计数原理(优秀课件)
合集下载
计数原理课件

1 2 3 1 2 3 1 2 3 4 5
课堂小结:
弄清两个原理的区别与联系,是正确使用这两个原理的前 提和条件. 这两个原理都是指完成一件事,区别在于: (1)分类加法计数原理是“分类”,每类办法 中的每一种方法都能独立完成一件事; (2)分步乘法计数原理是“分步”;每种方法 都只能做这件事的一步, 不能独立完成这件事, 只有各个步骤都完成才算完成这件事情!
变式:
若还有C大学,其中强项专业为:新闻学、生物 学、人力资源学.那么,这名同学可能的专业选择共 有多少种? A大学 B大学 数学 会计学 信息技术学 法学 C大学 新闻学
生物学
化学 医学
生物学
人力资源学
物理学
工程学
注意:分类加法计数做到不重,不漏!
如果完成一件事有三类不同方案,在第1类方 案中有m1种不同的方法,在第2类方案中有 m2种不同的方法,在第3类方案中有m3种不 同的方法,那么完成这件事共有多少种不同 的方法? 如果完成一件事情有类不同方案,在每一类中 都有若干种不同方法,那么应当如何计数呢?
N m1 m 2 m n
N=m1×m2×…×mn
种不同的方法.
理解分步乘法计数原理: 分步计数原理针对的是“分步”问题,完成一件事要分为 若干步,各个步骤相互依存,完成任何其中的一步都不 能完成该件事,只有当各个步骤都完成后,才算完成这 件事. 理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题 ②不同点:分类加法计数原理针对的是“分类”问题,完 成一件事要分为若干类,各类的方法相互独立,各类中 的各种方法也相对独立,用任何一类中的任何一种方法 都可以单独完成这件事,是独立完成;而分步乘法计数 原理针对的是“分步”问题,完成一件事要分为若干步, 各个步骤相互依存,完成任何其中的一步都不能完成该 件事,只有当各个步骤都完成后,才算完成这件事,是 合作完成.
课堂小结:
弄清两个原理的区别与联系,是正确使用这两个原理的前 提和条件. 这两个原理都是指完成一件事,区别在于: (1)分类加法计数原理是“分类”,每类办法 中的每一种方法都能独立完成一件事; (2)分步乘法计数原理是“分步”;每种方法 都只能做这件事的一步, 不能独立完成这件事, 只有各个步骤都完成才算完成这件事情!
变式:
若还有C大学,其中强项专业为:新闻学、生物 学、人力资源学.那么,这名同学可能的专业选择共 有多少种? A大学 B大学 数学 会计学 信息技术学 法学 C大学 新闻学
生物学
化学 医学
生物学
人力资源学
物理学
工程学
注意:分类加法计数做到不重,不漏!
如果完成一件事有三类不同方案,在第1类方 案中有m1种不同的方法,在第2类方案中有 m2种不同的方法,在第3类方案中有m3种不 同的方法,那么完成这件事共有多少种不同 的方法? 如果完成一件事情有类不同方案,在每一类中 都有若干种不同方法,那么应当如何计数呢?
N m1 m 2 m n
N=m1×m2×…×mn
种不同的方法.
理解分步乘法计数原理: 分步计数原理针对的是“分步”问题,完成一件事要分为 若干步,各个步骤相互依存,完成任何其中的一步都不 能完成该件事,只有当各个步骤都完成后,才算完成这 件事. 理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题 ②不同点:分类加法计数原理针对的是“分类”问题,完 成一件事要分为若干类,各类的方法相互独立,各类中 的各种方法也相对独立,用任何一类中的任何一种方法 都可以单独完成这件事,是独立完成;而分步乘法计数 原理针对的是“分步”问题,完成一件事要分为若干步, 各个步骤相互依存,完成任何其中的一步都不能完成该 件事,只有当各个步骤都完成后,才算完成这件事,是 合作完成.
