线性规划的软件求解(精选)

合集下载

2.线性规划问题的计算机求解(QSB)

2.线性规划问题的计算机求解(QSB)

§2 WinQSB软件求解线性规划
注意 2. 当约束条件中的常数项增加一个单位时, 最优目标函数值增加的数量称之为影子价 格。在求目标函数最大时,当约束条件中 的常数项增加一个单位时,目标函数值增 加的数量就为改进的数量,所以影子价格 等于对偶价格;在求目标函数值最小时, 改进的数量就是减少的数量,所以影子价 格即为负的对偶价格。
§2 WinQSB软件求解线性规划
§2 WinQSB软件求解线性规划
• 输入数据. 若选择“Spreadsheet Matrix Form”,则以电子表格形式 输入变量系数矩阵和右端常向量,如表2.30所示; 若选择Normal Model Form则以自由格式输入标准模型, 见图2.10.
表2.30 电子表格数据输入形式
§2 WinQSB软件求解线性规划
图2.10 自由格式输入标准模型
• (4)修改变量类型. 图2.9给出了非负连续、非负整数、0-1型和无符号限制( 无约束)4种变量类型选项,当选择了某一种类型后系统 默认所有变量都属于这种类型. 在本例中,可直接将列中的下界(Lower Bound)改为5 ,上界(Lower Bound)改为10. 见图2.11所示.
18
§2 WinQSB软件求解线性规划

注意:
3. WinQSB软件可以解决非大型的线性规 划问题。如果想要解决更大的线性规划问 题,可以使用由芝加哥大学L.E.Schrage 开发的Lindo计算机软件包的微型计算机 版本Lindo/PC。
19
§2 WinQSB软件求解线性规划
• 练习 用WinQSB软件求解第二章中例1和例2. 例1. Max z = 50 x1 + 100 x2 s.t. x1 + x2 ≤ 300 2 x1 + x2 ≤ 400 x2 ≤ 250 x1 , x 2 ≥ 0

线性规划Lindo软件-整数规划

线性规划Lindo软件-整数规划

定制化不足
对于特定领域的整数规划问题, 可能需要针对具体问题对软件进 行定制化开发。
未来研究的方向与展望
算法改进
随着计算技术的发展,未来可以进一步优化 Lindo软件的算法,提高求解速度和精度。
扩展应用领域
随着整数规划问题的多样化,未来可以进一步拓展 Lindo软件的应用领域,如金融、物流、能源等领 域。
整数规划的求解方法
分支定界法
通过不断分割可行解空间和排除不可行解空 间来逼近最优解。
割平面法
通过逐步构建整数解来逼近最优解,适用于 小规模问题。
回溯法
通过添加割平面来缩小可行解空间,最终找 到最优解。
Lindo软件求解法
使用Lindo软件进行整数规划求解,具有高效 、稳定、易操作等优点。
04
使用Lindo软件进行整数规划
在求解结果查看界面中,可以查看问题的最优解、最优值、变量取值等信 息。
可以使用软件提供的图表功能,绘制变量取值与目标函数之间的关系图, 以便更好地理解问题的解。
05
案例分析
案例一:简单的整数规划问题
问题描述
01
考虑一个简单的整数规划问题,目标是最小化目标函数,同时
满足一系列线性约束条件。
解决方案
• 易用性:用户界面友好,操作简单,无需复杂的编程知识 即可使用。
Lindo软件在整数规划中的优势与限制
依赖性
Lindo软件的功能和性能高度依赖 于计算机硬件配置,高性能计算 机是求解大规模问题的必要条件。
模型限制
对于某些特殊类型的整数规划问 题,如非凸或非线性问题,Lindo 软件的求解效果可能有限。
在约束条件设置界面中,根据问题数据设置相 应的约束条件,如“less than”、“equal to”或“greater than”。

运用Lingo和Matlab软件求解线性规划问题比较

运用Lingo和Matlab软件求解线性规划问题比较

运用Lingo和Matlab软件求解线性规划问题比较运用Lingo和Matlab软件求解线性规划问题的比较研究摘要:本文就一个给定的线性规划模型,通过介绍优化软件lingo和科学计算软件matlab中求解线性规划问题的命令和函数,指出lingo软件在求解线性规划问题上占有一定优势。

