实数完备性的六大基本定理的相互证明(共30个)
实数的完备性、列紧性与紧性
ba ba ,易知 lim ln lim bn a n lim n =0。 n n n n 2 2
那么由区间套定理知,存在实数 c ,满足
k 1
I k c 。
下面构造一个 X 中的序列 cn ,该序列收敛于 c 。
cn 定 义 如 下 : 对 每 个
n n n
a b c。
下面证明 c 是所有区间的唯一公共点,即
k 1
I k c 。
k 1
由单调收敛定理知 sup an c inf bn ,所以 an c bn ,即 c
I k 。对于
任意正实数 ,存在正整数 N,使得 c aN c bN c ,所以任意不等于 c
n n
a A 和非负数 ,使得 a c 。存在正整数 N,使得 c xN c a ,由于 xN
是 A 的一个上界且 A 无最大值, xN a 不可能成立。所以, c 是 A 的上界。对 于任意正数 ,存在存在正整数 N,使得 c aN c ,所以任意小于 c 的实数不 是 A 的上界。综上, c 是集合 A 的上确界。 3.单调收敛定理: R 中的单调有界序列必收敛。 证明:用确界原理证明。 仅对单调递增的序列证明,单调递减序列的证明是类似的。 设 an 是单调递增的序列且上有界。由确界原理知 an 由上确界,设
I n an , bn , 任 取 cn I n X 。 因 为 c I n ,
cn c bn an 。因为 lim bn an 0 ,所以对于任意正数 ,存在正整数 N,使
n
得 n>N 时, cn c bn an 。那么根据极限的定义, cn 收敛于 c 。 (或:用致密性定理:元素个数无限时,选出元素互不相同的序列,再选出收 敛子列,显然该子列就是集合的收敛的序列) (或:用聚点定理证明。元素个数无限时,用聚点定理得到聚点的存在性, 再构造一个收敛于聚点的序列) (或:用单调收敛定理证明。 选出单调子列, 马里兰大学 Fitzpatrick 所 著《高等微积分》的证法) 2.聚点定理(波尔查诺-魏尔斯特拉斯): R 的有界无限子集存在聚点(极限点)。 证明:用列紧定理证明。 从集合中选出一个元素互不相同的序列(因为是无限集,所以可以做到),由 列紧定理得到一个收敛的子序列,显然此序列的极限是集合的聚点。 (或:用有限覆盖定理证明。假设不存在聚点,那么每个点都是孤立点,那 么集合是闭集, 有限覆盖定理成立。每个孤立点都存在一个不包含任何其他点的 邻域,这些邻域的集合是一个开覆盖,而这个开覆盖显然不存在有限覆盖,因为 点和邻域是一对一的。那么这与有限覆盖定理矛盾,所以聚点必然存在。 ) 3.致密性定理(波尔查诺-魏尔斯特拉斯): R 的有界序列存在收敛的子序列。 证明:用聚点定理。 设 xn 是 R 的有界序列。设 xn 的象集是 X。 (1) X 是有限集。 显然此时存在一个数 a 对应了无穷个下标, 取出这些下标便得到一个收敛到 a 的常序列。 (2) X 是无限集。 因为 xn 是 R 的有界序列,集 X 显然是有界的。所以由聚点定理知,集 X 存 在聚点,设集 X 的一个聚点为 x 。根据聚点的定义,存在正整数 N1 ,使得
第七章 实数完备性
第七章实数的完备性§1 关于实数完备性的基本定理一、问题提出定理1.1(确界原理)非空有上(下)界的数集必有上(下)确界.确界存在定理(定理 1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类二、回顾确界原理的证明我们曾引入有界数集的确界概念,今证明它的存在性(记号a 、b 、c 表示实数) Dedekind 定理设A/B 是R 的一个切割,则比存在实数R ε∈使得(,]A ε=-∞,(,)B ε=+∞或(,)A ε=-∞,[,)B ε=+∞无其它可能.1 非空有上界的数集E 必存在上确界.证明 设}{x E =非空,有上界b : E x ∈∀,b x ≤. (1) 若E 中有最大数0x ,则0x 即为上确界;(2) 若E 中无最大数,用下述方法产生实数的一个分划;取E 的一切上界归入上类B ,其余的实数归入下类A ,则)|(B A 是实数的一个分划.ο1 A 、B 不空.首先B b ∈.其次E x ∈∀,由于x 不是E 的最大数,所以它不是E 的上界,即A x ∈.这说明E 中任一元素都属于下类A ;ο2 A 、B 不漏性由A 、B 定义即可看出;ο3 A 、B 不乱.设A a ∈,B b ∈.因a 不是E 的上界,E x ∈∃,使得x a <,而E 内每一元素属于A ,所以b x a <<.ο4 由ο3的证明可见A 无最大数.所以)|(B A 是实数的一个分划.由戴德金定理,知上类B 必有最小数,记作c .E x ∈∀,由ο1知A x ∈,即得c x <.这表明c 是E 的一个上界.若b 是E 的一个上界,则B b ∈,由此得b c ≤,所以c 是上界中最小的,由上确界定义,c 为集合E 的上确界,记作 E c sup =.推论 非空的有下界的集合必有下确界.事实上,设集合}{x E =有下界b ,则非空集合}|{'E x x E ∈-=有上界b -,利用集合'E 上确界的存在性,即可得出集合E 的下确界存在.定理1解决了非空有上界集合的上确界存在性问题,我们可以利用上确界的存在性,得出我们所研究的某一类量(如弧长)的存在性.若全序集中任一非空有上界的集合必有上确界,我们称该全序集是完备的.定理1刻划了实数集是完备的.例1 证明实数空间满足阿基米德原理.证明 0>>∀a b ,要证存在自然数n 使b na >.假设结论不成立,即b na ≤, ),,Λ21(=n ,则数集}{na E =有上界b ,因此有上确界c ,使c na ≤),,Λ21(=n ,也就有c a n ≤+)1(),,Λ21(=n ,或 a c na -≤ ),,Λ21(=n .这表明a c -是集合E 的上界,与c 是上确界矛盾.所以总存在自然数n ,使b na >. 三、等价命题证明下面来完成(1)~(7)的证明. (一) 用确界定理证明单调有界定理设}{n x 单调上升,即ΛΛ≤≤≤≤≤n x x x x 321,有上界,即M ∃,使得M x n ≤.考虑集合}|{N n x E n ∈=,它非空,有界,定理2推出它有上确界,记为nN n x a ∈=sup .我们验证 nn x a ∞→=lim .0>∀ε,由上确界的性质,N ∃,使得N x a <-ε,当N n >时,由序列单调上升得n N x x a ≤<-ε,再由上确界定义,ε+<≤a a x n ,有 εε+<<-a x a n ,即ε<-a x n ,也就是说 nN n n n x a x ∈∞→==sup lim . 同理可证若}{n x 单调下降,有下界,也存在极限,且nN n n n x x ∈∞→=inf lim .若集合E 无上界,记作+∞=E sup ;若集合E 无下界,记作+∞=E inf ,这样一来,定理2证明了的单调上升(下降)有上界(下界)的序列}{n x ,必有极限)inf (sup n N x n N x x x ∈∈的定理现在有了严格的理论基础了.且对单调上升(下降)序列}{n x ,总有)inf (sup lim n Nx n Nx n n x x x ∈∈+∞→=.(二) 用单调有界定理证明区间套定理由假设(1)知,序列}{n a 单调上升,有上界1b ;序列}{n b 单调下降,有下界1a .因而有1lim c a n n =+∞→,2lim c b n n =+∞→. n n b c c a ≤≤≤21.再由假设(2)知0)(lim 12=-=-+∞→c c a b n n n ,记c c c ==21. 从而有nn n n b c a +∞→+∞→==lim lim .若还有*c 满足n n b c a ≤≤*,令+∞→n ,得c c =*.故c 是一切],[n n b a 的唯一公共点.证毕.这个定理称为区间套定理.关于定理的条件我们作两点说明:(1) 要求],[n n b a 是有界闭区间的这个条件是重要的.若区间是开的,则定理不一定成立.如)1,0(),(n b a n n =.显然有 )1,0()11,0(n n ⊂+, 但 φ=+∞=)1,0(1n n I .如果开区间套是严格包含: n n n n b b a a <<<++11,这时定理的结论还是成立的.(2)若],[],[11n n n n b a b a ⊂++),,Λ21(=n ,但0)(lim ≠-+∞→n n n a b ,此时仍有1lim c a n n =+∞→,2lim c b n n =+∞→,但21c c <,于是对任意的c ,21c c c ≤≤,都有],[1n n n b a c +∞=∈I . 全序集中任一区间长趋于零的区间套有非空交集,则称该全序集是完备的,定理3刻划实数集是完备的(这里完备定义与上段完备定义是等价的).定理3也给出通过逐步缩小搜索范围,找出所求点的一种方法.推论 设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.例2 序列}{n x 由下列各式a x =1,b x =2,221--+=n n n x x x ),,Λ43(=n所确定(见下图).证明极限n n x+∞→lim 存在,并求此极限.1x 3x 5x 4x 2x x证明 当b a =时,a x n =,故ax n n =+∞→lim .当b a ≠时,若取),min(1n n n x x a +=,),m ax (1n n n x x b +=,),,Λ21(=n .则由条件,显然可得一串区间套:],[],[11n n n n b a b a ⊂++ ),,Λ21(=n .由已知条件)(212111--+--=-+=-n n n n n n n x x x x x x x ,于是,)(0||21||21||21||21||112121211+∞→→-=-==-=-=-=------+n a b x x x x x x x x a b n n n n n n n n n n Λ由区间套定理,存在c 满足: n n n n b c a +∞→+∞→==lim lim .注意到],[n n n b a x ∈,所以 c x n n =+∞→lim . 下面来求c .由)(2111-+--=-n n n n x x x x ,令132-=k n ,,,Λ得一串等式: )(211223x x x x --=-; )(212334x x x x --=-;ΛΛΛΛΛΛ)(21211-----=-k k k k x x x x .将它们相加,得 )(21112x x x x k k --=--,令+∞→k ,得)(2112x c x c --=-所以)2(31323121b a x x c +=+=.(三) 用区间套定理证明确界原理证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕]*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.* (五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕]推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点注数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.证}{n a 有界,则存在数11,y x 使得11y a x n ≤≤对n ∀成立.将],[11y x 二等分为]2,[111y x x +、],2[111y y x +,则其中必有一个含有数列}{n a 的无穷多项,记为],[22y x ;再将],[22y x 二等分为]2,[222y x x +、],2[222y y x +,同样其中至少有一个含有数列}{n a 的无穷多项,把它记为],[33y x ,……一直进行这样的步骤,得到一闭区间套]},{[n n y x ,其中每一个],[n n y x 中都含有数列}{n a 的无穷多项,且满足:⑴ ],[11y x ⊃],[22y x ⊃⊃Λ],[n n y x ⊃…⑵111lim()lim02n n n n n y x y x -→∞→∞--==则由闭区间套定理,ξ∃使得 =∞→n n a lim =∞→n n b lim ξ 下证}{n a 中必有一子列收敛于实数ξ先在],[11y x 中选取}{n a 的某一项,记为1n a ,因],[22y x 中含有}{n a 中的无穷多项,可选取位于1n a 后的某一项,记为2n a ,12n n >.继续上述步骤,选取k n a ],[k k y x ∈后,因为],[11++k k y x 中含有无穷多项,可选取位于kn a 后的某一项,记为1k n a +且kk n n >+1,这样我们就得到}{n a 的一个子列}{k n a 满足k n k y a x k ≤≤,Λ,2,1=k由两边夹定理即得 =∞→k n n a lim ξ.证明 设b x a n ≤≤,用中点21ba c +=将[]b a ,一分为二,则两个子区间[]1,c a 和[]b c ,1中至少有一个含有}{n x 中无穷多项,选出来记为[]11,b a ,在其中选一项1n x .用中点2112b a c +=将[]11,b a 一分为二,则两个子区间[]21,c a 和[]12,b c 中至少有一个含有}{n x 中无穷多项,选出来记为[]22,b a ,在其中选一项2n x ,使得Λ,12n n >.最后得一区间套[]k k b a ,,满足[][]k k k k b a b a ,,11⊂++,k k k a b a b 2-=-,[]kk k k n n n b a x k >∈+1,,.由区间套定理,c b a k k k k ==∞→∞→lim lim ,又由于kn k b x a k ≤≤,有c x k n k =∞→lim .*(六) 用聚点定理证明柯西准则必要性: 已知收敛,设.由定义,,当时,有.从而有.充分性: 已知条件: 当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.证 “⇒” }{n a 收敛,则存在极限,设a a n n =∞→lim ,则0>∀ε,N ∃,当N n >时有2/||ε<-a a n ⇒当N m n >,时有ε<-+-≤-||||||a a a a a a n m m n“⇐”先证有界性,取1=ε,则N ∃,N m n >,⇒1||<-m n a a特别地,N n >时 1||1<-+N n a a ⇒1||||1+<+N n a a设}1|||,|,|,||,m ax {|121+=+N N a a a a M Λ,则n ∀,Ma n ≤||再由致密性定理知,}{n a 有收敛子列}{k n a ,设aa k n k =∞→lim0>∀ε,1N ∃,1,N m n >⇒||/2n m a a ε-<K ∃,K k >⇒2/||ε<-a a k n取),m ax (1N K N =,当N n >时有11N n N N +≥+>⇒ εεε=+<-+-≤-++2/2/||||||11a a a a a a N N n n n n故aa n k =∞→lim .Cauchy 列、基本列(满足Cauchy 收敛准则的数列)*(七) 用柯西准则证明单调有界原理 设为一递增且有上界M 的数列.用反证法( 借助柯西准则 )可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“ 当 时,满足”.这是因为它同时保证了对一切,恒有 .倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 例1 用单调有界定理证明区间套定理.