1.3探索三角形全等的条件(2)
《探索三角形全等的条件(二)》课件 2022年北师大版数学课件
x 1 5.
x 1 5,
x1 6,x2 4 . ( 4 ) ( 2 x 1 ) 2 25 ,
4
2 x 1 25 5 . 42
2x 1 5. 2
x1
7 4
, x2
3. 4
想一想
(1) 52等 于 多 少?( (5)2等 于 多 少?
(2)
49
2
等 于 多 少?
∴ AB=CD BC=AD
〔全等三角形对应边相等〕
议一议
B A
利用“角边角〞可知, 带B块去,可以配到一 个与原来全等的三角形 玻璃。
完成以下推理过程:
在△ABC和△DCB中,A
∠ABC=∠DCB 3
∵ BC=CB〔公共边〕
∠2=∠1
B1
D
4
O 2C
∴△ABC≌△DCB〔 ASA〕
想一想:
如图,O是AB的中点,
E 800 5cm
700 300
B
A
700 300
D
F
请大家根据勾股定理,结合图形完成填空:
E
w1
z
D
A y1
1x
C 1
O1 B
x2= 2 , y2= 3 , z2= 4 , w2= 5 .
x2=2,幂和指 数,求底数x, 你能求出来吗?
注意!
一般地,如果一个正数 x 的平方等于 a,即 x2 = a ,那么这个正数 x 就叫做 a 的算术平方 根,记为“ ”,读作“根号 a ”. 特别地,我们规定0的算术平方根是0,即
F
A
BD
E
3、如图,在△ABC 中 ,∠B=∠C,AD是∠BAC的
角平分线,那么AB=AC吗?为什么?
第三课时 探索三角形全等的条件(二)
第三课时 探索三角形全等的条件(二)一、 学习目标:掌握三角形的“角边角”、“角角边”的全等条件;二、温故知新:1、三边对应相等的两个三角形全等,简写为__________或___________;2、如图,在△ABC 中,PA=PB ,PC 是AB 边上的中线,PC 能平分∠APB 吗?证明∵PC 是AB 边上的中线,∴AC=__________( )在_________________________中∴________≌__________ (___________)∴_________=_________ (__________________)∴PC 平分∠APB3、如图, (1)∵AB ∥CD (已知)∴∠_____=∠_____(_______________)(2)∵AD ∥BC (已知)∴∠_____=∠_____(_______________)4、如图,∵EA ⊥AD ,FD ⊥AD (已知)∴∠______=∠______=90°(______________)三、探索新知:1、如果“两角及一边”条件中的边是两角所夹的边,比如三角形的两个内角分别是60°和80°,它们所夹的边为2cm ,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?结论:________及其_________分别__________的两个三角形____________; 简写成“____________”或“___________”2、如果“两角及一边”条件中的边是其中一角的对边,比如三角形的两个内角分别是60°和45°,一条边长为3cm ,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?结论:_______分别_______其中一组______的对边_____的两个三角形_______; 简写成“____________”或“___________”⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________四、巩固新知:1、图中的两个三角形全等吗?依据是什么?依据(_____________) 依据(_____________)2、如图,AB=AC ,∠B=∠C ,你能证明△ABD ≌△ACE 吗?证明:在_________________________中∴________≌__________ (___________)3、如图,∠B=∠C ,AD 平分∠BAC ,你能证明,△ABD ≌△ACD 吗?若BD=3cm ,则CD 有多长? 解:∵,AD 平分∠BAC (已知)∴∠________=∠________ ( )在_________________________中∴________≌__________ (___________)∴BD=________=________(___________)4、如图,已知AB=CD ,∠B=∠C ,求证△ABO ≌△DCO ;证明: 在_________________________中∴________≌__________ (_________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________五、提高练习:5、如图,已知AC 与BD 交于点O ,AD ∥BC ,且AD=BC ,你能说明BO=DO 吗? 证明:∵AD ∥BC ,(已知)∴∠_____=∠_____∠_____=∠_____ ( )在_________________________中∴________≌__________ (___________)∴________=________ (______________________)6、如图,在△ABC 中,AD 是BC 边上的中线, 且BE ⊥AD 于E ,CF ⊥AD 于F , 求证:BE=CF证明:∵AD 是BC 边上的中线,(已知)∴_______=________ ( )∵BE ⊥AD ,CF ⊥AD∴_________=_________ =90°( )在_________________________中∴________≌__________ (___________)∴________=________ (______________________)7、如果,AB ∥CD ,∠A=∠D ,BF=CE ,∠AEB=80°,求∠DFC 的度数? 证明:∵AB ∥CD , (已知)∴ ∠______=∠_______ ( )∵BF=CE∴BF-______=CE-________即_______=________在_________________________中∴________≌__________ (___________)∴∠DFC =________=________ (______________________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________8、如图,AB=AD ,∠1=∠2,∠ABC=∠ADE ,求证△ABC ≌△ADE ; 证明:∵∠1=∠2, (已知)∴ ∠1-_______=∠2-_______ ( )∴ __________=__________在_________________________中∴_________≌_________ (___________)9、如图,AB=AD ,∠1=∠2,∠ABC=∠ADE ,求证△ABC ≌△ADE ; 证明:∵∠1=∠2, (已知)∴ ∠1+______=∠2+_______ ( )∴ __________=__________在_________________________中∴_________≌_________ (___________)10、如图,AB ⊥BC 于B ,DF ⊥AC 于F ,BC=BE ,△ABC ≌△DBE ; 证明:∵AB ⊥BC , (已知)∴ ∠______=∠______=90°( )∵DF ⊥AC , (已知)∴ ∠______=90° ( )∴ ______+∠C=______+∠C∴ __________=__________在_________________________中∴_________≌_________ (___________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________。
第3讲探索三角形全等的条件(二)
(1)一个锐角和这个角的对边对应相等;( )
(2)一个锐角和斜边对应相等;
()
(3)两直角边对应相等;
()
(4)一条直角边和斜边对应相等. ( )
【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SA根据全等三角形的判定来判断.