关键词:线性规划 lingo软件 matlab软件最优解线性规划由前苏联经济学家康托洛维奇提出,它主要研究的是在线性等式(或不等式)约束条件下,使某一线性目标函数取得最大值(或最小值)的问题。

随着计算机技术的发展,借助软件可以快速对线性规划问题进行求解和分析。

目前,能够求解规划问题的数学软件比较多,常见的有优化软件lingo和科学计算软件matlab。

本文以如下线性规划为例,分别利用这二种软件来求解,并就它们在求解线性规划上的差异进行对比分析。

minz=10.8x11+10.95x12+11.1x13+11.25x14+11.1x22+11.25x23+11.4x24+11x33+11.15x34+11.3x44;s.t.x11+x12+x13+x14”“x(3,1) 0.000000x(3,2) 0.000000x(3,3) 25.00000x(3,4) 5.000000x(4,1) 0.000000x(4,2) 0.000000x(4,3) 0.000000x(4,4) 10.00000显然最优解同上,只是输出格式不同而已。

2 matlab求解线性规划2.1 matlab软件简介目前,matlab提供了四十多个工具箱,这些工具箱专门针对某些具体应用领域。

matlab优化工具箱中提供了linprog函数来求解线性规划问题。

2.2 matlab求解线性规划的命令介绍 matlab中一般使用“[ ]”、“,”或空格以及“;”来创建数组,“[ ]”中给出数组的所有元素,同行间的元素用“,”或者空格隔开,不同行之间用分号“;”隔开,并且用符号“?”置于矩阵右上角表示矩阵的转置运算。

线性规划问题的Lingo求解

线性规划问题的Lingo求解

Lingo中参数设置与调整
01
参数设置
02
调整策略
Lingo允许用户设置求解器的参数, 如求解方法、迭代次数、收敛精度等 。这些参数可以通过`@option`进行 设置。
如果求解过程中遇到问题,如无解、 解不唯一等,可以通过调整参数或修 改模型来尝试解决。常见的调整策略 包括放松约束条件、改变目标函数权 重等。
02
比较不同方案
03
验证求解结果
如果存在多个可行解,需要对不 同方案进行比较,选择最优方案。
可以通过将求解结果代入原问题 进行验证,确保求解结果的正确 性和合理性。
感谢您的观看
THANKS
问题,后面跟随线性表达式。
02 03
约束条件表示
约束条件使用`subject to`或简写为`s.t.`来引入,后面列出所有约束条 件,每个约束条件以线性表达式和关系运算符(如`<=`, `>=`, `=`, `<`, `>`)表示。
非负约束
默认情况下,Lingo中的变量是非负的,如果变量可以为负,需要使用 `@free`进行声明。
问题的解通常出现在约束条件的边界上 。
变量通常是连续的。
特点 目标函数和约束条件都是线性的。
线性规划问题应用场景
生产计划
确定各种产品的最优生产量, 以最大化利润或最小化成本。
资源分配
在有限资源下,如何最优地分 配给不同的项目或任务。
运输问题
如何最低成本地将物品从一个 地点运输到另一个地点。
金融投资
03
求解结果
通过Lingo求解,得到使得总加工时间最短的生产计划安 排。
运输问题优化案例
问题描述
某物流公司需要将一批货物从A地运往B地,可以选择不同的运输方式和路径,每种方式和路径的运输时间和成本不 同。公司需要在满足货物送达时间要求的前提下,选择最优的运输方式和路径,使得总成本最低。

lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)•线性规划问题概述•Lingo软件介绍•使用Lingo解决线性规划问题步目录骤•经典线性规划问题案例解析•Lingo在解决线性规划问题中的优势•总结与展望01线性规划问题概述定义:线性规划(Linear Programming,简称LP)是数学规划的一个分支,它研究的是在一组线性约束条件下,一个线性目标函数的最大或最小值问题。

