从2号节点开始初始化*/ for(inti = 2;i<= n;i++){/* 标记1号节点加入生成树 */ mst[1] = 0;/* n个节点至少需要n-1条边构成最小生成树 */ for(inti = 2;i<= n;i++){/* 找满足条件的最小权值边的节点minid */ for(intj = 2;j<= n;j++){/* 输出生成树边的信息:起点,终点,权值 */System.out.printf(“%c1, minid + 'A''A' + 1;intj = chy-'A' + 1;graph[i][j] = cost;graph[j][i] = cost;for(intj = 1;j<= n;j++){ } graph[i][j] = MAXCOST;} } System.out.println(”Total:"+cost);} }5、实验结果(1)输入(2)输出最小生成树的权值为:生成过程:(a)(b)(d)(e)(c)四、实验总结(心得体会、需要注意的问题等)这次实验,使我受益匪浅。

贪心算法 实验报告

贪心算法 实验报告

贪心算法实验报告贪心算法实验报告引言:贪心算法是一种常用的算法设计策略,它通常用于求解最优化问题。

贪心算法的核心思想是在每一步选择中都选择当前最优的解,从而希望最终能够得到全局最优解。

本实验旨在通过实际案例的研究,探索贪心算法的应用和效果。

一、贪心算法的基本原理贪心算法的基本原理是每一步都选择当前最优解,而不考虑整体的最优解。

这种贪婪的选择策略通常是基于局部最优性的假设,即当前的选择对于后续步骤的选择没有影响。

贪心算法的优点是简单高效,但也存在一定的局限性。

二、实验案例:零钱兑换问题在本实验中,我们以零钱兑换问题为例,来说明贪心算法的应用。

问题描述:假设有不同面值的硬币,如1元、5元、10元、50元和100元,现在需要支付给客户x元,如何用最少的硬币数完成支付?解决思路:贪心算法可以通过每次选择当前面值最大的硬币来求解。

具体步骤如下:1. 初始化一个空的硬币集合,用于存放选出的硬币。

2. 从面值最大的硬币开始,如果当前硬币的面值小于等于待支付金额,则将该硬币放入集合中,并将待支付金额减去该硬币的面值。

3. 重复步骤2,直到待支付金额为0。

实验过程:以支付金额为36元为例,我们可以通过贪心算法求解最少硬币数。

首先,面值最大的硬币为100元,但36元不足以支付100元硬币,因此我们选择50元硬币。

此时,剩余待支付金额为36-50=-14元。

接下来,面值最大的硬币为50元,但待支付金额为负数,因此我们选择下一个面值最大的硬币,即10元硬币。

此时,剩余待支付金额为-14-10=-24元。

继续选择10元硬币,剩余待支付金额为-24-10=-34元。

再次选择10元硬币,剩余待支付金额为-34-10=-44元。

最后,选择5元硬币,剩余待支付金额为-44-5=-49元。

由于待支付金额已经为负数,我们无法继续选择硬币。

此时,集合中的硬币数为1个50元和3个10元,总共4个硬币。

实验结果:通过贪心算法,我们得到了36元支付所需的最少硬币数为4个。

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。

实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。

它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。

回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。

2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。

它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。

3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。

4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。

通过回溯法可以求解出所有的可能解。

实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。

从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。

当搜索到第八行时,获取一组解并返回。

代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。

实验3贪心算法和回溯法

实验3贪心算法和回溯法

实验3 贪心算法和回溯法一、实验目的1. 理解最小生成树算法——Prim算法和Kruskal算法的基本思想,学会编程实现这两种算法;2. 理解并查集的特点与适用环境,学会使用并查集解决常见的问题;3. 理解单源最短路径算法——Dijkstra算法的基本思想,学会编程实现Dijkstra算法;4. 理解回溯法的基本思想,学会使用回溯法解决常见的问题。

二、实验内容1. 编程实现Prim算法。

输入:顶点编号及边权重。

例:0 1 100 2 151 2 50输出:最小生成树。

例:0 1 100 2 152. 在某个城市里住着n个人,现在给定关于这n个人的m条信息(即某2个人认识)。

假设所有认识的人一定属于同一个单位,请计算该城市最多有多少单位?输入:第1行的第1个值表示总人数,第2个值表示总信息数;第2行开始为具体的认识关系信息。

例:10 42 34 54 85 8输出:单位个数。

例:73. 编程实现Kruskal算法。

输入:顶点编号及边权重。

例:0 1 100 2 151 2 50输出:最小生成树。

例:0 1 100 2 154. 编程实现Dijkstra算法。

输入:第1行第1个值表示顶点个数,第2个值表示边个数;第2行开始为边权重。

例:5 70 1 100 3 300 4 1001 2 502 4 103 2 203 4 60输出:顶点0到每一个顶点的最短路径长度。

例:0 10 50 30 605. 使用回溯法求解N皇后问题。

输入:皇后的个数。

例:4输出:每一个方案及总方案数。

例:0 1 0 00 0 0 23 0 0 00 0 4 0----------------0 0 1 02 0 0 00 0 0 30 4 0 0----------------总方案数为2。

