配方法在解题中的应用

合集下载

配方法在初中数学解题中的应用分析

配方法在初中数学解题中的应用分析

配方法在初中数学解题中的应用分析配方法作为一种在数学中经常使用的计算技巧,在初中的数学教学中有着十分重要的地位。

配方法在初中阶段的数学的教学中就显得很重要,作为重点和难点,学生必须牢固地掌握这种方法,教师也要在教学中进行反复地讲解。

一、配方法的意义所谓配方法就是将一个式子或者它的一部分恒等变化为完全平方式或者是几个完全平方式的和。

在初中阶段的数学教学中,使用配方法可以快速地将一个二次多项式快速地变化为一个一次多项式的平方和常数的和,然后解出方程。

在求解二次方程?r,相较于使用求根公式,使用配方法能够节约大量的时间和计算量。

配方法的基本公式为:a2±2ab+b2=(a+b)2。

只要更够熟悉公式及其变形,就更够灵活巧妙地配方,对数学问题进行解答。

下面就将结合一些具体的例子来对配方法再实际问题中的应用进行分析。

二、在求代数式值中的应用代数式的求值是初中的数学教学中经常出现的问题,使用配方上来解决求代数式的值的问题时的思路就说根据公式找出一个满的完全平方式子,然后使它满足一次项和二次项。

但是在实际的问题中,经常需要先对式子进行化简然后再运用配方法进行配方,在完成化简并配方之后就能快速地解出代数式的值,因此这是一种十分重要地求代数式值的方法。

例:在看到题目时,让学生仔细观察,由于未知数的值中含有根号,使用直接带入的方法会使得计算量比较复杂,因此就顺理成章地使用配方法解决。

这个例子是配方法在求代数式求值的问题中比较典型的应用,教师以这个例题开始讲解,培养学生使用配方法的解题思路,在学生掌握以后就能够举一反三,在以后遇到类似问题时就更够快速便捷地解决。

三、在化简二次根式的应用二次根式的化简是初中数学教学中的一个重点和难点,在进行二次根式的化简的时候,有两个必要的条件:一是被开方数是整数,二是被开方数中不能包含有能够开得尽方的因数或者因式。

在使用配方法之前要对式子进行初步的化简,面对同类的二次根式要将几个二次根式合并化简为最简二次根式;在读二次根式进行计算的时候,需要把根号内的二次根式移到根号外再进行计算,但是在根号内出现了多个含有根号的式子和常数时就需要使用配方法来化简,将根号内的多项式用配方法化简为有理的因式,将根号去掉方便计算。

待定系数法、配方法、消元法教学中的应用

待定系数法、配方法、消元法教学中的应用

待定系数法、配方法、消元法教学中的应用近几年中考题减少了繁琐的运算,着力考察学生的逻辑思维与直觉思维能力,以及观察、分析、比较、简洁的运算方法和推理技巧,突出了对学生数学素质的考察,试题运算量不大,以认识型和思维性的题目为主,许多题目既可用通性、通法直接求解,也可用特殊方法求解。

其中,配方法、待定系数法、换元法等是常用的数学解题方法,它们是数学思想的具体体现,是解决问题的手段。

它们不仅有明确的内涵,而且具有可操作性,有实施的步骤和做法,事半功倍是它们的共同效果。

根据多年的教学经验,谈一下它们在初中数学中的应用。

一、换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

换元法的实质是转化,关键是构造元和设元。

理论依据是等量代换,目的是变换研究对象,将问题移至新的对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化、化生为熟、化已知为未知,使问题容易解决。

它可以化高次为低次,化分式为整式,化无理式为有理式,在探讨方程、不等式、函数等问题中有广泛的应用。

例1:解方程:126222=+-+xxxx解:设x2+2x=y,原方程为:y-6/y=1,整理得:y2-y-6=0, 解之得y=-2或3。

当y=-2时,即x2+2x=-2,方程无解;当y=3时,即x2+2x=3,解得x1=1,x2=-3,经检验,x1=1,x2=-3是原方程的解。

∴原方程的解为x1=1,x2=-3,例2、已知(x+y)(x+y+2)-8=0,求x+y的值.若设x+y=a,则原方程可变为___________________,所以求出a的值即为x+y的值.所以x+y的值为___________________.二、待定系数法:要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法。

其理论依据是多项式恒等,或依据两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

初中数学方法篇一:配方法

初中数学方法篇一:配方法

数学方法篇一:配方法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.【范例讲析】1.配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。

例1、二次根式322+-a a 中字母a 的取值范围是_________________________. 点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。

2.配方法在化简二次根式中的应用在二次根式的化简中,也经常使用配方法。

例2、化简526-的结果是___________________.点评:题型b a 2+一般可以转化为y x y x +=+2)((其中⎩⎨⎧==+b xy ay x )来化简。

3.配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。

例3、不管x 取什么实数,322-+-x x 的值一定是个负数,请说明理由。

点评:证明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式来证明。

4.配方法在解某些二元二次方程中的应用解二元二次方程,在课程标准中不属于考试内容,但有些问题,还是可以利用我们所学的方法得以解决。

例4、解方程052422=+-++y x y x 。

点评:把方程052422=+-++y x y x 转化为方程组⎩⎨⎧=-=+0102y x 问题,把生疏问题转化为熟悉问题,体现了数学的转化思想,正是我们学习数学的真正目的。

5.配方法在求最大值、最小值中的应用在代数式求最值中,利用配方法求最值是一种重要的方法。

可以使我们求出所要求的最值。

例5、若x 为任意实数,则742++x x 的最小值为_______________________.点评:配方法是求一元二次方程根的一种方法,也是推导求根公式的工具,同时也是求二次三项式最值的一种常用方法。

初中数学中配方法的五种用途的详细剖析

初中数学中配方法的五种用途的详细剖析

cc518学习网精品学习资料总目录配方法是将一个式子或一个式子的某一部分化为完全平方式或几个完全平方式的和或差.许多数学题都可以通过配方法进行求解。

本文笔者将会详细剖析初中数学中配方法的五种用法。

类型一.解一元二次方程例1 用适当的方法解一元二次方程:x2-2x-143=0.分析此方程中常数项较大,使用公式法或者因式分解法解比较繁琐易错,由于二次项系数为l,并且一次项的系数是偶数,因此使用配方法比较好.类型二.求代数式的值例2 已知x-y=3,y-z=2,求x2+y2+z2-xy-yz-xz的值.分析代数式有三个未知数,而已知只给出两个方程,所以解不出x、y、z的值,可考虑用配方法及整体思想解题.类型三.分解因式例3 分解因式:x4+x2+1.分析此代数式既不能直接提取公因式,也不符合公式形式,因此无法直接分解因式.仔细观察题目发现中间项系数如果为2时,即符合完全平方公式.由此可考虑使用配方法解决.类型四.判定方程根的情况例4 已知关于x的一元二次方程x2-(2k+1)x+4k-3=0,求证:无论k为何值,此方程总有两个不相等的实数根.分析要判断方程根的情况,需要对一元二次方程根的判别式△的值进行讨论.类型五.求最值例5 :某专卖店在销售过程中发现“兴乐”牌童装平均每天可售出20套,每套盈利40元,为了迎接“六一”儿童节,该店决定采取适当降价措施,扩大销售量增加盈利,减少库存.经市场调查发现,如果每套童装降价1元,那么平均每天可多售出2套,问:每套童装降价多少元时,专卖店平均每天盈利最多?每天盈利最多是多少元?分析实际生活的问题,往往可以通过建立适当的函数解析式,求函数的最值来解决.而求函数的最值是通过配方法来完成的.本题中“平均每天盈利”是“每套童装售价”的函数,故考虑用函数来解决.。

配方法的解题功能

配方法的解题功能

望子成龙春季班初一数学专用资料第三讲:配方法的解题功能一、知识纵横:把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法。

配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值,解方程、解最值问题、讨论不等关系等方面有广泛应用。

运用配方法解题的关键是恰当的“配凑”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式。

二、例题分析例1、(1)、多项式52454222-+-++y x y xy x 的最小值是多少?此时y x ,的值分别是什么?(2)、已知有理数z y x ,,满足)(213222z y x z y x ++=-++, 求、3)(-++z y x 的值。

例2、如果,32211-=+=-z y x 问、z y x ,,分别为何值时,222z y x ++有最小值,最小值是多少?例3、怎样的整数c b a ,,满足不等式: .233222c b ab c b a ++≤+++例4、求方程21714222=+-n mn m 的自然数解。