4、【答案】A 【解析】解:∵OM=ON,CM=CN,OC 为公共边, ∴△MOC≌△NOC(SSS).∴∠MOC=∠NOC 故选:A.
5【答案】AH=CB; 【解析】∵AD⊥BC,CE⊥AB,垂足分别为 D、E, ∴∠BEC=∠AEC=90°, 在 Rt△AEH 中,∠EAH=90°﹣∠AHE, 又∵∠EAH=∠BAD, ∴∠BAD=90°﹣∠AHE, 在 Rt△AEH 和 Rt△CDH 中,∠CHD=∠AHE, ∴∠EAH=∠DCH, ∴∠EAH=90°﹣∠CHD=∠BCE, 所以根据 AAS 添加 AH=CB 或 EH=EB; 根据 ASA 添加 AE=CE. 可证△AEH≌△CEB.
【总结升华】直角三角形全等可用的判定方法有 5 种:SAS、ASA、AAS、SSS、HL.
例 3、如图,AB⊥AC 于 A,BD⊥CD 于 D,若 AC=DB,则下列结论中不正确的是( )
A.∠A=∠D B.∠ABC=∠DCB C.OB=OD D.OA=OD 【答案与解析】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合 已知条件与全等的判定方法逐一验证. 解:∵AB⊥AC 于 A,BD⊥CD 于 D ∴∠A=∠D=90°(A 正确) 又∵AC=DB,BC=BC ∴△ABC≌△DCB(HL) ∴∠ABC=∠DCB(B 正确) ∴AB=CD 又∵∠AOB=∠C ∴△AOB≌△DOC(AAS) ∴OA=OD(D 正确) C 中 OD、OB 不是对应边,不相等. 故选 C. 【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、 SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全 等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
1.3 探索三角形全等的条件 (2)
③平移.
学生独立完成练习,及时纠正书写中出现的问题.
通过练习设
~17 页第 1、2、3 题.
运用新知识的过
行有条理的思考 的推理. 学生自由表述,其他学生补充.
通过学生小
节课的学习,你有什么体会?说出
的口头表达能力
.
于发表自己看法
巩固新知识
的学生发挥不同
第 4 页
共 4 页
2013-9-3
①△AEC≌⊿BED. ②AC∥DB.
个问题:
证明△AEC ≌△BED,已具备了
还缺什么条件?
证明 AC∥DB, 需什么条件?这个
得?Biblioteka 例包含哪一种图形变换?知:如图,点 E、F 在 CD 上,且
例3
学生经历分析例题的过程,口头叙述证明过程.
E=BF,AE∥BF.
参考答案 ①∵AE∥BF(已知) , ∴∠AEC=∠BFD(两直线平行,内错角相等), 在△AEC 和△BFD 中, AE=BF(已知) , ∠AEC=∠BFD(已证) ,
:△AEC ≌△BFD.
能证得其他新的结论吗?
图中的△AEC 可以通过_________ 所示图形.
A F E D B
C
CE=DF(已知) , ∴△AEC≌△BFD(SAS) . ②AC=BD,∠A=∠B,∠AEC=∠BFD,AC∥BD 等等.
第 3 页
共 4 页
2013-9-3
凤凰初中数学配套教学软件_教学设计
例1
(1)学生根据图形并结合已知条件作出猜想.
通过问题分
D=AE,∠1=∠2,由此你能得出 (2)学生经历分析例题的过程,口头叙述证明过程. 参考答案:△ABD≌△ACE. 证明:∵∠1+∠ADB=180°,∠2+∠AEC=180°, 且∠1=∠2(已知) ,
探索三角形全等--边角边
2.如果满足两个条件,你能说出 有哪几种可能的情况?
①两边;
②一边一角;
③两角.