6. 使用回溯法求解0-1背包问题。

输入:两个一维数组分别存储每一种物品的价值和重量,以及一个整数表示背包的总重量。

例:价值数组v[] = {6,3,6,5,4},重量数组w[] = {2,2,4,6,5},背包重量C=10。

贪心算法和回溯算法

贪心算法和回溯算法

贪⼼算法和回溯算法⼀.贪⼼算法 1.贪⼼算法是把⼀个复杂的问题分解为⼀个较为简单的局部最优选择,每⼀步选择都是对当前解的⼀个扩展,直到获取问题的完整。

贪⼼算法的典型运⽤是求解最优化问题,⽽且对许多问题都能得到整体最优解。

(这⾥得到的结不⼀定是最优解,但⼀定是最优解的⼗分接近的解) 2.可以使⽤贪⼼算法的要具有两个重要的性质:最优⼦结构和贪⼼选择性质 (1)最优⼦结构:在这⾥就不再说了,要看的请到上⼀章的动态规划⾥看。

(2)贪⼼选择性质:指问题的整体最优解可以通过⼀系列的局部最优的选择得到。

3.贪⼼算法和动态规划的主要区别: (1)动态规划:只要求出相关的⼦问题的解后才能做出选择 (2)贪⼼算法:仅当前的状态下做出最好的选择,即局部最优选,产⽣再去作出这样选择后产⽣的相关⼦问题的解。

4.贪⼼算法通常被使⽤来求解最优的问题,从某初始化的状态出发,根据但前的局部最优策略以满⾜约束⽅程为条件,以是⽬标函数增长最快(最慢)为准则,在候选集合进⾏⼀系列的选择,以便尽快的构成问题的可⾏解。

5.贪⼼算法的⼀般步骤: Greedy(C) //C是问题的输⼊集合,即候选集合 { S={}; //初始化解集合为空集 while(not solution(S)) //集合S没有构成问题的⼀个解 { x=select(C); //在候选集合C中做贪⼼选择 if feasible(S,x) //判断集合S中加⼊x后的解是否可⾏ { S=S+{X}; } C=C-{x}; //不管可不可⾏,都要从候选集中C删除x } return S; }⼆.回溯算法 1.回溯算法就是⼀种有组织的系统最优化搜索技术,可以看作蛮⼒法穷举搜索的改进。

回溯法常常可以避免搜索所有可能的解,所以它是⽤求解组织数量较⼤的问题。

(为什么?后⾯会解释) 2.⾸先我们先了解⼀下⼀个基本概念“解空间树”:问题的解空间⼀般使⽤解空间树的⽅式来组织,树的根节点位于第1层,表⽰搜索的初始状态,依次向下排列。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。