特点目标函数和约束条件都是线性的。

可行域是凸集,即对于任意两个可行解,它们的凸组合仍然是可行解。

最优解如果存在,则一定在可行域的某个顶点上达到。

定义与特点生产计划资源分配运输问题金融投资01020304企业如何安排生产,使得在满足市场需求和资源限制的前提下,成本最低或利润最大。

如何合理分配有限的资源(如资金、人力、时间等),以达到最佳的效果。

如何安排货物的运输路线和数量,使得在满足供需关系的前提下,总运费最低。

投资者如何在一定的风险水平下,使得投资收益最大。

决策变量表示问题的未知量,通常用$x_1, x_2, ldots, x_n$表示。

目标函数表示问题的优化目标,通常是决策变量的线性函数,形如$z = c_1x_1 + c_2x_2 + ldots + c_nx_n$。

约束条件表示问题的限制条件,通常是决策变量的线性不等式或等式,形如$a_{11}x_1 + a_{12}x_2 + ldots + a_{1n}x_n leq (=, geq) b_1$。

01$begin{aligned}02& text{max} quad z = c_1x_1 + c_2x_2 + ldots +c_nx_n03& text{s.t.} quad a_{11}x_1 + a_{12}x_2 + ldots + a_{1n}x_n leq (=, geq) b_1& quadquadquad vdots& quadquadquad a_{m1}x_1 + a_{m2}x_2 + ldots + a_{mn}x_n leq (=, geq) b_m•& \quad\quad\quad x_i \geq 0, i = 1, 2, \ldots, n线性规划问题数学模型end{aligned}$其中,“s.t.”表示“subject to”,即“满足……的条件下”。

用LINGO求解线性规划问题

用LINGO求解线性规划问题

实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g ,矿物质3g ,维生素8mg ,该公司能买到5种不同的饲料,每种饲料1kg 所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg ,求既能满足动物生长需要,又使总成本最低的饲料配方.实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型B A ,21,x x ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,12416482.32max 21212121x x x x x x t s x x S 在LINGO 的MODEL 窗口内输入如下模型:model :max =2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message ”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO 的Help ).改正错误以后再求解,如果语法通过,LINGO 用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status ”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close 关闭窗口,屏幕上出现标题为“Solution Report ”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost ”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost 值等于零).“Row ”是输入模型中的行号,目标函数是第一行;“Slack or Surplus ”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==x x ≤”的不等式,右边减左边的差值为Slack (松弛),对于“”的不等式,左边减右边的差值为Surplus (剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price ”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg ,则建立线性规划数学模型:54321,,,,A A A A A 54321,,,,x x x x x 123451234512345123451234512345min 0.20.70.40.30.50.320.6 1.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0S x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++≥⎧⎪++++⎪⎪≥++++⎨⎪++++≤⎪≥⎪⎩≥ 在LINGO 的MODEL 窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg ,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost ”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A 4A 5A kg kg kg 1A 3A g ;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg 对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO 软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options …命令,选择Gengral Solver ,在Dual Computation 列表框中,选择Prices and Ranges 选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITYRighthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。

lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)Lingo12软件培训教案Lingo 主要用于求解线性规划,整数规划,非线性规划,V10以上版本可编程。