例5、已知z y x ,,满足⎩⎨⎧=+-=-+3262z y x z y x ,求222z y x ++的最小值。

三、基础巩固:1、若,03)(2222=+++-++z y x z y x 则=-++xyz z y x 3433 ,2、若,3,22222=-=-c b b a 则=---++222222444a c b c b a c b a ,3、若z y x ,,满足,5=+y x ,92-+=y xy z 那么=++z y x 32 ,4、两个多项式之积是,32422+++-b a b a 则这两个多项式分别是:、 , 5、已知,052422=+--+y x y x 则12---+y x y x 的值是 。

九年级数学上册第4章配方法在解题中的巧妙的应用(青岛版)

九年级数学上册第4章配方法在解题中的巧妙的应用(青岛版)

配方法在解题中的巧妙的应用配方法是一种重要的数学方法,它既是恒等变形的重要手段,又是研究相等关系,讨论不等关系的常用技巧,还是挖掘题目当中隐含条件的有力工具。

它不仅可以用来解一元二次方程,,而且在数学的其他领域也有着广泛的应用,下面分别阐述如下:一. 用于求字母的值例1 已知,6134222x xy x y x =+++则x,y 的值分别为______.分析:可将含x,y 的方程化为两个非负数和为0的形式,从而求出两个未知数的值. ∵,6134222x xy x y x =+++∴,09644222=+-+++x x xy y x∴()().03222=-++x xy ∵()().03,0222≥-≥+x xy ∴xy+2=0,x-3=0,∴xy=-2,x=3. 将x=3代入xy=-2中解得.32-=y ∴ x=3,.32-=y二. 用于证明代数式非负例2 用配方法证明:不论x 为任何实数,代数式5.442+-x x 的值恒大于0.分析:本题主要考查利用配方法说明代数式的值恒大于0,说明一个二次三项式恒大于0的方法是通过配方将二次三项式化成“2a +正数”的形式.证明: ∵()()22225.025.4445.44+-=++-=+-x x x x x ,又∵()022≥-x ,∴05.442φ+-x x∴不论x 为任何实数,代数式5.442+-x x 的值恒大于0.三. 用于比较大小例3 若代数式,15,87102222+++=+-+=a b a N a b a M 则M-N 的值( )A. 一定是负数B.一定是正数C. 一定不是负数D.一定不是正数分析: M-N=)15(1)8710(2222++++-+a b a a b a=1587102222----+-+a b a a b a=().03233412922φ+-=++-a a a 故选B.四. 用于因式分解例4 分解因式:22412a ax x x -+++=_____________.分析:原式=()()()()222222422241212122a x x a ax x x x a ax x x x --+=+--++=-++-+ =()().1122a x x a x x +-+-++五. 用于判定三角形的形状例5 已知a 、b 、c 是△ABC 的三边,且满足,0222=---++ac bc ab c b a ,则△ABC 的形状为_______________.分析:等式两边乘以2,得,022*******=---++ac bc ab c b a配方,得()()(),022*******=+-++-++-a ca c c bc b b ab a即()()().0222=-+-+-a c c b b a由非负数的性质得a-b=0,b-c=0,c-a=0,a=b,b=c,c=a,即a=b=c.故△ABC 是等边三角形.六. 用于求代数式的最值例6 利用配方法求7422--=x x y 的最大值或最小值.分析:求最大值或最小值,必须将它们化成()c b x a y ++=2的形式,然后再判断,当a >0时,它有最小值c;当a <0时,它有最大值c.解: ()()91227122742222--=--+-=--=x x x x x y∵(),0122≥-x ∴(),99122---φx故它的最小值是-9.评注:配方法是求一元二次方程根的一种方法,也是推导求根公式的工具,并且也是解决其他问题的方法.其用途相当广泛.。

配方法在初中数学解题中的运用研究-最新教育资料

配方法在初中数学解题中的运用研究-最新教育资料

配方法在初中数学解题中的运用研究配方法是把一个算式或者一个算式中的某一个部分以恒等变形的方式变成完全平方或者几个完全平方式的和.在初中数学解题过程中,适当运用配方法解答相应的问题,有利于提升解题的正确率与解题速度.笔者在践行高效课堂的过程中,注重配方法在初中数学解题中的灵活运用,教学效果显著.一、配方法应用在因式分解初中数学学习中,因式分解是一项重要的内容,能不能在繁多的数学问题中成功实现因式分解,是决定此项问题能否成功求解的基础,因式分解过程中合理的使用配方法,必然能够获得事半功倍的效果.例1 因式分解:4c2x2-4cdxy-3d2y2+8dy-4分析要想对这个式子做因式分解,在分析的基础上联合已经学过的知识,可以得出只要先加一个d2y2,就能够将上式中的4c2x2-4cdxy配成完全平方,把之前的多项式转化成平方差之后,再使用平方差公式就能够求解了.解原式=4c2x2-4cdxy+d2y2-4d2y2+8dy-4=(2cx-dy)2-(2dy-2)2=(2cx+dy-2)(2cx-3dy+2)二、配方法应用在解一元二次方程一元二次方程是整式方程,它不仅是初中数学教学中的重头戏,而且是学生今后学习数学的基础,采用配方法解一元二次方程效果事半功倍.例2 使用配方法解方程:x2+4x+3=0解移项得到x2+4x=-3,配方可得x2+4x+22=-3+22,(x+2)2=1.两边开平方,可以得到x+2=±1,因此可求解出x1=-3,x2=-1.这个方程的解答最关键的核心在于一元二次方程两边都加上了一次项系4的一半的二次方,这种一元二次方程左边能够简化成一个完全平方式(x+2)2,一元二次方程右边是非负数1,将其转化成直接开平方法就能够得出方程的解.二次项不是1的需要先把二次项系数转化成1,之后再借助配方法进行答案求解.一元二次方程解题过程中使用配方法,其本质就是对一元二次方程进行变形,将其转化成开方所需要的形式.三、配方法应用在根式化简根式化简是初中代数中的重要内容,假如采用配方法解题,往往起到令人满意的效果.例3 化简3-8.分析形如A+2B的根式,使用配方法化简十分容易,但是在化解过程中有一项需要重点注意的是如果把原式配方做成(1-2)2的形式,在将根号去除时不可忽视算术根的概念.解原式=2-22+1=(2-1)2=2-1.四、配方法应用在二次三项式例4 证明代数式-3x2-x+1的值不大于1312.解答这个题目的关键在于把二次三项式用配方的方式表达成含有完全平方的式子,二次三项式配方不比一元二次方程的配方,各项除以二次项系数即可,而是需要将二次项系数中的-3提取,重点关注提取系数之后多项式中的“x2+13x”完成配方,之后使用“平方是非负数”的定义特点与不等式自身的性质要求,将这个二次三项式的取值范围求解,也就是代数式的求解范围.但是,不少学生往往把方程配方与代数式的配方混为一谈,因此,我们必须在教学过程中正确引导学生正确区分两者之间的关系.解 -3x2-x+1=-3(x2+ x)+1=-3[x2+13x+(16)2-(16)2]+1=-3(x+16)2+3(16)2+1=-3(x+16)2+1312.因为3(x+16)2≥0,所以-3(x+16)2≤0,所以-3(x+16)2+1312≤1312.也就是代数式代数式-3x2-x+1的值不大于1312.五、配方法应用在几何题例5 △ABC三条边分别是a、b、c,且满足等式(a+b+c)2=3(a2+b2+c2),判断这个三角形的形状.这类题型的特征,都是将三角形中边或者角的数量关系使用代数式的方式表达,从这里就可以看出,要准确判断一个三角形的形状,除了常用的几何方式外,还可以借助配方法的方式求解.解原式可化为2a2+2b2+2c2-2ab-2bc-2ac=0.使用配方法可以化成(a-b)2+(b-c)2+(c-a)2=0.由上式可以得出a-b=0,b-c=0,c-a=0.所以可以得到a=b,b=c,c=a.也就是三边a、b、c相等,因此这个三角形是等边三角形.六、配方法应用在二次函数最值的求解例6 有研究结果显示,学生对于概念问题的掌握能力y和提出概念所需要使用的时间x(单位:分)之间满足着如下函数关系:y=-0.1x2+2.6x+43(013时,y的取值会随着x的增大而变小.那么这个函数式的取值范围应该是:0。

解一元二次方程时配方法的作用

解一元二次方程时配方法的作用

解一元二次方程时配方法的作用在解一元二次方程时,配方法是一种常用的方法。

这种方法的核心思想是通过配方,将方程转化为一个完全平方的形式,从而方便求解。

配方法不仅仅是一种解题技巧,它的背后有着深厚的数学原理和广泛的应用。

首先,配方法能够将形式复杂的一元二次方程转化为更容易处理的形式。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c 为常数,且 a ≠0。