①如果三角形的两边分别为4cm,6cm 时
4cm
4cm
6cm
6cm
结论:两条边对应相等的两个三角形不一定全等.
②三角形的一条边为4cm,一个内角为30°时:
30◦ 4cm
30◦ 4cm
结论:一条边一个角对应相等的两个
2. 如图所示 , 根据题目条件,判断下面 的三角形是否全等. (1) AC=DF, ∠C=∠F, BC=EF; (2) BC=BD, ∠ABC=∠ABD.
答案:
(1)全等
(2)全等
例2:小兰做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件标注 在图中,小明不用测量就能知道EH=FH吗? 与同桌进行交流。 D 解:在△EDH和△FDH中: ED=FD(已知)
全等
F C 3cm 3cm A D F 3cm F 3cm F 3cm F F
实践 检验
F F F 3cm 3cm 3cm 3cm
45°
D
D DE D E D E D ED D E E E E E B 4cm 4cm 4cm 4cm 4cm 4cm 4cm 4cm 4cm
实践与探索
同桌两个同学自行约定:各画一个三角 形,使它们具有相同的两条线段和一个 夹角,比较一下,可以得出什么结论? 结论: 在两个三角形中,如果有 两条边及它们的夹角对应 相等,那么这两个三角形 全等(简记为S.A.S)
三角形不一定全等.
③如果三角形的两个内角分别是30°,45°时
30◦
45◦
30◦
45◦
结论:两个角对应相等的两个三角形不一定全等.
1.3《探索三角形全等的条件》教案(2)
数学教学设计教 材:义务教育教科书·数学(八年级上册)1.3 探索三角形全等的条件(2)标1.会利用基本事实:“边角边”判别两个三角形是否全等.2.在基本事实“边角边”运用的过程中能够进行有条理的思考和简单的推理. 3.经历观察、探索、合作、交流等活动,营造和谐、平等的学习氛围. 点三角形全等的“边角边”条件的应用. 点三角形全等的“边角边”条件的应用.教学过程(教师) 学生活动设计思如图,AB =AC ,还需补充条件,就可根据“SAS ”证明△ABE ≌三月三,放风筝.”如图是小东同制作的风筝,他根据AB =CB ,CBD ,不用度量,就知道AD =所学的知识给予说明.(1)学生思考后给出所补充的条件,并根据所补充的条件,简要证明△ABE ≌△ACD .参考答案:AE =AD .(2)学生思考后回答.参考答案 证明:在△ABD 和△CBD 中,AB =CB (已知),∠ABD =∠CBD (已知),BD =BD (公共边),∴△ABD ≌△CBD (SAS ).∴AD =CD (全等三角形的对应边相等).复习回顾三条件——“SAS会有条理的思考理.EBDCADCB A图,已知:点D 、E 在BC 上,且D =AE ,∠1=∠2,由此你能得出形全等?请给出证明.个问题:察猜想哪两个三角形全等?证明两个三角形全等,已具备了还缺什么条件?缺的这个条件如何获得?知:如图,AB 、CD 相交于点E ,CD 的中点.①△AEC ≌⊿BED . ②AC ∥DB .个问题:证明△AEC ≌△BED ,已具备了还缺什么条件?证明AC ∥DB ,需什么条件?这个得?例包含哪一种图形变换?例1 (1)学生根据图形并结合已知条件作出猜想.(2)学生经历分析例题的过程,口头叙述证明过程. 参考答案:△ABD ≌△ACE .证明:∵∠1+∠ADB =180°,∠2+∠AEC =180°,且∠1=∠2(已知),∴∠ADB =∠AEC (等角的补角相等), 在△ABD 和△ACE 中,BD =CE (已知),∠ADB =∠AEC (已证),AD =AE (已知),∴△ABD ≌△ACE (SAS ).例2 学生经历分析例题的过程,口头叙述证明过程. 参考答案证明:①∵E 是AB 、CD 的中点(已知),∴AE =BE ,CE =DE (线段中点的定义), 在△AEC 和△BED 中,AE =BE (已证),∠AEC =∠BED (对顶角相等),CE =DE (已证),∴△AEC ≌△BED (SAS ). ②∵△AEC ≌△BED (已证),∴∠A =∠B (全等三角形的对应角相等),∴AC ∥DB (内错角相等,两直线平行).本例中,其中一个三角形绕点E 旋转180°后,能与另一个三角形重合.通过问题分学生分清题中直件、间接给出的条隐含的条件,以巩条件判断三角形ABD EC 1 2 CBAE知:如图,点E 、F 在CD 上,且E =BF ,AE ∥BF .:△AEC ≌△BFD .能证得其他新的结论吗?图中的△AEC 可以通过_________所示图形.例3 学生经历分析例题的过程,口头叙述证明过程. 参考答案①∵AE ∥BF (已知),∴∠AEC =∠BFD (两直线平行,内错角相等), 在△AEC 和△BFD 中,AE =BF (已知),∠AEC =∠BFD (已证),CE =DF (已知),∴△AEC ≌△BFD (SAS ).②AC =BD ,∠A =∠B ,∠AEC =∠BFD ,AC ∥BD 等等. ③平移.~17页第1、2、3题. 学生独立完成练习,及时纠正书写中出现的问题.通过练习设运用新知识的过行有条理的思考的推理.节课的学习,你有什么体会?说出. 学生自由表述,其他学生补充.通过学生小的口头表达能力于发表自己看法巩固新知识的学生发挥不同FCBADE。
