二次根式(1)-PPT课件

合集下载

人教版八年级数学下册16.1二次根式第一课时优质课件.ppt

人教版八年级数学下册16.1二次根式第一课时优质课件.ppt
解:由 X-2 ≥0, 得x≥ 2
当 x≥ 2 时, x 2 在
实数范围内有意义.
练一练 当a是怎样的实数时,下列的各 式在实数范围内有意义?
三、研学教材
⑴ a 1 ;
解:由 a-1 ≥0,得a ≥ 1 .
当a ≥ 意义.
1 时, a 1 在实数范围内有
(2) 2a 3
解:由 2a+3 ≥0,得a ≥ -1.5 .
2、二次根式的意义
当x ≥0 时, x 在实数范围内有意义.
我相信,只要大家勤 于思考,勇于探索,一定 会获得很多的发现,增长 更多的见识,谢谢大家, 再见!
二次根式(1)
一、学习目标
1、理解二次根式的概念; 2、理解二次根式中被开方数在实数范
围内有意义的条件.
二、新课引入
1、填空:
一个正数有 2个 平方根,它们 互为相反数 ; 0的平方根是 0 ;负数 没有平方根.
2、下列各式是否有意义,为什么?
⑴ 3
⑶ (3)2
;⑵ ;⑷
3 ;
1 102 .
(1). 3
二次根式 ③因为-5小于0,所以 5 不是二
次根式
三、研学教材
2、下列式子中,是二次根式的是
(A )
A.— 7 B.3 7 C. x D.x
3、下列式子中,不是二次根式的是
(D )
A. 4
B.16 C. 8
D.1
x
三、研学教材4、已知一个正方形的面源自是5,那么它的边长是( B
A.5 B. 5
)C.15
当a ≥ -1.5 时, 2a 3 在实数范
围内有意义.


a
解:
由 -a ≥0,得a ≤ 0

八年级数学下册 1.1 二次根式课件(1) (新版)浙教版

八年级数学下册 1.1  二次根式课件(1) (新版)浙教版
知识回顾
什么叫做平方根? 一般地,如果一个数的平方等于a,那
么这个数叫做a的平方根。
什么叫算术平方根? 正数的正平方根和零的平方根,统称算术平方根。
用 a (a 0)表示.
50米 ?米
a米
塔座所形成的这个直角三角形的
斜边长为____a_2___2_5__0_0__米。
S
圆形的下球体在平面图上的面积为S,
(1) x 1 x 1 (2) 3x x 0
(3) 4x2 x为全体实数 (4) 1 x
(5) x3
x0
(6)
1 x2
x0
x0
求下例二次根式中字母a的取值范围:
(1) 3a 2
(2) 1 1 2a
解:由题意得,
3a 2 0
a2 3
解:由题意得,
1 1 2a
0
1 2a 0
1 2a 0
?
若a.b为实数,且 | 2 a | b 2 0
求 a2 b2 2b 1的值。
解: 2 a 0, b 2 0
?
而 2a b2 0
2 a 0, b 2 0
a 2, b 2
原式 a2 b 12 a2 b 12 2 1 3
1.若 (a 5)2 (2b 3)2 =0,则 ab2 =_____。
注意:为了方便起见,我们把一个数的算术平方根 也叫做二次根式。如 3, 1
2
思考: a 1 是不是 二次根式?
不是,它是 二次根式 的代数式.
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号
4. a≥0, a ≥0 ( 双重非负性)
求x的值.

二次根式ppt课件

二次根式ppt课件

02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。

《二次根式(1)》系列课件ppt

《二次根式(1)》系列课件ppt
课前导入
重点 会求二次根式中,被开方数所含字母的取值范围。 难点 理解二次根式的概念。 关键 利用“ (式子填空,看看写出的结果有什么特点:
1.面积为3的正方形的边长为 ,面积为S的正方形的边长为 . 2.一个长方形的围栏,长是宽的2倍,面积为130m2,则它的宽为 m. 3.一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2 .如果用含有h的式子表示t,那么t = .
课前导入
1.所填的结果有什么特点? 2.平方根的性质是什么? 3.如果把上面所填式子叫做二次根式,那么你能用数学符号表示二次根式吗?
知识讲解
形如 的式子叫做二次根式。 a 叫被开方数. “ ”称为二次根号.
知识讲解
例1 当x是怎样的实数时, 在实数范围内有意义?
2.在平面直角坐标系中,A(2,3)、B(5,3)、C(2,5)是三角形的三个顶点,求BC的长。
练习
拓展探索
1. 当 x 是多少时, + 在实数范围内有意义?
2.已知 y = + + 5,求 的值.
1.二次根式的定义及被开方数的取值范围; 2.被开方数的取值范围在计算中经常作为隐含条件给出,注意合理应用.
本节课你学到了什么知识?你有什么认识?
小结
±7
3
0
≥1
-1
a≤-1
C
A
练习
D
B
-1
5,-4
练习
C
D
5
练习
作业
解 由 ,得
∴当 实数时, 在实数范围内有意义。
知识讲解
当x是怎样的实数时, 在实数范围内有意义? 呢?