通过配方,可以将方程转化为(a(x+b/2a))^2 = (b^2 - 4ac)/4a^2 的形式。

这种转化使得原本复杂的一元二次方程变得更加直观和简单,方便我们进一步求解。

其次,配方法能够揭示一元二次方程根的性质。

通过配方,我们可以清晰地看到方程的根与系数之间的关系。

例如,方程的根的和等于系数的负比值,即-b/a;根的乘积等于常数项与首项系数之比,即c/a。

这些关系式对于理解一元二次方程的根的性质和分布具有重要意义。

此外,配方法在实际问题中也有广泛的应用。

例如,在物理学、工程学、经济学等领域,我们经常需要解决形如y = ax^2 + bx + c 的问题。

这些问题可以通过配方法转化为顶点形式y = a(x-h)^2 + k,其中(h, k) 是函数的顶点坐标。

这种转化能够帮助我们更准确地描述问题的本质,并提供有效的解决方案。

再者,配方法还能培养学生的数学思维和解决问题的能力。

在数学教学中,配方法是一元二次方程部分的重点内容之一。

通过学习和掌握配方法,学生可以锻炼自己的逻辑思维、推理能力和计算能力。

同时,配方法还能够帮助学生理解数学的转化思想,培养他们的创新思维和实践能力。

总之,配方法在解一元二次方程中的作用是显而易见的。

它不仅是一种解题技巧,更是一种数学思维方式和解决问题的方法。

通过学习和运用配方法,我们可以更好地理解一元二次方程的本质和性质,并在实际应用中发挥其作用。

同时,配方法还能够培养学生的数学思维和解决问题的能力,为他们的未来发展奠定坚实的基础。

把代数式通凑配等手段,得到完全平方式,再运用完全平方

把代数式通凑配等手段,得到完全平方式,再运用完全平方

把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.运用配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.1、配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。

例1、求二次根式322+-a a 中字母a 的取值范围分析:根据二次根式的定义,必须被开方数大于等于零,再观察被开方数可以发现可以利用配方法求得。

解:2)1(2)12(32222+-=++-=+-a a a a a因为无论a 取何值,都有0)1(2≥-a 。

所以a 的取值范围是全体实数。

点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。

2、配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。

例2、不管x 取什么实数,322-+-x x 的值一定是个负数,请说明理由。

分析:本题主要考查利用配方法说明代数式的值恒小于0,说明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式。

解:2)1(31)12(3)2(322222---=-++--=---=-+-x x x x x x x ∵0)1(2≤--x∴02)1(2<---x因此,无论x 取什么实数,322-+-x x 的值是个负数。

点评:证明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式来证明。

3、配方法在求最大值、最小值中的应用在代数式求最值中,利用配方法求最值是一种重要的方法。

可以使我们很跨求出所要求的最值。

例3、若x 为任意实数,求742++x x 的最小值。

分析:求742++x x 的最小值,可以先将它化成3)2(2++x ,根据0)2(2≥+x ,求得它的最小值为3。

配方法的典型应用(课件)数学九年级上册(人教版)

配方法的典型应用(课件)数学九年级上册(人教版)
1
二次项系数化为1,得 x +x ,
2
2
2

由此可得
(x-1)2=4
x-1=±2
x1 3, x2 1.
配方,得
1 1 1
x +x ,
2 2 2
2
2

2
1 3
x+ ,
2 4
1
3
由此可得 x+ ,
2
2
-1+ 3
-1- 3
2
2
x 6 8 x 6 8
x 2 x 14


a 2 6a 9 b 2 8b 16 0
2
2
a 3 0, b 4 0
a 3, b 4
①若3为该等腰三角形的腰长,且符合三
x1
, x2
.
2
2
类型一:把二次多项式化为m(x+n)2+p的形式
例1.把下列二次多项式化为m(x+n)2+p的形式:
(1)k2-4k+5;
(2)-x2-x-1.
解:(1)k2-4k+5=k2-4k+4-4+5 =(k-2)2+1

1 2 3
2
2
2
=

(
x+
) ,
(2)-x -x-1=-(x +x+1)=-(x +x+ - +1)
元一次方程求解.
3.方程配方的方法?
在方程两边都加上一次项系数一半的平方.注意是在二次项系数为1的前提
下进行的.
4.用配方法解一元二次方程的一般步骤?

配方法在初中数学解题中的应用_王亚峰

配方法在初中数学解题中的应用_王亚峰
例 3 计算: 20082 + 64 - 16 × 2008. 解 原式 = 20082 - 2 × 2008 × 8 + 82 = ( 2008 - 8) 2 = 20002 = 4000000. 例 4 计算: 9992 - 1002 × 998. 解 原式 = 9982 + 2 × 998 + 1 - 1002 × 998 = 998 × ( 998 + 2 - 1002) + 1 = 998 × ( - 2) + 1 = - 1997. 对于二次三项式 ax2 + bx + c 也可以进行因式分解. 例 5 分解因式: x2 + 2x - 3. 解 原式 = ( x2 + 2x + 1) - 1 - 3 = ( x + 1) 2 - 4
本文摘自中学数学教学参考
配方法在初中数学解题中的应用
河北省唐山市丰润区欢ቤተ መጻሕፍቲ ባይዱ庄乡中学 063000 王亚峰
从小学到中学,数学一直是一门必学课程,学生需要熟练 掌握的数学理论方法很多,配方法就是一种必须能够灵活运用 的解题方法. 配方法这种恒等变形的方法广泛应用于因式分 解、解方程、代数的配方与求值以及函数等数学教学领域,如果 学生可以熟练掌握并灵活运用这种方法,不仅可以有效地提高 数学成绩,而且能够培养学生的逻辑思维能力、计算能力和空 间想象能力. 配方法的计算过程严谨而缜密,思路清晰,可以让 学生体会到科学、严谨的科学态度与作风. 本文将详细介绍配 方法的教学目标和解析方法,举例论证配方法在初中数学解题 过程中的广泛应用,并针对如何提高配方法的教学效果提出个 人见解.
2. 配方法的解析方法 配方法的主要解析方法包括公式法、函数法和配方法等. 公式法是用现有 公 式 对 某 一 类 型 的 代 数 式 进 行 直 接 配 方,例 如: a2 + 2ab + b2 = ( a + b) 2 ,a2 - 2ab + b2 = ( a - b) 2 和 a2 + b2 + c2 + 2ab + 2ac + 2bc = ( a + b + c) 2 等. 配方法应用于二次 函数,配方法一般是通过配成完全平方式的形式来解析一元二 次方程的跟. 二、配方法在初中数学解题过程中的广泛应用

利用配方法解题举例

利用配方法解题举例

利用配方法解题举例作为一个重要的数学方法,配方法在中学数学中的应用极为广泛,下面举例说明.一、用于因式分解例1分解因式:(1)x4+4;(2)a2-4ab+3b2-2bc-c2解:(1)原式=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).(2)原式=(a2-4ab+4b2)-(b2+2bc+c2)=(a-2b)2-(b+c)2=(a-b+c)(a-3b-c).二、用于求值例2已知x2+y2+4x-6y+13=0,x,y为实数,则x y=_______.解:由已知等式配方,得(x+2)2+(y-3)2=0.因x,y为实数,故x=-2,y=3.故x y=(-2)3=-8.三、用于化简根式四、用于解方程(组)例4解方程(x2+2)(y2+4)(z2+8)=64xyz(x,y,z均为正实数).解:原方程变形,得x2y2z2+4x2z2+2y2z2+8z2+8x2y2+32x2+16y2+64-64xyz=0.各自配方,得(xyz-8)2+2(4x-yz)2+4(2y-xz)2+8(z-xy)2=0.解:显然,x=y=z=0适合方程组.当x≠0,y≠0,z≠0时,原方程组可变形为:∴ x=1,y=1,z=1.五、用于求最值解:所求式变形配方,得∴当x=1时,y有最小值1.六、用于证明恒等式例7四边形的四条边长a,b,c,d满足等式a4+b4+c4+d4=4abcd.求证:a =b=c=d.证明:已知等式变形,得a4-2a2b2+b4+c4-2c2d2+d2+2a2b2+2c2d2-4abcd=0.配方,得(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.∴ a2=b2,c2=d2,ab=cd.故a=b=c=d.七、用于证明不等式例8若a,b,c为实数,求证:a2+b2+c2-ab-bc-ac≥0.证明:∴2(a2+b2+c2-ab-bc-ac)=(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)=(a-b)2+(b-c)2+(a-c)2≥0,∴ a2+b2+c2-ab-bc-ac≥0.八、用于判定几何图形的形状例9已知a,b,c是△ABC的三边,且a2+b2+c2-ab-bc-ca=0,试判定△ABC 的形状.解:仿上例,已知等式可化为(a-b)2+(b-c)2+(c-a)2=0.∴ a-b=0,b-c=0,c-a=0.即a=b=c.故△ABC是等边三角形.。

