有理数单元检测附答案
第一章 有理数单元检测卷(解析版)
第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。
有理数单元测试(含答案)
第一部分有理数单元测试1.下列说法错误的是( )A.零是非负数B.零是整数C.零的相反数是零D.零的倒数是零2.下列说法正确的是( )A.绝对值等于3的数是-3B.绝对值小于113的整数是1和-1C.绝对值最小的有理数是1D.3的绝对值是33.下列判断正确的是( )A.12004的相反数是2004; B.12004的相反数是-2004;C.12004的相反数是-12004; D.12004的相反数是12004-4.下列四组有理数大小的比较正确的是( )A.1123->-;B. 11-->-+;C.1123<;D.1123->-5.有理数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b>a>cB.b>-a>cC.a>c>bD.│b│>-a>-c6.数-216不是( )A.有理数B.整数C.负有理数D.自然数7.下列说法正确的是( )A.正整数和负整数统称为整数B.零表示不存在,所以零不是有理数C.非负有理数就是正有理数D.整数和分数统称为有理数8.下列说法错误的个数是( )①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等A.3个B.2个C.1个D.0个9.下列说法正确的是( ).①在+5与-6之间没有正数②在-1与0之间没有负数③在+5与+6之间有无数个正分数④在-1与0之间没有正分数A.仅④正确B.仅③正确C.仅③④正确D.①②④正确10.数a的相反数是-a,那么a表示( )A.负有理数B.正有理数C.正分数D.任意一个数二、填空1.在有理数集合中,最小的正整数是______,最大的负整数是______.2.绝对值最小的有理数是_______.3.相反数最小的负整数是______,相反数最大的正整数是______.4.2.5的相反数是_______,倒数是_____,绝对值是______.5.如果a表示一个有理数,那么-a表示a的______,│a│表示a的_______.6.自行车车轮向顺时针方向旋转200圈记做+200圈, 那么向逆时针方向旋转150圈应记做_________.7. π-的相反数是_____,-a的相反数是________.8.若│y+5│=14,那么y=________.9.在数轴上,离开原点的距离是5的数是__________.10.在数轴上,离开表示数2的点距离是3的点表示的数是_______.三、解答1.写出所有绝对值不大于4的负整数,并在数轴上表示出来.2.若│x-3│+│y+4│+│z-5│=0,求代数式z2-y2+x的值.3.某检修小组乘汽车检修供电线路。
人教版七年级数学上册《第二章有理数》单元检测卷带答案
人教版七年级数学上册《第二章有理数》单元检测卷带答案一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B04.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.1325.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.167.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数且满足1<<3,则x+y的值.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是;(2)数轴上表示3和﹣6的两点之间的距离是.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是.(2)①若|x﹣(﹣1)|=3,则x=;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=时,|x+1|+|x﹣2|+|x﹣3|有最小值.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.参考答案与试题解析一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【解答】解:∵ab<0,a+b>0∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c∴a>b∴数b对应的点为点M故选:A.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6当三个顶点分别是4,5,6时可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.3.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B0【解答】解:∵表格中A对应的十进制数为10,B对应的十进制数为11∴A×B=10×11由十进制表示为:10×11=6×16+14又表格中E对应的十进制为14∴用十六进制表示A×B=6E.故选:A.4.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.132【解答】解:(1010110)2=1×26+0×25+1×24+0×23+1×22+1×21+0×1=86.故选:C.5.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元【解答】解:应该先买鞋子花280现金,因为鞋子不能使用购物券,返200购物券;再买衣服花220现金+200购物券,可返200购物券再加100现金买化妆品.所以共计280+220+100=600.故选:B.6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.16【解答】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速∵后轴上有四个齿轮,齿数分别是36,24,16,12∴后轴上可以有4个变速∵变速比为2,1.5,1,3的有两组又∵前后齿轮数之比如果一致,则速度会相等∴共有3×4﹣4=8种变速故选:B.7.观察下列各式:31=332=933=2734=8135=24336=72937=218738=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.1【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…∴34n+1的个位数字是3,与31的个位数字相同34n+2的个位数字是9,与32的个位数字相同34n+3的个位数字是7,与33的个位数字相同34n的个位数字是1,与34的个位数字相同∴32004=3501×4的个位数字与34的个位数字相同,应为1.故选:D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9【解答】解:30÷4=7 (2)所以推测330的个位数字是9.故选:D.二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故答案为:wkdrc.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为170.【解答】解:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×21+0×20=128+32+8+2=170.故答案为:170.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=﹣1.【解答】解:f(2009)﹣f()=2008﹣2009=﹣1.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8.【解答】解:观察可得规律:2n的个位数字每4次一循环∵15÷4=3 (3)∴215的个位数字是8.故答案为:8.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【解答】解:根据题意得:1<xy﹣12<3则13<xy<15因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案为:±15或±9.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是4;数轴上表示3和﹣6的两点之间的距离是9.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为10或﹣14;.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【解答】解:(1)根据题意可知,因为数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示所以数轴上表示4和8的两点之间的距离是|8﹣4|=4,数轴上表示3和﹣6的两点之间的距离是|3﹣(﹣6)|=9.故答案为:4;9;(2)根据题意,得:|x﹣(﹣2)|=12∴|x+2|=12∴x+2=﹣12或x+2=12解得:x=﹣14或x=10故答案为:10或﹣14;(3)∵|x+1|+|x﹣3|表示x到﹣1和3的距离之和∴当x在﹣1和3之间时距离和最小,最小值为|﹣1﹣3|=4故|x+1|+|x﹣3|有最小值,最小值为4.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是6.(2)①若|x﹣(﹣1)|=3,则x=2或﹣4;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值.【解答】解:(1)表示4和﹣2两点之间的距离是|4﹣(﹣2)|=6故答案为:6;(2)①∵|x﹣(﹣1)|=3∴x+1=3或x+1=﹣3解得:x=2或x=﹣4故答案为:2或﹣4;②∵使x所表示的点到表示3和﹣2的点的距离之和为5∴|x﹣3|+|x+2|=5∵3与﹣2的距离是5∴﹣2≤x≤3∵x是整数∴x的值为﹣2,﹣1,0,1,2,3∴所有符合条件的整数x的积为0;(3)解:∵|x+1|+|x﹣2|+|x﹣3|表示数轴上有理数x所对应的点到﹣1、2和3所对应的点的距离之和∴当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值4.故答案为:2.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为|x+2|+|x﹣1|(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是﹣2、4②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的取值在不小于0且不大于2的范围时,|x|+|x﹣2|的最小值是2;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x﹣1|+|x|=(|x﹣3|+|x|)+(|x﹣2|+|x﹣1|)要使|x﹣3|+|x|的值最小,x的值取0到3之间(包括0、3)的任意一个数,要使|x﹣2|+|x﹣1|的值最小,x取1到2之间(包括1、2)的任意一个数,显然当x取1到2之间(包括1、2)的任意一个数能同时满足要求,不妨取x=1代入原式,得|x﹣3|+|x﹣2|+|x﹣1|+|x|=2+1+0+1=4;方法二:当x取在1到2之间(包括1、2)时,|x﹣3|+|x﹣2|+|x﹣1|+|x|=﹣(x﹣3)﹣(x﹣2)+(x﹣1)+x+=﹣x+3﹣x+2+x﹣1+x=4.。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 有理数-3和5的和是多少?A. -8B. 2C. -2D. 83. 哪个是有理数的相反数?A. 3B. -3C. 0D. 1/24. 绝对值是5的有理数有几个?A. 1B. 2C. 3D. 45. 下列哪个表达式等于0?A. -3 + 3B. -3 - 5C. -3 × 0D. -3 ÷ 3二、填空题(每题2分,共20分)6. 有理数-7的绝对值是________。
7. 有理数-2和4的差是________。
8. 有理数-6和-3的乘积是________。
9. 有理数-4的倒数是________。
10. 若a是有理数,且a的相反数是-5,则a=________。
三、计算题(每题5分,共30分)11. 计算下列表达式的值:(-3) × (-2) + 4 ÷ (-2)。
12. 解下列方程:3x - 7 = 8。
13. 计算下列各数的绝对值:-12,0,5.5。
14. 求下列数的相反数:-9,3/4,0。
四、解答题(每题10分,共30分)15. 某商店在一天内卖出了价值为-500元的商品(亏损),同时又购入了价值为300元的商品。
请问这一天商店的净亏损是多少?16. 某工厂在一个月内生产了200件产品,每件产品的成本是5元,销售价格是10元。
请问工厂这个月的纯利润是多少?17. 某学生在一次数学测验中得了85分,第二次测验得了90分,第三次测验得了75分。
请问该学生这三次测验的平均分是多少?答案一、选择题1. D2. C3. B4. B5. A二、填空题6. 77. -68. 189. -1/410. 5三、计算题11. 412. x = 513. 12,0,5.514. 9,-3/4,0四、解答题15. 净亏损200元16. 纯利润1000元17. 平均分81.67分(保留两位小数)结束语本测试题旨在检验学生对有理数的基本概念、运算规则和实际应用的理解。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
有理数单元测试及答案
有理数单元测试及答案有理数单元检测试题一、填空题(本题共有9个小题,每小题2分,共18分)1、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将2楼记为1;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。
2、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为-5.3、某数的绝对值是5,那么这个数是-5或5.(保留四个有效数字)4、(4/3)²=16/9,(-4/3)²=16/9.5、数轴上和原点的距离等于3的点表示的有理数是-3或3.6、计算:(-1)+(-1)=-2.7、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m=-1.8、(+5.7)的相反数与(-7.1)的绝对值的和是12.8.9、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车。
二、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)10、下列说法正确的是(C)。
A。
整数就是正整数和负整数B。
负整数的相反数就是非负整数C。
有理数中不是负数就是正数D。
零是自然数,但不是正整数11、下列各对数中,数值相等的是(A)。
A。
-2与(-2)B。
-3与(-3)C。
-3×2与-3×2D。
-( -3)与-( -2)12、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是(D)。
A。
-12B。
-9C。
-0.01D。
-213、如果一个数的平方与这个数的差等于1,那么这个数只能是(B)。
A。
-1B。
1C。
0D。
或114、绝对值大于或等于1,而小于4的所有的正整数的和是(C)。
A。
8B。
7C。
6D。
515、计算:(-2)+(-2)的是(D)。
A。
2B。
-1C。