即已知:1 )单调有界定理成立;2 )设[]{}nnba,为一区间套.欲证:[],,2,1,,Λ=∈ξ∃nbann且惟一.证证明思想:构造一个单调有界数列,使其极限即为所求的ξ.为此,可就近取数列{}na(或{}n b).由于,1221bbbaaann≤≤≤≤≤≤≤≤ΛΛΛ因此{}na为递增数列,且有上界(例如1b).由单调有界定理,存在ξ=∞→nnalim,且Λ,2,1,=ξ≤nan.又因nnnnaabb+-=)(,而0)(lim=-∞→nnnab,故ξ=ξ+=+-=∞→∞→∞→lim)(limlimnnnnnnnaabb;且因{}nb递减,必使ξ≥nb.这就证得[]Λ,2,1,,=∈ξnbann.最后,用反证法证明如此的ξ惟一.事实上,倘若另有一个[]Λ,2,1,,=∈ξ'nbann,则由)()(∞→→-≤ξ'-ξnabnn,导致与>ξ'-ξ相矛盾.例 2 (10)用区间套定理证明单调有界定理.即已知:1 )区间套定理成立.2 )设{}n x为一递增且有上界M的数列.欲证:{}n x存在极限nnx∞→=ξlim.证证明思想:设法构造一个区间套[]{}nnba,,使其公共点ξ即为{}n x的极限.为此令[][]Mxba,,111=.记2111bac+=,并取[][]{}[]{}⎩⎨⎧=.,,;,,,11111122的上界为不若的上界为若nnxcbcxccaba再记222 2ba c +=, 同理取[][]{}[]{}⎩⎨⎧=.,,;,,,22222233的上界不为若的上界为若n n x c b c x c c a b a如此无限进行下去,得一区间套[]{}n n b a ,.根据区间套定理,[]∞→∞→=ξ==∈ξ∃n n n n n n b a n b a )lim lim (,2,1,,Λ.下面用数列极限定义证明ξ=∞→n n x lim :0>ε∀,一方面,由于)(N ∈k b k 恒为{}n x 的上界,因此ε+ξ<ξ=≤⇒≤∈∀∞→k k n k n b x b x ,k n lim ,N ;另一方面,由ε-ξ>⇒ε<-ξ=ξ-≥∈∃⇔ξ=∞→K k k k k a a a K k ,K a ,lim 时当N ;而由区间套的构造,任何k a 不是{}n x 的上界,故ε-ξ>>∃K N a x ;再由{}n x 为递增数列,当N n >时,必有ε-ξ>≥N n x x .这样,当 N n > 时,就有ε+ξ<<ε-ξn x , 即 ξ=∞→n n x lim .例 3 (9) 用确界定理证明区间套定理.即已知: 1 ) 确界定理成立(非空有上界的数集必有上确界);2 ) 设{}],[n n b a 为一区间套.欲证:存在惟一的点[]Λ,2,1,,=∈ξn b a n n .证 证明思想:给出某一数集S ,有上界,使得S 的上确界即为所求的ξ. 为此,取{}n a S =,其上界存在(例如 1b ).由确界定理,存在 {}n a sup =ξ.首先,由ξ为{}n a 的一个上界,故Λ,2,1,=ξ≤n a n .再由ξ是{}n a 的最小上界,倘有某个ξ<m b ,则m b 不会是{}n a 的上界,即m k b a >∃,这与[]{}nn b a ,为区间套相矛盾(ji b a <).所以任何ξ≥n b .这就证得Λ,2,1,=≤ξ≤n b a n n .关于ξ的惟一性,与例1中的证明相同.注 本例在这里所作的证明比习题解答中的证明更加清楚.在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]四、实数系的完备性实数所组成的基本数列{}nx比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)nn⎧⎫+⎨⎬⎩⎭:1lim(1)nnen→∞+=(无理数).五、压缩映射原理(不动点原理)1、函数f(x)的不动点指什么?设y=f(x)是定义在[a,b]上的一个函数,方程x=f(x)的解称为f(x)的不动点.2、在什么样的条件下不动点一定存在呢?存在时唯一吗?如何求出不动点?压缩映射:如果存在常数k,满足0≤k<1,使得对一切,[,]x y a b∈成立不等式()()||f x f y k x y -≤-,则称f 是[a,b]上的一个压缩映射. 压缩映射必连续.压缩映射原理(不动点原理) 设()x ϕ是[a,b]上压缩映射,且([,])[,]a b a b ϕ⊂,则()x ϕ在[a,b]上存在唯一的不动点.例3 证明Kapler 方程sin x x b ε=+在||1ε<时,存在唯一实数.§7.2 闭区间上连续函数性质的证明教学目标:证明闭区间上的连续函数性质.教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性. 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题. 教学过程:在本节中,将利用关于实数完备性的基本定理来证明第四章2中给出的闭区间上连续函数的基本性质.一、有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界证法 一 ( 用区间套定理 ). 反证法. 参阅[3]P106—107.证法 二 ( 用致密性定理). 反证法.证明 如若不然,)(x f 在],[b a 上无界,∈∀n N ,],[b a x n ∈∃,使得n x f n >|)(|,对于序列}{n x ,它有上下界b x a n ≤≤,致密性定理告诉我们k n x∃使得],[0b a x x k n ∈→,由)(x f 在0x 连续,及kn n x f k >|)(|有+∞==∞→|)(|lim |)(|0k n k x f x f ,矛盾.证法 三 ( 用有限复盖定理 ). 参阅[1]P168—169证明 (应用有限覆盖定理) 由连续函数的局部有界性(th4.2)对每一点[]b a x ,'∈都存在邻域()x x '',δο⋃及正数'x M使()()[]b a x x M x f x x ,,'''⋂⋃∈≤δ 考虑开区间集()(){}b a x x H x ,,'''∈⋃=δ虽然H 是[]b a ,的一个无限开覆盖,由有限开覆盖定理,存在H 的一个有限点集()[]{}k i b a x x H i i i ,,2,1,,Λ=∈⋃=*δ覆盖了[]b a ,,且存在正整数,,,21k M M M Λ使对一切()[]b a x x i i ,,⋂⋃∈δ有()k i M x f i ,,2,1,Λ=≤,令ki iM M ≤≤=1m ax则对[]b a x ,∈∀,x 必属于某()()M M x f x i i i ≤≤⇒δ,Y ,即证f 在[]b a ,上有上界. 二、最值性:命题2 ] , [)(b a C x f ∈, ⇒ )(x f 在] , [b a 上取得最大值和最小值. ( 只证取得最大值 )证 ( 用确界原理 ) 令)}({sup x f M bx a ≤≤=,+∞<M , 如果)(x f 达不到M ,则恒有M x f <)(.考虑函数)(1)(x f M x -=ϕ,则],[)(b a C x ∈ϕ,因而有界,即)0()(>≤μμϕx , 从而MM x f <-≤μ1)(,这与M 是上确界矛盾,因此],[b a x ∈∃,使得M x f =)(.类似地可以证明达到下确界.三、介值性: 证明与其等价的“零点定理 ”.命题3 (零点存在定理或根的存在性定理)设函数)(x f 在闭区间],[b a 上连续即]),([)(b a C x f ∈且)(a f 与)(b f 异号()(a f 0)(<b f ),则在),(b a 内存在一点0x 使得 0)(0=x f .即方程0)(=x f 在),(b a 内至少存在一个实根.证法 一 ( 用区间套定理 ) .设0)(<a f ,0)(>b f .将],[b a 二等分为],[c a 、],[b c ,若0)(=c f 则c x =0即为所求;若0)(≠c f ,当0)(>c f 时取],[c a 否则取],[b c 为],[11b a ,有0)(1<a f ,0)(1>b f .如此继续,如某一次中点i c 有0)(=i c f 终止(i c 即为所求);否则得]},{[n n b a 满足:⑴ΛΛ⊃⊃⊃⊃],[],[],[11n n b a b a b a ;⑵ 02lim)(lim =-=-∞→∞→nn n n n ab a b ;⑶)(,0)(><n n b f a f由闭区间套定理知,∃唯一的],[10n n n b a x ∞=∈I ,且=∞→n n a lim 0lim x b n n =∞→由)(x f 在0x处的连续性及极限的保号性得)()(lim 0≤=∞→x f a f n n 、0lim ()()0n n f b f x →∞=≥0)(0=⇒x f #证二( 用确界原理 ) 不妨假设0)(<a f (从图1看,0x是使得0)(>x f 的x 的下确界),令]},[,0)(|{b a x x f x E ∈>=,要证E x inf 0=(E inf 存在否?).因为Φ≠⇒∈E E b ,],[b a E ⊂E ⇒有界,故E inf 存在.令 Ex inf 0=,下面证0)(0=x f如若不然,)(0≠x f 则)(0>x f (或)(0<x f )(从图形上可清楚看出,此时必存在1x x <使0)(1>x f ).首先ax ≠0,即],(0b a x ∈;f 在0x连续,由连续函数的局部保号性],[),(0b a x U ⊂∃⇒δ使得),(0δx U x ∈∀有0)(>x f ,特别应有0)2(0>-δx f 即 E x ∈-20δ,这与E x inf 0=矛盾,故必有0)(0=x f .证法 二 ( 用确界原理 ) 不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ, 有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ). 取n x >ξ 且n x ) ( ,∞→→n ξ. 由)(x f 在点ξ连续和0)(≤n x f , ⇒ 0)(lim )(≤=∞→n n x f f ξ,⇒ ξE ∉. 于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒ 0)(lim )(≥=∞→n n t f f ξ. 因此只能有0)(=ξf .证法 三 ( 用有限复盖定理 ).介值性定理 设f 在闭区间[]b a ,上连续,且()()()()b f a f b f a f 与为介于若μ≠之间的任何实数()()b f a f <<μ或()()b f a f >>μ,则存在()b a x ,∈ο使()μ=οx f .证明 (应用确界定理) 不妨设()()()()μμ-=<<x f x g b f a f 令 则g 也是[]b a ,上连续函数,()()0,0>>b g a g ,于是定理的结论转为:()()0,,=∈∃οοx g b a x 使这个简化的情形称为根的存在性定理(th4.7的推论)记()[]{}b a x x g x E ,,0∈>=显然E 为非空有界数集[]()E b b a E ∈⊂且,故有确界定理, E 有下确界,记()()0,0inf ><=b g a g E x 因ο有连续函数的局部保号性, 0>∃δ,使在),[δ+a a 内0)(<x g ,在),(δ-b b 内0)(>x g .由此易见a x ≠ο,b x ≠ο,即()b a x ,∈ο.下证()0=οx g .倘若()0≠οx g ,不妨设()0>οx g ,则又由局部保号性,存在()()()b a x ,,⊂ηοY 使在其内)0(>x g ,特别有Ex x g ∈-⇒>⎪⎭⎫ ⎝⎛-202ηηοο=0,但此与E x inf =ο矛盾,则必有0)(0=x g .几何解释 直线c y =与曲线)(x f y =相交.把x 轴平移到c y =,则问题成为零点存在问题.这启发我们想办法作一个辅助函数,把待证问题转化为零点存在问题.辅助函数如何作?① 从几何上,c y y x x -='=',启示我们作c x f x F -=)()(; ② 从结果cx f =)(0着手.利用零点定理证:令c x f x F -=)()(,则]),([)(b a C x F ∈,往下即转化为零点存在问题. # 这种先证特殊、再作辅助函数化一般为特殊,最后证明一般的方法是处理数学问题的常用方法,以后会经常用到.推论 如f 为区间I 上的连续函数,则值域)(I f J =也是一个区间(可以退化为一点). 证 f 为常量函数,则)(I f J =退化为一点.f 非常量函数,则J 当然不是单点集.在J 中任取两点21y y <(只要证J y y ⊂],[21),则在I 中必有两点1x ,2x 使得11)(y x f =,22)(y x f =.于是对21y y y <<∀,必存在x ,x 介于1x 与2x 之间,使y x f =)(,即J y ∈因而J y y ⊂],[21⇒J 是一个区间.二、一致连续性:命题4 ( Cantor 定理 ) ],[)(b a C x f ∈, 则)(x f 在],[b a 上一致连续.证法 一 ( 用有限复盖定理 ) 参阅[1]P171[ 证法一 ]证明 (用有限覆盖定理) 由f 在闭区间[]b a ,上连续性,0>∀ε,对每一点[]b a x ,∈,都存在0>x δ,使当()x x x δ,'Y ∈时,有()()2'ε<-x f x f考虑开区间集合[]⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=b a x x H x ,2,δY 显然H 是[]b a ,的一个开覆盖,由有限覆盖定理H ∃的一个有限子集[]02min ,,,2,12,>⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛=*i i i b a k i x H δδδ记覆盖了ΛY对[]δ<-∈∀"'"',,x x b a x x ,x '必属于*H 中某开区间,设⎪⎭⎫ ⎝⎛∈2,'i i x x δY ,即2'ii x x δ<-,此时有iiiii i x x x x x x δδδδδ=+≤+<-+-≤-222''""故有(2)式同时有 ()()()()22"'εε<-<-i i x f x f x f x f 和由此得()()[]上一致连续在b a f x f x f i ,'∴<-ε.证法 二 ( 用致密性定理). 参阅[1]P171—172 [ 证法二 ]证明 如果不然,)(x f 在],[b a 上不一致连续,00>∃ε,0>∀δ,],[,b a x x ∈'''∃,δ<''-'||x x ,而0|)()(|ε≥''-'x f x f .取n 1=δ,],[,b a x x n n∈'''∃,n x x n n 1||<''-',而0|)()(|ε≥''-'n n x f x f ,由致密性定理,存在子序列],[0b a x x k n∈→',而由k n nn x x k k 1||<''-',也有0x x k n→''. 再由)(x f 在0x 连续,在0|)()(|ε≥''-'k k n n x f x f 中令∞→k ,得000|)()(|lim |)()(|0ε≥''-'=-=∞→k k n nk x f x f x f x f ,矛盾.所以)(x f 在],[b a 上一致连续.推广 ),()(b a C x f ∈,()f a +,()f b -∃⇒)(x f 在),(b a 上一致连续. 作业 [1]P172 1,2 3,4, 5*;P176 1,2,4.