8 例析利用配方法解题题型 高中常用数学方法的介绍 例析 体验 练习

8   例析利用配方法解题题型  高中常用数学方法的介绍  例析  体验  练习

【学生版】例析利用配方法解题题型配方法是数学中一种重要的恒等变形的方法,其作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、化简根式、解方程、解函数最值和解析式、证明等式和不等式问题等方面有广泛的应用。

所谓配方法:是把代数式通过“凑”、“配”等手段,善于将某项拆开又重新分配组合,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法;配方法主要适用于含“二次项”的函数、方程、等式、不等式的讨论、求解与证明及二次曲线的讨论。

配方法使用的最基本的配方依据是二项完全平方公式222)b a (b ab 2a ±=+±;将这个公式灵活运用,可得到各种基本配方形式;如:ab 2)b a (ab 2)b a (b a 2222+-=-+=+;222222)b 23()2b a (ab 3)b a (ab )b a (b ab a ++=+-=-+=++;])a c ()c b ()b a [(21ca bc ab c b a 222222+++++=+++++; 2)x cos x (sin x cos x sin 21x 2sin 1+=+=+;2)x1x (2)x 1x (x 1x 2222+-=-+=+。

一、运用配方法解方程对有一类方程的求解,可运用几个非负数的和等于零,则每一个非负数都是零,则就需要配方。

例1、求方程05y 4x 2y x 22=+-++的解x ,y 。

【提示】 【解析】 【评注】例2、证明:无论m 取何值,关于x 的方程05m x 4x )10m 6m (22=-++-都是一个一元二次方程。

二、运用配方法解(证明)不等式根据完全平方的非负性,结合配方,可解决不等式的证明与建立不等量关系,解决不等式问题。

例3、设方程2x kx 20++=的两实根为p 、q ,若22p q ()()7qp+≤成立,求:实数k 的取值范围。

配方法在初中数学解题中的应用分析

配方法在初中数学解题中的应用分析

配方法在初中数学解题中的应用分析对于初中数学来说,配方法是非常重要的解题方法之一。

配方法的应用范围广泛,除了常见的初中阶段的代数方程外,在高中的数学中也有很多配方法的应用。

本文将从初中数学中配方法的基本概念、配方法在方程求解中的应用以及配方法在三角函数中的应用等方面进行分析探讨。

一、配方法的基本概念配方法是解决一些特殊的代数方程时所采用的一种解题方法。

所谓配方法就是把一个多项式进行拆项或变形,使得它可以表示成两个较简单的一次式的积的形式。

一般情况下,配方法的步骤如下:(1)将多项式拆项或者变形;(2)以两项之积的形式表示出来;(3)进行方程的一般化处理,大多数情况需要对等式两侧进行加减乘除等运算,以求出未知量的值。

因此,要想用配方法解决问题,首先要学会拆项变形的方法,这是配方法的基础。

其次是理解“求两项之积”的概念,因为配方法的核心在于利用两项之积的积因式分解原理解决方程。

最后是需要熟练的掌握方程的各种变形方法,这样才能通过配方法快速地解决问题。

二、配方法在方程求解中的应用在初中数学中,方程求解是重要的部分。

关于方程求解,许多学生都会采用逐步移项等方法,但当遇到一些较为困难的方程时,配方法是非常实用的解题方法。

1、利用配方法解决二元一次方程我们知道,二元一次方程有两个未知量,故需要两个等式方程式求解。

采用配方法解决二元一次方程时,我们以x为主元,将二元一次方程变成“与x有关的一元一次方程”和“不与x有关的常数项”之和相等,接着再用合并同类项的方法使方程变成“ax²+bx+c=(px+q)²”的形式,然后利用简单的公式即可得出x的解。

2、利用配方法解决二元二次方程在二元二次方程中,当其中一项被平方时,我们可以利用配方法解题。

具体做法是:将二元二次方程中的一项进行拆项或变形,然后在将拆开的项表示成一个一元二次方程的形式,进而求解出这个一元二次方程的根,最后再将根带入方程中,解出相应的未知量。

配方法的四种常见应用(沪科版)(原卷版)

配方法的四种常见应用(沪科版)(原卷版)

