【精选】有理数综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)

1.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。

(1)点A表示的数为________,点B表示的数为________,线段AB的长为________。(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________。

(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?

【答案】(1)30;﹣6;36

(2)6或﹣42

(3)解:①当点Q未出发,P、Q两点相距4个单位长度,

此时t×1=4,所以t=4;

②点P用了6秒移动到O点时,点Q才从B点出发。当点Q在点P后面,P、Q两点相距4个单位长度,此时3(t﹣6)= t﹣4,所以t=7;

③点P用了6秒移动到O点时,点Q才从B点出发。当点Q在点P前面,P、Q两点相距4个单位长度,此时3(t﹣6)= t+4,所以t=11;

所以t=4或t=7或t=11。

【解析】【分析】(1)根据非负数的性质求出a、b表示的数,然后将点A和点B表示在数轴上,容易求出线段AB的长;

(2)分两种情况讨论:①若点C在线段AB上,则点C为线段AB的三等分点,此时

BC=AB=12,易得点C在数轴上表示的数为6;②若点C在线段AB的延长线上,则点B 为线段AC的中点,此时BC=AB=36,易得点C在数轴上表示的数为-42.

(3)先求出t秒后点P、Q所对应的数分别是t、3(t-3),然后分三种情况分别列出方程解出t的值即可:①当点Q未出发(0<t≤6)时,P、Q之间的距离即为点P移动的距离;②点p用了6秒移动到O点(t>6)时,点Q才开始从B点出发。当点Q在点P的后面时,点Q表示的数比点P表示的数小4;③点P用了6秒移动到O点(t>6)时,点Q才开始从B点出发。当点Q在点P的前面时,点Q表示的数比点P表示的数大4。

2.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:

(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;

(2)若|x-2|=4,求x的值;

(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.

【答案】(1)解:|4-(-2)|=6

(2)解:x与2的距离是4,在数轴上可以找到x=-2或6

(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;

当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5

【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.

3.阅读下面的材料:

如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:

如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B 点,然后向右移动6cm到达C点,用1个单位长度表示1cm.

(1)请你在数轴上表示出A、B、C三点的位置:

(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;

(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.

【答案】(1)解:点A表示-3,点B表示-4,点C表示2,如图所示,

(2)5;1或-7

(3)-3+x

(4)解:CA-AB的值与t的值无关.理由如下:由题意得,点A所表示的数为-3+t,点B表示的数是-4-3t,点C表示的数是2+5t,

∵点C的速度比点A的速度快,

∴点C在点A的右侧,∴CA=(2+5t)-(-3+t)=5+4t,

∵点B向左移动,点A向右移动,

∴点A在点B的右侧,

∴AB=(-3+t)-(-4-3t)=1+4t,

∴CA-AB=(5+4t)-(1+4t)=4.

【解析】【解答】(2)CA=2-(-3)=2+3=5;

当点D在点A右侧时,点D表示的数是:4+(-3)=1;

当点D在点A左侧时,点D表示的数是:-3-4=-7;

故答案为5;1或-7.

( 3 )点A表示的数为-3,则向右移动xcm,移动到(-3+x)处.

【分析】(1)在数轴上进行演示可分别得出点A,点B,点C所表示的数;

(2)由题中材料可知CA的距离可用右边的数减去左边的数,即CA=2-(-3);

由AD=4,且点A,点D的位置不明确,则需分类讨论:当点D在点A右侧时,和当点D 在点A左侧时,两种情况;

(3)向右移动x,在原数的基础上加“x”;

(4)由字母t分别表示出点A,点B,点C的数,由它们的移动方向不难得出点C在点A 的右侧,点A在点B的右侧,依此计算出CA,AB的长度,计算CA-AB的值即可.

4.已知 a、b、c 在数轴上的位置如图:

(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;

(2)化简:;

(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).

【答案】(1)>;<;<

(2)解:∵a+1>0,c-b<0,b-1<0,

∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c

(3)解:由已知得:b+1=-1-c,即b+c=-2,

∵a+b+c=0,即-2+a=0,∴a=2,

则2b -c - (a - 4c - b).

=2b -c - a + 4c + b

=3(b+c)-2=

【解析】【解答】解:(1)根据题意得:c<0

∴a+1>0;c-b<0;b-1<0

【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判

相关文档
最新文档