二次根式ppt课件

二次根式ppt课件

通过案例讲解二次根式在实际问 题中的应用
分析数学模型和实际问题之间的 关系
课程安排
4. 课堂练习和总结(10分钟)
提供课堂练习,检验学生对所 学内容的掌握情况
总结本节课的重点和难点,进 行回顾和总结
PART 02
二次根式的基本概念
二次根式的定义
总结词:非负数
详细描述:二次根式是指根号内含有未知数的数学表达式,它必须满足被开方数为非负数,否则没有 意义。
要点二
培养学生的数学思维和解决问题 的能力,例如
让学生自己设计一个与二次根式相关的问题并解决它等。
PART 06
总结与回顾
主要知识点回顾
二次根式的定义
二次根式是一种可以用来解决各 种实际问题的数学工具,它表示 一个非负数通过开方得到的平方
根。
二次根式的性质
二次根式具有非负性、有界性、正 值性等性质,这些性质在解决实际 问题时具有重要的应用价值。
PART 04
二次根式的应用
代数领域的应用
01
02
03
根式与方程的解
通过二次根式,我们可以 求解一元二次方程的解, 确定其实数根和虚数根。
根式的化简
在代数运算中,对根式进 行化简可以简化表达式, 提高运算效率。
根式与不等式
利用根式可以求解一元二 次不等式,通过确定不等 式的解集,解决实际问题 。
- \sqrt{3}$等。
解决与二次根式相关的实际问题,例如 :计算圆的面积或周长等。
掌握和运用二次根式的运算法则和公式 ,例如:$(a+b)\sqrt{a} = a\sqrt{a}
+ b\sqrt{a}$等。
综合练习题
要点一
通过综合题目,考察学生对二次 根式的全面理解和运用,例如

15.1 二次根式 - 第1课时课件(共17张PPT)

15.1 二次根式 - 第1课时课件(共17张PPT)
新知探究
知识点1 二次根式的概念
一起究
1.(1)2,18,(2)非负数m,p+q,t2-1的算术平方根又是怎样表示的?
2.学校要修建一个占地面积为S ㎡的圆形喷水池,它的半径应为多少米?如果在这个圆形喷水池的外围增加一个占地面积为a ㎡的环形绿化带,那么所成的大圆的半径应为多少米?
一般地,我们把形如 的式子叫做二次根式.
15.1 二次根式第1课时
第十五章 二次根式
学习目标
1.了解二次根式的概念.2.能根据二次根式的意义确定被开方数中字母的取值范围.3.掌握二次根式的双重非负性及其应用.
学习重难点
掌握二次根式的概念.
难点
重点
掌握二次根式的双重非负性及其应用.
复习巩固
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.正数a的算术平方根是
二次根式特征
1.外貌特征:含有“ ”.2.内在特征:被开方数3.内在特征:a可以是数,也可以是含有字母的式子.
知识点2 二次根式的几个性质
例题解析
例1 化简:
随堂练习
C
A
A
3.下列计算正确的是( ).
拓展提升
D
3.做一个面积为300 cm3的长方形镜框,使它长与宽的比为3:2.镜框的宽应为多少厘米?
归纳小结
二次根式
定义
性质
同学们再见!
授课老师:
时间:2024年9月15日

《二次根式》PPT课件 (共31张PPT)

《二次根式》PPT课件 (共31张PPT)

练习:
x取何值时,下列二次根式有意义?
(1) x 1
x 1 (2) 3x
x0
(3) 4 x
2 x为全体实数
(5) x
3
x0
1 a< 2
1 (4) x
x0
1 (7) 1 2a
1 (6) x0 2 x 3 x (8) | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
2 2
x=5,y=11
(2 x - y)
2011
=- 1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、( a) =a (a 0)
2
2、( a )=|a| =
2
a (a>0) 0 (a=0)
-a (a<0)
( a ) 与 a 有区别吗?
2
2
( a) 与 a
1:从运算顺序来看,
2
2
a
a
2
2
先开方,后平方
先平方,后开方
2.从取值范围来看, 2 a≥0 a

a
2
a取任何实数
3.从运算结果来看:
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
二次根式的双重非负性
a 吵0, a 0.
二次根式的性质

《二次根式》PPT课件(第1课时)

《二次根式》PPT课件(第1课时)