-2D。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333(无限循环)答案:C2. 如果a和b都是有理数,且a > b,那么下列哪个选项是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 0答案:B3. 两个负有理数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B4. 下列哪个数是无理数?A. 0.5B. √3C. 1/7D. 3.1415答案:B5. 有理数a和b的绝对值相等,且a < b,那么a和b的和是多少?A. aB. bC. 0D. -2a答案:D二、填空题(每题2分,共10分)6. 如果一个有理数的绝对值是5,那么这个数可以是______或______。
答案:5,-57. 两个有理数相除,如果商是正数,那么这两个数的符号必须______。
答案:相同8. 如果一个有理数的平方是9,那么这个数可以是______或______。
答案:3,-39. 有理数的加法运算满足交换律,即a + b = ______ + a。
答案:b10. 有理数的乘法运算满足结合律,即(a × b) × c = a ×(______ × c)。
答案:b三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-3) × 2 + 4 × (-2) - 6。
答案:原式 = -6 - 8 - 6 = -2012. 计算下列表达式的值:(-4)² - 3 × 2 - 5。
答案:原式 = 16 - 6 - 5 = 513. 计算下列表达式的值:(-2)³ + 3 × (-1/3) - 1。
答案:原式 = -8 - 1 - 1 = -10四、解答题(每题10分,共20分)14. 某商店在一天内卖出了10件商品,每件商品的售价为x元,成本为y元。
第一章 有理数 单元练习(含答案)2024-2025年人教版数学七年级上册
2024-2025年人教版数学七年级上册第一章有理数单元练习一、选择题1.在生产生活中,正数和负数都有现实意义.例如收20元记作+20元,则支出10元记作()A.+10元B.﹣10元C.+20元D.﹣20元2.在数,,,中,有理数的个数有()A.4个B.3个C.2个D.1个3.如图是单位长度为1的数轴,点,是数轴上的点,若点表示的数是,则点表示的数是()A.B.0C.1D.24.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.B.C.D.5.如图,数轴上点A 所表示的数的相反数是()A.9B.C.D.6.下列各对数中,互为相反数的是()A.-(-3)和3B.+(-5)和-[-(-5)]C.和-3D.-(-7)和-|-7|7.有理数,,0,中,绝对值最大的数是()A.B.C.0D.8.的绝对值的相反数是()A.B.3C.D.0二、填空题9.有理数中,最大的负整数是.10.在,,,0,中,负数共有个.11.绝对值小于2.5的整数有.12.若a与互为相反数,则a的值为.13.如果一个数的绝对值是10,那么这个数是.三、解答题14.小明在超市买一食品,外包装上印有“总净含量”的字样请问“”表示什么意义?小明拿去称了一下,发现只有问食品生产厂家有没有欺诈行为?15.把下列各数填在相应的集合中:8,-1,-0.4,,0,,,,.正数集合{…};负数集合{…};整数集合{…};分数集合{…};非负有理数集合{…}.16.求,-2.35,0,的相反数和绝对值.17.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0,18.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与何数表示的点重合;(2)若-1表示的点与5表示的点重合,0表示的点与何数表示的点重合;(3)若-1表示的点与5表示的点之间的线段折叠2次,展开后,请写出所有的折点表示的数?参考答案1.B 2.B 3.C 4.B 5.D 6.D 7.A 8.A 9.-110.211.±2;±1;012.13.14.解:由题意可知:“”表示总净含量的浮动范围为上下5g,即含量范围在克到克之间,故总净含量为297在合格的范围内,食品生产厂家没有欺诈行为.15.8,,,;-1,-0.4,,;8,-1,0,;-0.4,,,,;8,,0,,16.解:相反数分別是:;绝对值分别是:.17.解:+3的相反数为:-3,-1.5的相反数为:1.5,0的相反数为:0,的相反数为:,在数轴上表示如下:.18.(1)解:若1表示的点与-1表示的点重合,则-2表示的点与2表示的点重合;(2)解:若-1表示的点与5表示的点重合,0表示的点与4表示的点重合;(3)解:若-1表示的点与5表示的点重合,则对称中心是2表示的点,第2次对折:-1表示的点与2表示的点重合,则对称中心是0.5表示的点;2表示的点与5表示的点重合,则对称中心是3.5表示的点;∴展开后,所有的折点表示的数:0.5,2,3.5.。
有理数单元测试卷附答案
第一章有理数单元测试卷(一)附答案(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章有理数单元测试卷基础卷考试范围:有理数;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一 二 三 总分 得分评卷人得 分 一.选择题(共12小题)1.如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作( )A .3m +B .3m -C .13m +D .5m -2.下列说法正确的有( )①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A .1个B .2个C .3个D .4个3.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a b >B .0ab >C .||||a b <D .a b ->4.下列各数中,相反数是12-的是( ) A .12- B .12 C .2- D .25.下列化简错误的是( )A .(2)2--=B .(3)3-+=-C .(4)4+-=-D .|5|5-=6.23-的倒数是( ) A .32 B .32- C .23 D .23- 7.下列四个数中,最大的数是( )A .13-B .0C .2-D .28.我国古代的“九宫格”是由33⨯的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x 的值是( )251 x A .3 B .4 C .6 D .89.计算(13)(8)---的结果是( )A .21B .21-C .5D .5-10.下列各式中,正确的是( )A .422--=-B .3(3)0--=C .10(8)2+-=- D .54(4)5----=- 11.有理数a 、b 在数轴上的位置如图所示,下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->12.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .0a b +>B .0a b ->C .0a b >D .||||a b >评卷人得 分 二.填空题(共6小题)13.如果盈利5千元记作5+千元,那么亏损2千元记作 千元.14.在113,714,1340中不能化成有限小数的是 15.点A 、B 在数轴上对应的数分别为2-和5,则线段AB 的长度为 .16.a 的相反数是710,则a 的倒数是 . 17.已知a 与b 的和为2,b 与c 互为相反数,若||1c =,则a = .18.若a 和b 互为倒数,则ab = .评卷人得 分三.解答题(共8小题)19.股民老宋上周五在股市以收盘价(股市收市时的价格)每股36元购买进某公司股票1000股,周六,周日股市不交易,在接下来的一周交易日内,老宋记下该股票每日收盘价格相比前一天的涨跌情况如表:(单位:元)(1)星期三收盘时,每股是多少元?(2)已知买入股票与卖出股票均需支付成交额的1.5%的手续费,并且卖出股票还要交成交额的1%的交易税,如果股民老宋在周五以收盘价将全部股票卖出,他的收益情况如何?20.对于任意四个有理数a 、b 、c 、d ,可以组成两个有理数对(,)a b 与(,)c d .我们规定:(a ,)(b c ,)d bc ad =-.例如:(1,2)(3,4)23142=⨯-⨯=.根据上述规定解决下列问题:(1)有理数对(3,5)(4-,2)-= ;(2)若有理数对(4-,31)(2x -,1)8x -=,求x 的值;(3)当满足等式(2-,31)(x k -,)5x k k +=+的x 是整数时,求整数k 的值.21.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A 、B 在数轴上对应的数分别为a 、b ,则A 、B 两点间的距离表示为||AB a b =-.根据以上知识解题:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么AB = .(2)在数轴上表示数a 的点与2-的距离是3,那么a = .(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|a a ++-= .(4)对于任何有理数x ,|3||6|x x -+-是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.22.已知324x +=-与3321y m -=-,且x 、y 互为相反数,求m 的值.23.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c - 0,a b + 0,c a - 0.(2)化简:||||||b c a b c a -++--.24.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a b +,cd ,m 的值;(2)求a b m cd m+++的值. 25.画出数轴,并在数轴上画出表示下列各数的点,再按从小到大的顺序用“<”号把这些数连接起来:1-,0,122-,3,1226.七年级二班的几位同学正在一起讨论一个关于数轴上的点表示数的题目:甲说:“这条数轴上的两个点A 、B 表示的数都是绝对值是4的数”;乙说:“点C 表示负整数,点D 表示正整数,且这两个数的差是3”;丙说:“点E 表示的数的相反数是它本身”.(1)请你根据以上三位同学的发言,画出一条数轴,并描出A 、B 、C 、D 、E 五个不同的点,(2)求这五个点表示的数的和.第一章有理数单元测试卷参考答案与试题解析一.选择题(共12小题)【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作3m -.故选:B .【点评】此题主要考查正负数的意义,关键是掌握正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.【分析】按照有理数的分类对各项进行逐一分析即可.【解答】解:①正有理数是正整数和正分数的统称是正确的;②整数是正整数、0和负整数的统称,原来的说法是错误的;③有理数是正整数、0、负整数、正分数、负分数的统称,原来的说法是错误的; ④0是偶数,也是自然数,原来的说法是错误的;⑤偶数包括正偶数、负偶数和零是正确的.故说法正确的有2个.故选:B .【点评】考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论.【解答】解:由图可知101a b <-<<<,则0ab <,||||a b >,a b ->.故选:D .【点评】本题考查的是数轴,解答本题的关键在于结合有理数a 、b 在数轴上的对应点的位置进行判断求解.【分析】根据只有符号不同的两个数是互为相反数,求出12-的相反数,然后选择即可. 【解答】解:12的相反数是12-,∴相反数等于12-的是12.故选:B.【点评】本题考查了相反数的定义,熟记定义是解题的关键.【分析】根据相反数的含义和应用,以及绝对值的含义和应用,逐项判断即可.【解答】解:(2)2--=,∴选项A不符合题意;(3)3-+=-,∴选项B不符合题意;(4)4+-=-,∴选项C不符合题意;|5|5-=-,∴选项D符合题意.故选:D.【点评】此题主要考查了相反数的含义和应用,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数a-;③当a是零时,a的绝对值是零.【分析】根据倒数的定义,可得答案.【解答】解:23-的倒数是32-,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.【解答】解:12023-<-<<,∴最大的数是2;故选:D.【点评】此题主要考查了实数的大小比较,关键是掌握比较大小的法则.【分析】首先根据三阶幻方的特征,可得:第三行第一列的数是:5228⨯-=;然后根据:第三行的各个数的和53=⨯,求出x 的值是多少即可.【解答】解:第三行第一列的数是:5228⨯-=,53816x =⨯--=.故选:C .【点评】此题主要考查了有理数加法的运算方法,以及幻方的特征和应用,要熟练掌握.【分析】原式利用减法法则变形,计算即可求出值.【解答】解:原式1385=-+=-,故选:D .【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:A 、426--=-,故此选项不合题意;B 、3(3)6--=,故此选项不合题意;C 、10(8)2+-=,故此选项不合题意;D 、54(4)5----=-,正确,符合题意.故选:D .【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.【分析】根据数轴上点的位置确定出a b +,a b -以及ab 的正负即可.【解答】解:由题意:0a <,0b >,||||b a >,0ab ∴<,0a b +>,0a b -<,0b a ->,故选:D .【点评】此题考查了数轴,熟练掌握有理数的运算法则是解本题的关键.【分析】先根据数轴上两数,右边的数总是大于左边的数,即可得到:0b a <<,且||||b a >,再根据有理数的运算法则即可判断.【解答】解:根据数轴可得:0b a <<,且||||b a >.A 、0a b +<,故选项错误;B 、0a b ->,故选项正确;C 、0ab <,故选项错误;D 、||||a b <,故选项错误.【点评】本题主要考查了数轴上两数比较大小的方法以及有理数的运算法则.二.填空题(共6小题)【分析】根据正数与负数的定义即可求出答案.【解答】解:如果盈利5千元记作5+千元,那么亏损2千元记作2-千元,故答案为:2-.【点评】本题考查正数与负数,解题的关键是正确理解正负数的定义,本题属于基础题型.【分析】分别将每个分数化为小数,则有70.514=,130.32540=,141 1.333==,即可求解.【解答】解:70.514=,130.32540=,141 1.333==,113∴不能化成有限小数,故答案为113.【点评】本题考查有理数;能够将分数正确的化为小数是解题的关键.【分析】根据数轴上两点距离公式进行计算即可.【解答】解:|25|7AB=--=,故答案为:7.【点评】考查数轴表示数的意义,点A、B在数轴上表示的数为a、b,则A、B两点之间的距离为||AB a b=-.【分析】利用相反数及倒数的定义计算即可得到结果.【解答】解:a的相反数是710,710a∴=-,则a的倒数为107 -.故答案为:107 -.【点评】此题考查了相反数,以及倒数,熟练掌握各自的定义是解本题的关键.【分析】根据绝对值的定义得出c的值,根据互为相反数的两数相加为0,进而得出b的值,即可得出a的值.【解答】解:||1c=,b与c互为相反数,∴+=,b c∴=-或1,b1a与b的和为2,∴+=,2a b∴=或1.a3故答案为:3或1.【点评】此题主要考查了绝对值、相反数的定义.解题的关键是掌握绝对值、相反数的定义.【分析】根据倒数定义可得答案.【解答】解:a和b互为倒数,1∴=,ab故答案为:1.【点评】此题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.三.解答题(共8小题)【分析】(1)由表格可得:3(0.5)2 4.5++-+=(元),36 4.540.5+=(元),(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:⨯⨯+=(元),总收益:+-=(元),卖出时的花费:401000(1.5%1%)100040.51 1.540-⨯--=(元).