2025届高中数学一轮复习课件《计数原理》ppt

高考一轮总复习•数学
第20页
解析:(1)因为学生只能从东门或西门进入校园, 所以 3 名学生进入校园的方式共 23= 8(种).因为教师只可以从南门或北门进入校园, 所以 2 名教师进入校园的方式共有 22= 4(种).所以 2 名教师和 3 名学生进入校园的方式共有 8×4=32(种).故选 D.
A.12 种 B.24 种 C.72 种 D.216 种
高考一轮总复习•数学
第15页
(2)设 I={1,2,3,4},A 与 B 是 I 的子集,若 A∩B={1,2},则称(A,B)为一个“理想配集”.若
将(A,B)与(B,A)看成不同的“理想配集”,
按其中一个子集中元素个数分类23个个;; 4个.
即十位数字最小. 称该数为“驼峰数”.比如 102,546 为“驼峰数”,由数字 1,2,3,4 构成的无重复数字 的“驼峰数”有________个.
高考一轮总复习•数学
第22页
解析:(1)由分步乘法计数原理知,用 0,1,…,9 十个数字组成三位数(可有重复数字) 的个数为 9×10×10=900,组成没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252.故选 B.
(2)根据题意知,a,b,c 的取值范围都是区间[7,14]中的 8 个整数,故公差 d 的范围是区 间[-3,3]中的整数.①当公差 d=0 时,有 C18=8(种);②当公差 d=±1 时,b 不取 7 和 14, 有 2×C16=12(种);③当公差 d=±2 时,b 不取 7,8,13,14,有 2×C14=8(种);④当公差 d=±3 时,b 只能取 10 或 11,有 2×C12=4(种).综上,共有 8+12+8+4=32(种)不同的分珠计数 法.
计数的基本原理ppt课件

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例2、如图,要给地图A、B、C、D四个区域 分别涂上3种不同颜色中的某一种,允许同一种 颜色使用多次,但相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
想一想?
问题 2. 从甲地到乙地,可以乘火车,也可 以乘汽车,还可以乘轮船。一天中,火车 有2班, 汽车有3班,轮船有4班。那么一天 中乘坐这些交通工具从甲地到乙地共有多 少种不同的走法?
甲 为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能 地
乙 地
分析: 完成由甲地到乙地这件事有三类办法:
第一类办法乘火车,有2种不同走法,
第二类办法乘汽车,有3种不同走法 第三类办法乘轮船,有4种不同走法。
因此,在一天中,此人由甲地到乙地不同的走法共 有 2+3+4=9 种。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
例3:体育福利彩票的中奖号码有7位数码,每位数若是 0~9这十个数字中任一个,则产生中奖号码所有可能的 种数是多少?
变2: 0~9这十个数字可组成多少数字不重复的七位数?
两个计数原理的联系和区别:
计数原理-完整版课件

解析: ∵C06+C16+C26+C36+C46+C56+C66=26=64, ∴C16+C26+C36+C46+C56=64-2=62. 答案: 62
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,
令
r 3
-
k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,
令
r 3
-
k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.
计数原理精PPT课件

10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
8
创设情境 兴趣导入
从唐华、张凤、薛贵3个候选人中, 选出2个人分别担任班长和团支部书记,会 有多少种选举结果呢?
完成哪件事? 是否可以“一步到位”不能
解决这个问题需要分步骤进行研究.第一步选 出班长,第二步选出团支部书记.每一步并不 能完成选举工作,只有各步骤都完成,才能完 成选举这件事.
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
3
练练习习2 2
A
B
图1
如图1,该电路从A到B共有多 少种方法使一盏灯发光?
完成什么事? 3种
4
能否一步到位?
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
A
B
图1
第一种方法
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
数学4本,物理3本,化学2本,他欲带参考书到图
书馆看书:
(1)若从这些参考书中带一本去图书馆,有多少
种不同的选法? 5+4+3+2=14 (2)若外语、数学、物理和化学参考书各带一本,
有多少种不同的选法?