§7.3 上极限和下极限一、上(下)极限的定义对于数列,我们最关心的是其收敛性;如果不收敛,我们希望它有收敛的子列,这个愿望往往可以实现.例如:{}(1)n -.一般地,数列{}n x ,若{}k n x :k n x a →(k →∞),则称a 是数列{}n x 的一个极限点.如点例{}(1)n -有2个极限点.数列{}n x 的最大(最小)极限点如果存在,则称为该数列的上(下)极限,并记为lim n n x →∞(lim n n x →∞).如lim(1)1n n →∞-=,lim(1)1n n →∞-=-.例1 求数列sin 3n π⎧⎫⎨⎬⎩⎭的上、下极限.例2 [1(1)]n n x n =+-,求上、下极限. 二、上(下)极限的存在性下面定理指出,对任何数列{}n x ,它的上(下)极限必定存在. 定理1 每个数列{}n x 的上极限和下极限必定唯一,且lim n n x →∞=1sup{,,}limsup n n k n k nx x x +→∞≥=L ,lim n n x →∞=1inf{,,}liminf n n k n k nx x x +→∞≥=L .三、上下极限和极限的关系lim n n x →∞≥lim n n x →∞.定理2 {}n x 存在极限则{}n x 的上极限和下极限相等,即lim n n x →∞=lim n n x →∞=lim n n x →∞.四、上(下)极限的运算普通的极限运算公式对上(下)极限不再成立.例如:11lim[(1)(1)]0lim(1)lim(1)2n n n n n n n ++→∞→∞→∞-+-=<-+-=u u u r . 一般地有:lim()lim lim n n n n n n n x y x y →∞→∞→∞+≤+,当{}n x 收敛时,等号成立.实数完备性的等价命题一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2(单调有界定理)任何单调有界数列必定收敛.定理1.3(区间套定理)设为一区间套:.则存在唯一一点定理1.4(有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(一) 用确界定理证明单调有界定理.(二) 用单调有界定理证明区间套定理设区间套.若另有使,则因.推论设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(三) 用区间套定理证明确界原理证明思想构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使.记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.*(五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.*(六) 用聚点定理证明柯西准则柯西准则的必要性容易由数列收敛的定义直接证得.(已知收敛,设.由定义,,当时,有.从而有.)这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.*(七) 用柯西准则证明单调有界原理设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;。
实数的完备性
第七章 实数的完备性§1 实数完备性的基本定理1. 验证 数集},2,11)1{(L =+−n n n有且只有两个聚点11−=ξ和12=ξ 解 因{1+}21n 是{(-1)n+n 1}的所有偶数项组成的子列,且,1)211(lim =+∞→nn 故12=ξ是数集},2,11)1{(L =+−n n n的一个聚点.由于}1211{−+−n 是原数集的所有奇数项组成的子列,且,1)1211(lim −=−+−∞→n n 因而11−=ξ也是原数集的聚点.下证该数集再无其它聚点. 时,有则当取001}21,21min{,1εϕϕεϕ>−+=±≠∀n⎪⎪⎩⎪⎪⎨⎧−+−−≥⎪⎪⎩⎪⎪⎨⎧−+−−=−−−为奇数为偶数为奇数,为偶数)(n n n n n n n n n n ,11.1111,1111ϕϕϕϕϕ.1200εε>−≥n故ϕ不是该数集的聚点.这就证明原数集只有两个聚点,即1+与1−. 2.证明:任何有限数集都没有聚点.证 设S 是有限数集,则对任一S R a 因,1,0=∃∈ε是有限数集,故领域),(0εa U 内至多 有S 中的有限个点,故a 不是S 的聚点,由a 的任意性知,S 无聚点.3.设)},{(n n b a 是一严格开区间套,即1221b b b a a a n n <<<<<<<<L L L , 且.0)(lim =−∞→n n n a b 证明存在唯一一点ξ,有L ,2,1,=<<n b a n n ξ证 作闭区间列]},{[n n y x , 其中L ,2,1,2,211=+=+=++n b b y a a x n n n n n n ,由于),(,11N n b y b a x a n n n n n n ∈∀<<<<++ 故有(1) ))(,(],[),(11N n b a y x b a n n n n n n ∈∀⊂⊂++,从而L ,2,1],,[],[11=⊂++n y x y x n n n n(2) )(0N n a b x y n n n n ∈∀−<−<从而由]},{[.0)(lim ,0)(lim n n n n n n n n y x x y a b 所以得=−=−∞→∞→为闭区间套.由区间套定理知,存在一点).,2,1()1().,2,1](,[L L =<<=∈n b a n y x n n n n ξξ有由满足条件),2,1(L =<<n b a n n ξ的点ξ的唯一性的证明与区间套定理的证明相同.4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立。
实数完备性基本定理相互证明
关于实数连续性的基本定理关键词:实数基本定理 确界定理 单调有界原理 区间套定理 有限覆盖定理 紧致性定理 柯西收敛定理 等价证明以上的定理表述如下:实数基本定理:对R 的每一个分划A|B ,都∃唯一的实数r ,使它大于或等于下类A 中的每一个实数,小于或等于上类B 中的每一个实数。
确界定理:在实数系R 内,非空的有上(下)界的数集必有上(下)确界存在。
单调有界原理:若数列}{n x 单调上升有上界,则}{n x 必有极限。
区间套定理:设{,[n a ]n b }是一个区间套,则必存在唯一的实数r,使得r 包含在所有的区间里,即∞=∈1],[n n n b a r 。
有限覆盖定理:实数闭区间[a,b]的任一覆盖E,必存在有限的子覆盖。
紧致性定理:有界数列必有收敛子数列。
柯西收敛定理:在实数系中,数列}{n x 有极限存在的充分必要条件是:εε<->>∃>∀||,,,0m n x x ,N m N n N 有时当。
这些定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互等价的,即任取其中两个定理,它们可以相互证明。
那么,它们在证明过程中有哪些联系?作为工具,它们又各具有什么特点?以下先给出它们的等价证明。
(二)实数基本定理的等价证明一.用实数基本定理证明其它定理 1.实数基本定理→单调有界定理证明:设数列}{n x 单调上升有上界。
令B 是数列}{n x 全体上界组成的集合,即B={b|n b x n ∀≤,},而A=R ﹨B ,则A|B 是实数的一个分划。
事实上,由单调上升}{n x ,故1x -1∈A ,即A 不空,由A=R ﹨B ,知A 、B 不漏。
又对任给a ∈A ,b ∈B ,则存在0n ,使a <0n x ≤b ,即A 、B 不乱。
故A|B 是实数的一个分划。
根据实数基本定理,A ,a R r ∈∀∈∃使得对,b r aB ,b ≤≤∈有。
实数完备性六个定理的互相证明
0 , x S ,使得 x ,
记为 xn a ( n ) 。如果不存在实数 a,使 xn 收敛于 a,则称数列 xn 发散。
lim xn a 0 , N N , n N ,有 xn a 。
二、一些基本概念
1.有界集: 设 S 是一个非空数集,如果 M R ,使得 x S ,有 x M ,则称 M 是 S 的
一个上界;如果 m R ,使得 x S ,有 x m ,则称 m 是 S 的一个下界。当数集 S 既有上界,又有下界时,称 S 为有界集。
a1 b1 a b a b , b1 S ,则记 a2 , b2 = 1 1 , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 2 2 2 an 1 bn 1 an 1 bn 1 a b an1 , bn1 二等分为 , bn 1 ,若 n 1 n 1 , bn 1 S , an 1 , 、 2 2 2
则记 a2 , b2 =
a1 b1 a b , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 an 1 , bn 1 二等分为 2 2
an 1 bn 1 an 1 bn 1 a b , bn 1 ,若 n 1 n 1 非 s 的上界,则记 、 an 1 , 2 2 2 an 1 bn 1 a b an , bn = , bn 1 否则记 an , bn = an 1 , n 1 n 1 ;...,得到一列闭区间 2 2
上界,则记 a2 , b2 =
六大定理互相证明总结
六大定理的相互证明总结XXX 学号数学科学学院 数学与应用数学专业 班级指导老师 XXX摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b .显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1]由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点.3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε. 所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理[1]证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果.4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2ε从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε 其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1m ax 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x…………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界. 依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==kn x … 因而子列{}kn x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾. 于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢.参考文献:[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7。
实数完备性的六大基本定理的相互证明
1 确界原理非空有上(下)界数集,必有上(下)确界。
2 单调有界原理 任何单调有界数列必有极限。
3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。
4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。
5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
) 直线上的有解无限点集至少有一个聚点。
6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。
一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。
实数完备性基本定理的相互证明
实数完备性基本定理的相互证明实数完备性基本定理是数学分析课程中的重要定理之一,它刻画了实数的重要性质。
本文将从两个角度介绍实数完备性基本定理的证明,即从实数的有序性和上确界性质出发进行证明,相互补充,帮助读者更好地理解该定理。
一、从实数的有序性进行证明实数完备性基本定理可以通过比较序列与实数性质的关系来证明。
首先引入柯西序列的概念。
柯西序列是指一列实数序列,其满足对于任意正实数ε,存在正整数N,当n,m≥N时,|an-am|<ε。
柯西序列的定义即表明了序列中的元素越来越接近,它与实数的有序性相对应。
接下来,我们需要证明实数集合所有的柯西序列都是收敛的。
假设{an}是一个柯西序列,为了证明该序列的收敛性,我们需要构造出一个实数α,使得该序列收敛于α。
为此,我们可以构造一个新的序列{bn},其中bn=sup{am: m≥n}。
首先,根据实数的上确界性质,该集合非空且有上界,因此sup存在。
其次,易知bn递增且有界(因为其满足an≤bn),所以该序列收敛于某一个实数α。
接下来,我们证明an收敛于α。
根据柯西序列的定义,对于任意给定的ε>0,存在正整数N,使得当m,n≥N时,有|am-an|<ε。
那么对于给定的ε>0,根据序列{bn}的收敛性,存在正整数M,使得当n≥M时,有|bn-α|<ε/2,同时根据序列{bn}的递增性质,有bn≥an。
于是可以得到:|an-α|=|an-bn+bn-α|≤|an-bn|+|bn-α|<ε/2+ε/2=ε这表明对于任意给定的ε>0,总存在正整数N=M,使得当n≥N 时,有|an-α|<ε。
因此,an收敛于α,柯西序列收敛于实数α。
这样,我们就证明了任意柯西序列都是收敛的,即实数集合中的柯西序列都有收敛性。
由此可得实数集合是完备的。
二、从实数的上确界性质进行证明实数完备性基本定理也可以通过实数的上确界性质进行证明。
实数的上确界性质是指,非空有上界的实数集合必有上确界。
关于实数完备性的基本定理
无穷多个点,记其为[a3 , b3 ], 则
[a2 , b2 ] [a3 , b3 ], 且 b3 - a3 = 1 M (b2 - a2 ) = . 2 2
无限进行,则得区间列{[an , bn ]}, 满足
[an , bn ] [an+1, bn+1 ], n = 1, 2,
M b a = , n n 2n -1 0, (n ),
k
下证 lim an = a,
n
0, N1 0,当n,m N1时, 有 an - am
由lim ank = a, 0, N 2 0, 当k N 2时, 有 ank - a
k
0, N = max{N1, N2} 0,当n, k N时,
[an , bn ] [an+1 , bn+1 ], n = 1,2,L, 1 bn - an = n (b - a) 0 (n ). 2 即{[ an , bn ]}是区间套, 且其中每一个闭区间都不能用H中有限个
有限个开区间来覆盖, 由区间套定理
x [an , bn ], n = 1,2,L,由于H是[a, b]的一个开覆盖
•定理的证明:
单调有界定理 区间套定理
n
由区间套定义知a 为递增有界数列,
an 依单调有界定理, 有极限x,且有 a x,n = 1,2, L.