(4036)100054010002460【解答】解:(1)3(0.5)2 4.5++-+=(元),∴+=(元),36 4.540.5∴星期三收盘时,每股是元;(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:40.51 1.540+-=(元),卖出时的花费:401000(1.5%1%)1000⨯⨯+=(元),总收益:(4036)100054010002460-⨯--=(元),∴老宋总的收益2460元.【点评】本题考查正数与负数;理解正数与负数在实际问题的意义是解题的关键.【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x 的值;(3)原式利用题中的新定义计算,求出整数k 的值即可.【解答】解:(1)根据题意得:原式20614=-+=-;故答案为:14-;(2)根据题意得:2(31)4(1)8x x -+-=去括号得,62448x x -+-=,移项合并得:26x =,解得:3x =(3)等式(2-,31)(x k -,)5x k k +=+的x 是整数,(31)(2)()5x k x k k ∴---+=+,(32)5k x ∴+=,532x k ∴=+, k 是整数,321k ∴+=±或5±, k 为整数,1k ∴=-,1.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.【分析】(1)根据两点的距离公式计算 即可;(2)根据两点的距离公式以及绝对值的意义解答即可;(3)根据两点的距离公式以及绝对值的意义解答即可;(4)结合数轴得出:||3||6|x x -+-表示数x 到3和6两点的距离之和,||3||6|x x -+-有最小值,则x 一定在3和6之间,则最小值为3.【解答】解:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么|32|1AB =-=, 故答案为:1;(2)根据题意得,|2|3a +=,解得1a =或5-.故答案为:1或5-;(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|426a a a a ++-=-+++=. 故答案为:6;(4)|3||6|x x -+-表示数x 到3和6两点的距离之和,如果求最小值,则x 一定在3和6之间,则最小值为3.【点评】本题考查了一元一次方程的应用,数轴、绝对值、列代数式,解答本题的关键是明确题意,利用分类讨论的数学思想解答.【分析】求出第一个方程的解,根据两方程解互为相反数求出第二个方程的解,即可求出m 的值.【解答】解:方程324x +=-,解得:2x =-,因为x 、y 互为相反数,所以2y =,把2y =代入第二个方程得:6321m -=-,解得:2m =.【点评】此题考查了一元一次方程的解和解一元一次方程.解题的关键是正确理解一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】(1)根据数轴判断出a 、b 、c 的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,0a <,0b >,0c >且||||||b a c <<,所以,0b c -<,0a b +<,0c a ->;故答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a =----+2b =-.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a 、b 、c 的正负情况是解题的关键.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,0a b ∴+=,1cd =,2m =±.(2)当2m =时,2103a b m cd m +++=++=; 当2m =-时,2101a b m cd m+++=-++=-. 【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,11210322-<-<<<. 【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.【分析】(1)根据要求分别表示五个不同的数;(2)相加可得结论.【解答】解:(1)点E 表示的数的相反数是它本身,E ∴表示0,A 、B 表示的数都是绝对值是4的数,A ∴表示4,B 表示4-或A 表示4-,B 表示4,点C 表示负整数,点D 表示正整数,且这两个数的差是3,∴若C 表示1-,则D 表示2;若C 表示2-,则D 表示1,如图所示:(2)440211-+++-=或440121-+++-=-,则这五个点表示的数的和1或1-.【点评】本题考查了数轴的相关概念,解答本题的关键是明确题意,利用数形结合的思想解答..。
2023-2024学年人教版版七年级数学上册《第一章-有理数》单元检测卷及答案
2023-2024学年人教版版七年级数学上册《第一章 有理数》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________ 一.选择题(共10小题,满分30分,每小题3分) 1.(3分)−45的相反数是( ) A .−45B .−54C .45D .542.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( ) A .1.268×109B .1.268×108C .1.268×107D .1.268×1063.(3分)2023的倒数是( ) A .2023B .﹣2023C .−12023D .120234.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高( ) A .﹣10℃B .﹣6℃C .6℃D .10℃5.(3分)如图,数轴的单位长度为1,若点A 表示的数是﹣2,则点B 表示的数是( )A .0B .1C .2D .36.(3分)将34.945取近似数精确到十分位,正确的是( ) A .34.9B .35.0C .35D .35.057.(3分)若(m ﹣2)2与|n +3|互为相反数,则n m 的值是( ) A .﹣8B .8C .﹣9D .98.(3分)若两数之积为负数,则这两个数一定是( ) A .同为正数B .同为负数C .一正一负D .无法确定9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <010.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作 度. 12.(4分)比较大小:−(−27) −38.13.(4分)在﹣34中,底数是 ,指数是 .计算:﹣34= . 14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为 . 15.(4分)绝对值小于3的所有整数的和是 . 16.(4分)计算:﹣16÷4×14= . 17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为 . 18.(4分)已知|a |=2,b =3,则b ﹣a = . 三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来. 1.5,0,4,−12,﹣3.20.(6分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.求m +cd +a+bm的值. 21.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)]. 22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯① =﹣1﹣9+4……② =﹣6……③(1)亮亮计算过程从第 步出现错误的;(填序号)(2)请你写出正确的计算过程.23.(6分)定义一种新的运算x∗y=x+2yx,如3∗1=3+2×13=53,求(2*3)*2的值.24.(6分)数轴上点A、B、C的位置如图所示,A、B对应的数分别为﹣5和1,已知线段AB的中点D与线段BC的中点E之间的距离为5.(1)求点D对应的数;(2)求点C对应的数.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=,(−12)⑤=;(2)关于除方,下列说法错误的是A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;(−12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)−45的相反数是()A.−45B.−54C.45D.54【分析】根据相反数的定义即可求解.【解答】解:−45的相反数是45.故选:C.2.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为()A.1.268×109B.1.268×108C.1.268×107D.1.268×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1268000000=1.268×109.故选:A.3.(3分)2023的倒数是()A.2023B.﹣2023C.−12023D.12023【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:2023的倒数是12023.故选:D.4.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10℃.故选:D.5.(3分)如图,数轴的单位长度为1,若点A表示的数是﹣2,则点B表示的数是()A.0B.1C.2D.3【分析】根据图形得出点A、点B距离4个单位长度,题干中明确数轴单位长度为1,利用点A表示的数即可推理出点B表示的数.【解答】解:∵数轴的单位长度为1,线段AB=4个单位长度,点A表示的数是﹣2.∴﹣2+4=2∴点B表示的数是2.故选:C.6.(3分)将34.945取近似数精确到十分位,正确的是()A.34.9B.35.0C.35D.35.05【分析】把百分位上的数字4进行四舍五入即可得出答案.【解答】解:34.945取近似数精确到十分位是34.9;故选:A.7.(3分)若(m﹣2)2与|n+3|互为相反数,则n m的值是()A.﹣8B.8C.﹣9D.9【分析】首先根据互为相反数的定义,可得(m﹣2)2+|n+3|=0,再根据乘方运算及绝对值的非负性,即可求得m、n的值,据此即可解答.【解答】解:∵(m﹣2)2与|n+3|互为相反数∴(m﹣2)2+|n+3|=0∴m﹣2=0,n+3=0解得m=2,n=﹣3∴n m=(﹣3)2=9故选:D.8.(3分)若两数之积为负数,则这两个数一定是()A.同为正数B.同为负数C.一正一负D.无法确定【分析】根据有理数的乘法法则,举反例,排除错误选项,从而得出正确结果.【解答】解:例如(﹣2)×1=﹣2,2×(﹣2)=﹣4,所以C正确故选:C.9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <0【分析】A 、根据有理数的乘法运算法则进行判断; B 、根据有理数的加法运算法则进行判断; C 、根据有理数的减法运算法则进行判断; D 、根据有理数的除法运算法则进行判断. 【解答】解:A 、∵a >0>b ∴ab <0,选项错误,不符合题意; B 、∵a >0>b ∴当|a |>|b |时,a +b >0当|a |<|b |时,a +b <0,选项错误,不符合题意; C 、∵a >0>b∴a ﹣b =a +|b |>0,选项错误,不符合题意; D 、∵a >0>b∴ab <0,选项正确,符合题意;故选:D .10.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π【分析】根据半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周,滚动的距离就是圆的周长,再由圆的周长公式得出周长为π,分两种情况,即可得答案. 【解答】解:由半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A 点 故滚动一周后A 点与1之间的距离是π 故当A 点在1的左边时表示的数是1﹣π 当A 点在1的右边时表示的数是1+π. 故选:C .二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作﹣10度.【分析】根据节约20度电记作+20度,可以表示出浪费10度,本题得以解决.【解答】解:∵节约20度电记作+20元∴浪费10度电记作﹣10元.故答案为:﹣10.12.(4分)比较大小:−(−27)>−38.【分析】先求出﹣(−27)=27,再根据正数大于一切负数比较即可.【解答】解:∵﹣(−27)=27∴﹣(−27)>−38故答案为:>.13.(4分)在﹣34中,底数是3,指数是4.计算:﹣34=﹣81.【分析】根据幂的定义:形如a n中a是底数,n是指数,及乘方计算法则计算解答.【解答】解:﹣34中,底数是3,指数是4,﹣34=﹣81故答案为:3,4,﹣81.14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为7﹣5﹣6+4.【分析】直接去括号即可.【解答】解:原式=7﹣5﹣6+4.故答案为:7﹣5﹣6+4.15.(4分)绝对值小于3的所有整数的和是0.【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.16.(4分)计算:﹣16÷4×14=﹣1.【分析】首先统一成乘法,再约分计算即可.【解答】解:原式=﹣16×14×14=−1故答案为:﹣1.17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为8.【分析】用数轴上右边的数6减去左边的(﹣2),再根据减去一个数等于加上这个数的相反数进行计算即可求解.【解答】解:6﹣(﹣2)=6+2=8.故答案为:8.18.(4分)已知|a|=2,b=3,则b﹣a=1或5.【分析】根据绝对值的意义得出a的值,然后根据有理数减法运算即可.【解答】解:∵|a|=2,b=3∴a=±2,b=3∴当a=2,b=3时,b﹣a=3﹣2=1;当a=﹣2,b=3时,b﹣a=3﹣(﹣2)=5;故答案为:1或5.三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来.1.5,0,4,−12和﹣3.【分析】补全数轴,并在数轴上表示出各数,并用“<”把它们连接起来即可.【解答】解:如图所示由图可知,﹣3<−12<0<1.5<4.20.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.【分析】根据a、b互为相反数,可得:a+b=0;c、d互为倒数,可得:cd=1;m的绝对值为2,可得:m=±2,据此求出m+cd+a+bm的值是多少即可.【解答】解:∵a、b互为相反数∴a+b=0;∵c 、d 互为倒数 ∴cd =1; ∵m 的绝对值为2 ∴m =±2 ∴m =2时 m +cd +a+bm=2+1+0 =3 ∴m =﹣2时 m +cd +a+bm=﹣2+1+0 =﹣121.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)].【分析】(1)利用有理数的加减运算的法则进行解答即可; (2)先算乘方,括号里的运算,再算乘法,最后算加减即可. 【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10) =﹣7﹣5﹣4+10 =﹣6;(2)−24−(13−1)×13×[6−(−3)] =﹣16﹣(−23)×13×9 =﹣16+2 =﹣14.22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯①=﹣1﹣9+4……②=﹣6……③(1)亮亮计算过程从第 ① 步出现错误的;(填序号)(2)请你写出正确的计算过程.