15
5 4 3 2=120 × × ×
w精ww选.1ppppt.cto课m 件2021
1 2个与3个的问题 2 石家庄可以安装多少部有线电话?
5*3=15 送给某人,共有 --------------------
种不
同的选法
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
14
运用知识 强化练习
1.两个袋子中分别装有10个红色球和6个白色球. 从中取出一个红色球和一个白色球,共有多少种 方法?
8
创设情境 兴趣导入
从唐华、张凤、薛贵3个候选人中, 选出2个人分别担任班长和团支部书记,会 有多少种选举结果呢?
完成哪件事? 是否可以“一步到位”不能
解决这个问题需要分步骤进行研究.第一步选 出班长,第二步选出团支部书记.每一步并不 能完成选举工作,只有各步骤都完成,才能完 成选举这件事.
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
3
练练习习2 2
A
B
图1
如图1,该电路从A到B共有多 少种方法使一盏灯发光?
完成什么事? 3种
4
能否一步到位?
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
A
B
图1
第一种方法
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
数学4本,物理3本,化学2本,他欲带参考书到图
书馆看书:
(1)若从这些参考书中带一本去图书馆,有多少
种不同的选法? 5+4+3+2=14 (2)若外语、数学、物理和化学参考书各带一本,
有多少种不同的选法?
15
5 4 3 2=120 × × ×
w精ww选.1ppppt.cto课m 件2021
1 2个与3个的问题 2 石家庄可以安装多少部有线电话?
5*3=15 送给某人,共有 --------------------
种不
同的选法
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
14
运用知识 强化练习
1.两个袋子中分别装有10个红色球和6个白色球. 从中取出一个红色球和一个白色球,共有多少种 方法?
计数原理全部课件集PPT优秀课件(排列等14份) 7

例5、某医院有内科医生12名,外科医生8名,现要 派5人参加支边医疗队,至少要有1名内科医生和1名 外科医生Байду номын сангаас加,有多少种选法?
例6:(1)平面内有9个点,其中4个点在一条直线 上,此外没有3个点在一条直线上,过这9个点可确 定多少条直线?可以作多少个三角形?
例7、8双互不相同的鞋子混装在一只口袋中,从中任 意取出4只,试求满足如下条件各有多少种情况: (1)4只鞋子恰有两双; (2) 4只鞋子没有成双的; (3) 4只鞋子只有一双。
1.2.2组合(二)
复习巩固:
1、组合定义:
一般地,从n个不同元素中取出m(m≤n)个元素并成 一组,叫做从n个不同元素中取出m个元素的一个组合.
2、组合数: 从n个不同元素中取出m(m≤n)个元素的所有组合的个 数,叫做从n个不同元素中取出m个元素的组合数,用符号 C nm 表示.
3、组合数公式:
例4:在100件产品中有98件合格品,2件次品。产品 检验时,从100件产品中任意抽出3件。 (1)一共有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
(3)抽出的3件中至少有1件是次品的抽法有多少种?
(4)抽出的3件中至多有一件是次品的抽法有多少种?
说明:“至少”“至多”的问题,通常用分类 法或间接法求解。
3 2 3 2 C . CC CC 8 7 7 8
3 2 1 DC . 8 C7 C11
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员, 则甲、乙两人不都入选的不同选法种数共有( D)
A .C A
2 5
3 3
B .2 C A
3 5
3 3
C .A
3 5
《计数原理》ppt

326(种)
实例与练习:
5、某校电子八班有男生 26人,女生 20人,若要选男、女生各1人作为学生代 表参加学代会,共有多少种选法?
解:20x26=520(种)
6、两个袋子中分别装有10个红色球 和6个白色球。从中取出一个红色球和一 个白色球,共有多少种方法?