配方法的四种常见应用考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对配方法的四种常见应用的理解!【类型1 利用配方法确定未知数的取值】1.(2023春·安徽安庆·八年级安庆市第四中学校考期末)对于多项式x2+2x+4,由于x2+2x+4=(x+1)2+3≥3,所以x2+2x+4有最小值3.已知关于x的多项式−x2+6x−m的最大值为10,则m的值为()A.1B.−1C.−10D.−192.(2023春·湖北省直辖县级单位·八年级统考期末)若关于x的一元二次方程x2+6x+c=0配方后得到方程(x+3)2=2c,则c的值为()A.−3B.0C.1D.33.(2023春·浙江杭州·八年级期末)若−2x2+4x−7=−2(x+m)2+n,则m,n的值为()A.m=1,n=−5B.m=−1,n=−5C.m=1,n=9D.m=−1,n=−94.(2023春·辽宁大连·八年级统考期末)已知关于x的多项式−x2+mx+4的最大值为5,则m的值可能为()A.1B.2C.4D.55.(2023春·山东青岛·八年级统考期中)若关于x的一元二次方程kx2﹣6x+3=0通过配方可以化成(x+a)2=b(b>0)的形式,则k的值可能是()A.0B.2C.3D.926.(2023春·天津和平·八年级校考期中)若方程4x2−(m−2)x+1=0的左边可以写成一个完全平方式,则m的值为()A.−2B.−2或6C.−2或−6D.2或−67.(2023春·河北保定·八年级统考期末)将一元二次方程x2−8x+5=0配方成(x+a)2=b的形式,则a+b 的值为.8.(2023春·山东威海·八年级统考期中)对于二次三项式x2+6x+3,若x取值为m,则二次三项式的最小值为n,那么m+n的值为.9.(2023春·江苏苏州·八年级统考期末)关于x的二次三项式x2+4x+9进行配方得x2+4x+9=(x+m)2+n(1)则m= ,n= ;(2)求x为何值时,此二次三项式的值为7 ?10.(2023春·广西贺州·八年级统考期中)请阅读下列材料:我们可以通过以下方法求代数式的x2+2x−3最小值.x2+2x−3=x2+2x⋅1+12−12−3=(x+1)2−4∵(x+1)2≥0∴当x=-1时,x2+2x−3有最小值-4请根据上述方法,解答下列问题:(1)x2+2√3x+5=x2+2×√3x+(√3)2+2=(x+a)2+b,则a=__________,b=__________;(2)若代数式x2−2kx+7的最小值为3,求k的值.【类型2 利用配方法构造“非负数之和”解决问题】1.(2023春·八年级课时练习)已知a,b,c满足a2+6b=7,b2−2c=−1,c2−2a=−17,则a−b+c的值为()A.−1B.5C.6D.−72.(2023·全国·八年级专题练习)已知a-b=2,ab+2b-c2+2c=0,当b≥0,-2≤c<1时,整数a的值是.3.(2023春·江苏·八年级期末)若a,b满足2a2+b2+2ab−4a+4=0,则a+3b的值为.4.(2023春·八年级课时练习)根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.5.(2023春·浙江·八年级专题练习)已知a+b−2√a−1−4√b−2=3√c−3−1c−5,求a+b+c的2值.6.(2023春·广东佛山·八年级校考期中)(1)若m2−2mn+2n2−8n+16=0,求m、n的值.解:因为m2−2mn+2n2−8n+16=0,所以(m2−2mn+n2)+(n2−8n+16)=0由此,可求出m=______;n=______;根据上面的观察,探究下面问题:(2)x2+4xy+5y2+2−2√2y=0,求2x+y的值;7.(2023春·全国·八年级专题练习)已知a、b是等腰△ABC的两边长,且满足a2+b2-8a-4b+20=0,求a、b 的值.8.(2023春·湖南益阳·八年级统考期末)阅读材料:我们知道:若几个非负数相加得零,则这些数都必同时为零.例如:①(a﹣1)2+(b+5)2=0,我们可以得:(a﹣1)2=0,(b+5)2=0,∴a=1,b=-5.②若m2-4m+n2+6n+13=0,求m、n的值.解:∵m2-4m+n2+6n+13=0,∴(m2﹣4m+4)+(n2+6n+9)=0(我们将13拆成4和9,等式左边就出现了两个完全平方式)∴(m﹣2)2+(n+3)2=0,∴(m﹣2)2=0,(n+3)2=0,∴n=2,m=-3.根据你的观察,探究下面的问题:(1)a2﹣4a+4+b2=0,则a=.b=.(2)已知x2+2xy+2y2-6y+9=0,求x y的值.(3)已知a、b(a≠b)是等腰三角形的边长,且满足2a2+b2﹣8a﹣6b+17=0,求三角形的周长.9.(2023春·江苏·八年级专题练习)阅读与思考的运用“配方法”能对一些多项式进行因式分解.例如:x2+4x−5=x2+4x+22−22−5=(x+2)2−9=(x+2+3)(x+2−3)=(x+5)(x−1)(1)解决问题:运用配方法将下列多项式进行因式分解①x2+3x−4;②x2−8x−9(2)深入研究:说明多项式x2−6x+12的值总是一个正数?(3)拓展运用:已知a、b、c分别是△ABC的三边,且a2−2ab+2b2−2bc+c2=0,试判断△ABC的形状,并说明理由.10.(2023春·内蒙古赤峰·八年级统考期末)阅读材料:若x2−2xy+2y2−8y+16=0,求x,y的值.解:∵x2−2xy+2y2−8y+16=0∴(x2−2xy+y2)+(y2−8y+16)=0∴(x−y)2+(y−4)2=0∴(x−y)2=0,(y−4)2=0∴y=4,x=4根据上述材料,解答下列问题:(1)m2−2mn+2n2−2n+1=0,求2m+n的值;(2)a−b=6,ab+c2−4c+13=0,求a+b+c的值.11.(2023春·湖南岳阳·八年级统考期末)设b为正整数,a为实数,记M=a2−4ab+5b2+2a−2b+11,4在a,b变动的情况下,求M可能取得的最小整数值,并求出M取得最小整数值时a,b的值.12.(2013·四川达州·中考真题)选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:x2−4x+2=(x−2)2−2;②选取二次项和常数项配方:x2−4x+2=(x−√2)2+(2√2−4)x,或x2−4x+2=(x+√2)2−(4+2√2)x③选取一次项和常数项配方:x2−4x+2=(√2x−√2)2−x2根据上述材料,解决下面问题:(1)写出x2−8x+4的两种不同形式的配方;(2)已知x2+y2+xy−3y+3=0,求x y的值.13.(2023春·广东揭阳·八年级统考期末)把代数式通过配凑等手段,得到局部完全平方式.再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a2+6a+8,解:原式=a2+6a+8+1−1=a2+6a+9−1=(a+2)(a+4)②M=a2−2ab+2b2−2b+2,利用配方法求M的最小值,解:a2−2ab+2b2−2b+2=a2−2ab+b2+b2−2b+1+1=(a−b)2+(b−1)2+1∵(a−b)2≥0,(b−1)2≥0∴当a=b=1时,M有最小值1.请根据上述材料解决下列问题:(1)在横线上添加一个常数,使之成为完全平方式:x2−2x+______.3(2)用配方法因式分解:x2−4xy+3y2.(3)若M=x2+8x−4,求M的最小值.(4)已知x2+2y2+z2−2xy−2y−4z+5=0,则x+y+z的值为______.【类型3 利用配方法求最值】1.(2023春·湖南长沙·八年级校联考期末)代数式x2−4x+5的最小值为()A.−1B.0C.1D.22.(2023春·山东威海·八年级统考期中)已知A=x2+6x+n2,B=2x2+4x+n2,下列结论正确的是()A.B−A的最大值是0B.B−A的最小值是−1C.当B=2A时,x为正数D.当B=2A时,x为负数3.(2023春·江苏南通·八年级统考期末)平面直角坐标系xOy中,P点坐标为(m,2n2−10),且实数m,n 满足2m−3n2+9=0,则点P到原点O的距离的最小值为()A.35√10B.125C.65√3D.45√54.(2023春·浙江·八年级期末)新定义,若关于x的一元二次方程:a1(x−m)2+n=0与a2(x−m)2+n=0,称为“同族二次方程”.如2(x−3)2+4=0与3(x−3)2+4=0是“同族二次方程”.现有关于x的一元二次方程:2(x−1)2+1=0与(a+2)x2+(b−4)x+8=0是“同族二次方程”.那么代数式ax2+bx+2018能取的最小值是()A.2011B.2013C.2018D.20235.(2023春·福建福州·八年级福建省罗源第一中学校考期中)已知实数m、n满足m−n2=8,则代数式m2−3n2+m−14的最小值是.6.(2023春·广东韶关·八年级校考期末)阅读下面的解答过程:求y2+4y+8的最小值解:y2+4y+8=y2+4y+4+4=(y+2)2+4=(y+2)2≥0,即(y+2)2的最小值为0,∴(y+2)2+4的最小值为4.即y2+4y+8的最小值是4.根据上面的解答过程,回答下列问题:(1)式子x2+2x+2有最______值(填“大”或“小”),此最值为______(填具体数值).(2)求12x2+x的最小值.(3)求−x2+2x+4的最大值.7.(2023春·四川达州·八年级统考期末)根据学过的数学知识我们知道:任何数的平方都是一个非负数,即:对于任何数a,a2≥0都成立,据此请回答下列问题.应用:代数式m2−1有值(填“最大”或“最小”)这个值是.探究:求代数式n2+4n+5的最小值,小明是这样做的:请你按照小明的方法,求代数式4x2+12x−1的最小值,并求此时x的值,拓展:求多项式x2−4xy+5y2−12y+15的最小值及此时x,y的值8.(2023春·广东惠州·八年级期末)阅读理解:求代数式x2+6x+10的最小值.解:因为x2+6x+10=(x2+6x+9)+1=(x+3)2+1,所以当x=−3时,代数式x2+6x+10有最小值,最小值是1.仿照应用求值:(1)求代数式x2+2x+10的最小值;(2)求代数式−m2+8m+3的最大值.9.(2023春·江苏扬州·八年级统考期末)【提出问题】某数学活动小组在学习完反比例函数后,类比学到的方法尝试研究函数y=x+1x时,提出了如下问题:(1)初步思考:自变量x的取值范围是_______________(2)探索发现:当x>0时,y>0;当x<0时,y<0.由此我们可猜想,该函数图像在第_________象限;(3)深入思考:当x>0时,y=x+1x =(√x)2+(1√x)2=(√x−1√x)2+2≥2,于是,当√x−1√x=0时,即x=1时,y的最小值是2.请仿照上述过程,求当x<0时,y的最大值;【实际应用】(4)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.【类型4 利用配方法比较大小】1.(2023·全国·八年级假期作业)若代数式M=10a2+b2−7a+8,N=a2+b2+5a+1,请比较M、N的大小.2.(2023春·浙江杭州·八年级期末)已知M=x2﹣3,N=4(x﹣3).2(1)当x=﹣1时,求M﹣N的值;(2)当1<x<2时,试比较M,N的大小.3.(2023·江苏·八年级假期作业)【项目学习】“我们把多项式a2+2ab+b2及a2−2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32−32+8=(a+3)2−1因为(a+3)2≥0,所以a2+6a+≥−1,因此,当a=−3时,代数式a2+6a+8有最小值,最小值是−1.【问题解决】利用配方法解决下列问题:(1)当x=___________时,代数式x2−2x−1有最小值,最小值为___________.(2)当x取何值时,代数式2x2+8x+12有最小值?最小值是多少?【拓展提高】(3)当x,y何值时,代数式5x2−4xy+y2+6x+25取得最小值,最小值为多少?(4)如图所示的第一个长方形边长分别是2a+5、3a+2,面积为S1;如图所示的第二个长方形边长分别是5a、a+5,面积为S2,试比较S1与S2的大小,并说明理由.4.(2023春·江苏宿迁·八年级校考期中)问题:对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa−3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2xa−3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa−3a2=(a2+2ax+a2)−a2−3a2=(x+a)2−4a2=(x+a)2−(2a)2=(x+3a)(x−a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”,利用“配方法",解决下列问题:(1)分解因式:a2−6a+8.(2)比较代数式x2−1与2x−3的大小.5.(2023春·江苏淮安·八年级统考期中)“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x)2+;(2)已知x2﹣4x+y2+2y+5=0,求y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.6.(2023春·江苏苏州·八年级校联考期中)先阅读后解题:若m2+2m+n2−6n+10=0,求m和n的值.解:等式可变形为:m2+2m+1+n2−6n+9=0即(m+1)2+(n−3)2=0因为(m+1)2≥0,(n−3)2≥0,所以m+1=0,n−3=0即m=−1,n=3.像这样将代数式进行恒等变形,使代数式中出现完全平方式的方法叫做“配方法”.请利用配方法,解决下列问题:(1)已知x2+y2+4x−10y+29=0,求y x的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2−4a−6b+11=0,则△ABC的周长是________;(3)在实数范围内,请比较多项式2x2+2x−3与x2+3x−4的大小,并说明理由.7.(2023春·河南驻马店·八年级统考期末)阅读下列材料利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式.例如:x2﹣8x+17=x2﹣2•x•4+42﹣42+17=(x﹣4)2+1(1)填空:将多项式x2﹣2x+3变形为(x+m)2+n的形式,并判断x2﹣2x+3与0的大小关系.∵x2﹣2x+3=(x﹣)2+.∴x2﹣2x+30(填“>”、“<”、“=”)(2)如图①所示的长方形边长分别是2a+5、3a+2,求长方形的面积S1(用含a的式子表示);如图②所示的长方形边长分别是5a、a+5,求长方形的面积S2(用含a的式子表示)(3)比较(2)中S1与S2的大小,并说明理由.8.(2023春·广东肇庆·八年级德庆县德城中学校考期中)材料阅读结论:①形如(a±b)2+c的式子,当a±b=0有最小值,最小值是c;②形如−(a±b)2+c的式子,当a±b=0有最大值,最大值是c;③а2+b2≥2ab.这三个结论有着广泛的运用.比如:求x取何值时,代数式x2−4x+3有最小值,最小值是多少?小明同学用结论①求出了答案,他是这样解答的:∵x2−4x+3=x2−4x+(4−4)+3=(x2−4x+4)−4+3=(x−2)2−1∴当x−2=0,即x=2时x2−4x+3的值最小,最小值为−1.理解运用请恰当地选用上面的结论解答下面的问题(1)求x取何值时,代数式−x2−6x+5有最大值,最大值是多少?(2)某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案:方案一:第一次提价p%,第二次提价q%:%.方案二:第一次,第二次提价均为p+q2其中p,q是不相等的正数,请比较两种方案,哪种方案提价较多?。