【分析】(1)根据题目中的解答过程,可以发现最先错在哪一步以及错误的原因;(2)先算乘除,后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用,写出正确的解答过程即可.【解答】解:(1)亮亮计算过程从第①步出现错误的;(填序号)故答案为:①;(2)15÷5×(﹣3)﹣6×(32+23) =3×(﹣3)﹣6×32−6×23=﹣9﹣9﹣4=﹣22.23.(6分)定义一种新的运算x ∗y =x+2y x ,如3∗1=3+2×13=53,求(2*3)*2的值. 【分析】根据新定义运算列式子计算即可.【解答】解:根据题中的新定义得:(2*3)*2=(2+2×32)∗2=4∗2=4+44=2. 24.(6分)数轴上点A 、B 、C 的位置如图所示,A 、B 对应的数分别为﹣5和1,已知线段AB 的中点D 与线段BC 的中点E 之间的距离为5.(1)求点D 对应的数;(2)求点C 对应的数.【分析】(1)先求出AB 的长,再根据中点的性质可得;(2)根据两点间的距离公式可得.【解答】解:(1)1﹣(﹣5)=66÷2﹣1=3﹣1=2因D 点在0点的左侧所以用负数表示,是﹣2.答:D 点对应的数是﹣2.(2)5﹣2=3因C点在0点的右侧,所以用正数表示是+5.答:C点对应的数是+5.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站4次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?【分析】(1)明确“正”和“负”表示的意义,再进行判断;(2)巡警巡逻时经过岗亭东面6千米处加油站,要注意超过了加油站要返回的距离;(3)计算巡警经过的路程,再乘每行1千米的耗油.【解答】解:(1)根据题意:(+10)+(﹣8)+(+6)+(﹣13)+(+7)+(﹣12)+(+3)+(﹣1)=﹣8∵规定向东方向为正∴A在岗亭西方答:A在岗亭西方,A距离岗亭8千米;(2)第一次向东走10千米,从0﹣10,经过一次第二次又向西走8千米,10﹣2,经过一次第三次又向东走6千米,2﹣8,经过一次第四次又向西走13千米,8﹣(﹣5),经过一次第五次又向东走7千米,﹣5﹣2,不经过第六次又向西走12千米,2﹣(﹣10),不经过第七次又向东走3千米,﹣10﹣(﹣7),不经过第八次又向西走1千米,7—8,不经过所以巡警巡逻时经过岗亭东面6千米处加油站,应该是4次.故答案为:4;(3)|+10|+|﹣8|+|+6|+|﹣13|+|+7|+|﹣12|+|+3|+|﹣1|=60(km)60×0.05=3(升)答:该摩托车这天巡逻共耗油3升.26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=12,(−12)⑤=﹣8;(2)关于除方,下列说法错误的是CA.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=132;5⑥=154;(−12)⑩=28.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于1a n−2;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.【分析】初步探究(1)根据新定义计算;(2)根据新定义可判断C错误;深入思考(1)把有理数的除方运算转化为乘方运算进行计算;(2)利用新定义求解;(3)先把除方运算转化为乘方运算进行计算,然后进行乘除运算.【解答】解:初步探究(1)2③=12,(−12)⑤=﹣8;(2)C 选项错误;深入思考(1)(﹣3)④=132;5⑥=154;(−12)⑩=28. (2)a ⓝ=1a n−2;(3)原式=122÷32×(﹣23)﹣34÷33=﹣131.故答案为12,﹣8,C 与132与154和28。
第一章 有理数 综合素质评价(单元测试)(含答案)人教版(2024)数学七年级上册
第一章综合素质评价七年级数学上(R版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.[新考向数学文化2024长春一模]《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作( )A.+30元B.-50元 C.-30元D.+50元2.-12的相反数是( )A.-2B.-12C.2D.123.在-(-10),0,-|-0.3|,-15中,负数的个数为( )A.2B.3C.4D.14.[新趋势跨学科2024威海环翠区期末]下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183-252.78-196-268.9则沸点最低的液体是( )A.液态氧B.液态氢 C.液态氮D.液态氦5.在数轴上表示-2的点与表示3的点之间的距离是( )A.5B.-5C.1D.-16.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是( )A B C D7.下列说法中,错误的是( )A.数轴上的每一个点都表示一个有理数B.任意一个有理数都可以用数轴上的点表示C.在数轴上,确定单位长度时可根据需要恰当选取D.在数轴上,与原点的距离是36.8的点有两个8.如图,数轴上的点M表示有理数2,则表示有理数6的点是( )A.A B.B C.C D.D9.下列说法中,错误的有( )①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A .1个B .2个C .3个D .4个10.[2024徐州二模]有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A . a >bB .-a >-bC .|a |>|b |D .|-a |>|-b |二、填空题(每题4分,共24分)11.[真实情境题 航空航天]2024年4月25日,神舟十八号载人飞船发射取得成功,神舟十八号载人飞船与长征二号F 遥十八运载火箭组合体,总重量为400多吨,总高度近60米,数据60的相反数是 ,绝对值是 .12.小明在写作业时不慎将墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有 个.13.[2024杭州西湖区月考]比较大小(填“>”“<”或“=”):(1)-715 -|13|;(2)-|-213| -(-213).14.当x = 时,|x -6|+3的值最小.15.[新考法 分类讨论法]如果点M ,N 在数轴上表示的数分别是a ,b ,且|a |=2,|b |=3,那么M ,N 两点之间的距离为 .16.[新考法 分类讨论法 2024 烟台栖霞市月考]点A 为数轴上表示-2的点,当点A 沿数轴以每秒3个单位长度的速度移动4秒到达点B 时,点B 所表示的有理数为 .三、解答题(共66分)17.(6分)把下列各数填在相应的大括号内:15,-12,0.81,-3,14,-3.1,-4,171,0,3.14.正数集合:{ …};负数集合:{ …};正整数集合:{ …};负整数集合:{ …};负分数集合:{ …};有理数集合:{ …}.18.(6分)化简下列各数:(1)-(-68); (2)-(+0.75); (3)-[-(-23)].19.(8分)在数轴上表示下列各数,并用“<”将它们连接起来.,-(-1),0.-4,|-2.5|,-|3|,-11220.(10分)如图,已知数轴的单位长度为1,DE的长度为1个单位长度.(1)如果点A,B表示的数互为相反数,求点C表示的数.(2)如果点B,D表示的数的绝对值相等,求点A表示的数.(3)若点A为原点,在数轴上有一点F,当EF=3时,求点F表示的数.21.(10分)[2024杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C( , ),B→C( , ),C→D ( , );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A,B的其他字母表示).(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示 的点重合.②若数轴上M,N两点之间的距离为2 024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少.参考答案一、1. C 2. D 3. A 4. D 5. A 6. A 7. A 8. D 9. D 10. B二、11.-60;60 12.10 13.(1)< (2)<14.6 15.1或5 16.-14或10三、17.解:正数集合:{15,0.81,14,171,3.14,…};负数集合:{-12,-3,-3.1,-4,…};正整数集合:{15,171,…};负整数集合:{-3,-4,…};负分数集合:{-12,-3.1,…};有理数集合:{15,-12,0.81,-3,14,-3.1,-4,171,0,3.14,…}.18.解:(1)-(-68)=68. (2)-(+0.75)=-0.75. (3)-[-(-23)]=-23.19.解:在数轴上表示各数如图所示:-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)由点A ,B 表示的数互为相反数,可确定数轴原点O 如下图:所以点C 表示的数为5.(2)由点B ,D 表示的数的绝对值相等,可知点B ,D 表示的数互为相反数,从而可确定数轴原点O 如下图:所以点A 表示的数为12.(3)由题意可知点F 在点E 的左边或右边.当点F 在点E 的左边时,如图:所以点F 表示的数为-5;当点F 在点E 的右边时,如图:所以点F 表示的数为1.故当EF =3时,点F 表示的数为-5或1.21.解:(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=6×100%=60%.10(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).22.解:(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.解:(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②易知折痕与数轴的交点表示的数为2.因为M,N两点之间的距离为2 024,且M,N两点经折叠后重合,所以M,N两点与折痕与数轴的交点之间的距离为1×2 024=1 012.2又因为点M在点N的左侧,所以点M表示的数为-1 010,点N表示的数为1 014.。
有理数单元测试题及答案大全
有理数单元测试题及答案大全一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1.1010010001...(无限不循环)答案:C2. 如果a是一个负有理数,那么-a是:A. 正数B. 负数C. 零D. 无理数答案:A3. 两个负有理数相加,结果为:A. 正数B. 负数C. 零D. 无理数答案:B4. 绝对值最小的有理数是:A. 1B. -1C. 0D. 2答案:C5. 下列哪个运算结果不是有理数?A. 2 + 3B. 4 - 5C. √4D. √9答案:C二、填空题(每题2分,共20分)6. 有理数包括_______和_______。
答案:整数,分数7. 一个数的相反数是它本身的数是_______。
答案:零8. 绝对值是它本身的数是_______。
答案:非负数9. 两个互为相反数的有理数相加的和是_______。
答案:零10. 一个数的绝对值是它到原点的距离,这个数是_______。
答案:实数三、计算题(每题5分,共30分)11. 计算:|-5| + (-2) + |-3| × 2答案:5 + (-2) + 6 = 912. 计算:(-3) × (-2) - 4 ÷ 2答案:6 - 2 = 413. 计算:(-1)^2 - 3 × 2 + 4答案:1 - 6 + 4 = -114. 计算:(-2)^3 + 3 × (-1) + 5答案:-8 - 3 + 5 = -6四、解答题(每题10分,共30分)15. 某班有40名学生,其中20名学生的数学成绩高于80分,10名学生的数学成绩低于60分,其余学生的数学成绩在60分到80分之间。
请计算这个班级的平均数学成绩。
答案:假设高于80分的学生平均成绩为85分,低于60分的学生平均成绩为55分,其余10名学生的平均成绩为70分。
则总成绩为:20 × 85 + 10 × 55 + 10 × 70 = 1700 + 550 + 700 = 2950。
人教版2024-2025学年七年级上册数学单元检测1(有理数的运算)含答案
人教版2024-2025学年七年级上册数学单元检测(有理数的运算)一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.若一个数的倒数是,则这个数是( )134-A. B. C. D.413413-134134-2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为( )A. B. C. D.80.1110⨯101.110⨯91.110⨯81110⨯3.计算结果是( )(32)4(8)-÷⨯-A.1 B. C.64 D.1-64-4.下列各式中结果是负数的为( )A. B. C. D.()5--()25-25-5-5.下列各式运算错误的是( )A. B.()()236-⨯-=()11262⎛⎫-⨯-=- ⎪⎝⎭C. D.()()()52880-⨯-⨯-=-()()()32530-⨯-⨯-=-6.下列说法正确的是( )A.近似数3.6万精确到十分位B.近似数0.720精确到百分位C.近似数5.78精确到百分位D.近似数3000精确到千位7.甲、乙两人用简便方法进行计算的过程如下,下列判断正确的是( )甲.11(14)19(6)1119[(14)(6)]10+-+--=++-+-=乙.71171168588855⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦A.甲、乙都正确B.甲、乙都不正确A. B. C.4 D.2-4-289.若,,则a 与b 的乘积不可能是( )||a a =||b b -=14.计算的结果是_____________.()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭15.求值:_____.1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+=三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)用四舍五入法,对下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46021(精确到百位).17.(8分)计算:(1);()()()()81021++-----(2).()()221310.5233⎡⎤---÷⨯--⎣⎦18.(10分)计算.32118(3)2⎛⎫-÷-⨯- ⎪⎝⎭莉莉的计算过程如下:解:原式.1111(18)9(18)8984=-÷⨯=-⨯⨯=-佳佳的计算过程如下:解:原式.198(18)9(18)(18)16889⎛⎫⎛⎫⎛⎫=-÷⨯-=-÷-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭请问莉莉和佳佳的计算过程正确吗?如果不正确,请写出正确的计算过程.19.(10分)某食品厂从生产的袋装食品中随机抽样检测每袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2克.现记录如下:与标准质量的误差(单位:克)-5-60+1+3+6袋数533423(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多多少克;(2)若标准质量为500克/袋,则这次抽样检测的总质量是多少克.20.(12分)某中学开展一分钟跳绳比赛,成绩以200次为标准数量,超过的次数记为正数,不足的次数记为负数,七年级某班8名同学组成代表队参赛,成绩(单位:次)记录如下:+8,0,-5.+12,-9,+1,+8,+15.(1)求该班参赛代表中最好成绩与最差成绩相差多少次?(2)求该班参赛代表队一共跳了多少次?