例1 一个简单的线性规划问题0 , 600 2 100 350 st. 3 2max >=<=+=<<=++=y x y x x y x y x z!exam_1.lg4 源程序 max = 2*x+3*y; [st_1] x+y<350; [st_2] x<100;2*x+y<600; !决策变量黙认为非负; <相当于<=; 大小写不区分当规划问题的规模很大时,需要定义数组(或称为矩阵),以及下标集(set) 下面定义下标集和对应数组的三种方法,效果相同::r1 = r2 = r3, a = b = c. sets :r1/1..3/:a; r2 : b;r3 : c;link2(r1,r2): x; link3(r1,r2,r3): y; endsets data :ALPHA = 0.7; a=11 12 13 ; r2 = 1..3; b = 11 12 13; c = 11 12 13; enddatarows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量;endsets!-------------------------------------;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!------------------------------------;min = @sum(links: c*x); !目标函数=运输总成本;@for(rows(i):@sum(cols(j): x(i,j))<=s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j))=d(j) ); !需求约束;end例3把上述程序进行改进,引进运行子模块和打印运算结果的语句:!exam_3.lg4 源程序model: !6发点8收点运输问题;sets:rows/1..6/: s; !发点的产量限制;cols/1..8/: d; !售点的需求限制;links(rows,cols): c, x; !运输单价,决策运输量;endsets!==================================;data:s = 60,55,51,43,41,52;d = 35 37 22 32 41 32 43 38;c = 6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddata!==================================;submodel transfer:min = cost; ! 目标函数极小化;cost = @sum(links: c*x); !目标函数:运输总成本;@for(rows(i):@sum(cols(j): x(i,j)) < s(i) ); ! 产量约束;@for(cols(j):@sum(rows(i): x(i,j)) > d(j) ); !需求约束;endsubmodel!==================================;calc:@solve(transfer); !运行子模块(解线性规划);@divert('transfer_out.txt');!向.txt文件按自定格式输出数据;@write('最小运输成本=',cost,@newline(1),'最优运输方案x=');@for(rows(i):@write(@newline(1));@writefor(cols(j): ' ',@format(x(i,j),'3.0f') ) );@divert(); !关闭输出文件;endcalcend打开transfer_out.txt文件,内容为:最小运输成本=664最优运输方案x=0 19 0 0 41 0 0 01 0 0 32 0 0 0 00 11 0 0 0 0 40 00 0 0 0 0 5 0 3834 7 0 0 0 0 0 00 0 22 0 0 27 3 0例4 data段的编写技巧(1):从txt文件中读取原始数据!exam_3.lg4 源程序中的data也可以写为:data:s = @file('transfer_data.txt');d = @file('transfer_data.txt');c = @file('transfer_data.txt');enddata其中,transfer_data.txt的内容为:!transfer.lg4程序的数据;!产量约束s= ;60,55,51,43,41,52 ~!需求约束d= ;35 37 22 32 41 32 43 38 ~!运输单价c= ;6 2 67 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3 ~!注:字符~是数据分割符,若无此符,视所有数据为一个数据块,只赋给一个变量;例5lingo程序的的3种输入和3种输出方法;!exam_5.lg4的源程序;sets:rows/1..3/: ;cols/1..4/: ;link(rows,cols): a, b, mat1, mat2;endsetsdata:b = 1,2,3,45,6,7,89,10,11,12; !程序内输入;a = @file('a.txt'); !外部txt文件输入;mat1 = @ole('d:\lingo12\data.xls',mat1); !EXcel文件输入; enddatacalc:@text('a_out.txt') = a; !列向量形式输出数据;@for(link: mat2 = 2*mat1);@ole('d:\lingo12\data.xls') = mat2 ;!把mat2输出到xls文件中的同名数据块;!向.txt文件按自定格式输出数据(参照前例);Endcalc例6 程序段中的循环和选择结构举例!exam_6.lg4的源程序;sets:rows/1..5/:;cols/1..3/:;links(rows,cols):d;endsetsdata:d=0 2 34 3 21 3 24 7 22 1 6;enddatacalc:i=1;@while(i#le#5:a = d(i,1);b = d(i,2);c = d(i,3);@ifc(a#eq#0:@write('infeasible!',@newline(1));@elsedelta = b^2-4*a*c;sqrt = @sqrt(@if(delta#ge#0, delta,-delta));@ifc(delta#ge#0:@write('x1=',(-b+sqrt)/2/a,'x2=',(-b-sqrt)/2/a,@newline(1));@else@write('x1=',-b/2/a,'+',sqrt/2/a,'i','x2=',-b/2/a,'-',sqrt/2/a,'i',@newline(1));););i=i+1;);endcalc本程序中的循环结构也可以用@for(rows(i): 程序体);进行计算。