巧用配方法解题

巧用配方法解题

巧用配方法解题配方法是一元二次方程解法中非常重要的一种方法,其实质是一种恒等变形,它通过加上并且减去相同的项,把算式的某些项配成完全n 次方的形式,通常是指配成完全平方式.配方法的在中学数学中的应用非常广泛,主要有以下几个方面.一、用配方法解方程例1 解方程:2x 2-3x+1=0.分析:用配方法解一元二次方程的一般步骤是:1. 将二次项的系数化为1;2.移项,使含未知数的项在左边,常数项在右边;3.配方,方程两边都加上一次项系数一半的平方;4.将方程化为(x+m)2=n 的形式;5.用直接开平方法进行求解(n<0无解).解:方程两边都除以2,得.02123—2=+x x 移项,得.21—23—2=x x 配方,得222)43(21—)43(23—+=+x x , 161)43—(2=x , 即4143—=x 或.41—43—=x 所以x 1=1,.212=x 二、用配方法分解因式例2 把x 2+4x —1分解因式.分析:在原式中加上4的同时又减去4.解:原式=x 2+4x+4—4—1=x 2+4x+4—5=(x+2)2—2)5(=).5—2)(52(+++x x三、用配方法求代数式的值例3 已知实数a ,b 满足条件:0454—422=+++b a b a ,求—ab 的平方根.分析:一个方程含有两个未知数,看似无法求出a ,b .但仔细观察发现,等式左边可以分成两组分别配方,正好得到两个完全平方式的和为0,利用非负数的性质可求出a ,b 的值. 解:∵0454—422=+++b a b a , ∴0)144()41—(22=++++b b a a , 即0)12()21—(22=++b a , ∴.21—,21==b a ∴±.21)21(21——±=×±=—ab 四、用配方法求代数式的最大(小)值例4 代数式2x 2—3x —1有最大值或最小值吗?求出此值.分析:代数式2x 2—3x —1的值随x 的变化而变化,但有某一个值可能是其最小(大)的,如果我们将其变形为一个常数和一个完全平方式的和,便可求出其最小(大)值.解:2x 2—3x —1=2(x 2—23x)—1=2(x —43)2+.81 ∴当43=x 时,2)43—(x 有最小值0, ∴当43=x 时,2x 2—3x —1有最小值为81. 五、用配方比较两个代数式的大小例5 对于任意史实数x ,试比较两个代数式3x 3—2x 2—4x+1与3x 3+4x+10的值的大小. 分析:比较两个代数式的大小,可以作差比较,本题两个代数式相减后,可以得到一个二次三项式,将此二次三项式配方后,即可判断差的正负,从而可以判断两个代数式的值的大小.解:(3x 2—2x 2—4x+1)—(3x 3+4x+10)=—2x 2—8x —9=—2(x+2)2—1<0,所以对于任意实数x ,恒有3x 3—2x 2—4x+1<3x 3+4x+10.六、用配方法证明等式和不等式例6 已知方程中(a 2+b 2)x 2—2b(a+c)x+b 2+c 2=0中字母a ,b ,c 都是实数.求证:.x ab bc == 分析:一个方程含有四个未知数,看似无法求出a ,b ,c ,x .但仔细观察发现,方程左边可以分成两组分别配方,正好得到两个完全平方式的和为0,利用非负数的性质可求出a ,b ,c ,x 之间的关系.证明:原方程坐标拆成两个二次三项式为:(a 2x 2—2abx+b 2)+(b 2x 2—2bcx+c 2)=0,∴(ax —b)2+(bx —c)2=0.∵a ,b ,c ,x 都是实数,∴(ax —b)2≥0,(bx —c)2≥0.∴ax —b=0,bx —c=0. ∴.x a bb c ==。

考点03 配方法、根的判别式以及根与系数关系的9考点归类-解析版 2023-2024学年九年级数学考

考点03 配方法、根的判别式以及根与系数关系的9考点归类-解析版 2023-2024学年九年级数学考

考点03 配方法、根的判别式以及根与系数关系的9考点归类1,配方法的应用的方法技巧(1)比较大小:配方法不但可以解一元二次方程,而且能求代数式的最值,还能用于比较代数式的大小.用配方法比较代数式的大小,主要是用作差法将代数式作差后得到的新代数式配方,根据新代数式与0的关系确定代数式的大小(2)求最值:用配方法求代数式的最值是将代数式配方为完全平方式与常数的和的形式,根据完全平方式的非负性确定代数式的最值;(3)未知系数的取值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.(4)用配方法构造“非负数之和”解决问题:通过配完全平方式,利用“非负性”解决问题。

2,根的判别式的应用的方法【技巧】根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(1)判断根的情况:式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b2-4ac.(2)求字母的值或取值范围:根据判别式,确定与0的关系,直接代入解不等式即可。