(3)规定:每分钟跳绳次数为标准数量,不得分;超过标准数量,每多跳1次得2分;未达到标准数量,每少跳1次扣1分,若代表队跳绳总积分超过70分,便可得到学校的奖励,请通过计算说明该代表队能否得到学校奖励.21.(12分)观察下列等式:第1个等式:;11111323⎛⎫=⨯- ⎪⨯⎝⎭第2个等式:;111135235⎛⎫=⨯- ⎪⨯⎝⎭第3个等式:;111157257⎛⎫=⨯- ⎪⨯⎝⎭第4个等式.111179279⎛⎫=⨯- ⎪⨯⎝⎭(1)探寻上述等式规律,写出第5个等式:_________;(2)求的值.1111155991320172021++++⨯⨯⨯⨯答案以及解析1.答案:B解析:因为,,所以的倒数是.113344-=-1341413⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭134-413-2.答案:C解析:1100000000用科学记数法表示应为.91.110⨯故选:C.3.答案:C解析.()(32)4(8)=88=64-÷⨯--⨯-故选C.4.答案:C解析:A 、是正数,此项不符题意;(5)5--=B 、是正数,此项不符题意;2(5)25-=C 、是负数,此项符合题意;2525-=-D 、55-=是正数,此项不符题意;故选:C.5.答案:B解析:A 、,则此项正确,不符合题意;()()23236-⨯-=⨯=B 、,则此项错误,符合题意;()111212622⎛⎫-⨯-=⨯= ⎪⎝⎭C 、,则此项正确,不符合题意;()()()()52852880-⨯-⨯-=-⨯⨯=-D 、,则此项正确,不符合题意;()()()()32532530-⨯-⨯-=-⨯⨯=-故选:B.6.答案:C解析:A.近似数3.6万精确到千位,原说法错误;B.近似数0.720精确到千分位,原说法错误;C.近似数5.78精确到百分位,说法正确;D.近似数3000精确到个位,原说法错误;故选:C.7.答案:D解析:,甲不正确.11(14)19(6)1119[(14)6]30822+-+--=++-+=-=711711711858858885⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,乙正确.16(1)55⎛⎫=-+-=- ⎪⎝⎭8.答案:C解析:输入,则1x =21242420⨯-=-=-<输入,则,2-()22244-⨯-=所以输出y 的值为:4故选:C.9.答案:A解析:因为,,所以,,所以a 与b 的乘积不可能是负数,故a ||a a =||b b -=0a ≥0b ≥与b 的乘积不可能是.5-10.答案:A解析:由题知,,,,,,,,,,122=224=328=4216=8232=6264=72128=82256=⋯所以的末位数字按2,4,6,8循环出现,2n 又余2,20224505÷=所以的末位数字是4.20222,,,,,,,, 133=239=3327=4381=53243=63729=732187=836561=…,所以的末位数字按3,9,7,1循环出现,3n 又余3,20234505÷=所以的末位数字是7.20233的末位数字是3()20232202320202222(3)32=--+-故选:A.11.答案:千解析:,41.51015000⨯= 近似数精确到千位,∴41.510⨯故千.12.答案:8112019-+-解析:写成省略加号的和的形式是.8(11)(20)(19)-+--+-8112019-+-故答案为.8112019-+-13.答案:5解析:由题意可得:已知有理数中的负整数为,1-则,2(1)(4)1432-+-=-=-<-则有2(3)(4)9452-+-=-=>-,则输出的结果为5,故5.14.答案:3解析:()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭212575⎛⎫=-⨯-⨯- ⎪⎝⎭107=-.3=15.答案:1012解析:1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+(12)(34)(56)(78)(20212022)2023=-+-+-+-+⋯+-+2022(1)20232=-⨯+.1012=故1012.16.答案:(1)0.63(2)8(3)131.0(4)44.6010⨯解析:(1)0.6328(精确到0.01).0.63≈(2)7.9122(精确到个位).8≈(3)130.96(精确到十分位).131.0≈(4)46021(精确到百位).44.6010≈⨯17.答案:(1)1(2)1.5解析:(1)()()()()81021++-----81021=-++;1=(2)2213(10.5)2(3)3⎡⎤---÷⨯--⎣⎦()19372=--⨯⨯-910.5=-+18.答案:见解析解析:莉莉和佳佳的计算过程都不正确.正确的计算过程:原式.111118918928884⎛⎫=-÷⨯-=÷⨯=⨯= ⎪⎝⎭19.答案:(1)12(2)9985解析:试题(1)根据题意及表格得:(克),()666612+--=+=最重的食品比最轻的重12克;(2)由表格得:()()()()()556303143263-⨯+-⨯+⨯++⨯++⨯++⨯()251804618=-+-++++2510=-+,15=-则(克).50020159985⨯-=这次抽样检测的总质量是9985克.20.答案:(1)24次(2)1630次(3)该班能得到学校奖励解析:(1)(次),15(9)15924+--=+=故该班参赛代表中最好成绩与最差成绩相差24次;(2)(次),2008(8)0(5)(12)(9)(1)(8)(15)1630⨯++++-+++-++++++=故该班参赛代表队一共跳了1630次;(3)(分),(8121815)2(59)174++++⨯-+⨯=,7470> 该班能得到学校奖励.∴21.答案:(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)5052021解析:(1)观察所给的等式,可得第5个等式为.故答案为11119112911⎛⎫=⨯- ⎪⨯⎝⎭.11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)原式.111111120205051455920172021420212021⎛⎫=-+-++-=⨯= ⎪⎝⎭。
第二章《有理数》单元测试(含答案)
第2章 有理数单元测试一、选择题(本大题共8小题,每小题3分,共24分.在每小题列出的四个选项中,只有一项符合题意)1.-2的绝对值是( )A .-2B .2C .-12 D.122.在3.14159,4,1.1010010001,4.2·1·,π,132中,无理数有( )A .1个B .2个C .3个D .4个3.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000 kg 的煤所产生的能量.把130000000 kg 用科学记数法可表示为( )A .13×107kgB .0.13×108kgC .1.3×107kgD .1.3×108kg 4.下列说法中,正确的是( )A .两个有理数的和一定大于每个加数B .3与-13互为倒数C .0没有倒数也没有相反数D .绝对值最小的数是0 5.在数-3,2,0,3中,大小在-1和2之间的数是( ) A .-3 B .2 C .0 D .36.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多107.在-(-2),(-1)3,-22,(-2)2,-|-2|,(-1)2n (n 为正整数)这六个数中,负数的个数是( )A .1B .2C .3D .48.依次排列4个数:2,11,8,9.对于相邻的两个数,都用右边的数减去左边的数,所得的差排在这两个数之间得到一串新的数:2,9,11,-3,8,1,9.这称为一次操作,做两次操作后得到一串新的数:2,7,9,2,11,-14,-3,11,8,-7,1,8,9.这样下去,第100次操作后得到的一串数的和是( )A .737B .700C .723D .730二、填空题(本大题共9小题,每小题3分,共27分)9.若将顺时针旋转60°记为-60°,则逆时针旋转45°可记为________.10.小明家的冰箱冷冻室的温度是-2 ℃,冷藏室的温度是5 ℃,则小明家的冰箱冷藏室的温度比冷冻室的温度高________ ℃.11.计算:3-22=________. 12.将下列各数:-0.2,-12,-13,按从小到大的顺序排列应为________<________<________.13.若a <0,b >0,且|a|>|b|,则a +b________0.14.已知2,-3,-4,6四个数,取其中的任意三个数求和,和最小是________. 15.若数轴上的点A 所表示的有理数是-223,则与点A 相距5个单位长度的点所表示的有理数是____________.16.在算式1-︱-2□3︱中的“□”里,填入运算符号(在符号+,-,×,÷中选择一个):________,使得算式的值最小.17.已知(a -3)2+|b -2|=0,则a b =________. 三、解答题(本大题共5小题,共49分) 18.(16分)计算下列各题:(1)25.3+(-7.3)+(-13.7)+7.3; (2)(-54)×214÷⎝⎛⎭⎫-412×29;(3)-(-3)2-|(-5)3|×⎝⎛⎭⎫-252-18÷|-32|; (4)(-3)3÷214×⎝⎛⎭⎫-232+4-22×⎝⎛⎭⎫-13.19.(8分)用简便方法计算下列各题:(1)⎝⎛⎭⎫-112-136+34-16×(-48); (2)-201.8×⎝⎛⎭⎫-318-201.8×⎝⎛⎭⎫-678.20.(6分)登山队员攀登珠穆朗玛峰,在海拔3000 m 时,气温为-20 ℃,已知每登高1000 m ,气温降低6 ℃,当海拔为5000 m 和8000 m 时,气温分别是多少?21.(8分)邮递员小王从邮局出发,向东走3 km 到M 家,继续向前走1 km 到N 家,然后折回头向西走6 km 到Z 家,最后回到邮局.图1-Z -1(1)若以邮局为原点,向东为正方向,1个单位长度表示1 km ,画一条数轴(如图1-Z -1),请在数轴上分别表示出M ,N ,Z 的位置;(2)小王一共走了多少千米?22.(11分)某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因,无法按计划进行生产,下表是一周的生产情况(超产为正,减产为负,单位:辆):(1)根据记录可知前4天共生产自行车________辆;(2)这一周自行车产量最多的一天比产量最少的一天多生产________辆;(3)该厂实行计件工资制,每生产一辆自行车厂方付给工人工资60元,超额完成计划任务的每辆奖励15元,没有完成计划任务的每辆车要扣15元,则该厂工人这一周的工资总额是多少?参考答案1.B. 2.A. 3.D. 4.D. 5.C. 6. D 7.C. 8.D.9.[答案] +45° 10.[答案] 7[解析] 5-(-2)=5+2=7(℃). 11.[答案] -112.[答案] -12 -13 -0.213.[答案] < 14.[答案] -5 15.[答案] -723或21316.[答案] × 17.[答案] 9[解析] 由题意得a =3,b =2,则a b =32=9.18.解:(1)原式=11.6. (2)原式=(-54)×94×⎝⎛⎭⎫-29×29=6.(3)原式=-9-20-2=-31.(4)原式=-27×49×49+4+43=-163+4+43=0.19.解:(1)原式=⎝⎛⎭⎫-112×(-48)-136×(-48)+34×(-48)-16×(-48)=4+43-36+8=-2223. (2)原式=-201.8×⎣⎡⎦⎤⎝⎛⎭⎫-318+⎝⎛⎭⎫-678=-201.8×(-10)=2018. 20.解:当海拔为5000 m 时,-20-5000-30001000×6=-32(℃).当海拔为8000 m 时,-20-8000-30001000×6=-50(℃),因此当海拔为5000 m 时,气温为-32 ℃,当海拔为8000 m 时,气温为-50 ℃. 21.解:(1)如图所示:(2)3+1+6+2=12(千米). 答:小王一共走了12千米. 22.解:(1)812 (2)28(3)5-2-6+15-9-13+8=-2(辆), (1400-2)×60-2×15=83850(元).答:该厂工人这一周的工资总额是83850元.。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列各数中,不是有理数的是()。
A. -3.14B. √2C. 0D. π2. 若a是有理数,b是有理数,那么a+b一定是()。
A. 有理数B. 无理数C. 整数D. 分数3. 有理数-1.5和2.5的和是()。
A. 1B. 0C. -1D. 1.54. 下列哪个数是负数?()A. 5B. -5C. 0D. 3.145. 有理数的乘法中,负负得正,那么-3×(-2)等于()。
A. 6B. -6C. 3D. -3二、填空题(每题2分,共20分)1. 有理数-7和5的差是_________。
2. 若两个有理数的积为0,则这两个数中至少有一个是__________。
3. 有理数-4的绝对值是__________。
4. 若a是有理数,且a²=a,则a可以是__________或__________。
5. 有理数的除法中,0除以任何非零有理数都等于__________。
三、计算题(每题5分,共30分)1. 计算下列表达式的值:(-2)×(-3) + 4÷(-2) - 5。
2. 计算下列表达式的值:(-7)×3 - (-4)×2 + 6。
3. 计算下列表达式的值:(-1)^2 + √4 - 2×(-3)。
4. 计算下列表达式的值:(-3)×(-2)×(-4) - 2^3。
四、解答题(每题10分,共30分)1. 某商店在一天内销售了三种商品,分别获得了利润-150元、200元和-100元。
请问这家商店当天的总利润是多少?2. 已知有理数a、b、c,其中a=-2,b=3,c=-4,求a+b+c的值。
3. 一个数的平方等于它自身,这个数可以是哪些有理数?答案:一、选择题1. B2. A3. C4. B5. A二、填空题1. -122. 03. 44. 0,15. 0三、计算题1. -32. -53. 74. -24四、解答题1. 总利润=-150+200-100=-50元2. a+b+c=-2+3-4=-33. 这个数可以是0或1。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题 3 分,共 30 分)1、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数答案:D解析:整数包括正整数、零和负整数,A 选项错误;负整数的相反数是正整数,不是非负整数,B 选项错误;有理数包括正数、零和负数,C 选项错误;零是自然数,但不是正整数,D 选项正确。
2、在有理数中,绝对值等于它本身的数有()A 1 个B 2 个C 3 个D 无数个答案:D解析:绝对值等于它本身的数是非负数,包括零和所有正数,有无数个。
3、下列计算正确的是()A (-3) =-3B |-3| =-3C (-3)²=-9D -3²= 9答案:B解析:(-3) = 3,A 选项错误;|-3| =-3,B 选项正确;(-3)²= 9,C 选项错误;-3²=-9,D 选项错误。
4、比-3 大 2 的数是()A -5B -1C 1D 5答案:B解析:-3 + 2 =-15、两个有理数的和为负数,那么这两个数一定()A 都是负数B 至少有一个负数C 有一个是 0D 绝对值相等答案:B解析:两个有理数的和为负数,那么这两个数至少有一个负数。
6、计算(-1)×(-2)的结果是()A 2B 1C -2D -1答案:A解析:(-1)×(-2) = 27、若 a < 0 , b > 0 ,且|a| >|b| ,则 a + b 的值()A 是正数B 是负数C 是零D 不能确定答案:B解析:因为 a < 0 , b > 0 ,且|a| >|b| ,所以 a + b 的值是负数。
8、下列说法正确的是()A 倒数等于它本身的数只有 1B 平方等于它本身的数只有 0C 立方等于它本身的数只有 0 和 1D 相反数等于它本身的数只有 0答案:D解析:倒数等于它本身的数有 1 和-1,A 选项错误;平方等于它本身的数有 0 和 1,B 选项错误;立方等于它本身的数有 0 、 1 和-1,C 选项错误;相反数等于它本身的数只有 0,D 选项正确。