线性规划问题计算机解法

线性规划问题计算机解法

线性规划问题计算机解法本节将简要介绍几种软件求解线性规划问题的方法.1.6.1应用EXCEL求解线性规划问题以EXCEL2007为例,首先加载EXCEL规划求解加载项,具体操作步骤为:Office按钮——EXCEL选项——加载项——转到——加载宏——规划求解加载项,此时在“数据”选项卡中出现带有“规划求解”按钮的“分析”组.下面仍然以例1.5为例,说明其求解过程:1设计电子表格将模型中的数据直接输入到工作表中并保存文档.其中,A列为说明性文字,A3为决策变量的初始值,可以任意给定,本例均设为0;在D4其中键入“=SUMPRODUCT (B$3:C$3,B4:C4)”或者从直接从函数中选择,SUMPRODUCT是EXCEL的一个内置函数,,x x初始其功能是两个向量或者矩阵对应元素乘积的和,因此表示表示目标函数值,由于12值设为0,因而显示0;同理在D5其中键入“=SUMPRODUCT(B$3:C$3,B5:C5)”,以此类推,其显示值均为0.2设置规划求解参数点击“分析”组中的“规划求解”按钮即可弹出如下对话框:在设计目标目标单元格中键入$D$4,或者直接点击单元格D4,并选择“最大值”选项,如下图所示点击对话框中“添加”,弹出如下对话框在“单元格引用位置”栏中键入“$D$ 5”(或点击单元格D5),选择“<=”(点击出现下拉菜单,可以选择其他约束形式),在约束值栏中键入“$F$5”(或点击单元格F5),确定后弹出下面对话框:类似于上一步操作,添加所有的约束条件后如下图所示:3 应用规划求解工具:点击“求解”弹出如下对话框,选择“保存规划求解结果”与“运算结果报告”确定后则形成一张新的工作表:如果想得到价值系数、资源向量等条件对最优值的影响,可以在步骤3中选择输出“敏感性报告”.1.6.1应用LINGO求解线性规划问题从上面的介绍中看出,用EXCEL求解线性规划问题时操作简单,而其在输入数据方面有其方便之处.但如果决策变量和约束条件很多的话,其运行速度就不及专业的优化软件了.本节介绍一种专业的优化软件--LINGO的使用方法.LINDO 是 Linear Interactive Discrete Optimizer的缩写,是一个线性和整数规划的软件系统. LINDO /386 5.3以上版本,最大规模的模型的非零系数可以达到1,000,000个,最大变量个数可以达到100,000个,最大目标函数和约束条件个数可以达到32000个,最大整数变量个数可以达到100,000个。

运用Lingo进行线性规划求解(实例)

运用Lingo进行线性规划求解(实例)
要点一
LINGO
支持多种线性规划算法,包括单纯形法、网络算法等。
要点二
Gurobi
主要采用高级优化算法,如分支定界法、动态规划等。
LINGO与Gurobi的比较
LINGO
支持各种类型的约束条件,包括整数约束、非线性约束 等。
Gurobi
特别擅长处理大规模、非线性问题,但对线性问题的处 理能力稍弱。
LINGO
界面简洁,建模语言直观,易于学习和掌握。
Excel
需要结合多个函数和工具进行建模,对于复杂问题操作相对繁琐。
LINGO与Excel的比较
LINGO
针对优化问题进行了优化,求解速度 较快,精度较高。
Excel
求解速度较慢,对于大规模问题可能 无法得到满意的结果。
LINGO与Gurobi的比较
LINGO软件特点
高效求解
LINGO采用先进的求解算法,能够快速求解大规 模线性规划问题。
灵活建模
LINGO支持多种建模语言,用户可以根据需要选 择合适的语言进行建模。
图形界面
LINGO提供直观的图形界面,方便用户进行模型 设计和结果查看。
LINGO软件应用领域
生产计划
LINGO可用于制定生产计划,优化资源配置, 提高生产效率。
金融投资
LINGO可以用于金融投资组合优化,帮助投 资者实现风险和收益的平衡。
物流优化
LINGO可以帮助企业优化物流配送路线,降 低运输成本。
资源分配
LINGO可用于资源分配问题,如人员、设备、 资金的分配,以达到最优效果。
2023
PART 02
线性规划基本概念
REPORTING
线性规划定义
线性规划是数学优化技术的一种,它通过将问 题抽象为数学模型,利用数学方法来寻找最优 解。