解:10x6=60(种)
分析: 第一步, 由长沙去郴州有3种方法,
第二步, 由郴州去广州有2种方法;
火车2 火车3 火车3
汽车2 汽车1 汽车2
所以 从长沙经郴州到广州共有3 ×2 = 6 种不同的方法。
[ 延伸]:如果小李回家的时候需要转一次车后再
乘飞机,飞机有两个航班(如图),则共有多少种不 同的走法?
重庆
火车1 火车2 火车 3
分析: 从重庆到西昌有2类方法,
火车1 火车2
Ⅰ.乘火车,3种方法;
火车 3
Ⅱ.乘汽车,2种方法; 重庆
汽车1
西昌
汽车2
所以 从重庆到西昌共有 3 + 2 = 5 种不同方法。
[延伸]:
如果重庆到西昌,除了3班火车2班汽车外还有 2班飞机,那么王先生有多少种不同的走法呢?
共有: 3+2+2=7 种
3×3×3×3 =34 = 81
作业:
第122页,习题, 第1、2、4、5题
例2:体育福利彩票的中奖号码有7位数码,每 位数若是0~9这十个数字中任一个,则每次摇 奖产生的号码有多少种可能?
第一位 第二位 第三位 第四位 第五位 第六位 第七位
10 × 10 ×10 × 10 × 10 × 10 × 10 =107
法中有 mn 种不同的方法,那么 mn 种不同的方法,那么完成
实例与练习:
5、某校电子八班有男生 26人,女生 20人,若要选男、女生各1人作为学生代 表参加学代会,共有多少种选法?
解:20x26=520(种)
6、两个袋子中分别装有10个红色球 和6个白色球。从中取出一个红色球和一 个白色球,共有多少种方法?
解:10x6=60(种)
分析: 第一步, 由长沙去郴州有3种方法,
第二步, 由郴州去广州有2种方法;
火车2 火车3 火车3
汽车2 汽车1 汽车2
所以 从长沙经郴州到广州共有3 ×2 = 6 种不同的方法。
[ 延伸]:如果小李回家的时候需要转一次车后再
乘飞机,飞机有两个航班(如图),则共有多少种不 同的走法?
重庆
火车1 火车2 火车 3
分析: 从重庆到西昌有2类方法,
火车1 火车2
Ⅰ.乘火车,3种方法;
火车 3
Ⅱ.乘汽车,2种方法; 重庆
汽车1
西昌
汽车2
所以 从重庆到西昌共有 3 + 2 = 5 种不同方法。
[延伸]:
如果重庆到西昌,除了3班火车2班汽车外还有 2班飞机,那么王先生有多少种不同的走法呢?
共有: 3+2+2=7 种
3×3×3×3 =34 = 81
作业:
第122页,习题, 第1、2、4、5题
例2:体育福利彩票的中奖号码有7位数码,每 位数若是0~9这十个数字中任一个,则每次摇 奖产生的号码有多少种可能?
第一位 第二位 第三位 第四位 第五位 第六位 第七位
10 × 10 ×10 × 10 × 10 × 10 × 10 =107
法中有 mn 种不同的方法,那么 mn 种不同的方法,那么完成
计数原理优秀ppt课件

解 从3幅画中选2幅 取分别挂在左、右 边墙,上 可以分两步: 完成 第1步 ,从 3幅画中 1幅选 挂在左 ,有 边 3种墙上 方;法 第2步,从剩下 2幅 的画中 1幅 选画挂在右 上,有2种方. 法
根据分步乘法,不 计同 数挂 原法 理种数是 N326.
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
用两个计数
原理解决计
数问题时
,最
重要的是
在
开始 计算 之
前要进 行仔
细分析
需
要分类还
是
需要分步
.