初二数学1.3探索三角形全等条件第2、4、6、8教案
怀文中学2013—2014学年度第一学期教学设计初 二 数 学1.3探索三角形全等条件1巩固主备::陈秀珍 审校 郁胜军 日期:2013年9月3日教学目标:掌握利用“边角边”公理判定三角全等。
教学重点:边角边公理条件不具备的进行转换后,再利用边角边公理证明 教学难点:1.边角边公理条件不具备的进行转换后,再利用边角边公理证明2.边角边公理书写格式,对应元素顺序问题。
教学内容: 一、自主探究1. 边角边公理: 。
2. 边角边公理的几何表达形式:二、自主合作1. P15/课本例2已知:如图1-8AB 、CD 相交于点E ,且E 是AB 、CD 的中点。
求证:△AEC ≌△BE D2. 巩固练习:(1)你能证明P15/课本例2中AC ∥B D 吗?(2)P16、练习1三、自主展示1. P16/课本例3已知:如图1-9点 E 、F 在CD 上。
且CE=DF ,AE=BF ,AE ∥BF 求证:△AEC ≌△BF D巩固练习:(1)你能改变图1-9中△AEC 的位置得到图1-8?(2)根据例3的已知条件,你还能证出其它新的结论吗?(3)P16/课本练习2ED CBAC四、自主拓展1. 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C .求证:∠A =∠D .2. 如图所示,AB = AD ,∠1 = ∠2,添加一个适当的条件,使△ABC ≌ △ADE ,则需要添加的条件是______.请你证明3.如图(13)△ABC ≌△EDC 。
求证:BE=AD 。
4. 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .(SAS )五、自主评价课堂小结:布置作业::P 30/4、 5 教学反思:E(图13)DCBA怀文中学2013—2014学年度第一学期教学设计初 二 数 学1.3探索三角形全等条件2巩固主备::陈秀珍 审校 郁胜军 日期:2013年9月5日教学目标:1. 掌握且利用角边角、角角边定理判定三角全等教学重点:不能直接利用“角边角、角角边”定理判定三角全等要先进行转换,再利用角边角、角角边定理判定三角全等。
探索三角形全等的条件(二)
= 如图:已知 AE=AD 如图:已知AB=AC, = , A ∠B=∠C,△ABD与△ACE全 = , 与 全 E 等吗?为什么? 等吗?为什么?
B
D C
课堂小结: 课堂小结:
通过本节课的学习, 通过本节课的学习,你有 所收获? 所收获?
作业: 作业: P164页 页 习题5.8第 题 习题 第1题
探索三角形全等 二 的条件(二)
学习目标
1.三角形全等的条件 角边角 三角形全等的条件:角边角 三角形全等的条件 角边角, 角角边
做一做 1、角.边.角; 、 边角
若三角形的两个内角分别是 60°和80°它们所夹的边为 ° °它们所夹的边为2cm, 你能画出这个三角形吗? 你能画出这个三角形吗
2cm
60°
80°
两角和它们的夹边对应相等的 两角和它们的夹边对应相等的 两个三角形全等,简写成“ 两个三角形全等,简写成“角边 A D 角”或“ASA” 1、在△ABC中,AB=AC, 、 中 ∠B= ∠ F ,∠ A= ∠ D。 。 求证: = 求证:BC=EF
B CE F
2、角.角.边 、 角边 若三角形的两个内角分别是60° 若三角形的两个内角分别是 ° 和45°,其中 °角所对的边 ° 其中60 为3cm,你能画出这个三角形吗 ,你能画出这个三角形吗?
60°
40°
A 1、在△ABC中,AB=AC, 、 中 1、在△ABC中,AB=AC, 、 中 AD是边 上的角平分线 是边BC上的角平分线 是边 上的角平分线. AD是边 上的中线。 是边BC上的中线 是边 上的中线。 B (1)图中有全等的三角形吗 (1)图中有全等的三角形吗 (2) AD是∠BAC的中线吗 是 的中线吗 (2) AD是∠BAC的平分线吗 是 的平分线吗
探索三角形全等的条件 第二课时-七年级数学下册课件(北师大版)
1 如图,已知△ABC 的六个元素,则下列甲、乙、丙三个 三角形中一定和△ABC 全等的是( C )
A.甲、乙 B.甲、丙 C.乙、丙 D.乙
2 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图 中标有1,2,3,4的四块),你认为将其中的哪块带去,就 能配一块与原来一样大小的三角形玻璃?应该带( B ) A.第1块 B.第2块 C.第3块 D.第4块
因为∠BAE=∠1+∠2=90°,
所以∠1=∠D.