线性规划应用举例及软件

线性规划应用举例及软件
中国农业大学理学院
石媛昌
例 1 max
s.t.
解 编写M文件如下:
z 0.4 x1 0.28 x2 0.32 x3 0.72 x 4 0.64 x5 0.6 x6 0.01x1 0.01x 2 0.01x3 0.03x 4 0.03x5 0.03x6 850 0.02 x1 0.05 x 4 700 0.02 x 2 0.05 x5 100 0.03x3 0.08 x6 900 xj 0 j 1,2, 6
原料费(元/件) 0.25 0.35 0.50 1.25 2.00 2.80
中国农业大学理学院
石媛昌
解:首先列出所有可能生产产品I、II、III的工序组合 形式,并假设按各种工序的组合形式进行生产的产量 具体如下: 按(A1,B1)组合方式生产产品I,其产量设为 x1 ; 按(A1,B2)组合方式生产产品I,其产量设为 x2; 按(A1,B3)组合方式生产产品I,其产量设为 x3; 按(A2,B1)组合方式生产产品I,其产量设为 x4; 按(A2,B2)组合方式生产产品I,其产量设为 x5; 按(A2,B3)组合方式生产产品I,其产量设为 x6; 按(A1,B1)组合方式生产产品II,其产量设为 x7 ; 按(A2,B1)组合方式生产产品II,其产量设为 x8 ; 按(A2,B2)组合方式生产产品III,其产量设为x9 ;
中国农业大学理学院
石媛昌
中国农业大学理学院
石媛昌
1
LinGo
输入模型 LinDo模式 LinGo模式 求解 点击求解按钮 结果

即可
LinGo 输 入 模 式
model: MAX=3*x1+5*x2+4*x3; 2*x1+3*x2<=1500; 2*x2+4*x3<=800; 3*x1+2*x2+5*x3<=2000; end

课件:应用LINGO、MATLAB软件求解线性规划(1)

课件:应用LINGO、MATLAB软件求解线性规划(1)

0.6166667
X4 30.00000
0.000000
X5 10.00000
0.000000
Row Slack or Surplus Dual Price
1 22.40000
-1.000000
2 0.000000
-0.5833333
3 4.100000
0.000000
4 0.000000
-4.166667
4.6667 0.0000 0.6667 z= -8.6667
例1.4 用MATLAB求解线性规划问题
max z 2x1 3x2 5x3
s.t.
2
x1 x1
x2 x3 7 5x2 x3 10
xi 0,i 1, 2,3
解 首先转化为求最小值问题
min z S 2x1 3x2 5x3
5 0.000000
0.8833333
1.2 应用MATLAB求解线性规划
• MATLAB(MATrix LABoratory)的基本含义是矩阵实验 室,它是由美国MathWorks公司研制开发的一套高性能的 集数值计算、信息处理、图形显示等于一体的可视化数学 工具软件。它是建立在向量、数组和矩阵基础之上的,除 了基本的数值计算、数据处理、图形显示等功能之外,还 包含功能强大的多个“工具箱”,如优化工具箱( optimization toolbox)、统计工具箱、样条函数工具箱和 数据拟合工具箱等都是优化计算的有力工具。在这里仅介 绍用MATLAB6.5优化工具箱求解线性规划问题。
即约束条件左边与右边的差值,对于“ ”的不等式,右边减
左边的差值为Slack(松弛),对于“ ”的不等式,左边减
的右边差值为Surplus(剩余),当约束条件两边相等时,松 弛或剩余的值等于零。

5 线性规划的计算软件

5 线性规划的计算软件

线性规划的计算软件
例2
max z = 2 x 1 + 3 x 2 5 x 3 x1 + x 2 + x 3 = 7 s.t . 2 x 1 5 x 2 + x 3 ≥ 10 x1 , x 2 , x 3 ≥ 0
然后, 调用一个相应的程序: 然后 调用一个相应的程序: [x,fval] = linprog(C,A,b,Aeq, beq,lb); 最后,输出结果为: 最后,输出结果为: X= 6.4286 0.5714 0.0000 fval = -14.5714
线性规划的计算软件
数据部分 data: data:!定义数据 c=3 5 4; b=1500 800 2000; a=2 3 0 0 2 4 3 2 5; enddata 数据的大小与集合定义中一致, !注:数据的大小与集合定义中一致,分量中间 用空格或逗号分开,数据结束后用分号; 用空格或逗号分开,数据结束后用分号;
线性规划的计算软件
2 LINGO输入模式 输入模式 model: sets: !定义集合 endsets data: !定义数据 enddatael: !开始 model: sets: sets: !定义集合 ve/1..3/:c,x; co/1..3/:b; ma(co,ve):a; endsets 集表达式:名称/成员/ !注:集表达式:名称/成员/:属性 名称(初始集): ):属性 名称(初始集):属性
线性规划的计算软件
LINGO 使用简介
输入模型 LINDO模式 模式 LINGO模式 模式 求解 点击求解按钮 结果 即可
线性规划的计算软件
1 LINDO输入模式 输入模式
max z=3x1+5x2+4x3 s. t. 2x1+3x2 ≤ 1500 2x2+4x3 ≤ 800 3x1+2x2+5x3 ≤ 2000 x1, x2, x3 ≥0.