分 类 要"不 做重 到不 ".分漏 类后再分别 对 每 一 类 进,行 最计 后数 用 分 类 加 数 原 理 求 ,得和 到 总. 数
分 步 要"步 做骤 到完 ". 整完成了所有 步 骤,恰 好 完 成 任,当务然 步 与 步 之 间 要 相 互 独立.分 步 后 再 计 算 每 一方步法的 数,最 后 根 据 分 步 乘 法原计理,数把 完 成 每 一 步 方 法 数 相 ,得乘到 总 .数
新课
分类记数原理: 做一件事情,完成它可以有
n类办法,在第一类办法中有m1种不同的方法,在 第二类办法中有m2种不同的方法,……,在第 n类办法中有mn种不同的方法。那么完成这件 事共有
N=m1+m2+…+mn 种不同的方法。
分步记数原理:做一件事情,完成它需要分
成n个步骤,做第一步有m1种不同的方法,做第 二步有m2种不同的方法,……,做第n步有mn 种不同的方法,那么完成这件事有
问题3:用前6个大写英文字母和1~9个阿拉伯
根据分步乘法,不 计同 数挂 原法 理种数是 N326.
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
用两个计数
原理解决计
数问题时
,最
重要的是
在
开始 计算 之
前要进 行仔
细分析
需
要分类还
是
需要分步
.
分 类 要"不 做重 到不 ".分漏 类后再分别 对 每 一 类 进,行 最计 后数 用 分 类 加 数 原 理 求 ,得和 到 总. 数
分 步 要"步 做骤 到完 ". 整完成了所有 步 骤,恰 好 完 成 任,当务然 步 与 步 之 间 要 相 互 独立.分 步 后 再 计 算 每 一方步法的 数,最 后 根 据 分 步 乘 法原计理,数把 完 成 每 一 步 方 法 数 相 ,得乘到 总 .数
新课
分类记数原理: 做一件事情,完成它可以有
n类办法,在第一类办法中有m1种不同的方法,在 第二类办法中有m2种不同的方法,……,在第 n类办法中有mn种不同的方法。那么完成这件 事共有
N=m1+m2+…+mn 种不同的方法。
分步记数原理:做一件事情,完成它需要分
成n个步骤,做第一步有m1种不同的方法,做第 二步有m2种不同的方法,……,做第n步有mn 种不同的方法,那么完成这件事有
问题3:用前6个大写英文字母和1~9个阿拉伯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类要做到 " 不重不漏 ". 分类后再分别 对每一类进行计数 ,最后用分类加法计 数原理求和 , 得到总数. 分步要做到 " 步骤完整". 完成了所有 步骤 , 恰好完成任务 ,当然步与步之间要 相互独 立 .分步后再计算每一步的 方法 数, 最后根据分步乘法计数 原理, 把完成 每一步方法数相乘 , 得到总数.
小结
1. 本节课学习了那些主要内容?
答:分类记数原理和分步记数原理。 2.分类记数原理和分步记数原理的共同点是什么?
不同点什么?
联系
区别一
区别二
每一步得到的只是中间结果, 任何一步都不能独立完成 每类办法都能独立完成 这件事情,缺少任何一步也 这件事情。 不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。
区别三
各类办法是互斥的、 并列的、独立的
各步之间是相关联的
例题
例1 书架的第 1层放有4本不同的计算机书 , 第2层放有3本不同的文艺书 , 第3 层放有2 本 不同的体育书 .
分析: 按密码位数,从左到右 依次设置第一位、第二位、第三 位, 需分为三步完成; 第一步, m1 = 10; 第二步, m2 = 10; 第三步, m3 = 10. 根据乘法原理, 共可以设置 N = 10×10×10 = 103 种三位数的密码。
用两个计数 原理解决计 数问题时 ,最 重要的是在 开始计算 之 前要进 行仔 细分析 需 要分类还是 需要分步 .
问题2: 如图,由A村去B村的道路有3条,由B村去 C村的道路有2条。从A村经B村去C村,共有多 少种不同的走法?