2. 了解快速排序的分治算法思想。

【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。

任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。

n个字符的全体排列之间存在一个确定的线性顺序关系。

所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。

每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。

二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。

它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

【实验内容】1.全排列递归算法的实现。

2.快速排序分治算法的实现。

【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。

2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。

【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。

其中Xm-1=,Yn-1=,Zk-1=。

最长公共子序列问题具有最优子结构性质。

由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。

单源最短路径(贪心法)实验报告

单源最短路径(贪心法)实验报告

算法分析与设计实验报告第 5 次实验使用贪心法求出给定图各点的最短路径,并计算算法的执行时间,分析算法的有效性。

已知一个有向网络 G=(V,E)和源点 V1,如上所示,求出从源点出发到图中其余顶点的最短路径。

1 用邻接矩阵表示有向图,并进行初始化,同时选择源点;}手动输入实现实验所给图形:随机数产生图的权值:通过这次实验,我回顾了回溯法求解最短路径问题,在其中加入了舍伍德附录:完整代码#include<stdio.h>#include<stdlib.h>#include<time.h>#define maxint 1000int c[200][200]={0};void Dijkstra(int n,int v,int dist[],int prev[]){ bool s[maxint];for(int i=1;i<=n;i++){dist[i]=c[v][i];s[i]=false;if(dist[i]==maxint) prev[i]=0;else prev[i]=v;} //找到第一个可行源点 s[]标志,记录prev[]前一个点dist[v]=0;s[v]=true;for(int i=1;i<n;i++){int temp=maxint;int u=v;for(int j=1;j<=n;j++){if((!s[j])&&(dist[j]<temp)){u=j;temp=dist[j];}}s[u]=true;for(int j=1;j<=n;j++){int newdist=dist[u]+c[u][j];if(newdist<dist[j]){dist[j]=newdist;prev[j]=u;}}}}int main(){int n,v;printf("请输入顶点数: ");scanf("%d",&n);//printf("路径: ");srand(time(0));for(int i=1;i<n+1;i++){for(int j=1;j<n+1;j++){/* scanf("%d",&c[i][j]);*/ ///手动输入if(i!=j){if((c[j][i]==0)||(c[j][i]==1000))c[i][j]=rand()%100+1;else c[i][j]=1000;if(c[i][j]>50) c[i][j]=1000;}}}printf("请输入源点: ");scanf("%d",&v);int dist[n+1],prev[n+1];printf("\n路径:\n");for(int i=1;i<n+1;i++){for(int j=1;j<n+1;j++)printf("%5d ",c[i][j]);printf("\n");}Dijkstra(n,v,dist,prev);for(int i=1;i<n+1;i++){printf("\n%d到%d的最短路径为:%d",v,i,dist[i]);}}。

算法实验报告贪心

算法实验报告贪心

一、实验背景贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。

贪心算法并不保证能获得最优解,但往往能获得较好的近似解。

在许多实际应用中,贪心算法因其简单、高效的特点而被广泛应用。

本实验旨在通过编写贪心算法程序,解决经典的最小生成树问题,并分析贪心算法的优缺点。

二、实验目的1. 理解贪心算法的基本原理和应用场景;2. 掌握贪心算法的编程实现方法;3. 分析贪心算法的优缺点,并尝试改进;4. 比较贪心算法与其他算法在解决最小生成树问题上的性能。

三、实验内容1. 最小生成树问题最小生成树问题是指:给定一个加权无向图,找到一棵树,使得这棵树包含所有顶点,且树的总权值最小。

2. 贪心算法求解最小生成树贪心算法求解最小生成树的方法是:从任意一个顶点开始,每次选择与当前已选顶点距离最近的顶点,将其加入生成树中,直到所有顶点都被包含在生成树中。

3. 算法实现(1)数据结构- 图的表示:邻接矩阵- 顶点集合:V- 边集合:E- 已选顶点集合:selected- 最小生成树集合:mst(2)贪心算法实现```def greedy_mst(graph):V = set(graph.keys()) # 顶点集合selected = set() # 已选顶点集合mst = set() # 最小生成树集合for i in V:selected.add(i)mst.add((i, graph[i]))while len(selected) < len(V):min_edge = Nonefor edge in mst:u, v = edgeif v not in selected and (min_edge is None or graph[u][v] < graph[min_edge[0]][min_edge[1]]):min_edge = edgeselected.add(min_edge[1])mst.add(min_edge)return mst```4. 性能分析为了比较贪心算法与其他算法在解决最小生成树问题上的性能,我们可以采用以下两种算法:(1)Prim算法:从任意一个顶点开始,逐步添加边,直到所有顶点都被包含在生成树中。

著名算法matlab编程 贪心算法 背包问题 递归算法 Hanoi塔问题 回溯算法 n皇后问题

著名算法matlab编程    贪心算法 背包问题    递归算法 Hanoi塔问题     回溯算法 n皇后问题
下面演示了三个金片从柱1移动到目标柱3的过程:
10/22
在命令窗口输入:>> [n,s]=hanoi(3,1,2,3) n= 7 s= 1 2 1 3 1 2 1 1 1 3 1 2 2 1 3 2 2 3 1 3 3
1
1 2 3
2 3 3 3 1
2
3
1
2 1 2
1
1 2
2
3
3
1
2 3
1 2 3
11/22
5/22
A
B
C
1
2
n
6/22
问题分析: 把柱C作为目标柱子,设an为n块金片从其中一柱移 到另一柱的搬运次数,则把n块金片从A移到C,可 以先把前n-1片移到B,需搬an-1次;接着把第n片从 A称到C,再从B把剩下的n-1片搬到C,又需搬an-1 次。所以从A到n块金片称到柱C,共需次数为: 2an-1+1次。 显然,当n=1时,a1=1,所以Hanoi塔的移动次数相 当于一个带初值的递归关系:
有 旅 行 者 要 从 n 种 物 品 中 选 取 不 超 过 b公 斤 的 物 品 放 入 背 包 , 要 求 总 价 值 最 大 。 设 第 i 种 物 品 的 重 量 为 a i, 价 值 为 c i,i 1, 2 , n )。 定 义 向 量 [ x 1 , x 2 , , x n ], 当 选 第 i ( 种 物 品 往 背 包 放 时 取 x i 1, 否 则 取 x i 0。 于 是 所 有 选 取 的 物 品 的 总 价 值 为 : c 1 x 1 c 2 x 2 c n x n, 总 的 重 量 为 : a 1 x 1 a 2 x 2 a n x n。 问 题 可 描 述 为