线性规划软件解法

线性规划软件解法
2,3,5单位, 生产B需要甲乙丙分别为3,4,5单
位, 现有甲乙丙三种原料分别为100, 120,
150单位, 请问生产多少A,B产品获利最大?
线性规划例子
max z 150 x1 210 x2 2 x1 3 x2 100 3x 4 x 120 1 2 s.t. 5 x1 5 x2 150 x1 , x2 0
LINDO演示版可以求解多达200个变量和 100多个约束的规划问题. • 正式版可以求解多达32000个变量和16000 个约束的规划问题. LINGO演示版可以求解多达300个变量和 150多个约束的规划问题. • 工业版可以求解多达32000个变量和16000 个约束的规划问题.扩展版对变量和约束 没有限制.
初识LINGO界面
• LINGO有5个主菜单: ●File-文件菜单 ●Edit-编辑菜单 ●LINGO-LINGO系统,合并了 LINDO中的Solve和Reports ●Window-窗口菜单 ●Help-帮助菜单
LINGO的界面
• LINGO软件的主窗口(用 户界面),所有其他窗口 都在这个窗口之内。
• 例1 某商场是个中型的百货商场,它对售 货人员的需求经过统计分析如表所示。 • 为了保证售货人员充分休息,售货人员每 周工作五天,休息两天,并要求休息的两 天是连续的,问应该如何安排售货人员的 作息,既满足了工作需要,又使配备的售 货人员的人数最少。
时间
星期日 星期一
所需售货员人数
28 15
星期二
通过菜单 “WINDOW| Status Window”看到状态窗 口,可看到最佳目标值 “Best Obj”与问题的上界 “Obj Bound”已经是一样的, 当前解的最大利润与这两个 值非常接近,是计算误差引 起的。如果采用全局最优求 解程序(后面介绍),可以验 证它就是全局最优解。

LINDO软件求线性规划、整数规划和0-1规划

LINDO软件求线性规划、整数规划和0-1规划

LINDO软件简介/求解线性规划问题LINDO是一种专门用于求解数学规划问题的软件包。

由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。

因此在数学、科研和工业界得到广泛应用。

LINDO/GO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。

也可以用于一些非线性和线性方程组的求解以及代数方程求根等。

LINDO/GO中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。

一般用LINDO(Linear Interactive and Discrete Optimizer)解决线性规划(LP—Linear Programming)。

整数规划(IP—Integer Programming)问题。

其中LINDO 6 .1 学生版至多可求解多达300个变量和150个约束的规划问题。

其正式版(标准版)则可求解的变量和约束在1量级以上。

LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规则(QP—QUARATIC PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变量和150个约束的规则问题,其标准版的求解能力亦在10^4量级以上。

虽然LINDO和LINGO 不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解决的规划问题。

要学好用这两个软件最好的办法就是学习他们自带的HELP文件。

下面拟举数例以说明这两个软件的最基本用法。

(例子均选自张莹《运筹学基础》)例1.(选自《运筹学基础》P54.汽油混合问题,线性规划问题)一种汽油的特性可用两个指标描述:其点火性用“辛烷数”描述,其挥发性用“蒸汽压力”描述。

某炼油厂有四种标准汽油,设其标号分别为1,2,3,4,其特性及库存量列于下表1中,将上述标准汽油适量混合,可得两种飞机汽油,某标号为1,2,这两种飞机汽油的性能指标及产量需求列于表2中。

利用matlab软件求解线性规划问题

利用matlab软件求解线性规划问题

利用matlab软件求解线性规划问题2013年4月17日利用matlab软件求解线性规划问题摘要:线性规划被广泛地应用于工业、交通、国防、经济、管理等领域,已成为现代科学管理的重要手段和管理决策的有效方法。