北 A村 中 南 B村
北 南 C村
问题2: 如图,由A村去B村的道路有3条,由B村去C村
的道路有2条。从A村经B村去C村,共有多少种不同的 走法? 北 北 A村 中 南
B村
南
C村
分析: 从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有2种方法, 所以 从A村经 B村去C村共有 3 ×2 = 6 种不同的方法。
1从书架中任取 1本书, 有多少种不同取法 ? 2从书架的第 1,2,3层各取1本书, 有多少种不
同取法?
1.商店里有15种上衣,18种裤子,某人要买1 件上衣或1条裤子,共有多少种选法?若要买 上衣和裤子各1件,共有多少种选法? 2.完成一件工作,有两种方法,有5人只会用第 一种方法,另外有4人只会用第二种方法,从 这9人中任选1人完成工作,一共有多少种选 法?
汽车,还可以乘轮船。一天中,火车有4 班, 汽车 有2班,轮船有3班。那么一天中乘坐这些交通工 具从甲地到乙地共有多少种不同的走法? 分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法; 所以 从甲地到乙地共有 4+2+3=9 种方法。
n类办法,在第一类办法中有m1种不同的方法,在 第二类办法中有m2种不同的方法,……,在第 n类办法中有mn种不同的方法。那么完成这件 事共有 N=m1+m2+…+mn 种不同的方法。
分步记数原理:做一件事情,完成它需要分
成n个步骤,做第一步有m1种不同的方法,做第 二步有m2种不同的方法,……,做第n步有mn 种不同的方法,那么完成这件事有 N=m1×m2×…×mn 种不同的方法。
北师大版选修2-3第一章计数原理
第一节.计数原理
主讲人:赖敏
新课引入
问题1:. 从甲地到乙地,可以乘火车,也可以乘
汽车,还可以乘轮船。一天中,火车有4 班, 汽车 有2班,轮船有3班。那么一天中乘坐这些交通工 具从甲地到乙地共有多少种不同的走法?
新课引入:
问题1:. 从甲地到乙地,可以乘火车,也可以乘
根据分步乘法计数原理 ,不同挂法种数是 N 3 2 6.
6种挂法可以表示如下:
左边 右边
乙
得到的挂法 左甲右乙 左甲右丙 左乙右甲
左乙右丙
甲
乙
丙
甲
丙
丙
甲
乙
左丙右甲
左丙右乙
练习 一个三位密码锁,各位上数字由0,1,2,3,4,5, 6,7,8,9十个数字组成,可以设置多少种三位数的 密码(各位上的数字允许重复)?首位数字不为0的 密码数是多少?首位数字是0的密码数又是多少?
例 2 要 从甲、乙、丙3 幅不同的画中选出 2 幅分别挂在左、右两边 墙的指定位置 ,问共 有多少种不同的挂法 ?
解 从 3 幅画中选取 2 幅分别挂在左、右两 边墙上,可以分两步完成:
第 1 步, 从3 幅画中选 1 幅挂在左边墙上 ,有 3 种 方法; 第 2 步, 从剩下的 2 幅画中选1 幅画挂在右边墙 上,有 2 种方法.
问题3:用前6个大写英文字母和1~9个阿拉伯
数字,以A1,A2,,B1,B2的方式给教室的座位编 号.
1 2 3 4 5 6 7 8 9 A1 A2 A3 A4 A5 A6 A7 A8 A9 1 2 3 4 5 6 7 8 9
A
9种
B
9种
6 × 9 =54
新课
分类记数原理: 做一件事情,完成它可以有
类比
加法原理看成“并联电路”;
m1 A m2 …… mn B
乘法原理看成“串联电路”
A m1 m2 …... mn B
分类计数与分步计数原理的区别和联系: 加法原理 乘法原理
分类计数原理和分步计数原理,回答的都是关于 完成一件事情的不同方法的种数的问题。 完成一件事情共有n类 完成一件事情,共分n个 办法,关键词是“分类” 步骤,关键词是“分步”