计数原理(优秀课件)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版选修2-3第一章计数原理
第一节.计数原理
主讲人:赖敏
新课引入
问题1:. 从甲地到乙地,可以乘火车,也可以乘
汽车,还可以乘轮船。一天中,火车有4 班, 汽车 有2班,轮船有3班。那么一天中乘坐这些交通工 具从甲地到乙地共有多少种不同的走法?
新课引入:
问题1:. 从甲地到乙地,可以乘火车,也可以乘
小结
1. 本节课学习了那些主要内容?
答:分类记数原理和分步记数原理。 2.分类记数原理和分步记数原理的共同点是什么?
不同点什么?
1从书架中任取 1本书, 有多少种不同取法 ? 2从书架的第 1,2,3层各取1本书, 有多少种不
同取法?
1.商店里有15种上衣,18种裤子,某人要买1 件上衣或1条裤子,共有多少种选法?若要买 上衣和裤子各1件,共有多少种选法? 2.完成一件工作,有两种方法,有5人只会用第 一种方法,另外有4人只会用第二种方法,从 这9人中任选1人完成工作,一共有多少种选 法?
分类要做到 " 不重不漏 ". 分类后再分别 对每一类进行计数 ,最后用分类加法计 数原理求和 , 得到总数. 分步要做到 " 步骤完整". 完成了所有 步骤 , 恰好完成任务 ,当然步与步之间要 相互独 立 .分步后再计算每一步的 方法 数, 最后根据分步乘法计数 原理, 把完成 每一步方法数相乘 , 得到总数.
n类办法,在第一类办法中有m1种不同的方法,在 第二类办法中有m2种不同的方法,……,在第 n类办法中有mn种不同的方法。那么完成这件 事共有 N=m1+m2+…+mn 种不同的方法。
分步记数原理:做一件事情,完成它需要分
成n个步骤,做第一步有m1种不同的方法,做第 二步有m2种不同的方法,……,做第n步有mn 种不同的方法,那么完成这件事有 N=m1×m2×…×mn 种不同的方法。
根据分步乘法计数原理 ,不同挂法种数是 N 3 2 6.
6种挂法可以表示如下:
左边 右边

得到的挂法 左甲右乙 左甲右丙 左乙右甲
左乙右丙



甲பைடு நூலகம்




左丙右甲
左丙右乙
练习 一个三位密码锁,各位上数字由0,1,2,3,4,5, 6,7,8,9十个数字组成,可以设置多少种三位数的 密码(各位上的数字允许重复)?首位数字不为0的 密码数是多少?首位数字是0的密码数又是多少?
联系
区别一
区别二
每一步得到的只是中间结果, 任何一步都不能独立完成 每类办法都能独立完成 这件事情,缺少任何一步也 这件事情。 不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。
区别三
各类办法是互斥的、 并列的、独立的
各步之间是相关联的
例题
例1 书架的第 1层放有4本不同的计算机书 , 第2层放有3本不同的文艺书 , 第3 层放有2 本 不同的体育书 .
汽车,还可以乘轮船。一天中,火车有4 班, 汽车 有2班,轮船有3班。那么一天中乘坐这些交通工 具从甲地到乙地共有多少种不同的走法? 分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法; 所以 从甲地到乙地共有 4+2+3=9 种方法。
问题2: 如图,由A村去B村的道路有3条,由B村去 C村的道路有2条。从A村经B村去C村,共有多 少种不同的走法?
北 A村 中 南 B村
北 南 C村
问题2: 如图,由A村去B村的道路有3条,由B村去C村
的道路有2条。从A村经B村去C村,共有多少种不同的 走法? 北 北 A村 中 南
B村

C村
分析: 从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有2种方法, 所以 从A村经 B村去C村共有 3 ×2 = 6 种不同的方法。
问题3:用前6个大写英文字母和1~9个阿拉伯
数字,以A1,A2,,B1,B2的方式给教室的座位编 号.
1 2 3 4 5 6 7 8 9 A1 A2 A3 A4 A5 A6 A7 A8 A9 1 2 3 4 5 6 7 8 9
A
9种
B
9种
6 × 9 =54
新课
分类记数原理: 做一件事情,完成它可以有
类比
加法原理看成“并联电路”;
m1 A m2 …… mn B
乘法原理看成“串联电路”
A m1 m2 …... mn B
分类计数与分步计数原理的区别和联系: 加法原理 乘法原理
分类计数原理和分步计数原理,回答的都是关于 完成一件事情的不同方法的种数的问题。 完成一件事情共有n类 完成一件事情,共分n个 办法,关键词是“分类” 步骤,关键词是“分步”
分析: 按密码位数,从左到右 依次设置第一位、第二位、第三 位, 需分为三步完成; 第一步, m1 = 10; 第二步, m2 = 10; 第三步, m3 = 10. 根据乘法原理, 共可以设置 N = 10×10×10 = 103 种三位数的密码。
用两个计数 原理解决计 数问题时 ,最 重要的是在 开始计算 之 前要进 行仔 细分析 需 要分类还是 需要分步 .
例 2 要 从甲、乙、丙3 幅不同的画中选出 2 幅分别挂在左、右两边 墙的指定位置 ,问共 有多少种不同的挂法 ?
解 从 3 幅画中选取 2 幅分别挂在左、右两 边墙上,可以分两步完成:
第 1 步, 从3 幅画中选 1 幅挂在左边墙上 ,有 3 种 方法; 第 2 步, 从剩下的 2 幅画中选1 幅画挂在右边墙 上,有 2 种方法.
相关文档
最新文档