关于算法的实验报告(3篇)

关于算法的实验报告(3篇)

第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。

2. 掌握快速排序算法的时间复杂度和空间复杂度分析。

3. 通过实验验证快速排序算法的效率。

4. 提高编程能力和算法设计能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。

快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。

在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。

四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。

3. 分析快速排序算法的时间复杂度。

4. 对不同规模的数据集进行测试,验证快速排序算法的效率。

六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。

贪心算法实验报告

贪心算法实验报告

一、实验目的通过本次实验,使学生对贪心算法的概念、基本要素、设计步骤和策略有更深入的理解,掌握贪心算法的原理和应用,并能够运用贪心算法解决实际问题。

二、实验内容本次实验主要涉及以下两个问题:1. 使用贪心算法解决单起点最短路径问题;2. 使用贪心算法解决小船过河问题。

三、实验原理1. 贪心算法贪心算法(又称贪婪算法)是一种在每一步选择中都采取当前最优的选择,从而希望导致结果是全局最优的算法。

贪心算法在每一步只考虑当前的最优解,不保证最终结果是最优的,但很多情况下可以得到最优解。

2. 单起点最短路径问题单起点最短路径问题是指在一个有向无环图中,从某个顶点出发,找到到达其他所有顶点的最短路径。

3. 小船过河问题小船过河问题是指一群人需要划船过河,船只能容纳两个人,过河后需要一人将船开回,问最少需要多久让所有人过河。

四、实验步骤及说明1. 创建图结构,包括顶点数组和边信息。

2. 使用Dijkstra算法求解单起点最短路径问题,得到最短路径和前驱顶点。

3. 使用贪心算法找到两点之间的最短距离,并更新距离和前驱顶点信息。

4. 遍历所有顶点,找到未纳入已找到点集合的距离最小的顶点,并更新其距离和前驱顶点。

5. 最终输出从源顶点到达其余所有点的最短路径。

6. 使用贪心算法解决小船过河问题,按照以下步骤进行:(1)计算所有人过河所需的总时间;(2)计算每次划船往返所需时间;(3)计算剩余人数;(4)重复(2)和(3)步骤,直到所有人过河。

五、实验结果与分析1. 单起点最短路径问题实验中,我们选取了有向无环图G,其中包含6个顶点和8条边。

使用贪心算法和Dijkstra算法求解单起点最短路径问题,得到的实验结果如下:- 贪心算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数;- Dijkstra算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数。

2. 小船过河问题实验中,我们选取了一群人数为10的人过河,船每次只能容纳2人。

贪婪算法_回溯_深度优先搜索

贪婪算法_回溯_深度优先搜索

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。

也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。

贪心算法的基本思路1.建立数学模型来描述问题。

2.把求解的问题分成若干个子问题。

3.对每一子问题求解,得到子问题的局部最优解。

4.把子问题的解局部最优解合成原来解问题的一个解。

实现该算法的过程:从问题的某一初始解出发;while 能朝给定总目标前进一步do求出可行解的一个解元素;由所有解元素组合成问题的一个可行解。

下面是一个可以试用贪心算法解的题目,贪心解的确不错,可惜不是最优解。

/view/1628576.htm回溯/view/699271.htm试探法回溯法也称试探法,它的基本思想是:从问题的某一种状态(初始状态)出发,搜索从这种状态出发所能达到的所有“状态”,当一条路走到“尽头”的时候(不能再前进),再后退一步或若干步,从另一种可能“状态”出发,继续搜索,直到所有的“路径”(状态)都试探过。

这种不断“前进”、不断“回溯”寻找解的方法,就称作“回溯法”。

步骤用回溯算法解决问题的一般步骤为:一、定义一个解空间,它包含问题的解。

二、利用适于搜索的方法组织解空间。

三、利用深度优先法搜索解空间。

四、利用限界函数避免移动到不可能产生解的子空间。

问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。

回溯法是一个既带有系统性又带有跳跃性的的搜索算法。

它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。

否则,进入该子树,继续按深度优先的策略进行搜索。

算法实验报告:回溯法(C语言)