1=D,
在△ABC 和△DEC 中,3=5,
所以△ABC ≌△DEC. BC=EC,
知识点
例5 我们把两组邻边相等的四边形叫做
“筝形”.如图,四边形ABCD 是 一个筝形,其中AB=CB,AD= CD.对角线AC,BD 相交于点O, OE⊥AB,OF⊥CB,垂足分别是 E,F. 试说明:OE=OF.
解:(1)因为AE 和BD 相交于点O, 所以∠AOD=∠BOE. 又因为在△AOD 和△BOE 中,∠A=∠B, 所以∠BEO=∠2. 又因为∠1=∠2,所以∠1=∠BEO. 所以∠AEC=∠BED. A= B, 在△AEC 和△BED 中, AE=BE,
AEC= BED,
所以△AEC ≌△BED (ASA).
导引:要说明BC=ED,需说明
它们所在的三角形全等,
由于∠B=∠E,AB=AE, 因此需说明∠BAC=∠EAD, 即需说明∠BAD+∠1=∠BAD+∠2,易知成立.
解:因为∠1=∠2,
所以∠1+∠BAD=∠2+∠BAD,
即∠BAC=∠EAD.
B=E,
在△BAC
和△EAD
中,因为
AB=AE,
所以△BAC ≌△EAD (ASA). BAC=EAD,
1-3 探索三角形全等的条件-2021-2022学年八年级数学上册课后练(苏科版)(原卷版)
姓名: 班级1.3 探索三角形全等的条件本课重点(1)熟练掌握五种全等三角形的判定本课难点 (2)全等三角形的判定的综合运用全卷共25题,满分:120分,时间:120分钟一、单选题(每题3分,共30分)1.(2021·山东济南市·七年级期末)如图,测河两岸A ,B 两点的距离时,先在AB 的垂线BF 上取C ,D 两点,使CD =BC ,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明△EDC △≌△ABC ,从而得到ED =AB ,测得ED 的长就是A ,B 的距离,判定△EDC ≌△ABC 的依据是:( )A .ASAB .SSSC .AASD .SAS2.(2021·浙江九年级期末)如图,在ABC 与DEF 中,点B ,E ,C ,F 在同一条直线上,,//=BE CF AB DE ,下列所添条件中不能判定ABC DEF △≌△的是( )A .AC DF =B .AB DE =C .AD ∠=∠ D .ACB F ∠=∠3.(2021·江苏南京市·九年级专题练习)如图,△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点B ,D ,E 在同一条直线上,若∠CAE +∠ACE +∠ADE =130°,则∠ADE 的度数为( )A .50°B .65°C .70°D .75°4.(2021·重庆万州区·八年级期末)如图,在MPN △中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( )A .3B .4C .5D .65.(2021·河南焦作市·九年级二模)已知锐角AOB ∠,如图,(1)在射线OA 上取点C ,E ,分别以点O 为圆心,OC ,OE 长为半径作弧,交射线OB 于点D ,F ;(2)连接CF ,DE 交于点P .根据以上作图过程及所作图形,下列结论错误..的是( ) A .CE DF =B .PE PF =C .若60AOB ∠=︒,则120CPD ∠=︒ D .点P 在AOB ∠的平分线上6.(2021·成都市第十八中学校八年级期末)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD上一点,连接OM ,过点O 做ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B .2C .2D .227.(2021·全国七年级专题练习)如图所示,90E F ∠=∠=︒,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ≌,其中正确的是有( )A .1个B .2个C .3个D .4个8.(2021·北京九年级专题练习)如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A .AB AD CB CD ->-B .AB AD CB CD -=-C .AB AD CB CD -<- D .AB AD -与CB CD -的大小关系不确定9.(2021·北京九年级专题练习)数学课上,老师给出了如下问题:如图1,90B C ∠=∠=︒,E 是BC 的中点,DE 平分ADC ∠,求证:AB CD AD +=.小明是这样想的:要证明AB CD AD +=,只需要在AD 上找到一点F ,再试图说明AF AB =,DF CD =即可.如图2,经过思考,小明给出了以下3种辅助线的添加方式.①过点E 作EF AD ⊥交AD 于点F ;②作EF EC =,交AD 于点F ;③在AD 上取一点F ,使得DF DC =,连接EF ;上述3种辅助线的添加方式,可以证明“AB CD AD +=”的有( )A .