有理数单元检验题10套附答案
有理数单元检验题10套附答案有理数单元检测001有理数及其运算<综合)<测试5)一、境空题<每空2分,共28分)1、的倒数是____;的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:4、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为,最高气温为8℃,那么该景点这天的温差是____.C7、计算:8、平方得的数是____;立方得–64的数是____.9、用计算器计算:10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题<每小题3分,共24分)11、–5的绝对值是………………………………………………………<)A、5B、–5C、D、12、在–2,+3.5,0,,–0.7,11中.负分数有……………………<)A、l个B、2个C、3个D、4个13、下列算式中,积为负数的是………………………………………………<)A、B、C、D、14、下列各组数中,相等的是…………………………………………………<)A、–1与<–4)+<–3)B、与–<–3)C、与D、与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………<)A、90分B、75分C、91分D、81分16、lM长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………<)oTIgKpQ yjvA、B、C、D、17、不超过的最大整数是………………………………………<)A、–4B–3C、3D、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折<80%)大拍卖,那么该商品三月份的价格比进货价………………………………………<)oTIgKpQyjvA、高12.8%B、低12.8%C、高40%D、高28%三、解答题<共48分)19、<4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3,+l,,-l.5,6.20、<4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?oTIgKpQyjv21、<8分)比较下列各对数的大小.<1)与<2)与<3)与<4)与22、<8分)计算.<1)<2)<3)<4)23、<12分)计算.<l)<2)<3)<4)24、<4分)已知水结成冰的温度是C,酒精冻结的温度是–117℃。
第一章 有理数单元综合检测(解析版)
第一章有理数单元综合检测满分:100分时间:60分钟一、选择题(共10小题,满分30分)1.2023的相反数是( )A.2023B.2023-C.12023D.2023±【分析】根据互为相反数的两数之和为0和只有符号不同的两个数是相反数进行判断即可.【解析】2023的相反数是2023-;故选:B.2.下列说法正确的是( )A.有理数分为正数、负数和零B.分数包括正分数、负分数和零C.一个有理数不是整数就是分数D.整数包括正整数和负整数【分析】直接利用有理数的有关定义分析判断即可.【解析】A、有理数包括正有理数、负有理数和零,故此选项错误;B、分数包括正分数、负分数,故此选项错误;C、一个有理数不是整数就是分数,故此选项正确;D、整数包括正整数、负整数0和零,故此选项错误.故选:C.3.下列各组数中互为相反数的是( )A.12-与2-B.1-与(1)-+C.(3)--与3-D.2与|2|-【分析】符号不同,绝对值相等的两个数互为相反数,据此即可得出答案.【解析】12-与2-不是相反数,则A不符合题意;(1)1-+=-,则B不符合题意;(3)3--=,它与3-互为相反数,则C符合题意;|2|2-=,则D不符合题意;故选:C.4.北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.14:00B.16:00C.21:00D.23:00【分析】根据巴黎时间比北京时间早7小时解答即可.【解析】由题意得,巴黎时间比北京时间早7小时,当巴黎时间为13:00,则北京时间为20:00;当北京时间为22:00,则巴黎时间为15:00;所以这个时间可以是北京时间的20:00到22:00之间,故选:C.5.下列各组数中,互为倒数的有( )①12和(2)-;②115-和56-;③|4|--和14-;④0和0;⑤1和1-;⑥3.2和516.A.1组B.2组C.3组D.4组【分析】对于①,11(2)(2)1122´-=-´=-¹,据此即可作出判断;接下来利用同样的方法,判断其它几个.注意:0没有倒数.【解析】对于①,11(2)(2)1122´-=-´=-¹,故①不互为倒数,对于②,1565(1)(15656-´-=´=,故②互为倒数,对于③,111(|4|)()(4)()41444--´-=-´-=´=,故③互为倒数,对于④,0没有倒数,故④不互为倒数,对于⑤1,1(1)11´-=-¹,故⑤不互为倒数,对于⑥,51653.2116516´=´=,故⑥互为倒数,故互为倒数的两个数有3组.故选:C.6.下列等式成立的是( )A .235222´=B .236222´=C .238222´=D .239222´=【分析】将2322´进行运算后判断即可.【解析】232352222+´==,故选:A .6. 计算20212022(2)(2)-+-的结果是( )A .2-B .2C .20212D .20212-【分析】根据乘法分配律计算即可求解.【解析】20212022(2)(2)-+-20212021(2)(2)(2)=-+-´-2021(12)(2)=-´-20211(2)=-´-20212=.故选:C .7. 下列说法不正确的是( )A .0.5-不是分数B .0是整数C .12不是整数D .2-是既是负数又是整数【分析】利用有理数的分类对各选项进行分析,即可得出结果.【解析】A 、0.5-是负分数,也是分数,故A 说法错误,符合题意;B 、0是整数,正确,故B 说法正确,不符合题意;C 、12是分数,不是整数,故C 说法正确,不符合题意;D 、2-是负数,也是负整数,故D 说法正确,不符合题意.故选:A .8. 袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活8000万人,将数据8000万用科学记数法表示为810n ´,则n 的值为( )A .7B .8C .9D .10【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正数;当原数的绝对值1<时,n 是负数.【解析】8000Q 万780000000810==´,7n \=,故选:A .9. 定义一种正整数n 的“T ”运算:①当n 为奇数时,结果为31n +;②当n 为偶数时,用n 连续除以2,直到结果为奇数停止,并且运算重复进行.例如,当18n =时,运算过程如下:若21n =,则第2021次“T ”运算的结果是( )A .1B .2C .3D .4【分析】根据题意,可以写出前几次输出的结果,然后即可发现数字的变化规律,从而可以得到2021次“T ”运算的结果.【解析】由题意可得,当21n =时,第1次输出的结果为64,第2次输出的结果为1,第3次输出的结果为4,第4次输出的结果为1,第5次输出的结果为4,¼,\从第2次开始,这列数以1,4不断循环出现,(20211)2202021010-¸=¸=Q ,2021\次“T ”运算的结果4,故选:D .二.填空题(共6小题,满分16分)11.(3分) 一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为10+分,那么85分应记为 11- 分.【分析】高于96分记作正数,那么低于96分记作负数,85比96低11分,故记作11-.【解析】859611-=-,故答案为:11-.10. (3分)写出所有比 3.5-大的负整数: 3-,2-,1- .【分析】根据负整数的意义写出即可.【解析】比 3.5-大的负整数有3-,2-,1-.故答案为:3-,2-,1-.13.(3分)计算:21(0.4)3-¸-= 256 .【分析】直接利用有理数的除法运算法则计算得出答案.【解析】原式5235=¸5532=´256=.故答案为:256.14.(3分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,则235a b m cd ++-= 26. .【分析】直接利用互为相反数以及倒数、绝对值的性质分别化简得出答案.【解析】a Q 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,0a b \+=,1cd =,3m =±,29m =,则235a b m cd ++-0391=+´-271=-26=.故答案为:26.15. (3分)近似数1.25万是精确到 百 位.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解析】1.25万中,5在百位上,则精确到了百位.故答案为:百.16. (3分)如图,数轴上A ,B 两点所表示的数分别为a ,b ,有下列各式:①(1)(1)0a b -->;②(1)(1)0a b -+>;③(1)(1)0a b ++>.其中,正确式子的序号是 ①②? .【分析】因为数轴上右边的数总比左边的大,大数减小数差为正,小数减大数差为负.再根据乘法运算同号得正,异号得负.【解析】1a <Q ,10a \-<.1b <Q ,10b \-<.(1)(1)0a b \-->.\①正确,故①符合题意.1b <-Q ,(1)0b \--<.即10b +<,(1)(1)0a b \-+>.\②正确,故②符合题意.0a >Q ,10a \+>,又1b <-Q ,10b \+<,(1)(1)0a b \++<.\③错误.故③不合题意.故答案为:①②?.三.解答题(共8小题,满分42分)17.(4分) 计算:221(3)[2(6)(4)]4-+´´---.【分析】先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.【解析】221(3)[2(6)(4)]4-+´´---19(1216)4=+´--19(28)4=+´-97=-2=.18.(8分)计算:(1)626172((()5353-+-´-+-´;(2)20232241(1)(3)||4(2)9-+-´--¸-.【分析】(1)先算乘法,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解析】(1)原式434255=-+-10434555=-+-63455=--405=-8=-;(2)原式11916169=-+´-¸111=-+-1=-.19.(8分)计算:(1)7531()(96436+-¸-;(2)22222(3)()4|4|3-+-´--¸-.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法、最后算加减法.【解析】(1)7531()()96436+-¸-753()(36)964=+-´-753(36)(36)(36)964=´-+´--´-28(30)27=-+-+31=-;(2)22222(3)()4|4|3-+-´--¸-249(1643=-+´--¸4(6)4=-+--14=-.20. (6分)兴趣小组遇到这样一个问题:任意选取一个数,用这个数乘以2后加8,然后除以4,再减去一开始选取的数的12,则结果为多少?小组内4位成员分别令这个数为5-、3、4-、2发现结果一样.(1)请从上述4个数中任取一个数计算结果.(2)有一个成员猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.【分析】(1)令这个数为3,根据已知条件列式计算即可;(2)设取的有理数为a ,根据已知条件列式计算,发现结果是定值,所以猜想正确.【解析】(1)令这个数为3,则1(328)43144 1.522´+¸-´=¸-=;(2)猜想正确,理由是:设取的有理数为a ,则:1111(28)224222a a a a +-=+-=,所以猜想是正确的.21. (8分)3-,2.5,0,4+,32-.(1)画数轴并在数轴上标出上面各数;(2)把上面各数用“>”连接起来.【分析】(1)在数轴上表示各数即可;(2)根据在数轴上右边的点表示的数大于左边的点表示的数从大到小的顺序用“>”连接起来即可.【解析】(1)如图所示:(2)根据在数轴上右边的点表示的数大于左边的点表示的数,可得34 2.5032+>>>->-.22. (6分)已知有理数a 、b 、c 在数轴上的位置.(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空)(2)试化简||2||||a b a c b c +-+--.【分析】(1)根据数轴确定a ,b ,c 的范围,即可解答;(2)根据绝对值的性质,即可解答.【解析】(1)由数轴可得:0c a b <<<,且||||a b >,0a b \+<,0a c +<,0b c ->,故答案为:<;<;>;(2)0a b +<Q ,0a c +<,0b c ->,||2||||a b a c b c \+-+--2()()a b a c b c =--++--22a b a c b c=--++-+23a b c =-+.23.(6分)有10袋小麦,每袋以90kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如表:袋号12345678910重量()kg 1+1+ 1.5+1- 1.2+ 1.3+ 1.3- 1.2- 1.8+ 1.1+(1)请通过计算说明这10袋小麦总计超过多少kg 或不足多少kg ?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?【分析】(1)“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;(2)先求10袋小麦的总重量,即乘单价即可求解.【解析】(1)11 1.51 1.2 1.3 1.3 1.2 1.8 1.1 5.4()kg +++-++--++=.故这10袋小麦总计超过5.4kg ;(2)(9010 5.4) 2.52263.5´+´=(元).故10袋小麦一共可以卖2263.5元.24.(6分)阅读理解:观察等式1122133-=´+,2255133-=´+¼发现,一对有理数a ,b 满足1a b ab -=+,那么我们把这对有理数a ,b 叫做“共生有理数对”,记为[a ,]b .如:有理数对[1,1]3和[5,2]3都是“共生有理数对”.(1)下列四对有理数中,不是“共生有理数对”的是 D .A .[3,12B .[3-,2]C .1[5,2]3-D .[2-,13-(2)若[4,1]m -是“共生有理数对”,请你求出该“共生有理数对”.(3)若[x ,1]x -是“共生有理数对”,请你判断[1x -,]x -是不是“共生有理数对”,并说明理由.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可解决问题.【解析】(1)A .113222-=Q ,11131112222´+=+=,[3\,12是“共生有理数对”;B .325--=-Q ,321615-´+=-+=,[3\-,2]是“共生有理数对”,C .Q 1213()5315--=,12213()11531515´-+=-+=,1[5\,2]3-是“共生有理数对”;D.212(133 ---=-Q,1222()111333-´-+=+=,[2 \-,1]3-不是“共生有理数对”.故答案为:D;(2)[4Q,1]m-是“共生有理数对”,4(1)4(1)1m m\--=-+,解得85m=,则831155m-=-=.\该“共生有理数对”是[4,35;(3)[1x-,]x-是“共生有理数对”,理由:[xQ,1]x-是“共生有理数对”,(1)(1)1x x x x\--=-+,(1)0x x\-=,1()1x x---=Q,(1)1(1)1011x x x x--+=-+=+=,1()(1)1x x x x\---=--+,[1x\-,]x-是“共生有理数对”.。