《二次根式》PPT课件(第1课时)
人教版八年级数学下册《二次根式》PPT课件(第1课时),共30页。

学习目标
1. 理解二次根式的概念.
2. 掌握二次根式有意义的条件,能运用二次根式的概念求被开方数中字母的取值范围.
3. 会利用二次根式的双重非负性解决相关问题.
探究新知
二次根式的定义和有意义的条件
根据你的理解,猜想一下二次根式的定义应该有哪些条件?
我们知道,一个正数有两个平方根;
0的平方根为0;
在实数范围内,负数没有平方根.
因此,在实数范围内开平方的时候,被开方数只能是正数或0.
利用二次根式有意义的条件求字母的取值范围
当x是怎样的实数时,√x-2在实数范围内有意义?
归纳小结:要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不等式求解即可.若二次根式为分式的分母时,应同时考虑分母不为零.
被开方数是多项式时,需要对组成多项式的项进行恰当分组凑成含完全平方的形式,再进行分析讨论.
二次根式有意义的条件应用的不同类型:
(1)单个二次根式如√A有意义的条件:A≥0;
(2)二次根式作为分式的分母如B/√A有意义的条件:A>0;
二次根式的双重非负性
二次根式√a的被开方数a的取值范围是什么?它本身的取值范围又是什么?
课堂小结
二次根式的定义
形如√a (a≥0)的式子叫做二次根式
在有意义条件下求字母的取值范围
抓住被开方数必须为非负数,从而建立不等式或不等式组求出其解集二次根式的双重非负性
二次根式√a中,a≥0且√a≥0
... ... ...
关键词:二次根式PPT课件免费下载,.PPTX格式;。

《二次根式》实数PPT课件(第1课时)

《二次根式》实数PPT课件(第1课时)
(来自《点拨》)
例知6识化点简: (1) 363;(2) 0.72;(3) 33 5(5).
知3-讲
导引:若被开方数是小数,则先将其化为分数,再化简.
解:(1) 363 121 3 121 3 11 3 .
72 72 36 2 6
3
(2) 0.72
2 2.
100 100ຫໍສະໝຸດ 102 10(6)是.理由:因为x2+2x+2=x2+2x+1+1=(x+1)2+1>0,且
x 2 2 x 2 的根指数为2,所以 x 2 2 x 2 是二次根式. (7)是.理由:因为|x|≥0,且 x 的根指数为2,所以 x 是二次根
式.
(来自《点拨》)
总结
知1-讲
二次根式的识别方法:判断一个式子是否为二次根 式,一定要紧扣二次根式的定义,看所给的式子是 否同时具备二次根式的两个特征: (1)含根号且根指数为2(通常省略不写); (2)被开方数(式)为非负数.
解:(1)不是.理由:因为 3 64 的根指数是3,所以 3 64不是二次根
式.
(2)是.理由:因为不论x为何值,都有x2+1>0,且 x 2 1 的根指数为2,所以 x 2 1 是二次根式.
知1-讲
(3) 5a
(3)不一定是.理由:当-5a≥0,即a≤0时, 5a 是二次
根式;当a>0时,-5a<0,则 5a 不是二次根
第二章 二次根式
2.7 二次根式
第1课时
1 课堂讲解
2 课时流程
逐点 导讲练
下载
/shiti
/
教案
下载
/jiao
an/
PPT
论坛
二次: 根式的定义
www
二次.1p根pt 式的性质

《二次根式》PPT(第1课时)

《二次根式》PPT(第1课时)
,我们知道:
(1)a为被开方数,为保证其有意义,可知a≥0;
(2)
a
表示一个数或式的算术平方根,可知
二次根式的被开方数非负
二次根式的双重非负性
二次根式的值非负
a
≥0.
典例精析
例3

a2
b 3 (c 4) 2 0,
求a -b+c的值.
解: 由题意可知 a-2=0,b-3=0,c-4=0,
在学习中,我们会遇到这样的表达式:
问题: 这些式子有什么共同特征?
①根指数都为2;
②被开方数为非负数.
2, S

h
5

归纳总结
一般地,我们把形如
a ( a 0)
的式子叫做二
次根式. “
”称为二次根号.
注意:a可以是数,也可以是式.
①外貌特征:含有“

两个必备特征
②内在特征:被开方数a ≥0
典例精析
(2) − 2 − 2 − 3.
解:(1)∵无论x为何实数,− 2 + 2 − 1 = − − 1
2
≤ 0,
∴当x=1时, − 2 + 2 − 1在实数范围内有意义.
(2)∵无论为何实数,- 2-2-3=-(+1)2-2<0,
∴无论 为何实数,
− 2 − 2 − 3
在实数范围内都无意义.
1 − 1;
(2ሻ 2 + 3
3
解: (1ሻ ∵ −1 ≥ 0, ∴ ≥ 1.
3
(2ሻ ∵ 2 + 3 ≥ 0, ∴ ≥ − .
2
3 ∵ − ≥ 0, ∴ ≤ 0.
(4ሻ ∵ 5 − >0, ∴ <5.