本文给出运用线性规划求解,解决维修保洁服务员工的招聘和排班问题,使得在满足客户需求的前提下,达到成本最低。

其中,线性规划的求解是运用matlab软件,方便快捷。

关键词:线性规划排班matlabAbsract:Linear programming has been applied in industry,traffic, economy and manangementwidely,and it has become an important and efficient means of modern scientific manangement.Settlemeng by programming is explained in this article,which is used to give the most reasonable number of people in each shift in the consumer service center,in purpose of using the lowest cost to meet the consumers.We use matlab to settle the problem,which is convenient and shortcut.Key words:linear programming stuff shift arrangement matlab1 引言线性规划作为运筹学的一个分支,它的应用已越来越深入到社会生产和经济活动的各个领域。

线性规划有三要素:优化对象,目标函数,约束条件。

我们把时间问题抽象成数学模型,然后再利用相关理论求解,即寻求满足约束条件的目标函数的最优解。

2024版lingo解决线性规划问题的程序经典要点

2024版lingo解决线性规划问题的程序经典要点

资源分配问题案例
01
问题描述
资源分配问题涉及如何将有限的资源分配给不同的项目或部 门,以实现整体效益最大化的目标。
02 03
Lingo模型构建
在资源分配问题中,决策变量通常表示分配给不同项目或部 门的资源数量。目标函数可以是最大化整体效益或满足特定 目标下的资源分配,约束条件则包括资源总量的限制、项目 或部门的需求限制等。
数据处理能力
Excel在数据处理和表格计算方面 非常强大,而Lingo则更适合处理 复杂的优化问题。
求解规模
对于较小规模的线性规划问题, Excel的规划求解工具可以胜任, 但对于大规模问题,Lingo更具优 势。
扩展性
Lingo可以通过编写程序来解决各 种复杂的优化问题,而Excel则受 限于其内置的函数和工具。
对偶单纯形法
内点法
启发式算法
单纯形法是求解线性规 划问题的经典方法,它 通过迭代的方式在可行 域的顶点上寻找最优解。
对偶单纯形法是单纯形 法的一种改进,它通过 对偶问题的求解来得到 原问题的最优解,适用 于初始基可行解不易找 到的情况。
内点法是一种适用于大 规模线性规划问题的求 解方法,它通过在可行 域内部寻找最优解来避 免单纯形法在迭代过程 中可能出现的退化情况。
Lingo程序编写注意事项
变量命名规范 变量命名应具有描述性,避免使用无意 义的字符或数字组合,以提高代码可读
性和可维护性。 避免重复计算
在循环或迭代过程中,避免重复计算 相同的表达式或值,以减小计算量和
时间复杂度。
注释清晰明了 在关键代码处添加注释,解释代码功 能和实现思路,便于他人理解和修改。
Lingo软件功能与特点
功能丰富
Lingo软件提供了丰富的数学规划求解功能,包括 线性规划、非线性规划、整数规划、二次规划等。 用户可以根据实际问题需求选择合适的求解方法。

10.应用MATLAB软件求解线性规划

10.应用MATLAB软件求解线性规划

1 1
x1, x2 0
min S x1 x2
(5)
s.t. x1x13xx22
2 1题
max
min

m
ai1xi ,
m
ai2 xi ,L
,
m
ain xi


i 1
i 1
i 1

s.t.

x1 xi

x2 0,
L xm i 1, 2,L
1 ,m
5.如果x(1),x(2), ,x(k)都是线性规划问题(LP):
max S cx, Ax b, x o
的可行解,则它们的任意凸组合也是(LP)的可行解;如果x(1),x(2),
(2)
s.t

x1 2 x1
x2 2 x2
x3 x3

10 20
x1, x2 , x3 0
max S 14x1 13x2 6x3
2x1 4x2 x3 60
应用MATLAB软件求解 线性规划
• MATLAB(MATrix LABoratory)的基本含义是矩阵实验室 ,它是由美国MathWorks公司研制开发的一套高性能的集数 值计算、信息处理、图形显示等于一体的可视化数学工具软 件。它是建立在向量、数组和矩阵基础之上的,除了基本的 数值计算、数据处理、图形显示等功能之外,还包含功能强 大的多个“工具箱”,如优化工具箱(optimization toolbox) 、统计工具箱、样条函数工具箱和数据拟合工具箱等都是优 化计算的有力工具。在这里仅介绍用MATLAB6.5优化工具箱 求解线性规划问题。
烟酸(mg)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档