n
b 同理,递减有界数列 也有极限,并按区间套的条件(ii )有
n
lim b = lim a = x , 且 b x,n = 1,2, L. n n
n
xn S
,则其极限
显然 显然 定义2 定义2 定义2 定义2
实数完备性基本定理相互证明
实数完备性基本定理的相互证明(30个)一.确界原理1.确界原理证明单调有界定理证 不妨设{}n a 为有上界的单调递增数列.由确界原理,数列{}n a 有上确界,令{}n a sup a =,下面证明:lim n n a a →∞=.对任意的0ε>,由上确界的定义,存在数列{}n a 中某一项N a ,使得:N a a ε->. 由于{}n a 单调递增,故对任意的n N >,有:n N a a a ε-<<.另一方面,由于a 是{}n a 的一个上界,故对任意的正整数n 都有:n a a a ε≤<+. 所以任意的n N >,有:n a a a εε-<<+,即:n a a ε-<.由极限的定义,lim n n a a →∞=.同理可证单调递减有下界的数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理证明:设[]{},n n a b 是一个闭区间套. 令数集{}n S a =.由于任一n b 都是数列{}n a 的上界,由确界原理,数集S 有上确界,设supS ξ=. 下证ξ属于每个闭区间[](),1,2,3,n n a b n =显然,()1,2,3,n a n ξ≤=,故只需证明对任意正整数n ,都有n b ξ≤.事实上,对任意正整数n ,n b 都是S 的上界,而上确界是最小上界,故必有n b ξ≤. 所以存在实数ξ,使得[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.3.确界原理证明有限覆盖定理证明:欲证闭区间[],a b 的任一开覆盖H 都有有限的子覆盖. 令[]{}|,S x a x H a x b =<≤能被中有限个开区间覆盖,显然S 有上界.又H 覆盖闭区间[],a b ,所以,存在一个开区间(),H αβ∈,覆盖住了a .取(),x a β∈,则[],a x 显然能被H 中有限个开区间覆盖(1个),x S ∈,从而S 非空. 由确界原理,令supS ξ=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取12,x x ,使:11211,x x x S αξβ<<<<∈ ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[]2,a x 也能被H 中有限个开区间覆盖,即2x S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在y 使得:2y b α<≤且y S ∈.则[],a y 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖. 4.确界原理证明聚点定理证明:设S 有界无限点集,则由确界原理令inf S ξ=.若ξ是S 的一个聚点,则命题已经成立,下面设ξ不是S 的聚点.令 ){}|,T x x S ξ=⎡⎣中只包含中有限个元素.因为ξ不是S 的聚点,所以存在00ε>,使得()()000;,U ξεξεξε=-+只包含S 中有限个数,故0T ξε+∈,从而T 非空.又S 有界,所以S 的所有上界就是T 的上界,故T 有上确界,令sup T η=. 下面证明η是S 的一个聚点.对任意的0ε>,S ηε+∉,故),ξηε+⎡⎣包含S 中无穷多个元素.由上确界的定义,存在(],ληεη∈-,使得S λ∈,故),ξλ⎡⎣中只包含S 中有限多个元素.从而我们得知)(),;U ληεηε+⊂⎡⎣中包含了S 中无穷多个元素,由聚点的定义,η是S 的一个聚点.5.确界原理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.令数集{}{}|,n n S x x x x x n =≥∀中只有有限项小于或,明显数列{}n x 的下界都属于S ,并且{}n x 的上界就是S 的上界.由确界存在定理,令sup S ξ=.对条件给定的0ε>和N ,S ξε+∉,故(),ξε-∞+包含{}n x 中无穷多项.由上确界的定义,存在(],λξεξ∈-,使得S λ∈,故(),λ-∞中只包含S 中有限多个元素.从而我们得知)()(),;,U ληεηεηεηε+⊂=-+⎡⎣中包含了S 中无穷多个元素,设()(),1,2,3,k n x U k ξε∈=则对任意正整数n N >,总存在某个k n N >,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=.从而lim n n x ξ→∞=.二.单调有界定理6.单调有界定理证明确界定理证明:我们不妨证明非空有上界的数集S必有上确界.设{}|T r r S =为数集的有理数上界.明显T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1min n i i nx r ≤≤=.则得单调递减有下界的数列,由单调有界定理得,令lim n n x ξ→∞= 先证ξ是上界.任取s S ∈,有n n s r x ≤≤,由极限的保序性,s ξ≤.其次对于任意的0ε>,取一个有理数(),r ξεξ∈-,它明显不是S 的上界,否则lim n n x r ξξ→∞=≤<产生矛盾!故存在s S ∈,使得s ξε>-,我们证明了ξ是数集S 上确界.7.单调有界定理证明区间套定理若[]{},n n a b 是一个区间套,则{}n a 为单调递增有上界的数列,由单调有界定理, 令lim n n a ξ→∞=,并且容易得到()1,2,3,n a n ξ≤=.同理,单调递减有下界的数列{}n b 也有极限,并按区间套的条件有:()lim lim 0n n n n n n b a b a ξξ→∞→∞=+-=+=⎡⎤⎣⎦,并且容易得到()1,2,3,n b n ξ≥=.所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.8.单调有界定理证明有限覆盖定理设[]{}|,,T r a r H r r b =∈≤可以被的开区间有限开覆盖,且.容易得到T 中包含无穷多个元素,并且T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1max n i i nx r ≤≤=.则得单调递增有上界的数列,由单调有界定理得,令lim n n x ξ→∞=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取,i j x r y =,使:11i j x r y αξβ<=<<< ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[],a y 也能被H 中有限个开区间覆盖,即y S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在k l x r =使得:2k l x r b α<=≤.则[],l a r 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖.9.单调有界定理证明聚点定理证明:设S 是一有界无限点集,在S 中选取一个单调{}n a ,下证数列{}n a 有聚点.(1)如果在{}n a 的任意一项之后,总存在最大的项,设1a 后的最大项是1n a ,1n a 后的最大项是2n a ,且显然()2121n n a a n n ≤>; 一般地,将k n a 后的最大项记为1k n a +,则有:()11,2,3,k k n n a a k +≤=.这样,就得到了{}n a 的一个单调递减子列{}k n a .(2)如果(1)不成立 则从某一项开始,任何一项都不是最大的,不妨设从第一项起,每一项都不是最大项.于是,取11n a a =,因1n a 不是最大项,所以必存在另一项()2121n n a a n n >>又因为2n a 也不是最大项,所以又有:()3232n n a a n n >> ,这样一直做下去,就得到了{}n a 的一个单调递增子列{}k n a .综上所述,总可以在S 中可以选取一个单调数列{}k n a ,利用单调有界定理,{}k n a 收敛,极限就是S 的一个聚点.10.单调有界定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.参考9的做法,可知数列{}n a 有一个单调子列{}k n a ,由单调有界定理,{}k n a 收敛,令lim k n k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.三.区间套定理11.区间套定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦.再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含S 中的元素,并且右端点n b 为S 的上界.由于对任意s S ∈,有n s b ≤,所有由极限的保序性,lim n n s b ξ→∞≤=,从而ξ是数集S 的上界.最后,对于任意0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了S 中某个元素s ,从而有n n s a b εξε≥>->-.故ξ是数集S 的上确界. 12. 区间套定理证明单调有界定理设{}n x 是单调有界数列,不妨设其为单调递增且有上界取一个闭区间[],a b ,使得[],a b 包含{}n x 中的项,并且b 为{}n x 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为{}n x 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为{}n x 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含{}n x 中的项,并且右端点n b 为{}n x 的上界.下面证明lim n n x ξ→∞=.对任意的0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了{}n x 中某一项N x ,从而有N n n x a b εξε≥>->-.由于{}n x 单调递增,故对任意的n N >,有:N n x x ξε-<<. 又n n n x b a εξε<<+<+,故有n x ξεξε-<<+,即n x ξε-<.若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.显然[],a b ξ∈,考虑H 中覆盖ξ的开区间(),αβ,取{}0min ,δξαβξ<<--.由于lim lim n n n n a b ξ→∞→∞==,所以存在N ,对一切正整数n N >,有,n n a b ξξδ--<,故此时[]()(),;,n n a b U ξδαβ⊂⊂.从而[](),n n a b n N >可以被H 中的一个开区间(),αβ覆盖,产生矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖. 14. 区间套定理证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.下证ξ是点集S 的一个聚点.因为lim lim n n n n a b ξ→∞→∞==,故对任意的0ε>,必定存在一个N ,对一切正整数n N >,有,n n a b ξξε--<,从而[]()(),;n n a b U n N ξε⊂>.又每个闭区间[],n n a b 包含了点集S 中无穷多个元素,故();U ξε包含了点集S 中无穷多个元素.由聚点的定义,ξ是点集S 的一个聚点.必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.取一个闭区间[],a b ,使得[],a b 包含所有{}n x 中的项. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且每个闭区间[],n n a b 都包含{}n x 中无穷多项.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =现在取一个子列{}k n x ,满足[](),1,2,3,k n k k x a b k ∈=.因为lim lim n n n n a b ξ→∞→∞==和夹逼定理,lim kn k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.四.有限覆盖定理16.有限覆盖定理证明确界原理证明:不妨设S 为非空有上界的数集,我们证明S 有上确界. 设b 为S 的一个上界,下面用反证法来证明S 一定存在上确界.假设S 不存在上确界,取a S ∈.对任一[],x a b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1)若x 不是S 的上界,则至少存在一点x S '∈,使x x '>,这时取x x x δ'=-.(2)若x 是S 的上界,由假设S 不存在上确界,故有0x δ>,使得](,x x x δδ- 中不包含S 中的点.此时取(),x x x U x x δδ=-+,可知它也不包含S 中的点.于是我们得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈ 根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于S ,(2)的开区间中不包含S 中的点.显然a 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.17.有限覆盖定理证明单调有界定理证明:设{}n x 是单调有界数列,不妨设其为单调递增且有上界.任取b 为{}n x 的一个上界以及{}n x 中某项t x ,构造出闭区间[],t x b ,对任意的[],t x x b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1) 若x 不是{}n x 的上界,则{}n x 中至少存在一项i x ,使i x x >,这时取x x x δ'=-.(2) 若x 是{}n x 的上界,由假设{}n x 发散,故不会收敛到x .即有存在某个00ε>,对任何正整数N ,存在n N >,使得()()000;,n x U x x x εεε∉=-+.由于{}n x 递增,有上界x ,所以{}n x 中的所有项均不落在()()000;,U x x x εεε=-+中.此时取0x δε=.于是我们得到了[],t x b 的一个开覆盖:()[]{},|,x x x t H U x x x x b δδ==-+∈. 根据有限覆盖定理,[],t x b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于{}n x ,(2)的开区间中不包含{}n x 中的项.显然t x 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.18. 