①②B .①③C .②③D .①②③10.(2021·河南新乡市·新乡学院附属中学八年级月考)如图,点C 是线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,有以下5个结论:①AD=BE ;②PQ ∥AE ;③AP=DQ ;④DE=DP ;⑤∠AOB=60°.其中一定成立的结论有( )个A .1B .2C .3D .4二、填空题(每题3分,共24分)11.(2021·云南玉溪市·八年级期末)如图,某人将一块三角形玻璃打碎成三块,带第___块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是____.12.(2021·全国八年级) 如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ . 13.(2020·北京八年级期末)如图,在四边形ABCD 中,AC BC ⊥于点C ,且AC 平分BAD ∠,若ADC的面积为210cm ,则ABD △的面积为________2cm .14.(2021·江苏八年级期中)如图,在ABC 中,90A ∠=︒,AB AC =,BD 平分ABC ∠,CE BD ⊥于E ,若8BD =,则CE 为______.15.(2021·石家庄市第二十八中学八年级月考)如图, BD 是ABC ∆的角平分线,延长BD 至点E ,使DE AD =,若60ADB ∠=,78BAC ∠=, 则BEC ∠=__________.16.(2021·沙坪坝区·重庆八中七年级期中)如图所示,在ΔABC 中, AD 平分∠BAC ,点E 在DA 的延长线上,且EF ⊥BC ,且交BC 延长线于点F ,H 为DC 上的一点,且BH =EF , AH =DF , AB =DE ,若∠DAC +n∠ACB =90°,则n =__________.17.(2021·黑龙江哈尔滨市·八年级期末)如图所示,AD 为ABC 中线,D 为BC 中点,AE AB =,AF AC =,连接EF ,2EF AD =.若AEF 的面积为3,则ADC 的面积为______.18.(2021·浙江宁波市·八年级期末)如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BD CD=_______. 三、解答题(19-22题每题9分,其他每题10分,共66分)19.(2021·重庆巴蜀中学七年级期末)如图,点E 在△ABC 的边AC 上,且∠ABE =∠C ,AF 平分∠BAE 交BE 于F ,FD ∥BC 交AC 于点D .(1)求证:△ABF ≌△ADF ;(2)若BE =7,AB =8,AE =5,求△EFD 的周长.20.(2021·江苏镇江市·九年级二模)如图,在四边形ABCD 中,//AD BC ,点E 为对角线BD 上一点,A BEC ∠=∠,且AD BE =.(1)求证:AD DE BC +=;(2)若70BDC ∠=︒,求ADB ∠的度数.21.(2021·四川宜宾市·八年级期末)在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△;(2)如图②,当PD AB ⊥于点F 时,求此时t 的值.22.(2021·广东广州市·八年级期末)如图1,△ABC 中,AB =AC ,∠BAC =90°,点D 是线段BC 上一个动点,点F 在线段AB 上,且∠FDB =12∠ACB ,BE ⊥DF .垂足E 在DF 的延长线上.(1)如图2,当点D 与点C 重合时,试探究线段BE 和DF 的数量关系.并证明你的结论;(2)若点D 不与点B ,C 重合,试探究线段BE 和DF 的数量关系,并证明你的结论.23.(2021·黑龙江佳木斯市·九年级三模)在ABC 中,90ABC ∠=︒,AB BC =,D 为直线AB 上一点,连接CD ,过点B 作BE CD ⊥交CD 于点E ,交AC 于点F ,在直线AB 上截取AM BD =,连接FM .(1)当点D ,M 都在线段AB 上时,如图①,求证:BF MF CD +=;(2)当点D 在线段AB 的延长线上,点M 在线段BA 的延长线上时,如图②;当点D 在线段BA 的延长线上,点M 在线段AB 的延长线上时,如图③,直接写出线段BF ,MF ,CD 之间的数量关系,不需要证明.24.(2021·福建三明市·八年级期中)如图1,△ABC 和△ABD 中,∠BAC =∠ABD =90°,点C 和点D 在AB的异侧,点E 为AD 边上的一点,且AC =AE ,连接CE 交直线AB 于点G ,过点A 作AF ⊥AD 交直线CE 于点F .(Ⅰ)求证:△AGE ≌△AFC ;(Ⅱ)若AB =AC ,求证:AD =AF +BD ;(Ⅲ)如图2,若AB =AC ,点C 和点D 在AB 的同侧,题目其他条件不变,直接写出线段AD ,AF ,BD 的数量关系 .25.