第二章 有理数及其运算单元测试卷(解析版)
第二章 有理数及其运算单元测试卷一.选择题(共10小题)1.(2023•路桥区二模)2023年第一季度,浙江省全省创造了约1900000000000元的生产总值,排名哲时排名全国第四位.数据1900000000000用科学记数法表示为( )A .111.910´B .121.910´C .111910´D .130.1910´【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:数据1900000000000用科学记数法可以表示为121.910´.故选:B .2.(2023•抚松县模拟)下列各数中,最小的数是( )A .3-B .1-C .0D .3【分析】根据正数大于0,0大于负数,以及两个负数比较大小方法判断即可.【解答】解:3103-<-<<Q ,\最小的数为3-.故选:A .3.(2023•滨城区二模)2(2)3--的结果是( )A .7-B .1C .2-D .6【分析】先算乘方,再算减法.【解答】解:2(2)3--43=-1=.故选:B .4.(2023•新昌县模拟)|2023|(-= )A .2023B .2023-C .12023-D .12023【分析】根据负数的绝对值等于它的相反数,即可求解.【解答】解:|2023|(2023)2023-=--=.故选:A.5.(2023•乾县三模)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A.6B.6-C.0D.1 6【分析】根据数轴表示和相反数的定义进行求解.【解答】解:6-Q的相反数是6,\点B表示的数为6,故选:A.6.(2023•兰溪市模拟)一条数轴上有点A、B,点C在线段AB上,其中点A、B表示的数分别是8-,6,现以点C为折点,将数轴向右对折,若点A¢落在射线CB上,并且4A B¢=,则C点表示的数是( )A.1B.1-C.1或2-D.1或3-【分析】设点C表示的数为x,分两种情况:A¢在线段CB的延长线上或线段CB上分别计算即可.【解答】解:设点C表示的数为x,当A¢在线段CB的延长线上时,4A B¢=Q,\点A¢表示的数为6410+=,AC A C=¢Q,(8)10x x\--=-,解得:1x=;当A¢在线段CB上时,4A B¢=Q,\点A¢表示的数为642-=,AC A C=¢Q,(8)2x x\--=-,解得:3x=-;故选:D.7.(2023•河北模拟)将122135222555´´´´´´´{{L L 个个的计算结果用科学记数法可表示为( )A .12510´B .13110´C .12210´D .13210´【分析】先计算出结果,再根据科学记数法的表示形式进行解答即可.【解答】解:Q 1212213512251522255525255510´´´´´´´´=´´¼´´´=´{{{{L L 个个个个,故选:A .8.(2023•南关区校级四模)中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作“50+元”,那么亏损30元,记作( )A .30+元B .20-元C .30-元D .20+元【分析】根据正负数来表示相反意义,盈利50元,记作“50+元”,亏损30元,则记作“30-元”即可求解.【解答】解:Q 盈利50元,记作“50+元”,\亏损30元,记作“30-元”.故选:C .9.(2023•河东区二模)如图,数轴上A ,C 位于B 的两侧,且2AB BC =,若点B 表示的数是1,点C 表示的数是3,则点A 表示的数是( )A .0B .2-C .3-D .1-【分析】求出AB 线段的长度,因为点A 表示的数小于点B ,点B 表示1,推理出点A 表示的数.【解答】解:Q 点B 表示的数是1,点C 表示的数是3,2BC \=,2AB BC =Q ,4AB \=,有数轴可知:点A 表示的数小于点B 表示的数,143\-=-,即点A 表示的数为3-,故选:C .10.(2023春•武昌区期末)将1,2,3,4,5,6,7,8,9,10这个10个自然数填到图中的10个格子里,每个格子中只填一个数,使得田字形的4个格子中所填数字之和都等于m .则m 的最大值是( )A .23B .24C .25D .26【分析】图形中有3个“田”字形,其中重叠的有两个小格,设对应的数为a ,b ,则与a 与b 均被加了两次,根据“田“字形的4个格子中所填数字之和都等于m ,其总和为3m 根据3个“田”字形所填数的总和为1234567891055a h a b +++++++++++=++,列出不等式,求整数解即可.【解答】解:设每个“田”字格四个数的和为m ,共12个数的和为3m ,有两数重复,设这两数分别为a ,b ,所以3个“田”字形所填数的总和为:1234567891055a b a b +++++++++++=++.则有355m a b =++,要m 最大,必须a 、b 最大,而a b +最大值为91019+=,则355910m ++…,则2243m <,则m 最大整数值为24,故选:B .二.填空题(共6小题)11.(2023春•芝罘区期中)如图,数轴上有A 、B 、C 三点,A 、B 两点表示的有理数是分别是2-和8,若将该数轴从点C 处折叠后,点A 和点B 恰好重合,那么点C 表示的有理数是 3 .??【分析】由题意得点C 是线段AB 的中点,再进行求解.【解答】解:由题意得点C 是线段AB 的中点,\点C 表示的有理数是:(28)2-+¸62=¸3=,故答案为:3.12.(2023春•秦淮区期中)若44222a +=,5553333b ++=,则a b -的值为 1- .【分析】根据乘方的定义(求几个相同因数或因式的积的一种运算)解决此题.【解答】解:44222a +=Q ,5553333b ++=,452222a \=´=,563333b =´=.5a \=,6b =.561a b \-=-=-.故答案为:1-.13.(2023春•平谷区期末)某校要举办秋季运动会,初一(2)班有四名同学分别想参与100m ,200m ,400m ,和800m 的比赛,其中甲同学擅长跑100m 和200m ,乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,丁同学最擅长跑100m .为了让班级取得好成绩,也让他们每个人都可以参加比赛,并且每人只能参加一项比赛,那么只能派 丙 参加400m 比赛.【分析】根据四名同学最擅长的项目分析即可得出答案.【解答】解:Q 甲同学擅长跑100m 和200m ,丁同学最擅长跑100m ,\让丁同学跑100m ,甲同学跑200m ,Q 乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,\让乙同学跑800m ,丙同学跑400m ,故答案为:丙.14.(2023•甘州区校级模拟)ABC D 的三边长a ,b ,c 满足2|4|(2)0a b c +-+-=,则ABC D 的周长为 6 .【分析】直接利用非负数的性质得出a b +,c 的值,进而得出答案.【解答】解:2|4|(2)0a b c +-+-=Q ,40a b \+-=,20c -=,解得:4a b +=,2c =,ABC \D 的周长为:426a b c ++=+=.故答案为:6.15.(2023春•浦东新区期末)若|1|1a a -=-,则a 的取值范围是 1a … .【分析】根据||a a =-时,0a …,因此|3|3a a -=-,则30a -…,即可求得a 的取值范围.【解答】解:|1|1a a -=-Q ,10a \-…,解得:1a ….故答案为:1a ….16.(2023•随州)计算:2(2)(2)2-+-´= 0 .【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘法,后计算加法即可.【解答】解:2(2)(2)2-+-´4(4)=+-0=.故答案为:0.三.解答题(共8小题)17.(2022秋•宝山区校级期末)计算:212.75136++.【分析】首先把小数化为分数,然后再通分,计算即可.【解答】解:原式32121436=++,98221121212=++,7412=.18.(2022秋•和平区校级期末)计算①111()24386-+´;②42211(2)(25(0.25326-¸-+´--.【分析】①根据乘法分配律计算即可;②先算乘方,再算乘除法,最后算加减法即可.【解答】解:①111(24386-+´111242424386=´-´+´834=-+9=;②42211(2)(25(0.25326-¸-+´--64111116()9264=¸+´--911116(64124=´+--27113()121212=+--1312=.19.(2023春•明水县期末)计算下面各题,能简便运算的要用简便方法算(1);(2);(3).【分析】(1)先算括号里的除法,然后括号外的乘法即可;(2)先变形,然后根据乘法分配律计算即可;(3)根据乘法分配律计算即可.【解答】解:(1)=×()=×=1×=;(2)=×88+×88=()×88=1×88=88;(3)=(27×+27×)×39=(+5)×39=×39+5×39=54+195=249.20.(2023春•海沧区期末)对有序数对(,)x y 定义“f 运算”: 11(,)(,)22f x y x a y b =-+,其中a ,b 为常数.(1)若(2f ,4)(1-=-,3),求a ,b 的值;(2)当4a =,3b =-时,有序数对(,)m n 经过“f 运算”后结果是(,)n c .若4m n …,求c 的最大值.【分析】(1)根据新定义“f 运算”,将(2f ,4)(1-=-,3)代入,解一元一次方程即可;(2)当4a =,3b =-,序数对(,)m n 代入“f 运算”得28m n =+,4m n …得c 的取值范围,进而作答.【解答】解:(1)Q 11(,)(,)22f x y x a y b =-+,(2f ,4)(1-=-,3),(2f \,14)(22a -=´-,14)2b -´+,11a \-=-,23b -+=,解得:2a =,5b =;(2)当4a =,3b =-时,(,)1(42x y f x =-,11)2y -,(,)1(42m n f m \=-,11)2n -,\142132m n n c ì-=ïïíï-=ïî①②,由①得:28m n =+,4m n Q …,284n n \+…,解得:4n …,\1312n --…,1c \-…,c \的最大值为1-.21.(2022秋•寻乌县期末)卓越中学为提高中学生身体素质,积极倡导“阳光体育”运动,开展一分钟跳绳比赛.七年级某班10名参赛代表成绩以160次为标准,超过的次数记为正数,不足的次数记为负数,成绩记录如下(单位:次):18+,1-,22+,2-,5-,12+,8-,1,8+,15+.(1)求该班参赛代表最好成绩与最差成绩相差多少?(2)求该班参赛代表一分钟平均每人跳绳多少次?(3)规定:每分钟跳绳次数为标准数量,不加分;超过标准数量,每多跳1个加1分;未达到标准数量,每少跳1个,扣0.5分,若班级跳绳总积分超过60分,便可得到学校的奖励,请通过计算说明该班能否得到学校奖励?【分析】(1)用记录中的最大数减去最小数即可;(2)根据平均数的意义,可得答案;(3)根据题意列式计算求出该班的总积分,再与60比较即可.【解答】解:(1)22(8)22830+--=+=(次),答:该班参赛代表最好成绩与最差成绩相差30次;(2)160(18122251281815)10+-+--+-+++¸1606010=+¸1606=+166=(次),答:该班参赛代表一分钟平均每人跳绳166次;(3)(1822121815)1(1258)0.5+++++´-+++´768=-68=(分),6860>,答:该班能得到学校奖励.22.(2022秋•徐闻县期末)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):5+,4-,3+,10-,3+,9-.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少千米;(2)若汽车耗油量为0.4升/千米,则这天上午小王的汽车共耗油多少升?【分析】(1)把记录的数字相加得到结果,即可做出判断;(2)求出各数绝对值之和,乘以0.4即可得到结果.【解答】解:(1)根据题意得:543103912+-+-+-=-(千米),则后一名老师送到目的时,小王距出租车出发点的距离是12千米;(2)根据题意得:0.4(5431039)13.6´+++++=(升),则这天上午小王的汽车共耗油13.6升.23.(2023春•长宁区期末)小明表演魔术,从一副除去大小王的扑克中请观众随机选择了4张牌,并让观众每次取其中三张牌,将牌面数字相加,牌面数字之和分别为18,24,25,26.小明立刻说出了观众随机选择的4张扑克牌面的数字.这4张牌牌面的数字都是几呢?你能尝试用数学原理去揭秘这个魔术吗?(A 表示1,J表示11,Q表示12,K表示13)【分析】设这4张牌牌面的数字分别为a,b,c,d,根据题意可得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,从而可得333318242526a b c d+++=+++,进而可得31a b c d+++=,然后分别进行计算,即可解答.【解答】解:设这4张牌牌面的数字分别为a,b,c,d,由题意得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,333318242526a b c d\+++=+++,31a b c d\+++=,31()311813d a b c\=-++=-=,31()31247c a b d=-++=-=,31()31256b ac d=-++=-=,31()31265a b c d=-++=-=,\这4张牌牌面的数字分别为5,6,7,13.24.(2023春•南岗区期中)阅读下面材料,然后回答问题.计算12112 ()() 3031065 -¸-+-解法一:原式12111112 ()()()(3033010306305 =-¸--¸+-¸--¸1111203512 =-+-+16=.解法二:原式12112 ()[()()]3036105 =-¸-+-113()()30210 =-¸-1530=-´16=-.解法三:原式的倒数为21121 ()() 3106530-+-¸-2112()(30)31065=-+-´-2112(30)(30(30)(30) 31065=´--´-+´--´-203512=-+-+10=-故原式110=-.(1)上述得出的结果各不同,肯定有错误的解法,但是三种解法中有一种解法是正确的,请问:正确的解法是解法 解法三 ;(2)根据材料所给的正确方法,计算:11322 ((4261437-¸-+-.【分析】(1)上述得出的结果不同,肯定有错误的解法,我认为解法一和解法二是错误的.在正确的解法中,我认为解法三最简捷;(2)利用乘法分配律求出原式倒数的值,即可求出原式的值.【解答】解:(1)根据除法没有分配律可知解法一错误;根据加法的交换律可知,交换加数的位置时应连同符号一起交换,故解法二也错误;(2)Q13221 (() 6143742-+-¸-1322()(42)61437=-+-´-1322(42)(42)(42)(42) 61437=´--´-+´--´-792812 =-+-+14=-,\113221 ((426143714-¸-+-=-.。
有理数单元练习及参考答案