有限覆盖定理证明区间套定理 证明:用反证法.假设[]{}(),1,2,3,nna b n =没有公共点,则对任意一点[]11,x a b ∈,它都不会是[]{}(),1,2,3,nna b n =的公共点,从而存在正整数xn,使得,x x n n x a b ⎡⎤∉⎣⎦.故总存在一个开区间(),x x x U x x δδ=-+,使得:(),,xnx x n nx x a b δδ⎡⎤-+⋂=∅⎣⎦,于是我们得到了[]11,a b 的一个开覆盖:()[]{}11,|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[]11,a b 可以被H 中有限个开区间{}1ikx i U =覆盖.注意到闭区间套之间的包含关系,则所有{}1ikx i U =一定和某个最小的闭区间001,,i i k n n n n i a b a b =⎡⎤⎡⎤=⎣⎦⎣⎦无交.从而:[]{}0000001111,,,,i ik k n n x n n x n n i i a b a b U a b Ua b ==⎧⎫⎡⎤⎡⎤⎡⎤⋂⊂⋂=⋂=∅⎨⎬⎣⎦⎣⎦⎣⎦⎩⎭.产生矛盾!19. 有限覆盖定理证明聚点定理证明:设点集S 是有界无限点集.设[],S a b ⊂.用反证法,假设S 没有聚点.利用聚点定义,对任意的[],x a b ∈,存在一个领域(),x x x U x x δδ=-+,使得x U 中只包含点集S 中有限个点.这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 由于每个x U 中只包含点集S 中有限个点,所以[]1,i n x i a b U =⊂也只包含了S 中有限个点,这与S 是无限点集相矛盾!故假设不成立,即S 有聚点.20. 有限覆盖定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:(使用反证法)现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<. 先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.假设{}[],n x a b ⊂.若{}n x 发散,则对任意的[],x a b ∈,可以找到一个(),x x x U x x δδ=-+,使得{}n x 中只有有限项落在()0;U x ε中.否则对任何0δ>,(),x x δδ-+中均包含{}n x 中无限项,则可以证明{}n x 收敛. 这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 所以[]1,i n x i a b U =⊂也只包含了{}n x 中的有限项,矛盾!故假设不成立,{}n x 收敛.五.聚点定理21.聚点定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界.取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由于{}n b 明显有界,所有它有聚点ξ.对任意0,s S ε>∈,设()();,k b U ξεξεξε∈=-+,则k s b ξε≤<+.由ε的任意性,s ξ≤,故ξ是S 的一个上界.其次,对任意0ε>,取()();,k a U ξεξεξε∈=-+,设s S ∈包含于闭区间[],k k a b ,则k s a ξε≥>-.从而我们证明了ξ是S 的一个上确界. 22.聚点定理证明单调有界定理证明:设{}n x 是单调有界数列,则它一定存在聚点ξ.下证:lim n n x ξ→∞=.对任意的0ε>,由聚点的定义,()(),,U ξεξεξε=-+中包含{}n x 中的无穷多项,设{}()(),,kn x U ξεξεξε⊂=-+.则取1N n =,对一切正整数1n N n >=,假设kn n <.利用{}nx 是单调的,nx介于1n x 与k n x 之间,所以由()1,,k n n x x U ξε∈,可知(),n x U ξε∈,从而由极限的定义,lim n n x ξ→∞=23.聚点定理证明区间套定理证明:设{}{}n n S a b =⋃,则S 是有界无限点集 由聚点定理得数集S 聚点ξ.若存在一个某个正整数0n ,使得00,n n a b ξ⎡⎤∉⎣⎦,不妨假设00n n a b ξ<<.取00n b εξ=-,则对一切0n n >,有00n n n a b b ξε<≤=-.于是()()000;,U ξεξεξε=-+中只包含S 中有限个点,这与ξ是数集S 的聚点矛盾!故[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.24.聚点定理证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖显然,{}n a 是有界的,故它存在聚点ξ.明显[],a b ξ∈.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则在()();,U ξεξεξε=-+中包含了{}n a 中的无穷多项,设{}()();,k n a U ξεξεξε⊂=-+.又()02n n n b ab a n --=→→+∞ 于是存在某个0k n ,使得0k k n n b a βξε-<--故0n a ξεα>->;()00n n b a βξεξεβξεβ<+--<++--=. 故[]00,,n n a b αβ⎡⎤⊂⎣⎦.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.25.聚点定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.故它存在聚点,设为ξ.对条件中的0ε>,由聚点的定义,假设{}()();,k n x U ξεξεξε⊂=-+ 则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.六.Cauchy 收敛准则26. Cauchy 收敛准则证明确界原理证明: 设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整数k α ,使得k ααλα=为S 的上界,而()1k ααλαα-=-不是S 的上界, 即存在S α'∈使得()1k ααα'>- 分别取()11,2,3,n nα==,则对每一个正整数n ,存在相应的n λ,使得n λ为S 的上界,而1n nλ-不是S 的上界,故存在S α'∈,使得1n nαλ'>-又对正整数m ,m λ是S 的上界,故有m λα'≥.所以1m n n λαλ'≥>-,即有1m n m λλ-<.同理有1m n nλλ-<,于是得到11min ,m n m n λλ⎧⎫-<⎨⎬⎩⎭. 于是,对任意的0ε>,存在正整数N ,使得当,m n N >时有m n λλε-<.由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=现在证明λ就是S 的上确界.首先,对任何S α∈和正整数n ,有n αλ≤,有极限的保序性,lim n n αλλ→∞≤=,故λ是S 的上界其次,对于任意的0δ>,存在充分的的正整数n ,使得12n δ<并且2n δλλ>-. 由于1n n λ-不是S 的上界,所以存在S α'∈,并且1n nαλ'>-. 于是122n n δδαλλλδ'>->--=-.故λ就是S 的上确界. 27. Cauchy 收敛准则证明单调有界定理证明:设{}n x 是单调有界数列,不妨假设{}n x 单调递增有上界.若{}n x 发散,则又柯西收敛准则,存在00ε>,对一切正整数N ,存在m n N >>,使得0m n m n x x x x ε-=-≥. 于是容易得到{}n x 的子列{}k n x ,使得10k k n n x x ε+-≥.进而()101k n n x x k ε>+- 故()k n x k →+∞→∞,这与{}n x 是有界数列矛盾!所有假设不成立,即{}n x 收敛. 28. Cauchy 收敛准则证明区间套定理证明:设[]{},n n a b 为闭区间套.因为lim 0n n n a b →∞-=,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.29.Cauchy 收敛准则证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεαβ⊂⊂.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.30. Cauchy 收敛准则证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.下证ξ是S 的一个聚点.对任意的0ε>,存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεξεξε⊂=-+.故()();,U ξεξεξε=-+中包含了S 中无穷多个元素,由聚点的定义,ξ是S 的一个聚点.。
实数完备性的证明及其应用
实数完备性的证明及其应用摘要一、实数完备性定理 1、闭区间套定理如果n n a b {[,]}形成一个闭区间套,即满足11n n n n a b a b n N ++⊃∈(i)[,][,],,n n a b →∞n (ii)lim(,)=0,则存在惟一的实数ξ属于所有的闭区间n n [a ,b ],且n n a b ξ→∞→∞=n n =lim lim 。
2、聚点定理(又称维尔斯特拉斯聚点定理) 如果S 为有界无限点集,则S 必有聚点。
3、柯西收敛准则数列{}n x 收敛的充分必要条件是:{}n x 是基本数列,即{}n x 满足:对于任意给定的0ε>,存在正整数N ,使得当,n m N >时成立n m x x ε-<。
4、单调有界定理单调递增(减)有上(下)界数列必有极限。
5、有限覆盖定理闭区间a b [,]的任意开覆盖H 都含有一个有限子覆盖,即H 中可找出有限个开集覆盖a b [,]。
6、确界存在定理非空有上界的数集必有上确界;非空有下届的数集必有下确界。
二、实数完备性基本定理的证明1、由闭区间套定理出发,推其余五个定理 1)闭区间套定理⇒聚点定理证 设数列{}n x 有界,于是存在实数11,a b ,成立11,1,2,3,n a x b n ≤≤= 将闭区间11[,]a b 等分为两个小区间111[,]2a b a +与111[,]2a bb +,则其中至少有一个含有数列{}n x 中的无穷多项,把它记为22[,]a b 。
再将闭区间22[,]a b 等分为两个小区间222[,]2a b a +与222[,]2a bb +,同样其中至少有一个含有数列{}n x 中的无穷多项,把它记为33[,]a b 这样的步骤可以一直做下,于是得到一个闭区间套{[,]}k k a b ,其中每一个区间套[,]k k a b 中都含有数列{}n x 中的无穷多项。
根据区间套定理,存在实数ξ,满足k k k k a b ξ→∞→∞==lim lim 。
数学分析复习笔记实数完备性的六个定理
数学分析复习笔记实数完备性的六个定理实数完备性的⼏个定理可以互相推导,这⾥给出了⼀个⽐较简单的完整推导链条对于没有写到的推导可以通过旁敲侧击推导出这⾥的条件再继续(迂回战术)1. 有界必有确界如果∃u 使得∀x ∈S 都有x ≤u ,那么S 有上确界上确界:记U =sup {S },则∀x ∈S 都有x ≤U ,且∀ϵ>0,∃x 0∈S 使得x 0>U −ϵ⽤有限区间覆盖证明S 存在最⼤值的情况⾮常显然,它的上确界就是最⼤值;后⽂只讨论S 不存在最⼤值的情况反证法,假设S 有界⽽没有上确界,记S 上界的集合为¯U则可以取S 中的⼀个元素L ,¯U 中的⼀个元素R ,得到⼀个闭区间[L ,R ]考虑x ∈[L ,R ],分成如下⼏种情况:1. x ∈¯U2. x ∈S3. x ∉S 且x ∉¯U对于情况1,由假设我们⼀定可以找到x ′∈¯U 且x ′<x ,使得x ′也是⼀个上界此时我们为点x 造⼀个开区间x ′,2x −x ′,这个区间内的点都是S 的上界对于情况2,由S 不存在最⼤值可知我们⼀定能找到x ′∈S 且x ′>x此时我们为点x 造⼀个开区间2x −x ′,x ′,这个区间内的点都不是S 的上界对于情况3,由x 不是上界可知,必存在⼀个x ′∈S 使得 x <x ′,此时情况同2于是我们为闭区间内的每⼀个点都配了⼀个开区间,这个开区间的集合覆盖了闭区间内的每⼀个点,由有限覆盖定理可知存在有限个开区间覆盖了[L ,R ]引理1:开覆盖中相邻两个开区间必相交证明:假设存在不相交的开覆盖,则存在点未被覆盖,⽭盾由引理1可知[L ,R ]上的开覆盖⼀定是环环相套的,从左起每⼀个开区间内的点都不是上界,从右起每⼀个开区间内的点都是上界,则可以推得中间存在⼀个开区间同时满⾜这两种情况(这是不可能的),推得⽭盾。
于是原命题成⽴2. 单调有界收敛若数列a n 单调递增且有上界,则该数列收敛(存在极限)⽤确界存在证明有上界必有上确界,记U =sup a n ,则根据定义有∀n U ≥a n 且∀ϵ>0,∃n 0,有U −ϵ<a n 0⼜a n 递增,于是取N =n 0,当n ≥N ,有U −ϵ<a n 0≤a n ≤U <U +ϵ,这个就是数列收敛的定义,且恰好收敛于U 3. 闭区间套考虑⼀个初始闭区间[L 0,R 0],我们取⼀系列闭区间[L 1,R 1],[L 2,R 2],…满⾜[L 1,R 1]⊂[L 2,R 2]⊂…()(){}{}(){}且有lim i →+∞R i −L i =0则∩[L i ,R i ]=ξ,收敛于⼀个点⽤单调有界收敛证明由第⼀个条件可知,L n 单调递增,且有上界R 0,于是数列收敛同理R n 也收敛,下⾯证明两个极限相等。
实数完备性的六大基本定理的相互证明(共30个)
1 确界原理非空有上(下)界数集,必有上(下)确界。
2 单调有界原理 任何单调有界数列必有极限。
3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。
4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。
5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
) 直线上的有解无限点集至少有一个聚点。
6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。
一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。
实数完备性基本定理的相互证明