(2021·湖北随州市·八年级期末)在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,AD 是ABC ∆的中线,7,5,AB AC ==求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ∆≅∆,所以BM AC =.接下来,在ABM ∆中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是 ;(2)如图2,AD 是ABC 的中线,点E 在边AC 上,BE 交AD 于点,F 且AE EF =,求证:AC BF =;(3)如图3,在四边形ABCD 中,//AD BC ,点E 是AB 的中点,连接CE ,ED 且CE DE ⊥,试猜想线段,,BC CD AD 之间满足的数量关系,并予以证明.附加题(1-2题,每题4分,3题6分,4-5题每题8分,共30分)1.(2021·全国七年级专题练习)如图,在△ABC 中,AD 是BC 边上的高,∠BAF=∠CAG=90°,AB=AF ,AC=AG .连接FG ,交DA 的延长线于点E ,连接BG ,CF . 则下列结论:①BG=CF ;②BG ⊥CF ;③∠EAF=∠ABC ;④EF=EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④2.(2021·湖南岳阳市·八年级期末)已知ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别为边AB 、AC 上的动点,且90EDF ∠=︒,连接EF ,下列说法正确的是______.(写出所有正确结论的序号)①270BEF CFE ∠+∠=︒;②ED FD =;③EF FC =;④12ABC AEDF S S =四边形3.(2021·河南商丘市·八年级期末)如图,在ABC 中,BC AC =,E 是射线BF 上一点,且CBE CAE ∠=∠,CD BF ⊥,垂足为D ,过点C 作CM AE ⊥,垂足为M ,连接CE ,2DE =,8AE =,3CD =,则下列结论:①CBD CAM ≌△△;②DE ME =;③30BDC S =△.其中正确的结论有_______(填序号).4.(2020·山东威海市·七年级期末)(问题情境)(1)如图1,在四边形ABCD 中,AB AD =,90B D ︒∠=∠=,120BAD ︒∠=.点E ,F 分别是BC 和CD 上的点,且60EAF ︒∠=,试探究线段BE ,EF ,DF 之间的关系.小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,再证明AEF AGF ≅△△,进而得出EF BE DF =+.你认为他的做法 ;(填“正确”或“错误”).(探索延伸)(2)如图2,在四边形ABCD 中,AB AD =,70B ︒∠=,110D ︒∠=,100BAD ︒∠=,点E ,F 分别是BC 和CD 上的点,且50EAF ︒∠=,上题中的结论依然成立吗?请说明理由.(思维提升)(3)小明通过对前面两题的认真思考后得出:如图3,在四边形ABCD 中,若AB AD =,180B D ︒∠+∠=,12EAF BAD ∠=∠,那么EF BE DF =+.你认为正确吗?请说明理由.5.(2020·武汉市二桥中学八年级月考)直线CD 经过BCA ∠的顶点C ,CA=CB .E ,F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)(数学思考)若直线CD 经过BCA ∠的内部,且E ,F 在射线CD 上,请解决下面两个问题: ①如图1,若90BCA ∠=︒,90α∠=︒,求证:EF BE AF =-;②如图2,若090BCA ︒<∠<︒,当α∠与BCA ∠之间满足________关系时,①中结论仍然成立,并给予证明.(2)(问题拓展)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.。
鲁教版(五四制)七年级上册数学课件1.3探索三角形全等的条件2课件
2.如图1,在△ABC中,AB=AC,AD是BC边上的中线,AD
能平分∠BAC吗?你能说明理由吗?
A
解:AD平分∠BAC.
因为AD是BC边上的中线(已知) 所以BD=CD(中线的定义).
因为AB=AC,AD=AD(已知,公共边)
B
D
C 所以____≌____(_________). 所以∠BAD=∠CAD(__________________ ).
答:角边角(ASA) 角角边(AAS)
问题2: 按要求画出三角形,并与同伴交流 . 已知:∠A=600、∠B=450、AB=3cm
剪下来,与同伴进行比较,
它们能否互相重合?
C
小结:两角及其夹边分别相等
的两个三角形全等,简写成
600
A
3cm
450
B “角边角”或“ASA”
做一做
问题3:按要求画三角形,并与同伴交流
已知:∠A=600、∠B=450、BC=3cm
剪下来,与同伴进行比较,
它们能否互相重合?