(3)与三角形结合:一般会把根与三角形的边进行结合考察,考虑到三角形的三边关系能否构成三角形即可,有时候还会与等腰三角形结合。

(4)与一次函数结合:通过一次函数与方程和不等式的关系,观察图像即可。

3,根与系数的关系方法根与系数的关系:若x1,x2是一元二次方程ax²+bx+c=0(a≠0)的两根时,x1+x2=-ba ,x1x2=ca.考点1比较大小考点2求最值考点3未知系数的取值考点4用配方法构造“非负数之和”解决问题考点5判断根的情况考点6求字母的值或取值范围考点7与三角形结合考点8与一次函数结合考点9 根与系数的关系求变形式子考点1 利用配方法比较大小【详解】(1)224622x x x -+=-+(),所以当2x =时,代数式246x x -+有最小值,这个最值为2,故答案为:2-;2;2;小;2;(2)2123x x ---()222x x =-+2110x =-+()>则2123x x -->.【点睛】本题考查的是配方法的应用,掌握配方法的一般步骤是解题的关键,注意偶次方的非负性的应用.2.(2022秋·七年级单元测试)我们知道20a ≥,所以代数式2a 的最小值为0.学习了多项式乘法中的完全平方公式,可以逆用公式,即用()2222a ab b a b ±+=±来求一些多项式的最小值.例如,求263x x ++的最小值问题.解:∵()2226369636x x x x x ++=++-=+-,又∵()230x +≥,∴()2366x +-≥-,∴263x x ++的最小值为6-.请应用上述思想方法,解决下列问题:(1)探究:()2245____________x x x -+=+;(2)求224x x +的最小值.(3)比较代数式:21x -与23x -的大小.【答案】(1)2-,1(2)2-(3)21>23x x --【分析】(1)根据完全平方式的特征求解.(2)先配方,再求最值.(3)作差后配方比较大小即可.【详解】(1)解:22245441(2)1x x x x x -+=-++=-+.(2)222242(211)2(1)2x x x x x +=++-=+-,故答案为:2,2-(2)解:221612611x x x x --+=-+2692x x =-++()232x =-+()30,x -³Q()23220,x \-+³>21612.x x \->-(3)解:()222323x x x x -++=--+()22113x x =--+-+()214x =--+ ()210,x --£Q ()2144,x \--+£ ∴223x x -++的最大值为4.【点睛】本题考查的是配方法的应用,掌握“配方法的步骤与非负数的性质”是解本题的关键.考点2利用配方法求最值【分析】(1)根据完全平方式的特征求解;(2)先配方,再求最值;(3)作差后配方比较大小.【详解】(1)解:()2224644222x x x x x +=-++=-+-故当20x -=,即2x =时,代数式246x x -+最小值为2;(2)∵224250x x y y -+++=,则2244210x x y y -++++=,∴()()22210x y -++=,即20x -=,10y +=,∴2x =,1y =-,∴211x y +=-=;(3)()()2221232211x x x x x ---=-+=-+,∵()210x -≥,∴()2110x -+>,∴2123x x ->-.【点睛】本题考查配方法的应用,正确配方,充分利用平方的非负性是求解本题的关键.7.(2023春·陕西咸阳·八年级统考期末)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式: ²43a a ++.解:原式:²441(2)²1(21)(21)(3)(1)a a a a a a a =++-=+-=+++-=++②2246M a a =-+, 利用配方法求M 的最小值.解:2²462(²21)622(1)²4M a a a a a =-+=-++-=-+222(1)02(1)44a a -≥∴-+≥,,∴当1a =时,M 有最小值4.请根据上述材料解决下列问题:(1)用配方法因式分解²412x x --;(2)若 2441M x x =+-, 求M 的最小值.【答案】(1)(6)(2)x x -+考点3 利用配方法未知系数的取值∴2a =,1b =,∴1a b -=,故选A .【点睛】本题考查了解一元二次方程的方法—配方法,熟练一元二次方程的解法是解题的关键.10.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为( )A .10-B .10C .3-D .9【答案】B【分析】利用配方法将方程2610x x --=配成2()x m n -=,然后求出n 的值即可.【详解】∵2610x x --=,∴261x x -=,∴26919x x -+=+,即2(3)10x -=, 10n ∴=.故选:B .【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.11.(2023秋·全国·九年级专题练习)用配方法解一元二次方程2630x x ++=时,将它化为2()x m n +=的形式,则m n -的值为( )A .6-B .3-C .0D .2【答案】B【分析】由2630x x ++=,配方可得()236x +=,进而可得m n ,的值,然后代入m n -,计算求解即可.【详解】解:∵2630x x ++=,∴2696x x ++=,∴()236x +=,∴3m =,6n =,∴3m n -=-,故选:B .【点睛】本题考查了配方法解一元二次方程,代数式求值.解题的关键在于正确的配方求出m n ,的值.考点4 用配方法构造“非负数之和”解决问题∵三角形的三条边为a,b,c,∴b-a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c,∴8<c<13.故选:C.【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.14.(2023春·浙江·七年级专题练习)已知2248200++-+=,那么y x=()x y x yA.-16B.16C.-8D.8【答案】B【分析】利用配方法把已知条件变形为(x+2)2+(y-4)2=0,再根据非负数的性质得x+2=0,y-4=0,即可求出x与y的值,进一步代入求得答案即可.【详解】∵x2+4x+y2-8y+20=0,∴x2+4x+4+y2-8y+16=0,∴(x+2)2+(y-4)2=0,∴x+2=0,y-4=0,∴x=-2,y=4,∴x y=16.故选B.【点睛】此题考查配方法的应用,非负数的性质,掌握完全平方公式是解决问题的关键.15.(2023春·山东淄博·八年级统考期中)不论x、y为什么实数,代数式x2+y2+2x-4y+9的值()A.总不小于4B.总不小于9C.可为任何实数D.可能为负数【答案】A【分析】要把代数式x2+y2+2x-4y+9进行拆分重组凑完全平方式,来判断其值的范围即可.【详解】x2+y2+2x-4y+9=(x2+2x+1)+(y2-4y+4)+4=(x+1)2+(y-2)2+4,∵(x+1)2≥0,(y-2)2≥0,∴(x+1)2+(y-2)2+4≥4,考点5 利用根的判别式判断根的情况根.20.(2023·全国·九年级假期作业)若1x =是一元二次方程220(0)ax bx a -+=≠的一个根,那么方程220ax bx ++=的根的情况是( )A .有两个不相等的实数根B .有一个根是=1x -C .没有实数根D .有两个相等的实数根【答案】B【分析】先将1x =代入220(0)ax bx a -+=≠中得到20a b -+=,再根据一元二次方程根的判别式进行求解即可得出结论.【详解】解:∵1x =是一元二次方程220(0)ax bx a -+=≠的一个根,∴20a b -+=,即2b a =+,对于方程220ax bx ++=,∵242b a ∆=-⨯()228a a =+-()220a =-≥,∴方程220ax bx ++=有两个实数根,故选项A 、C 、D 错误,不符合题意;当=1x -时,2220ax bx a b ++=-+= ,即=1x -是方程220ax bx ++=的一个根,故选项B 正确,符合题意,故选:B .【点睛】本题考查了一元二次方程的解和根的判别式,解答的关键是理解一元二次方程的解的意义,掌握一元二次方程20ax bx c ++=根的情况与根的判别式24b ac ∆=-的关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.考点6 利用根的判别式求字母的值或取值范围故选:A .【点睛】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当0∆<时,方程无实数根.24.(2023春·吉林长春·八年级长春外国语学校校考期末)已知关于x 的一元二次方程()21210k x x --+=有两个实数根,则k 的取值范围是( )A .21k k ≤-≠且B .21k k ≤≠且C .21k k ≥-≠且D .2k ≥【答案】B【分析】根据方程有两个实数根,得出0∆≥且10k -≠,求出k 的取值范围,即可得出答案.【详解】解:由题意知,24441840b ac k k ∆=-=--=-≥(),且10k -≠,解得:2k ≤,且1k ≠,则k 的取值范围是2k ≤,且1k ≠,故选:B .【点睛】此题考查了根的判别式,(1)一元二次方程根的情况与判别式∆的关系:①0∆>⇔方程有两个不相等的实数根;②0∆=⇔方程有两个相等的实数根;③0∆⇔<方程没有实数根.(2)一元二次方程的二次项系数不为0.考点7 利用根的判别式与三角形结合【详解】(1)证明:2(2)42k k∆=+-⨯2448k k k=++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∴另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∴21(2)20k k -++=,∴1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.26.(2023春·广东河源·九年级校考开学考试)若方程(c 2+a 2)x +2(b 2-c 2)x +c 2-b 2=0有两个相等的实数根,且a ,b ,c 是三角形ABC 的三边,证明此三角形是等腰三角形.【答案】见解析【分析】先根据方程有两个相等的实数根得出△=0,再得出b 、c 的关系即可.【详解】解:Δ=[2(b 2-c 2)]2-4(c 2+a 2)(c 2-b 2)=4(b 2-c 2)(b 2-c 2+a 2+c 2)=4(b+c )(b-c )(b 2+a 2).∵方程有两个相等实根.∴Δ= 0,即4(b+c )(b-c )(b 2+a 2)=0.∵a ,b ,c 是三角形的三边,∴b+c≠0,a 2+b 2≠0,只有b-c=0,解得b=c .出判别式的值的情况,从而得到关于a、b、c及k的等式是解题的关键.28.(2011秋·江苏无锡·九年级统考期中)已知关于x的方程22a x bx c x-+++=有两个相等的实数(1)2(1)0根,试证明以a、b、c为三边的三角形是直角三角形.【答案】【详解】考点:根的判别式;勾股定理的逆定理.分析:先把方程变为一般式:(c-a)x2+2bx+a+c=0,由方程有两个相等的实数根,得到△=0,即△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,则有b2+c2-a2=0,即b2+c2=a2,根据勾股定理的逆定理可以证明以a、b、c 为三边的三角形是直角三角形.解答:证明:a(1-x2)+2bx+c(1+x2)=0去括号,整理为一般形式为:(c-a)x2+2bx+a+c=0,∵关于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根.∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,∴b2+c2-a2=0,即b2+c2=a2.∴以a、b、c为三边的三角形是直角三角形.点评:本题考查了一元二次方程的根的判别式和勾股定理的逆定理等知识.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.考点8 利用根的判别式与一次函数结合【分析】根据一元二次方程2210mx x --=无实数根得0m ≠且2(2)4(1)0m ∆=--⨯-<,即可得1m <-,又∵20b =>,可得一次函数2y mx =+的图象经过一、二、四象限,即可得.【详解】解:∵一元二次方程2210mx x --=无实数根,∴0m ≠且2(2)4(1)0m ∆=--⨯-<,440m +<,44m <-,1m <-,又∵20b =>,∴一次函数2y mx =+的图象经过一、二、四象限,∴一次函数2y mx =+的图象不经过第三象限,故选:C .【点睛】本题考查了一元二次方程的根的判别式,一次函数的图像性质,解题的关键是理解题意,掌握这些知识点.30.(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)一元二次方程2240x x --=有两个实数根a ,b ,那么一次函数(1)y ab x a b =-++的图象一定不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据根与系数的关系即可求出ab 与a b +的值,然后根据一次函数的图象与性质即可求出答案.【详解】解:由根与系数的关系可知:2a b +=,4ab =-,∴15ab -=∴一次函数解析式为:52y x =+,故一次函数的图象一定不经过第四象限.故选:D .【点睛】本题考查了一元二次方程,解题的关键是熟练运用根与系数的关系以及一次函数的图象与性质.31.(2020秋·贵州贵阳·九年级校考阶段练习)若关于x 的一元二次方程2210x x kb ++=-没有实数根,则一次函数y kx b =+的大致图象可能是( )A .B .C .D .【答案】A【分析】首先根据一元二次方程没有实数根确定k ,b 的取值范围,然后根据一次函数的性质确定其图象的位置.【详解】解:∵方程2210x x kb ++=-没有实数根,∴()4410kb ∆=-+<,解得:0kb >,即k b 、同号,当00k b >>,时,一次函数y kx b =+的图象过一,二,三象限,当00k b <<,时,一次函数y kx b =+的图象过二,三,四象限,故选:A .【点睛】本题考查了根的判别式及一次函数的图象的问题,解题的关键是根据一元二次方程的根的判别式确定k ,b 的取值范围,难度不大.32.(2023·安徽合肥·统考二模)关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =-的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】根据一元二次方程根与判别式的关系,求得m 的取值范围,再根据一次函数的图象与系数的关系求解即可.【详解】解:∵一元二次方程2210mx x --=无实数根∴224(2)4(1)0b ac m ∆=-=--⨯⨯-<,解得1m <-,由一次函数y mx m =-可得0k m =<,0b m =->,∴一次函数y mx m =-过一、二、四象限,不过第三象限,故选:C【点睛】此题考查了一元二次方程根与判别式的关系,以及一次函数图象与系数的关系,解题的关键是熟练掌握相关基础知识.考点9 利用根与系数的关系求变形式子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成 完 全 平 方 式a +2 a b+b =( a + b) 1 4  ̄ 1 ] a 一 2 a b +b =( a -b ) 。 下 面 我 们 就 从 以 下 几 个 方 面应 用 配方 法 。