实数完备性基本定理的相互证明(30个)一.确界原理1.确界原理证明单调有界定理证 不妨设{}n a 为有上界的单调递增数列.由确界原理,数列{}n a 有上确界,令{}n a sup a =,下面证明:lim n n a a →∞=.对任意的0ε>,由上确界的定义,存在数列{}n a 中某一项N a ,使得:N a a ε->. 由于{}n a 单调递增,故对任意的n N >,有:n N a a a ε-<<.另一方面,由于a 是{}n a 的一个上界,故对任意的正整数n 都有:n a a a ε≤<+. 所以任意的n N >,有:n a a a εε-<<+,即:n a a ε-<.由极限的定义,lim n n a a →∞=.同理可证单调递减有下界的数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理证明:设[]{},n n a b 是一个闭区间套. 令数集{}n S a =.由于任一n b 都是数列{}n a 的上界,由确界原理,数集S 有上确界,设supS ξ=. 下证ξ属于每个闭区间[](),1,2,3,n n a b n =显然,()1,2,3,n a n ξ≤=,故只需证明对任意正整数n ,都有n b ξ≤.事实上,对任意正整数n ,n b 都是S 的上界,而上确界是最小上界,故必有n b ξ≤. 所以存在实数ξ,使得[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.3.确界原理证明有限覆盖定理证明:欲证闭区间[],a b 的任一开覆盖H 都有有限的子覆盖. 令[]{}|,S x a x H a x b =<≤能被中有限个开区间覆盖,显然S 有上界.又H 覆盖闭区间[],a b ,所以,存在一个开区间(),H αβ∈,覆盖住了a .取(),x a β∈,则[],a x 显然能被H 中有限个开区间覆盖(1个),x S ∈,从而S 非空. 由确界原理,令supS ξ=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取12,x x ,使:11211,x x x S αξβ<<<<∈ ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[]2,a x 也能被H 中有限个开区间覆盖,即2x S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在y 使得:2y b α<≤且y S ∈.则[],a y 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖. 4.确界原理证明聚点定理证明:设S 有界无限点集,则由确界原理令inf S ξ=.若ξ是S 的一个聚点,则命题已经成立,下面设ξ不是S 的聚点.令 ){}|,T x x S ξ=⎡⎣中只包含中有限个元素.因为ξ不是S 的聚点,所以存在00ε>,使得()()000;,U ξεξεξε=-+只包含S 中有限个数,故0T ξε+∈,从而T 非空.又S 有界,所以S 的所有上界就是T 的上界,故T 有上确界,令sup T η=. 下面证明η是S 的一个聚点.对任意的0ε>,S ηε+∉,故),ξηε+⎡⎣包含S 中无穷多个元素.由上确界的定义,存在(],ληεη∈-,使得S λ∈,故),ξλ⎡⎣中只包含S 中有限多个元素.从而我们得知)(),;U ληεηε+⊂⎡⎣中包含了S 中无穷多个元素,由聚点的定义,η是S 的一个聚点.5.确界原理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.令数集{}{}|,n n S x x x x x n =≥∀中只有有限项小于或,明显数列{}n x 的下界都属于S ,并且{}n x 的上界就是S 的上界.由确界存在定理,令sup S ξ=.对条件给定的0ε>和N ,S ξε+∉,故(),ξε-∞+包含{}n x 中无穷多项.由上确界的定义,存在(],λξεξ∈-,使得S λ∈,故(),λ-∞中只包含S 中有限多个元素.从而我们得知)()(),;,U ληεηεηεηε+⊂=-+⎡⎣中包含了S 中无穷多个元素,设()(),1,2,3,k n x U k ξε∈=则对任意正整数n N >,总存在某个k n N >,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=.从而lim n n x ξ→∞=.二.单调有界定理6.单调有界定理证明确界定理证明:我们不妨证明非空有上界的数集S必有上确界.设{}|T r r S =为数集的有理数上界.明显T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1min n i i nx r ≤≤=.则得单调递减有下界的数列,由单调有界定理得,令lim n n x ξ→∞= 先证ξ是上界.任取s S ∈,有n n s r x ≤≤,由极限的保序性,s ξ≤.其次对于任意的0ε>,取一个有理数(),r ξεξ∈-,它明显不是S 的上界,否则lim n n x r ξξ→∞=≤<产生矛盾!故存在s S ∈,使得s ξε>-,我们证明了ξ是数集S 上确界.7.单调有界定理证明区间套定理若[]{},n n a b 是一个区间套,则{}n a 为单调递增有上界的数列,由单调有界定理, 令lim n n a ξ→∞=,并且容易得到()1,2,3,n a n ξ≤=.同理,单调递减有下界的数列{}n b 也有极限,并按区间套的条件有:()lim lim 0n n n n n n b a b a ξξ→∞→∞=+-=+=⎡⎤⎣⎦,并且容易得到()1,2,3,n b n ξ≥=.所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.8.单调有界定理证明有限覆盖定理设[]{}|,,T r a r H r r b =∈≤可以被的开区间有限开覆盖,且.容易得到T 中包含无穷多个元素,并且T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1max n i i nx r ≤≤=.则得单调递增有上界的数列,由单调有界定理得,令lim n n x ξ→∞=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取,i j x r y =,使:11i j x r y αξβ<=<<< ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[],a y 也能被H 中有限个开区间覆盖,即y S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在k l x r =使得:2k l x r b α<=≤.则[],l a r 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖.9.单调有界定理证明聚点定理证明:设S 是一有界无限点集,在S 中选取一个单调{}n a ,下证数列{}n a 有聚点.(1)如果在{}n a 的任意一项之后,总存在最大的项,设1a 后的最大项是1n a ,1n a 后的最大项是2n a ,且显然()2121n n a a n n ≤>; 一般地,将k n a 后的最大项记为1k n a +,则有:()11,2,3,k k n n a a k +≤=.这样,就得到了{}n a 的一个单调递减子列{}k n a .(2)如果(1)不成立 则从某一项开始,任何一项都不是最大的,不妨设从第一项起,每一项都不是最大项.于是,取11n a a =,因1n a 不是最大项,所以必存在另一项()2121n n a a n n >>又因为2n a 也不是最大项,所以又有:()3232n n a a n n >> ,这样一直做下去,就得到了{}n a 的一个单调递增子列{}k n a .综上所述,总可以在S 中可以选取一个单调数列{}k n a ,利用单调有界定理,{}k n a 收敛,极限就是S 的一个聚点.10.单调有界定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.参考9的做法,可知数列{}n a 有一个单调子列{}k n a ,由单调有界定理,{}k n a 收敛,令lim k n k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.三.区间套定理11.区间套定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦.再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含S 中的元素,并且右端点n b 为S 的上界.由于对任意s S ∈,有n s b ≤,所有由极限的保序性,lim n n s b ξ→∞≤=,从而ξ是数集S 的上界.最后,对于任意0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了S 中某个元素s ,从而有n n s a b εξε≥>->-.故ξ是数集S 的上确界. 12. 区间套定理证明单调有界定理设{}n x 是单调有界数列,不妨设其为单调递增且有上界取一个闭区间[],a b ,使得[],a b 包含{}n x 中的项,并且b 为{}n x 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为{}n x 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为{}n x 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含{}n x 中的项,并且右端点n b 为{}n x 的上界.下面证明lim n n x ξ→∞=.对任意的0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了{}n x 中某一项N x ,从而有N n n x a b εξε≥>->-.由于{}n x 单调递增,故对任意的n N >,有:N n x x ξε-<<. 又n n n x b a εξε<<+<+,故有n x ξεξε-<<+,即n x ξε-<.若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.显然[],a b ξ∈,考虑H 中覆盖ξ的开区间(),αβ,取{}0min ,δξαβξ<<--.由于lim lim n n n n a b ξ→∞→∞==,所以存在N ,对一切正整数n N >,有,n n a b ξξδ--<,故此时[]()(),;,n n a b U ξδαβ⊂⊂.从而[](),n n a b n N >可以被H 中的一个开区间(),αβ覆盖,产生矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖. 14. 区间套定理证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.下证ξ是点集S 的一个聚点.因为lim lim n n n n a b ξ→∞→∞==,故对任意的0ε>,必定存在一个N ,对一切正整数n N >,有,n n a b ξξε--<,从而[]()(),;n n a b U n N ξε⊂>.又每个闭区间[],n n a b 包含了点集S 中无穷多个元素,故();U ξε包含了点集S 中无穷多个元素.由聚点的定义,ξ是点集S 的一个聚点.必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.取一个闭区间[],a b ,使得[],a b 包含所有{}n x 中的项. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且每个闭区间[],n n a b 都包含{}n x 中无穷多项.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =现在取一个子列{}k n x ,满足[](),1,2,3,k n k k x a b k ∈=.因为lim lim n n n n a b ξ→∞→∞==和夹逼定理,lim kn k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.四.有限覆盖定理16.有限覆盖定理证明确界原理证明:不妨设S 为非空有上界的数集,我们证明S 有上确界. 设b 为S 的一个上界,下面用反证法来证明S 一定存在上确界.假设S 不存在上确界,取a S ∈.对任一[],x a b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1)若x 不是S 的上界,则至少存在一点x S '∈,使x x '>,这时取x x x δ'=-.(2)若x 是S 的上界,由假设S 不存在上确界,故有0x δ>,使得](,x x x δδ- 中不包含S 中的点.此时取(),x x x U x x δδ=-+,可知它也不包含S 中的点.于是我们得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈ 根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于S ,(2)的开区间中不包含S 中的点.显然a 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.17.有限覆盖定理证明单调有界定理证明:设{}n x 是单调有界数列,不妨设其为单调递增且有上界.任取b 为{}n x 的一个上界以及{}n x 中某项t x ,构造出闭区间[],t x b ,对任意的[],t x x b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1) 若x 不是{}n x 的上界,则{}n x 中至少存在一项i x ,使i x x >,这时取x x x δ'=-.(2) 若x 是{}n x 的上界,由假设{}n x 发散,故不会收敛到x .即有存在某个00ε>,对任何正整数N ,存在n N >,使得()()000;,n x U x x x εεε∉=-+.由于{}n x 递增,有上界x ,所以{}n x 中的所有项均不落在()()000;,U x x x εεε=-+中.此时取0x δε=.于是我们得到了[],t x b 的一个开覆盖:()[]{},|,x x x t H U x x x x b δδ==-+∈. 根据有限覆盖定理,[],t x b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于{}n x ,(2)的开区间中不包含{}n x 中的项.显然t x 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.18. 有限覆盖定理证明区间套定理 证明:用反证法.假设[]{}(),1,2,3,nna b n =没有公共点,则对任意一点[]11,x a b ∈,它都不会是[]{}(),1,2,3,nna b n =的公共点,从而存在正整数xn,使得,x x n n x a b ⎡⎤∉⎣⎦.故总存在一个开区间(),x x x U x x δδ=-+,使得:(),,xnx x n nx x a b δδ⎡⎤-+⋂=∅⎣⎦,于是我们得到了[]11,a b 的一个开覆盖:()[]{}11,|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[]11,a b 可以被H 中有限个开区间{}1ikx i U =覆盖.注意到闭区间套之间的包含关系,则所有{}1ikx i U =一定和某个最小的闭区间001,,i i k n n n n i a b a b =⎡⎤⎡⎤=⎣⎦⎣⎦无交.