算法实验报告:回溯法(C语言)
实验报告
(2015/ 2016学年第一学期)
课程名称
算法设计与分析
实验名称
回溯法
实验时间
2016

5

5

指导单位
计算机软件学院
指导教师
费宁
学生姓名
罗熊
班级学号
B14050123
学院(系)
自动化
专业
自动化
实验报告
实验名称
回溯法
指导教师
费宁
实验类型
验证
实验学时
2
实验时间
2016.5.5
1、实验目的和要求
在算法设计中,回溯法是比贪心法更一般的方法,掌握回溯法的的适用条,熟练
地适用回溯法求解实际问题。在本实验中用回溯法求解8皇后问题。
二、实验环境(实验设备)
VC++6.0
3、实验原理及内容:
实验原理:用回溯法求解的问题通常需要给出某些必须满足的约束条件。这些约束条件分为显式约束和隐式约束。用于规定每个xi取值的约束条件称为显示约束,显示约束规定了所有可能的元组,它们组成了问题的候选解集,称为问题的解空间。隐式约束给出了判定一个候选解集是否为可行解的一般条。有隐式约束设计一个判定函数p(),使得当且仅当p()为真时,n-元组是问题的满足隐式约束的一个可行解。目标函数用来衡量每个可行解的优劣,使目标函数去最大值或最小值得可行解为问题的最优解。
}
printf(")\n");
sum++;
}
int PLACE(int n)
{
int i;
for(i = 0; i < n; i++)
{

《回溯法实验》实验报告

《回溯法实验》实验报告

实验4、《回溯法实验》一、实验目的1. 掌握回溯算法思想2. 掌握回溯递归原理3. 了解回溯法典型问题二、实验内容1. 编写一个简单的程序,解决8皇后问题。

2. 批处理作业调度问题[问题描述]给定n个作业的集合J=(J1, J2, … , Jn)。

每一个作业Ji都有两项任务需要分别在2台机器上完成。

每一个作业必须先由机器1处理,然后再由机器2处理。

作业Ji需要机器i的处理时间为tji,i=1,2, … ,n; j=1,2。

对于一个确定的作业调度,设Fji是作业i在机器i上完成处理的时间。

则所有作业在机器2上完成处理的时间和成为该作业调度的完成时间和。

批处理作业调度问题要求对于给定的n个作业,制定一个最佳的作业调度方案,使其完成时间和达到最小。

要求输入:1)作业数 2)每个作业完成时间表:作业完成时间机器1 机器2作业1 2 1作业2 3 1作业3 2 3要求输出: 1)最佳完成时间 2)最佳调度方案提示:算法复杂度为O(n!),建议在测试的时候n值不要太大,可以考虑不要超过12。

3. 数字全排列问题任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。

如N=3时,共有以下6种排列方式:123,132,213,231,312,321。

注意:数字不能重复,N由键盘输入(N<=9)。

三、算法思想分析1.八皇后问题是典型的回溯问题,先从空格子起逐行放皇后,如果符合要求即安全则放置,否则返回上一行下一个位置继续,直至最后一行安全放置则为一种放置方式。

2.批处理作业调度的解空间为排列数,不断利用递归函数直至叶节点,剪枝函数为当前用时与最佳用时的比较。

关于时间的计算,每次选择作业后先将机器1用时累加,机器2上总用时需要先比较上一个作业完成时间与此时机器1上的总用时,如果机器1上总用时大于上一作业用时,那么机器2上用时则加上机器1上用时与此作业在机器2上的单独用时,反之,则代表此时机器2仍然在处理上一任务,那么机器2上用时则加上上一作业用时与此作业在机器2上的单独用时。

计算机算法设计与分析实验报告

计算机算法设计与分析实验报告

计算机算法设计与分析实验报告专业:软件技术学号:************姓名:覃立煜指导老师:***实验一:最长公共子序列问题一、实验目的与要求1、明确子序列公共子序列的概念2、最长公共子序列(Longest Common Subsequence,简称LCS) 的概念3、利用动态规划解决最长公共子序列问题二、实验题:问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。

令给定的字符序列X=“x0,x1,…,x m-1”,序列Y=“y0,y1,…,y k-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,i k-1>,使得对所有的j=0,1,…,k-1,有x ij=y j。