有理数单元练习一、选择题1.有理数3的相反数是()A.-3B.3C.13D.132.一个数和它的倒数相等,则这个数是()A.1B.-1C.±1D.±1或者03.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是14.若x的相反数是1,|y|=2,则x+y的值为()A. 3B.-1C. -1或3D.-35.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+c等于()A.-1B.0C.1D.26.已知|x|=3,|y|=5,且xy<0,那么x+y的值等于()A.8B.-2C.8或者-8D.2或者-27.质检员抽查零件的质量,超过尺寸的记为正数,不足的记为负数,抽查了四个零件,结果如下,质量最差的零件是()A.+0.01mmB.-0.05mmC. +0.1mmD.-0.11mm8.(-1)2023的计算结果是()A.-1B.1C.2023D.-20239.我国陆地面积约9600000 km²,用科学记数法表示为()A.9.6×105B. 9.6×106C. 9.6×107D. 9.6×10810.如图,四个有理数在数轴上的对应点M、P、N、Q,若点M、N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.MB.PC.ND.Q二、填空题11.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168000000米,用科学计数法表示这个数__________12.若(x-2)2与|x+y |互为相反数,则y-x=__________ 13. 若规定a ▽b =a ba b-+,则﹣3▽4= . 14.观察表中按次序排列的一组数,则-2023在表中第 行第 列.15.如果a <0,b >0,a +b >0,那么四个数a 、-a 、b 、-b 之间的大小关系是_____________(请用“<”连接)16.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为__________. 三、解答题 17.计算:(1)11(8)(15)(3)-+--+--; (2)8199199⎛⎫÷- ⎪⎝⎭;(3)42112(3)6⎡⎤--⨯--⎣⎦; (4)4231151454⎡⎤-+-⨯+⨯⎢⎥⎣⎦(-4)(-)-|-(-2)|18.若(a+3)2+|b -5|=0,求2a +b 的值.1111|2||1|......(1)(1)(2)(2)(2021)(2021)ab b ab a b a b a b --++++++++++19.已知与互为相反数,求的值20. 有理数a.b.c 在数轴上位置如图,化简:|c-a|-|a-b|+|b-c|.21. 某检修小组,约定向东为正,乘一辆汽车从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6 (1)收工时,该小组距离A 地多远?(2)若每行驶1千米汽车耗油3升,开工时储存180升汽油,问从出发到收工途中是否需要汽油?若需要,最少加多少升?若不需要,收工时还剩多少升? (3)若该小组从出发到回到A 地共花费6小时,求它的平均速度.有理数单元练习参考答案一、选择题1.有理数3的相反数是( A )A.-3B.3C.13D.132.一个数和它的倒数相等,则这个数是( C )B.1 B.-1C.±1D.±1或者03.下列说法正确的是( D )A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是14.若x的相反数是1,|y|=2,则x+y的值为( C )A. 3B.-1C. -1或3D.-35.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+c等于( B )A.-1B.0C.1D.26.已知|x|=3,|y|=5,且xy<0,那么x+y的值等于( D )A.8B.-2C.8或者-8D.2或者-27.质检员抽查零件的质量,超过尺寸的记为正数,不足的记为负数,抽查了四个零件,结果如下,质量最差的零件是( A )A.+0.01mmB.-0.05mmC. +0.1mmD.-0.11mm8.(-1)2023的计算结果是( A )A.-1B.1C.2023D.-20239.我国陆地面积约9600000 km²,用科学记数法表示为( B )A.9.6×105B. 9.6×106C. 9.6×107D. 9.6×10810.如图,四个有理数在数轴上的对应点M、P、N、Q,若点M、N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( B )A.MB.PC.ND.Q二、填空题11.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168000000米,用科学计数法表示这个数1.68×10812.若(x -2)2与|x+y|互为相反数,则y-x = -4 13. 若规定a ▽b =a ba b-+,则﹣3▽4= -7 . 14.观察表中按次序排列的一组数,则-2023在表中第 675 行第 2 列.15.如果a <0,b >0,a +b >0,那么四个数a 、-a 、b 、-b 之间的大小关系是 -b <a <-a <b (请用“<”连接)16.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为 8或4 . 三、解答题 17.计算:(1)11(8)(15)(3)31-+--+--=-;(2)81899999910÷=(-1); (3)421112(3)66⎡⎤--⨯--=⎣⎦; (4)4231151714544⎡⎤-+-⨯+⨯⎢⎥⎣⎦(-4)(-)-|-(-2)|=- 18.若(a +3)2+|b -5|=0,求2a+b 的值. 解:a =-3,b =5,2a+b =-11111|2||1|......(1)(1)(2)(2)(2021)(2021)ab b ab a b a b a b --++++++++++19.已知与互为相反数,求的值解:b=1,a=21111......(1)(1)(2)(2)(2021)(2021)1111......2132432023202211111111 (223342022202311202320222023)ab a b a b a b ++++++++++=++++⨯⨯⨯⨯=-+-+-++-=-=20. 有理数a.b.c 在数轴上位置如图,化简:|c-a|-|a-b|+|b-c|.21. 某检修小组,约定向东为正,乘一辆汽车从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6 (1)收工时,该小组距离A 地多远?(2)若每行驶1千米汽车耗油3升,开工时储存180升汽油,问从出发到收工途中是否需要汽油?若需要,最少加多少升?若不需要,收工时还剩多少升? (3)若该小组从出发到回到A 地共花费6小时,求它的平均速度. 解:(1)根据题意可得:向东为正,则向西为负,则收工的距离=(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣5)+(+6)=+35米, 故收工时该小组在A 地东39千米,(2)从A 地出发到收工一共走了|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65千米, 共消耗油:65×3=195升,故需加油15升; (3)该小组从出发到A 地共走了65+39=104千米,000||||||()()2c a a b b c c a a b b c a c a b b c a c a b b c c ---∴---++=----+=--+--=-解:由图可得:<,>,<平均速度为:千米/小时=千米/小时;答:收工时该小组距离A地39千米,需加油15升,平均速度为千米/小时.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.已知 a b ,下列结论正确的是( )
A. a 2 b 2 B. a b
C. 2a 2b
【答案】C 【解析】
【分析】
直接利用不等式的性质分别判断得出答案.
【详解】
A. ∵a>b,∴a−2>b−2,故此选项错误; B. ∵a>b,∴|a|与|b|无法确定大小关系,故此选项错误; C.∵a>b,∴−2a<−2b,故此选项正确; D. ∵a>b,∴a2 与 b2 无法确定大小关系,故此选项错误; 故选:C. 【点睛】
∴ e2 ( 2)2 2, 3 f =3 64 4 ,
∴ 1 ab c d e2 3 f
2
5
=102461 ;
2
2
故答案为:D
【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算 法则是解本题的关键.
7.实数 ()
在数轴上的对应点的位置如图所示,若
,则下列结论中错误的是
A.1 个 【答案】B 【解析】 【分析】
B.2 个
C.3 个
D.4 个
【详解】
解:①若 a=b 0 ,则 a = b
②在同一平面内,若 a⊥b,b//c,则 a⊥c,正确 ③直线外一点到直线的垂线段的长度叫点到直线的距离
④| 3 -2|=2- 3 ,正确
正确的个数有②④两个 故选 B
16.数轴上 A,B,C 三点所表示的数分别是 a,b,c,且满足| c b | | a b || a c |,
【详解】
∵a-2007≥0,
∴a≥2007,
∴ 2006 a a 2007 a 可化为 a 2006 a 2007 a ,
∴ a 2007 2006 ,
∴a-2007=20062,
∴ a 20062 =2007.
故选 C. 【点睛】 本题考查了绝对值的意义、二次根式有意义的条件,求出 a 的取值范围是解答本题的关 键.
错误;
B、当 a<b<c 时,| c b | | a b | c b a b c a 2b , 4A-mB=4 ,此项错误; C、当 c<a<b 时,| c b | | a b | b c a b a c ,| a c | a c ,此项正确 D、当 c<b<a 时,| c b | | a b | b c a b c a 2b ,| a c | a c ,此选项
则 A,B,C 三点的位置可能是( ) A.
B.
C.
D.
【答案】C 【解析】 【分析】 由 A、B、C 在数轴上的位置判断出 a、b、c 的大小关系,根据绝对值性质去绝对值符号, 判断左右两边是否相等即可. 【详解】
当 a<c<b 时,| c b | | a b | b c a b a c ,180°-66?38′=113?22′,此选项
若 a<c<0<b,则 abc<0,故 D 不成立,
D. abc 0
故选:A. 【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.
15.下列结论中:①若 a=b,则 a = b ;②在同一平面内,若 a⊥b,b//c,则 a⊥c;
③直线外一点到直线的垂线段叫点到直线的距离;④| 3 -2|=2- 3 ,正确的个数有( )
的是( )
A. b c 0
【答案】A
B. a c 2
C. b 1 a
【解析】
【分析】
利用特殊值法即可判断.
【详解】
∵a<c<b, | a || b | ,∴ b c 0,故 A 正确;
若 a<c<0,则 a c 2错误,故 B 不成立;
若 0<a<b,且 | a || b | ,则 b 1,故 C 不成立; a
∴−a<b,
A. a+b>0,
B. a−b<0,
C. |a+b|>0,
D. |a−b|>0,
因为|a−b|>|a+b|=a+b,
所以,代数式的值最大的是|a−b|.
故选:D.
【点睛】
此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.
14.实数 a,b, c 在数轴上的对应点的位置如图所示,若 | a || b | ,则下列结论中一定成立
C. 3 a 与 3 a 互为相反数
D. a 与 a 互为相反数
【答案】D 【解析】
【分析】
根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判
断,即可得到答案. 【详解】
解:A、 a2 = a2 ,故 A 正确;
B、 a2 a2 ,则 a2 与 a2 互为相反数,故 B 正确;
5. 1 的绝对值是( ) 6
A.﹣6
【答案】D 【解析】
B.6
C.﹣ 1 6
【分析】
利用绝对值的定义解答即可.
【详解】
1 的绝对值是 1 ,
6
6
故选 D.
【点睛】
本题考查了绝对值得定义,理解定义是解题的关键.
D. 1 6
6.已知实数 a,b,c,d,e,f,且 a,b 互为倒数,c,d 互为相反数,e 的绝对值为
A.
B.
C.
D.
【答案】A
【解析】
【分析】
根据
,确定原点的位置,根据实数与数轴即可解答.
【详解】
解:
,
原点在 a,b 的中间,
如图,
由图可得:
,
,
,
,
,
故选项 A 错误,
故选:A.
【点睛】
本题考查了实数与数轴,解决本题的关键是确定原点的位置.
8.下列说法错误的是( )
A. a2 与 a2 相等
B. a2 与 a2 互为相反数
A.a+b
B.a﹣b
C.|a+b|
D.|a﹣b|
【答案】D
【解析】
【分析】
根据数轴确定出 a 是负数,b 是正数,并且 b 的绝对值大于 a 的绝对值,然后对各选项分
析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的
大小,再选择答案即可.
【详解】
由图可知,a<0,b>0,且|b|>|a|,
【详解】
解:A、∵ 4 a 3,故本选项错误; B、∵ b 0 , d 0 ,∴ bd 0 ,故本选项错误; C、∵ 2 b 1, 0 c 1,∴ b c 0,故本选项正确;
D、∵ 4 a 3, 2 b 1,则 3 a 4 ,1 b 2 ,∴ a b ,故本选项错
2 ,f 的算术平方根是 8,求 1 ab c d e2 3 f 的值是( )
2
5
A. 9 2 2
【答案】D 【解析】
B. 9 2 2
C. 9 2 或 9 2 D. 13
2
2
2
【分析】
根据相反数,倒数,以及绝对值的意义求出 c+d,ab 及 e 的值,代入计算即可. 【详解】
由题意可知:ab=1,c+d=0, e 2 ,f=64,
此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.
D. a2 b2
4.如图是一个 2 2 的方阵,其中每行,每列的两数和相等,则 a 可以是( )
A. tan 60
B. 1 2019
C.0
D. 1 2020
【答案】D 【解析】 【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简 得出答案. 【详解】
2.下列说法中,正确的是( ) A.在数轴上表示-a 的点一定在原点的左边 B.有理数 a 的倒数是 1
a C.一个数的相反数一定小于或等于这个数
D.如果 a a ,那么 a 是负数或零
【答案】D 【解析】 【分析】 根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答. 【详解】 解:A、如果 a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误; B、只有当 a≠0 时,有理数 a 才有倒数,故选项错误; C、负数的相反数大于这个数,故选项错误;
D、如果 a a ,那么 a 是负数或零是正确.
故选 D.
【点睛】 本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系. 倒数的定义:两个数的乘积是 1,则它们互为倒数;相反数的定义:只有符号不同的两个 数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相 反数;0 的绝对值是 0.
种情况:①a=5,b=3;②a=5,b=-3,分别将 a、b 的值代入代数式求出两种情况下的值即
可.
【详解】
∵ a2 25 ,|b|=3,
∴a=±5,b=±3,
∵a>b,
∴a=5,a=-5(舍去) ,
当 a=5,b=3 时,a+b=8;
当 a=5,b=-3 时,a+b=2,
故选:D.
【点睛】
本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、
错误; 故选 C. 【点睛】 本题主要考查绝对值性质:正数绝对值等于本身,0 的绝对值是 0,负数绝对值等于其相反 数.
17.实数 a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )
A. a b
B. a b 0
C. ac 0
D. a c
【答案】D 【解析】 【分析】
根据数轴的特点:判断 a、b、c 正负性,然后比较大小即可. 【详解】 根据数轴的性质可知:a<b<0<c,且|c|<|b|<|a|;
C、 3 a 与 3 a 互为相反数,故 C 正确;