从而:[]{}0000001111,,,,i ik k n n x n n x n n i i a b a b U a b Ua b ==⎧⎫⎡⎤⎡⎤⎡⎤⋂⊂⋂=⋂=∅⎨⎬⎣⎦⎣⎦⎣⎦⎩⎭.产生矛盾!19. 有限覆盖定理证明聚点定理证明:设点集S 是有界无限点集.设[],S a b ⊂.用反证法,假设S 没有聚点.利用聚点定义,对任意的[],x a b ∈,存在一个领域(),x x x U x x δδ=-+,使得x U 中只包含点集S 中有限个点.这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 由于每个x U 中只包含点集S 中有限个点,所以[]1,i n x i a b U =⊂也只包含了S 中有限个点,这与S 是无限点集相矛盾!故假设不成立,即S 有聚点.20. 有限覆盖定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:(使用反证法)现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<. 先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.假设{}[],n x a b ⊂.若{}n x 发散,则对任意的[],x a b ∈,可以找到一个(),x x x U x x δδ=-+,使得{}n x 中只有有限项落在()0;U x ε中.否则对任何0δ>,(),x x δδ-+中均包含{}n x 中无限项,则可以证明{}n x 收敛. 这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 所以[]1,i n x i a b U =⊂也只包含了{}n x 中的有限项,矛盾!故假设不成立,{}n x 收敛.五.聚点定理21.聚点定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界.取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由于{}n b 明显有界,所有它有聚点ξ.对任意0,s S ε>∈,设()();,k b U ξεξεξε∈=-+,则k s b ξε≤<+.由ε的任意性,s ξ≤,故ξ是S 的一个上界.其次,对任意0ε>,取()();,k a U ξεξεξε∈=-+,设s S ∈包含于闭区间[],k k a b ,则k s a ξε≥>-.从而我们证明了ξ是S 的一个上确界. 22.聚点定理证明单调有界定理证明:设{}n x 是单调有界数列,则它一定存在聚点ξ.下证:lim n n x ξ→∞=.对任意的0ε>,由聚点的定义,()(),,U ξεξεξε=-+中包含{}n x 中的无穷多项,设{}()(),,kn x U ξεξεξε⊂=-+.则取1N n =,对一切正整数1n N n >=,假设kn n <.利用{}nx 是单调的,nx介于1n x 与k n x 之间,所以由()1,,k n n x x U ξε∈,可知(),n x U ξε∈,从而由极限的定义,lim n n x ξ→∞=23.聚点定理证明区间套定理证明:设{}{}n n S a b =⋃,则S 是有界无限点集 由聚点定理得数集S 聚点ξ.若存在一个某个正整数0n ,使得00,n n a b ξ⎡⎤∉⎣⎦,不妨假设00n n a b ξ<<.取00n b εξ=-,则对一切0n n >,有00n n n a b b ξε<≤=-.于是()()000;,U ξεξεξε=-+中只包含S 中有限个点,这与ξ是数集S 的聚点矛盾!故[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.24.聚点定理证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖显然,{}n a 是有界的,故它存在聚点ξ.明显[],a b ξ∈.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则在()();,U ξεξεξε=-+中包含了{}n a 中的无穷多项,设{}()();,k n a U ξεξεξε⊂=-+.又()02n n n b ab a n --=→→+∞ 于是存在某个0k n ,使得0k k n n b a βξε-<--故0n a ξεα>->;()00n n b a βξεξεβξεβ<+--<++--=. 故[]00,,n n a b αβ⎡⎤⊂⎣⎦.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.25.聚点定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.故它存在聚点,设为ξ.对条件中的0ε>,由聚点的定义,假设{}()();,k n x U ξεξεξε⊂=-+ 则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.六.Cauchy 收敛准则26. Cauchy 收敛准则证明确界原理证明: 设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整数k α ,使得k ααλα=为S 的上界,而()1k ααλαα-=-不是S 的上界, 即存在S α'∈使得()1k ααα'>- 分别取()11,2,3,n nα==,则对每一个正整数n ,存在相应的n λ,使得n λ为S 的上界,而1n nλ-不是S 的上界,故存在S α'∈,使得1n nαλ'>-又对正整数m ,m λ是S 的上界,故有m λα'≥.所以1m n n λαλ'≥>-,即有1m n m λλ-<.同理有1m n nλλ-<,于是得到11min ,m n m n λλ⎧⎫-<⎨⎬⎩⎭. 于是,对任意的0ε>,存在正整数N ,使得当,m n N >时有m n λλε-<.由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=现在证明λ就是S 的上确界.首先,对任何S α∈和正整数n ,有n αλ≤,有极限的保序性,lim n n αλλ→∞≤=,故λ是S 的上界其次,对于任意的0δ>,存在充分的的正整数n ,使得12n δ<并且2n δλλ>-. 由于1n n λ-不是S 的上界,所以存在S α'∈,并且1n nαλ'>-. 于是122n n δδαλλλδ'>->--=-.故λ就是S 的上确界. 27. Cauchy 收敛准则证明单调有界定理证明:设{}n x 是单调有界数列,不妨假设{}n x 单调递增有上界.若{}n x 发散,则又柯西收敛准则,存在00ε>,对一切正整数N ,存在m n N >>,使得0m n m n x x x x ε-=-≥. 于是容易得到{}n x 的子列{}k n x ,使得10k k n n x x ε+-≥.进而()101k n n x x k ε>+- 故()k n x k →+∞→∞,这与{}n x 是有界数列矛盾!所有假设不成立,即{}n x 收敛. 28. Cauchy 收敛准则证明区间套定理证明:设[]{},n n a b 为闭区间套.因为lim 0n n n a b →∞-=,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.29.Cauchy 收敛准则证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεαβ⊂⊂.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.30. Cauchy 收敛准则证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.下证ξ是S 的一个聚点.对任意的0ε>,存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεξεξε⊂=-+.故()();,U ξεξεξε=-+中包含了S 中无穷多个元素,由聚点的定义,ξ是S 的一个聚点.。
第七章关于实数集完备性的基本定理
其中 c1
a1
2
b1
. 那么 [a1,
c1], [c1,
b1 ]
中至少有一
个区间含有 S 的无限多个点. 记该区间为[a2, b2].
显然有[a1,b1] [a2 ,b2 ],
b2
a2
1 2
(b1
a1 )
下面来证明唯一性. 设 1 也满足
an 1 bn ,
返回
那么 1 bn an 0. 即 1 , 惟一性得证. 推论 设 {[an ,bn]} 是一个区间套, [an , bn ], n 1, 2, . 则任给 > 0, 存在 N, 当 n N 时,
M (ii) bn an 2n2 0 ; (iii) 每个闭区间[an, bn] 均含S 的无限多个点.
由区间套定理, 存在惟一的 [an , bn ], n 1, 2, .
由定理 1的推论 : 对于任意的正数 ,存在 N ,
当n N使
[an , bn ] U ( ; ),
个区间的端点上的值异号. 将这个过程无限进行
下去, 得到一列闭子区间
{ [an , bn] }, 满足:
(i) [an1, bn1] [an , b n ], n 1, 2, ;
(ii)
bn
an
ba 2n
0 , n ;
(iii) F (an )F (bn ) 0.
开区间所覆盖. 由区间套定理,存在惟一的 , 使 [an , bn ], n 1, 2, .
因 [a1, b1], H 覆盖了[a, b], 故存在 ( , ) H , 使 ( , ). 由定理 7.1推论,当n充分大时有
实数完备性基本定理的相互证明(30个)
2)
bn-an =
我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯) 存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S
有上确界,设supS =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2, ⋯)显然 an ≤ξ,(n =1,2,⋯) 所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn ,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)
时有a - ε < aN ≤ an. 另一方面,由于a 是{ an}的一个上界,故对一切an 都有an ≤ a < a + ε.所以当 n≥ N 时有
a - ε < an < a + ε,
这就证得 an = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.ຫໍສະໝຸດ 2.确界原理证明区间套定理
证明:1 设 [an,bn] 是一个闭区间套,即满足: 1) ∀n,[an+1,bn+1]⊂[an,bn];
实数完备性基本定理的相互证明(30 个)
摘要:这 6 个定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互
等价的,即任取其中两个定理,它们可以相互证明。它们在证明过程中相互联系。对同一个定理的证明, 虽然不同的定理作为工具会使证明有简繁之分,有的用的是类似的证明方法,有的出发点与站的角度不同, 但最后却都能殊途同归。而有时使用同一个定理,也可能有不同的方法。即使方法相同,还可以有不同的 细节。作为工具,它们又各具特点。而这些都是值得我们去注意与发现。
唯一性: 假设还有另外一点 R 且 [an , bn ] ,则| || an bn | 0,
实数完备性定理相互等价的证明
易证。
因此,有。
由于 bn 都为 S 的上界,所以也为 S 的上界。
从而可知,。
即,故为 S 的上确界。
(38 定理定理 2(Cauchy 收敛准则单调有界定理证不妨设 {xn } 为单增有上界数列。
假设 {x n } 无极限,Cauchy 收敛准则可知,但是。
由 N 的任意性,不难得到 {x n } 的一个严格单增的子列 {xn k } ,满足。
由于时,有,故 {x n } 收敛。
所以当。
这与 {x n } 为有界数列矛盾, (39 定理定理 3(Cauchy 收敛准则区间套定理证设 {[ a n , bn ]} 是 Cantor 区间套。
则由可知,时,有。
由于{a n } 单调递增,{bn } 中的每一个元素都为 {a n } 的上界。
故,则有。
故由 Cauchy 收敛准则可知 {a n } 收敛,记其极限为。
由(3.1 易证。
由 {a n } , {bn } 的单调性可知有n , bn ] 。
(40 定理定理 4(Cauchy 收敛准则-Borel 有限覆盖定理证(反证法假设闭区间 [ a, b] 有一个开覆盖不能用它的任有限个开区间覆盖。
定义性质 P :不能用中有限个开区间覆盖。
仿(9的证明,利用二等分法容易构造出满足性质 P 的区间套 {[ a n , bn ]} 。
仿(39的证明可知,,从而,,有 [a n , bn ],这与 [a n , bn ] 具有性质 P 矛盾。
这就证明了 Heine–Borel 有限复盖定理。
(41 定理定理 5(Cauchy 收敛准则聚点原理证设 S 为直线上有界点集,则使得 S 。
定义性质 P : 至少含有 S 中的无限多个点。
利用二等分法容易构造出具有性质 P 的区间套 {[ a n ,bn ]} 满足(3.1 。
由性质 P 任意挑选 S 中不同的点构成的数列 {x n } 使得n , bn ] 。
,由(3.1和极限定义知,由定义知 {x n } 是 Cauchy 列。
第七章 实数的完备性
[ n , n ] U ( ; ). 从而 U ( ; ) 含有 S 的无
限多个点,即 是 S 的一个聚点。
推论 (致密性定理) 有界数列必有收 敛的子列。 证 设{ xn }为有界数列。若{ xn }中有无限
多个相等的项,则由这些项组成的子列是一 个常数列,而常数列总是收敛的。 若数列{ xn }中没有无限多个相等的项, 则{ xn }
则[a1 , b1 ] [a2 , b2 ],且
1 b2 a2 (b1 a1 ) M . 2
再将[a2 , b2 ]等分为两个子区间, 两个子 区间中至少有一个含有 S 的无限多个点, 记此 子区间为[a3 , b3 ],则[a2 , b2 ] [a3 , b3 ],且
1 M b3 a3 (b2 a2 ) . 2 2 将此等分子区间的工作无限地进行下
[an , bn ] U ( ; ).
区间套中要求各个区间都是闭区间, 才能保证定理结论的成立.
例 1 数列{an }收敛的充要条件是:对
0, N 0, n, m N 时有| an am | .
证 (必要性)设 lim an A. 由数列极
n
限的定义,对 0, N 0, n, m N 时有
从而证得必存在属于 H 的有限个开区间 能覆盖[a , b]。
三、实数完备性定理的等价性
实数连续性的六个基本定理: 确界原理(定理1.1) 单调有界定理(定理2.9) 区间套定理(定理7.1) 有限覆盖定理(定理7.3) 聚点定理(定理7.2) 柯西收敛准则(定理2.10)
1 2 3 4 5 6 1.