例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。

给定两个序列A和B,称序列Z是A和B的公共子序列,是指Z同是A和B的子序列。

问题要求已知两序列A和B的最长公共子序列。

三、实验代码#include<stdlib.h>#include<stdio.h>#include<string.h>#define Size 100void LCSLength(int m,int n,char *x,char *y,int c[Size][Size],int b[Size][Size]){ int i,j;for(i=1;i<=m+1;i++) c[i][0]=0;for(i=1;i<=n+1;i++) c[0][i]=0;for(i=1;i<=m+1;i++)for(j=1;j<=n+1;j++){ if(x[i]==y[j]){ c[i][j]=c[i-1][j-1]+1; b[i][j]=0; }else if(c[i-1][j]>=c[i][j-1]){ c[i][j]=c[i-1][j];b[i][j]=1; }else { c[i][j]=c[i][j-1];b[i][j]=2; }}}void LCS(int i,int j,char *x,int b[Size][Size]){ if(i==0||j==0) return;if(b[i][j]==0){ LCS(i-1,j-1,x,b);printf("%c",x[i]); }else if(b[i][j]==1) LCS(i-1,j,x,b);else LCS(i,j-1,x,b);}main(){ int m,n,i;int c[Size][Size],b[Size][Size];char x[Size],y[Size];printf("输入序列x的长度(小于100):");scanf("%d",&m);printf("输入序列y的长度(小于100):");scanf("%d",&n);i=1;printf("输入x的成员(不用空格,直接输入字符串):\n");while(i<m+2){ scanf("%c",&x[i]);if(x[i]!='\0') i++;}i=1;printf("输入y的成员(不用空格,直接输入字符串):\n");while(i<n+2){ scanf("%c",&y[i]);if(y[i]!='\0') i++;}LCSLength(m,n,x,y,c,b);printf("最长公共子序列:\n");LCS(m+1,n+1,x,b);printf("\n"); }四、实验结果实验二:0-1背包问题一、实验目的与要求1、明确0-1背包问题的概念2、利用动态规划解决0-1背包问题问题二、实验题:0-1背包问题(knapsack problem),某商店有n个物品,第i个物品价值为vi,重量(或称权值)为wi,其中vi和wi为非负数, 背包的容量为W,W为一非负数。

贪心算法实验报告

贪心算法实验报告

贪心算法实验报告贪心算法实验报告引言:贪心算法是一种常用的算法设计思想,它在求解最优化问题中具有重要的应用价值。

本实验报告旨在介绍贪心算法的基本原理、应用场景以及实验结果,并通过实例加以说明。

一、贪心算法的基本原理贪心算法是一种以局部最优解为基础,逐步构建全局最优解的算法。

其基本原理是在每一步选择中都采取当前状态下最优的选择,而不考虑之后的结果。

贪心算法通常具备以下特点:1. 贪心选择性质:当前状态下的最优选择一定是全局最优解的一部分。

2. 最优子结构性质:问题的最优解可以通过子问题的最优解来构造。

3. 无后效性:当前的选择不会影响以后的选择。

二、贪心算法的应用场景贪心算法适用于一些具有最优子结构性质的问题,例如:1. 路径选择问题:如Dijkstra算法中的最短路径问题,每次选择当前距离最短的节点进行扩展。

2. 区间调度问题:如活动选择问题,每次选择结束时间最早的活动进行安排。

3. 零钱找零问题:给定一些面额不同的硬币,如何用最少的硬币凑出指定的金额。

三、实验设计与实现本次实验选择了一个经典的贪心算法问题——零钱找零问题,旨在验证贪心算法的有效性。

具体实现步骤如下:1. 输入硬币面额和需要凑出的金额。

2. 对硬币面额进行排序,从大到小。

3. 从面额最大的硬币开始,尽可能多地选择该面额的硬币,直到不能再选择为止。

4. 重复步骤3,直到凑出的金额等于需要凑出的金额。

四、实验结果与分析我们通过对不同金额的零钱找零问题进行实验,得到了如下结果:1. 当需要凑出的金额为25元时,贪心算法的结果为1个25元硬币。

2. 当需要凑出的金额为42元时,贪心算法的结果为1个25元硬币、1个10元硬币、1个5元硬币、2个1元硬币。

3. 当需要凑出的金额为63元时,贪心算法的结果为2个25元硬币、1个10元硬币、1个1元硬币。

通过实验结果可以看出,贪心算法在零钱找零问题中取得了较好的效果。

然而,贪心算法并不是适用于所有问题的万能算法,它的有效性取决于问题的特性。

贪心算法实验

贪心算法实验

贪心算法实验实验三贪心算法的应用 (1)一、实验目的 (1)二、实验内容 (1)三、实验步骤 (2)实验三贪心算法的应用一、实验目的1.掌握贪心算法的基本概念和两个基本要素2.熟练掌握贪心算法解决问题的基本步骤。

3.学会利用贪心算法解决实际问题。

二、实验内容1.问题描述:题目一:找钱问题一个顾客买了价值x元的商品(不考虑角、分),并将y元的钱交给售货员。

售货员希望用张数最少的钱币找给顾客。

要求:键盘输入x与y输出找钱总数,各种钱币的张数,若张数为0不必输出。

输入输出实例:题目二:删数问题键盘输入一个高精度的正整数N,去掉其中任意S个数字后剩下的数字按原左右次序将组成一个新的正整数。

编程对给定的N和S,寻找一种方案使得剩下的数字组成的新数最小。

输出应包括所去掉的数字的位置和组成的新的正整数(N不超过100位)。

要求:键盘输入正整数N与删除位数s输出删除后的最小新数以及删除的位数输入输出实例:题目三:分数表示问题设计一个算法,把一个真分数表示为最少埃及分数之和的形式。

所谓埃及分数是指分子为1的分数。

如7/8=1/2+1/3+1/24。

三、实验步骤1.理解算法思想和问题要求;2.编程实现题目要求;3.上机输入和调试自己所编的程序;4.验证分析实验结果;5.整理出实验报告一.实验目的二.问题描述三.算法设计包含:数据结构与核心算法的设计描述、函数调用及主函数设计、主要算法流程图等对于高精度数的运算,应该讲输入的高精度数存储为字符串格式,根据输出要求设置数组,在删除数字是记录其位置。