同 理 ,9 b 2 — 1 8 b = ( 9 b 一 l 8 西 + 9 ) 一 9 = ( 3 b 一 3 )
[ 2 ] 钱佩玲 . 中学 数 学思 想 方 法 【 M】 . 北京 :
北 京师 范大 学出版 社 , 2 0 0 1 .
点评 : 利 用 配 方 法 求 值 常 常 需 要 利 用
1 利 用配 方法求 二 次 函数最 值
例l : 某 农 家 旅 游 公 司 有 客 房3 0 0 间, 每
变换 等 问题 。
关键词: 配方法 完全平方公式 二次函数 二 次三项式
中图分类号 : G 4 2 0
. 文献标识码 : A
文章编号: l 6 7 3 ~ 9 7 9 5 ( 2 0 1 3 ) 1 0 ( c ) 一 0 0 7 8 一 o 1
形成 一定的 数学思 想方法, 是 数 学 课
2 -2 a =( a -2 a +1 ) 一1 =( Ⅱ 一1 ) 一l 在 教 学 中的 重 要 性 。 在 教 学 中, 使 学 生 掌 握 则得 到 。a
种 方法 , 未 解 决 一 些 其 他 的 问 题 找 到 很
并灵活地运用“ 配方 法” 思考并解决问题 ,
将 大 大 地锻 炼 和 提 高 学 生 的 数学 思 维 能 力
例3 : 化简, / 5 . 2
分析 : 化 简 就 是 将 根 式 化 为 最 简 二 次
算中考 , 2 0 1 0 ( 1 0 ) : 3 6 — 3 7 .
根式, 这类根式一般是利用公式√ a : = l a l 进
行化简, 因此 , 我 们 没 法 用 配方 法 把 根 号 内
1 ]张 可法 . 初 中数学 解 题 研 究 【 M】 . 湖南 : 解 答: 原式 可 化为( a 一1 ) +( 3 —3 ) =O , [ 于 是 可 得a 一 1 ) = O , 且( 3 6 — 3 ) = 0 , 所 以a =l ,
6 =1 , 所 以4 a Lb =3 。
l 2

Chl n a Edu ca t i o n J nn ov at i on Her al d
教 育教 学 方法
配 方法 在解 题 中 的应 用
张丹
( 葫芦岛市第六高级中学 辽宁葫芦岛
1 2 5 0 0 1 )
摘 要: 数学思想方法是数学教 学的一个重要 内容, 培养 学生形成一定的数学思想方法, 有助于提 高学生的思维能力和解题 能力。 中学数学常用 的数学思想方法有挟 元法, 配方法, 待定系数 , 数形结合法等。在数 学解题 中善于利用数学思想方法是解题重要策略, 下面我就 主要探 究—下配 方法在解题中的应用。配方法是对数学式子进行一种定向变形( 配成 “ 完全平方”) 的技, j , 通过配方找到 已知 与未知的联 系, 从 而化繁为简, 何
9 。 而一1 - 9 = 一l O 恰好与等式 中的1 0 抵 消,
好的解决途 径。
和 综 合 运 用知 识 的 能 力 。 其 中最 多 的 是 配 于是 原式 可 以化 为文 献
湖南 9 i f i 范 大学 出版社 , 1 9 9 9 .
时 配方, 需要 我 们 适 当预 洲 。 并且合 理 运 用 “ 裂顷 ”与 “ 添 项 ”,“ 配” 与“ 凑”的技 巧 , 从 而完 成 配方 , 最常 见的配 方是 进行 恒等 变形 , 使 数 学式子 出现 完全 平 方 , 它主 要 适 用于 ; 已知 或 未知 中含 有二 次 方 程 、 二 次 不 等式 , 二次 函数 , 二次 代 数式 的讨 论 与求 解 , 或 者缺 x y 项 的二 次 曲线 的平 移
分析 : 由 于a, 6 的值 未 知 , 因此, 我 们 先 研 究 的 。 本 文 主要 就 介 绍 配 方 法 在解 方 程 ,
程 的 一 个 重 要 目的 。 下 面 谈 谈 我 在 中学 数 设法 求 出a , 6 的值。 又 由于 只有 一个 等式 , 因 求值, 因式 分解 , 解 不 等 式 等 十 一 个 方 面 学 教学 中 , 运用“ 配方法” 这 一 数 学 方法 , 提 此 可 以考 虑 可 否 把 等 式左 边 化 为 两 个 完 全 的 应 用 , 对 配 方 法 的 应 用 做 以 归纳 和 总
分析 : 有题设可知 , 每 天 客房 总 的 租 金 的 式 子 配 成 完 全 平 方 式 。 由于 ( 口 一 6 ) = n 一 是 增加2 元 的倍 数 的 函数, 设 提 高 为 个2
非 负数 的性 质 。
【 3 】梁卷 明 . 配方法 [ J 】 . 数学 金刊 : 初 中版 ,
2 0 1 0 ( 1 1 ) .
【 4 】黄细把 . 关注 配方法 的其他 应用 [ J 1 . 读 写
间 日租 房为2 O 元, 每天 都客满 。 公司欲 提高 档 3 配 方 法在 根 式 中的应 用 次, 并 提高 租金 。 如果 每 间 日租房每 增加 2 元, 客 房 出租数 就 会 减少 1 0 间。 若 不 考虑 其他 因 素, 旅 游 公司将房 间租 金提 高到 多少时 , 每天 客房 的租金 总收 入最 高?
高学 生思 维 能 力 的 体 会 。 在 教材 中 , 多 次 出 平 方 的和 , 再 利 用非 负数 的 性 质 求 解 。 由 于 结 , 希望 通过 本文 , 我 们 可 以 体 会 配 方 法
现“ 配方 法 ” 的 教 学 内容 。 说明了 配方 法 ” 不等 式 左边 含有 “ 2 Ⅱ , 因此 , 可 以添 加 数 1 , 的 重 要性 和 应 用的 广 泛性 , 灵 活 应 用 这
相关文档
最新文档