第七章
实数的完备性
§1
关于实数完备性的基本定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 确界原理非空有上(下)界数集,必有上(下)确界。
2 单调有界原理 任何单调有界数列必有极限。
3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。
4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。
5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
) 直线上的有解无限点集至少有一个聚点。
6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。
一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。
从而唯一性得证。
3.确界原理证明有限覆盖定理即闭区间[a,b]的任一开覆盖H 都有有限的子覆盖证① 令S ={x|a<x ≤b,[a,x]能被H 中有限个开区间覆盖}; ②显然S有上界因H 覆盖闭区间[a,b],所以,存在一个开区间(α,β)∈H 使a ∈(α,β)取x ∈(α,β),则[a,x]能被H中有限个开区间覆盖从而,x ∈S,故S 非空;③ 由确界原理存在ζ=supS;④ 现证ζ=b用反证法若ζ≠b,则a<ζ<b由H 覆盖闭区间[a,b],一定存在(α1,β1)∈H,使ζ∈(α1,β1)取x1,x2使α<x1<ζ<x2<β1 ,且x1∈S则[a,x1]能被H 中有限个开区间覆盖,把(α1,β1)加进去,就推得x2∈S这与ζ =sup S 矛盾,故ζ=b,即定理结论成立4.确界原理证明聚点定理证 设S 是直线上的有界无限点集,则由确界原理有S S inf ,sup ==ξη。
若ξη,中有一点不是S 的孤立点,则显然就是S 的一个聚点。
否则,令S R x E ∈={:中仅有有限个数小于}x 。
显然E 非空且有上界。
令E sup ='η,则由E 的构造方法可知,0>∀ε必有∉+'εηE ,即S 中有无限个数小于εη+'大于η'。
所以),(εηεη+'-'中含有S 的无限个数,故η'是S 的聚点。
5.确界原理证明Cauchy 收敛准则即数列{xn}收敛 ∀ε>0,∃N,当n,m >N 时有|xn-xm|<ε 必要性:略充分性:① 构造非空有界数集S,因为欲证明数列{xn}收敛,故数集S 必须含有数列{xn 中的无限多个数,为此,令S = x|{(-∞,x)∩{xn}是空集或有限点集}; ②由于满足Cauchy 收敛准则充分条件的数列是有界的,故知数列{xn}的下界a∈S,上界b也是S 的上界,所以S 是非空有上界的数集由确界原理数集S 有上确界ζ=sup S;③ 对ε>0,(-∞,ζ)∩{xn}是无限点集,否则,就与ζ=sup S矛盾 因(-∞,ζ-ε)∩{xn}至多含有{xn}的有限多个点故(ζ-ε,ζ+ε)含有{xn}的无限多个点设xnk∈(ζ-ε,ζ+ε),k=1,2,⋯,且n1<n2<⋯取N1=max{N,n1},则当n>N1时,总存在nk>N1使xn-ζ≤|xn-xnk|+|xnk-ζ|<2ε,因此xn=ζ.二.单调有界定理6.单调有界定理证明确界定理证:我们不妨证明非空有上界的数集S必有上确界(1).欲求一实数使它是非空数集S的上确界利用非空有上界的数集S,构造一数列使其极限为我们所要求的实数选取性质p:不小于数集S中的任一数的有理数将具有性质p的所有有理数排成一个数列{rn},并令{xn}=max{r1,r2,⋯,rn},则得单调递增有上界的数列{xn};(2) 由单调有界定理得,ζ=xn,且对任意的自然数n有rn≤xn≤ζ;(3) ζ是数集S的上确界. 用反证法,若有数x0∈S使x0>ζ,取ε=(x0-ζ)/2,则存在一个有理数rN,使ζ≤rN<ζ+ε=(x0+ζ)/2<(x0+x0)/2=x0,从而rN<x0,这与rN是数集S的上界矛盾所以对一切x∈S,都有x≤ζ,即ζ是数集S的上界.任给ε>0,若∀x∈S,都有x≤ζ-ε,则存在有理数r′,使ζ-ε<r′<ζ,即x≤ζ-ε<r′<ζ,我们就找到r′∈S这与(若∀x∈S,都有x≤ζ-ε)矛盾,所以存在x′∈S,使x′>ζ-ε,即ζ是数集S的最小上界于是,我们证明了所需结论.7.单调有界定理证明区间套定理若{[ a n, b n]}是一个区间套,则在实数系中存在唯一的一点ξ,使得ξ∈[ a n, b n], n = 1,2,⋯,即a n ≤ξ≤b n, n = 1,2,⋯. (1)证:{ a n}为递增有界数列,依单调有界定理,{ a n}有极限ξ,且有a n ≤ξ, n = 1,2,⋯. (2)同理,递减有界数列{ b n}也有极限,并按区间套的条件有b n = a n = ξ, (3)且b n ≥ξ, n = 1,2,⋯. (4)联合(2)、(4)即得(1)式.最后证明满足(2)的ξ是唯一的.设数ξ′也满足a n ≤ξ′≤b n, n = 1,2,⋯,则由(1)式有| ξ- ξ′|≤ b n - a n, n = 1,2,⋯.由区间套的条件得| ξ- ξ′|≤(bn-an)=0故有ξ′= ξ.8.单调有界定理证明有限覆盖定理,即闭区间[a,b]的任一开覆盖H都有有限的子覆盖证: (1)设有理数r∈(a,b],使闭区间[a,r]能被H中有限个开区间覆盖把[a,b]上的这种有理数的全体排成一个数列{rn},因为存在一个开区间(α,β)∈H使rn∈(α,β),在(α,β)∩[a,b]内含有无穷多个有理数,所以{rn}是存在的;(2)将数列{rn}单调化,取xn=max{r1,r2,⋯,rn},则数列{xn}单调递增有上界;(3) 由单调有界定理得,ζ=xn且rn≤xn≤ζ,n=1,2,⋯;(4) 因xn∈[a,b],n=1,2,⋯,由(3)得ζ∈[a,b],故ζ必在H中的某个开区间(α1,β1)中再由(3),一定有rN∈{rn},使α1<rN≤ζ又由①[a,rn]能被H中有限个开区间覆盖故只需把(α1,β1)加进去[a,ζ]能被H中有限个开区间覆盖若ζ=b,则说明[a,b]能被H中有限个开区间覆盖用反证法若ζ<b,由于[a,b]内的有理数在[a,b]上处处稠密,故一定存在有理数r′,使得ζ<r′<min{β,b},这样一来,[a,r′]能被H中有限个开区间覆盖,故r′∈{rn},与(3)矛盾所以,ζ=b。
9.单调有界定理证明聚点定理证明:设S是一有界无限点集,则在S中选取一个由可数多个互不相同的点组成的数列{an},显然数列{an}是有界的下面我们从{an}中抽取一个单调子列,从而由单调有界定理该子列收敛,最后我们证明该子列的极限值,就是有界无限点集S的聚点分两种情况来讨论1)如果在{an}的任意一项之后,总存在最大的项(因S是有界的且{an}S,这是可能的),设a1后的最大项是an1;an1后的最大项是an2,且显然an2≤an1;一般地,ank后的最大项记为ank+1≤ank,(k=1,2,⋯)这样,就得到了{an}的一个单调递减的子数列{ank},因为{an}有界,根据单调有界定理知,{ank}收敛2)如果1)不成立即从某一项以后,任何一项都不是最大的(为证明书写简单起见,不妨设从第一项起,每一项都不是最大项)于是,取an1=a1,因an1不是最大项,所以必存在另一项an2>an1(n2>n1),又因为an2也不是最大项,所以又有an3>an2(n3>n2),⋯⋯这样一直作下去,就得到{an}的一个单调递增的子列{an},且有上界,根据单调有界定理知,{an}收敛,总之不论{an}属于情形1)还是情形2),都可作出{an}的一个单调收敛的子列设ank=a,今证a是S的聚点。
对ε>0,存在自然数K,使得k>K时,a-ε<ank<a+ε,若这时{ank}单调递减,ank+1<a+ε(k>K)且ank+1≠a,ank+1∈S,即a的ε邻域内含有S中异于a的点,故a是S的聚点。
{ank}单调递增时,类似可证。
10.单调有界定理证明Cauchy收敛准则必要性:略充分性:先证明柯西数列{}是有界的。
取ε=1,因{}是柯西数列,所以存在某个正整数No,当n>No时有||,亦即当n>No时||≤||+1即{}有界。
不妨设,我们可用如下方法取得{}的一个单调子列{}(1)取{}∈{}使[a,]或[,b]中含有无穷多的{}的项(2)在[a,]或[,b]中取得∈{}且满足条件(1)并使,然后就有不断地进行(1),(2)得到一单调递增的子列因为∈{},而{}是一个单调有界数列,由单调有界定理知收敛,设| | (1)下证{}收敛于a因为=a 则对∀ε 0∃正整数K,当k>K时,| |另一方面由于{}是柯西列,所以ε存在正整数N,当,>时有| |<由(1)就可得当有| |所以当n>max()时||≤| |+| |<ε故{}收敛于a三.区间套定理11.区间套定理证明确界原理即非空有上界的数集S必有上确界,非空有下界的数集S必有下确界证:仅证明非空有上界的数集S必有上确界(1) 要找一数ζ,使其是数集S的上确界ζ是S的上确界就要满足上确界定义中的两个条件:大于ζ的数不在S中,ζ的任何邻域内有S中的点这两条即为性质p.如果ζ在闭区间[a,b]中,则闭区间[a,b]应有性质:任何小于a的数不在S中,[a,b]中至少含有S中的一个点,该性质即为取S的上界为b,且b∈/S,取a∈S,a<b,则闭区间[a,b]有性质;(2) 将闭区间[a,b]等分为两个闭区间,则至少有一个闭区间[a1,b1]也有性质p,如此继续得一闭区间列,满足[a,b]⊃[a1,b1]⊃…⊃[an,bn]⊃…;bn-an =(bn-an) (3)由区间套定理的得ζ属于所有的闭区间[an,bn],n=1,2,…,并且每个闭区间[an,bn]都有性质(4)因为an≤ζ≤bn ,n=1,2,…,且 (bn-an)故bnan 由于对∀x S,有x ≤bn ,从而x ≤b=ζ;又对∀ε 0,总存在N,使得ζ-ε aN 故存在 S ⋂[aN ,bN ],于是 ζ-ε. 因而ζ=sups12. 区间套定理证明单调有界定理 2设{xn}是单调有界数列,不妨设其为单调递增且有上界b1现在我们来构造一个闭区间套在{xn}中任取一项记作a1,这时a1<b1,于是,以a1和b1为端点的闭区间[a1,b1]内一定含有数列{xn}中的无限多项将区间[a1,b1]二等分,得闭区间[a1,a1+b1 ],[a1+b1,b1], 由于{xn}单调递增,故[a1,a1+b1 ]和[a1+b1,b1]中只有一个包含{xn}的无限多项,我们记该区间为[a2,b2]再将[a2,b2]二等分,在所得区间中只有一个包含{xn}的无限多项,记该区间为[a3,b3]如此继续,得一闭区间列:[a1,b1],[a2,b2],⋯,[an,bn],⋯,满足[an+1,bn+1]⊂[an,bn],(n =1,2,⋯);(bn-an) 故 [an,bn] 是一个闭区间套,由闭区间套定理,存在唯一实数ζ,使得 ζ∈[an,bn],(n =1,2,⋯)现在证明 xn =ζ 因(bn-an) ,故对ε>0,存在自然数N′,当n >N′时,|bn-an|<ε另外,由于[an,bn]包含递增数列{xn}的无限多项,所以必存在N″,当n >N″时,有an ≤ζ≤bn,取N =max{N′,N″},当n >N 时有|xn-ζ|<bn-an|<ε, 此即xn =ζ13. 区间套定理证明有限覆盖定理即闭区间[a,b]的任一开覆盖H 都有有限的子覆盖证1用反证法(1)要证明的整体性质p是:闭区间[a,b]能用H 中的有限个开区间覆盖.与p相反的性质 是:闭区间[a,b]不能用H中的有限个开区间覆盖;(2) 假设闭区间[a,b]有性质 将闭区间[a,b]等分为两个闭区间,则至少有一个闭区间[a1,b1]也有性质 否则,[a,b]有性质p如此继续得一闭区间列,使每个闭区间都有性质,且[a,b]⊃[a1,b1]⊃…⊃[an,bn]⊃…;(bn-an)=(bn-an) (2)由闭区间套定理得数ξ属于所有的闭区间[an,bn],n=1,2,⋯,并且每个闭区间[an,bn]有性质 ;④ 由ζ∈[a,b]和H 是[a,b]的开覆盖,有ζ属于H 中的某个开区间 ζ ⋂[an,bn] ⊂( ), 和∞(bn-an)可知,存在自然数m,使[am,bm]⊂(α1,β1)这与[am,bm]具有性质矛盾14. 区间套定理证明聚点定理证明(反证法):已知b a ,∃,使b x a n ≤≤。