在位数固定的前提下,让高位的数字尽量小,其值就较小,依据贪婪策略就可以解决这个问题。

另外,删除字符使用后面的字符覆盖已删除的字符的方法,但字符串长度会改变,可能会有比较多字符移动操作,算法效率不高。

定义一个del 函数负责删除字符,不断调用del 函数以删除高位较大的数。

是否四.程序调试及运行结果分析运行程序,输入一个正整数23146,输入要删除3个数字,然后成功运行程序后,输出删除后的最小数为14,删除的位数分别为2,1,5。

【算法复习二】传统基本算法(贪心、动态规划、回溯和分支限界)

【算法复习二】传统基本算法(贪心、动态规划、回溯和分支限界)

【算法复习二】传统基本算法(贪心、动态规划、回溯和分支限界)一,贪心算法的设计思想·从问题的某一个初始解出发逐步逼近给定的目标,每一步都作一个不可回溯的决策,尽可能地求得最好的解。

当达到某算法中的某一步不需要再继续前进时,算法停止。

二,贪心算法的基本性质1)贪心选择性质所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。

这是贪心算法可行的第一个基本要素,也是贪心法与动态规划法的主要区别。

2)最优子结构性质该问题解的整体最优性依赖于其局部子问题解的最优性。

这种性质是可以采用贪心算法解决问题的关键特征。

例如,活动安排问题,在选择了一项活动后,它必须是最优的,否则不能得到全局的最优。

三,贪心算法的适用性·贪心算法对问题只需考虑当前局部信息就要做出决策,也就是说使用贪心算法的前提是“局部最优策略能导致产生全局最优解”。

·该算法的适用范围较小, 若应用不当, 不能保证求得问题的最佳解。

更准确的方法是通过数学方法证明问题对贪心策略的选用性。

四,绝对贪心问题例一:Dijkstra单源最短路径问题(有向图)(Dijkstra)算法思想按路径长度递增次序产生最短路径算法:把V分成两组:(1)S:已求出最短路径的顶点的集合(2)V-S=T:尚未确定最短路径的顶点集合将T中顶点按最短路径递增的次序加入到S中保证:1)从源点V0到S中各顶点的最短路径长度都不大于从V0到T中任何顶点的最短路径长度 2)每个顶点对应一个距离值S中顶点:从V0到此顶点的最短路径长度 T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和求最短路径步骤算法步骤如下: 1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值若不存在<V0,Vi>,d(V0,Vi)为∝2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S 3. 对T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi 的距离值比不加W的路径要短,则修改此距离值重复上述步骤2、3,直到S中包含所有顶点,即S=T为止辅助数组:dist[ ] 存放V0到T中点距离path[ ]存放已经加入S中点到V0最短路径例二:Kruskal最小生成树问题(每次选权值最小边,直到生成一个最小生成树)算法的运行时间为 O(nlog n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三贪心算法与回溯法一、实验目的:1、理解贪心算法与回溯法的概念;2、掌握贪心算法与回溯法的基本要素;3、掌握贪心算法与回溯法的解题步骤与算法柜架;4、通过应用范例学习贪心算法与回溯法的设计技巧与策略;二、实验内容及要求:1.使用贪心算法解决最小生成树问题。

2. 使用回溯法解决0-1背包问题。

3.通过上机实验进行贪心算法与回溯算法实现。

4. 保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。

三、实验原理:1、贪心算法:贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。

也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。

2、贪心算法的基本思想:1)建立数学模型来描述问题。

2)把求解的问题分成若干个子问题。

3)对每一子问题求解,得到子问题的局部最优解。

4)把子问题的解局部最优解合成原来解问题的一个解。

3、回溯法:回溯法是一个既带有系统性又带有跳跃性的的搜索算法。

它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。

否则,进入该子树,继续按深度优先的策略进行搜索。

回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。

而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。

这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。

4、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始结点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的活结点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。