二次根式(第1课时) 课件ppt--初中数学

二次根式(第1课时) 课件ppt--初中数学
长光临!
台州双语学校
a12?3 4 2
a3
b-3
S
如图示的值分别表示正方形和圆的面积,则
正方形的边长是 b 3
圆的半径长是
形如 a (a 0)的式子叫做二次根式.
凭着你已有的知识, 说说对二次根式 a 的认识,好吗?
?
形如 a (a 0)的式子叫做二次根式.
1. a可以是数,也可以是式.
2. 形式上含有二次根号
3. a≥0, a≥0
4.既可表示开方运算,也可表示运算的结果.
说一说: 下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
?
例1 a取何值时,下列根式有意义?
?
已知y 2 x x 2 5,

y x
5___Leabharlann _2-X≥0X-2≥0
x ≤2 x≥2
∴x=2, Y=5
?
( 2003年·河南省)实数p在数轴上的位
置如图所示,化简 (1 p)2
2
2 p
1 p (2 p)
p 1 2 p
1
12 n为一个整数, 求自然数n的值.
在实数范围内分解因式:4 x2 - 3
练习:用心算一算:
1 25 5 2 72 7
33
2
2
18
4
1
2
2
2 1
5 x2 2xy y2 y x (x﹤y)
通过这节课的学习, 谈谈你掌握了什么?
祝你成功!
已知 1 有意义,那A(a, a
在 二 象限.
∵由题意知a<0 ∴点A(-,+)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、商的算术平方根等于被除式的算术平方根除以除式的算术 平方根.
小试牛刀:
例1:化简
5
(1) 81 64 (2) 25 6 (3)
9
(4) 1 3
解:(1) 81 64 81 64 9 8 72
(2) 25 6 25 6 5 6
(3) 5 5 5
9
93
(4) 1 1 3 3 3 3 3 3
(2)将二次根式化成最简二次根式,你有哪 些经验与体会?与同伴进行交流。
随堂练习:
化简: (1) 32; (2) 72; (3) 12;
7 (4)1.5; (5)1 。
5
通过这节课的学习, 谈谈你掌握了什么?
祝你成功!
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
121
共同特征: 都含有开方运算,并且被开方数都是非负数.
概念归纳:
一般地,形如 a (a 0)的式子叫做二次根式.
二次根式必须具备特点:
1、根指数为2. 2、被开方数必须是非负数.
火眼金睛:
请指出下列哪些是二次根式?
1 5 √
2 3 ×
33 21 × 4 b b 0 √
5 a 2a 2√ 6 a bab ×
14
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日
ቤተ መጻሕፍቲ ባይዱ
2

12

15

14 7

45 中是最简二次根式的有( )个.
巩固练习:
例2:(1) 50;(2) 2;(3)2
7
5
解: (1) 50 25 2 25 2 5 2
(2) 2 2 2 7 14 7 7 7 7 7
2
(3)
2
5
2
5
5 5 5 5
议一议:
(1)你是怎么发现 50含有开得尽方的因数? 你是怎么判断 14 是最简二次根式的? 7
2.7 二 次 根 式
X
学习目标:
1、了解二次根式、最简二次根式的概 念,并能判断一个式子是否为二次根式 和最简二次根式; 2、探索二次根式的性质,并能利用二 次根式的性质将二次根式化为最简二 次根式的形式.
X
探究新知:
观察下列代数式:
(1) 5
(2) 11
(3) 7.2
(4) 49 (5) (c b)(c b) (其中b=24,c=25)
观察例一的化简结 果(关键看被开方 数),想一想有什 么共同特征?
概念归纳:
最简二次根式概念:
一般地,被开方数不含分母,也不含能开得尽方的 因数或因式,这样的二次根式,叫做最简二次根式.
最简二次根式特点: 1、被开方数不含分母; 2、被开方数不含能开得尽方的因数或因式; 3、分母不含根号.
下列二次根式: 5 ;
73 5m2 ×
8 x2 1 √
做一做:
一、计算下列各式,你能得到什么猜想?
(1) 4 9 36 6
(3)
4 2 93
(2) 4 9 2 3 6
(4)
4 9
2 3
ab a • b (a 0, b 0)
1、积的算术平方根等于积中各因式的算术平方根的积;
a b
a (a 0, b 0) b
相关文档
最新文档