换句话说,这个结点不再是一个活结点。

此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

运用回溯法解题通常包含以下三个步骤:1)针对所给问题,定义问题的解空间;2)确定易于搜索的解空间结构;3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;四、程序代码:最小生成树:#include"stdio.h"int point[100],key_point[100],tree[100][100]; //定义三个数组用于存放关键点和最小生成树int INT_MAX=0x7fff;void prim(int end,int V); //prim算法函数int main(){int V,E; //定义顶点数V和边数Eint i,j;int start,end,distance; //定义开始顶点start和结束顶点end,以及他们的权值distance printf("请输入连通带权图的边数和顶点数:");while(scanf("%d%d",&V,&E)) //开始输入你要求最小生成树的顶点数和边数{printf("\n------------------------------------");for(i=1;i<=V;i++){for(j=1;j<=V;j++)tree[i][j]=INT_MAX;}printf("\n请输入%d条边的起点和终点,以及权值。

\n",E);printf("\n----------------------------------------\n");int x=1; //用x记录输入的边数while(E--){printf("第%d条边的起点:终点:权值:",x);scanf("%d%d%d",&start,&end,&distance); //记录输入的起点、终点、权值tree[start][end]=tree[end][start]=distance;x=x+1;}prim(1,V); //调用prim计算最小生成树printf("\n");}return 0;}void prim(int end,int V){int min; //定义权值最小值minfor(int i=1;i<=V;i++){point[i]=end;key_point[i]=tree[end][i];}key_point[end]=0;for(int i=2;i<=V;i++){min= INT_MAX;for(int j=1;j<=V;j++)if(key_point[j]>0 && key_point[j]<min){end=j;min=key_point[j];}printf("起点%d-->终点%d连通\n",point[end],end); //输出最小生成树的连通边key_point[end]=0;for(int j=1;j<=V;j++) //继续判断条件if(tree[end][j]<key_point[j])point[j]=end,key_point[j]=tree[end][j];}}0-1 背包问题#include<iostream>using namespace std;class Knap{friend int Knapsack(int p[],int w[],int c,int n );public:void print(){for(int m=1;m<=n;m++){cout<<bestx[m]<<" ";}cout<<endl;};private:int Bound(int i);void Backtrack(int i);int c;//背包容量int n; //物品数int *w;//物品重量数组int *p;//物品价值数组int cw;//当前重量int cp;//当前价值int bestp;//当前最优值int *bestx;//当前最优解int *x;//当前解}int Knap::Bound(int i){//计算上界int cleft=c-cw;//剩余容量int b=cp;//以物品单位重量价值递减序装入物品while(i<=n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}//装满背包if(i<=n)b+=p[i]/w[i]*cleft;return b;}void Knap::Backtrack(int i){if(i>n){if(bestp<cp){for(int j=1;j<=n;j++)bestx[j]=x[j];bestp=cp;}return;}if(cw+w[i]<=c) //搜索左子树{x[i]=1;cw+=w[i];cp+=p[i];Backtrack(i+1);cw-=w[i];cp-=p[i];}if(Bound(i+1)>bestp)//搜索右子树{x[i]=0;Backtrack(i+1);}}class Object{friend int Knapsack(int p[],int w[],int c,int n); public:int operator<=(Object a)const{return (d>=a.d);}private:int ID;float d;};int Knapsack(int p[],int w[],int c,int n){//为Knap::Backtrack初始化int W=0;int P=0;int i=1;Object *Q=new Object[n];for(i=1;i<=n;i++){Q[i-1].ID=i;Q[i-1].d=1.0*p[i]/w[i];P+=p[i];W+=w[i];}if(W<=c)return P;//装入所有物品//依物品单位重量排序float f;for( i=0;i<n;i++)for(int j=i;j<n;j++){if(Q[i].d<Q[j].d){f=Q[i].d;Q[i].d=Q[j].d;Q[j].d=f;}}Knap K;K.p = new int[n+1]; K.w = new int[n+1]; K.x = new int[n+1];K.bestx = new int[n+1]; K.x[0]=0;K.bestx[0]=0;for( i=1;i<=n;i++){K.p[i]=p[Q[i-1].ID];K.w[i]=w[Q[i-1].ID];}K.cp=0;K.cw=0;K.c=c;K.n=n;K.bestp=0;//回溯搜索K.Backtrack(1);K.print();delete [] Q;delete [] K.w;delete [] K.p;return K.bestp;main(){int *p;int *w;int c=0;int n=0;int i=0;cout<<"请输入背包个数:"<<endl; cin>>n;p=new int[n+1];w=new int[n+1];p[0]=0;w[0]=0;cout<<"请输入各背包的价值:"<<endl; for(i=1;i<=n;i++)cin>>p[i];cout<<"请输入各背包的重量:"<<endl; for(i=1;i<=n;i++)cin>>w[i];cout<<"请输入背包总载重量:"<<endl; cin>>c;cout<<Knapsack(p,w,c,n)<<endl;}五、结果运行与分析:最小生成树问题0-1背包问题六、心得与体会:本次实验旨在通过解决最小生成树问题和0-1背包问题掌握对贪心算法和回溯法的运用。

相关文档
最新文档