A
小结:两角分别相等且其中
一组等角的对边相等的两个
三角形全等.简写成“角角边”
450
750
B
3cm
C 或“AAS”
符号语言
A
D
B
CE
F
公理2:∵∠B=∠E,BC=EF,∠C=∠F
∴ΔABC≌DEF(ASA)
公理3:∵ ∠B=∠E ,∠C=∠F,AC=DF ∴Δ ABC≌DEF (AAS)
B
D
C
\BDE CDF(AAS)
E
\ BD CD(全等三角形对应边相等)
练一练
(3) 如图,AC、BD交于一点O, AC=BD,AB=CD.求证:
探索三角形全等的条件 课件(2)(湘教版八年级下上)
在全等三角形中,互相重合 的顶点称为对应顶点,互相重合 的边称为对应边,互相重合的角 叫称为对应角。
A
D
B
C
E
F
△ABC全等于△DEF可表示为:
△ABC ≌ △DEF
注意:表示时通常把对应顶点的字母 写在对应的位置上。
A
D
1、若△AOC≌△BOD,对应边 是 , 对应角是 ;
O C A B
2、若△ABD≌△ACD,对应边是
对应角是 ;
,
B
D
C D
3、若△ABC≌△CDA,对应边是 对应角是 ;
,A
B
C
A
E
4、如图,已知△ABC≌△ADE, ∠C=∠E,BC=DE,其它的对应边 有 :____________________ 对应角有:_______________ B
D
C
A
D
B
C E
F
已知: ABC≌ A'B'C' 找出其中相等的边和角
只给一个条件
• 只给一条边时;
3cm
3cm
3cm
只给一个条件
• 只给一个角时:
45◦
45◦
45◦
给出两个条件时, 所画的三角形一定全等吗? • 三角形的一个内角为30 ,一条边为 3cm
30◦ 3cm
30◦ 3cm
30◦ 3cm
给出两个条件时, 所画的三角形一定全等吗? • 如果三角形的两个内角分别是 30 ,50 时
简写为“边边边”或“SSS”。A NhomakorabeaDB
AB=DE AC=DF BC=EF
C E
F
ABC≌ DEF (SSS)
1.3 探索三角形全等的条件 课件(苏科版八年级上册) (2)
如图,在△ABC中,已知AC=BC, ∠C=900,AD是△ABC的角平分 线,DE⊥AB,垂足为E。 求证:AB=AC+CD。
A
E
C
D
B
已知,如图,P是∠AOB平分线上的 一点,PC⊥OA, PD⊥OB, 垂足分别 C、D, 求证:OP是CD的垂直平分线。
A C P O D B
O
E
B
D
C
如图,△ABC的角平分线AD、BE相 交于点O,点O到△ABC各边的距离 相等吗?点O在∠C的平分线上吗?
A
O
E
B
D
C
如图,已知△ABC的外角∠CBD和∠BCE 的平分线相交于点F, 求证:点F在∠DAE的平分线上
[来源:学科网ZXXK]
如图,在△ABC中,பைடு நூலகம்C=90度,点D 在BC上,DE垂直平分AB,且DE=DC。 求∠B的度数。
C P O E B
2、证明:在一个角的内部,且到角 的两边距离相等的点,在这个角的平 分线上。
A D P O E B
“如果一个点到角的两边的距离不相等, 那么这个点不在这个角的平分线上。” 你认为这个结论正确吗? 如果正确,你能证明吗?
了解一下 反证法
如图,△ABC的角平分线AD、BE相 交于点O,点O到△ABC各边的距离 相等吗?点O在∠C的平分线上吗? 为什么? A
初中数学九年级
(苏科版)
上册
1.2.2直角三角形全等的判定(二)
回忆:直角三角形全等的判定方法。
[来源:]
证明:角平分线上的点到这个角两边的 距离相等。 A
D
思考与表达: 怎么想 怎么写 要证PD=PE 只需证△POD≌△POE 已知∠POD==∠POE OP=OP 只要证∠PDO==∠PEO
《探索三角形全等的条件(2)》参考教案
[师] 很好,如果改变角度与边长,能得到同样的结论吗?同桌的两人来画 一画,比较一下 .
(学生画图、比较、讨论、得证) [生乙]我们经过比较,得到:已知一个三角形的两个内角及其夹边,那么
3/8
形的内角和为 180°,已知两个内角,那么第三个内角就可求出,这样就把 及一角的对边 ”转化为 “两角及其夹边 ”.
[师]接下来我们动手操作、比较 . [生甲]如果 60°角所对的边为 3 cm 时,画出的图形如下:
“两角
经比较:这样得到的三角形都全等 . [生乙]如果 45°角所对的边为 3 cm 时,画出的图形如下 .
2/8
由此得到的三角形都是全等的 . [师]由此我们得到了判定三角形全等的另一条件: 两角和它们的夹边对应
相等的两个三角形全等 .简写为 “角边角 ”或“ASA”. 如图,在△ ABC 和△ DEF 中.
BE BC EF
CF
△ABC≌△ DEF.
这是用符号语言来表示该三角形全等的条件 . 在“两角一边 ”中,除 “两角及其夹边 ”外,还有哪种可能的情况呢? [生丙]两角及一角的对边 . [师] 对,那已知一个三角形的两角及一角的对边的长度,由此得到的三角 形都是全等的吗?我们再来画图、比较,议一议(出示投影片 §1.3.2 B) 如果 “两角及一边 ”条件中的边是其中一角的对边, 如:三角形的两个角分别 为 60°和 45°,一边长为 3 cm,情况会怎样呢?
图( 2 )中,由两角及一角的对边对应相等的两个三角形全等,得: △ ACE≌△ BDC.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巩固练习:
1.图中的两个三角形全等吗? 请说明理由.
A
全等.
110
B
在△ABC和△DBC中
A D (已知)
BC BC (公共边)
35 35 110
D
C
ABC DBC (已知)
\ ABC DBC ( AAS)
拓展延伸:
AE=AD 2.如图:已知AB AC,∠B=∠C, △ABD与△ACE全等吗?为什么? A
F
E
∴ΔABC≌ΔDEF(SSS)
问题导学:
如图,小明不慎将一块三 角形模具打碎为两块,他 是否可以只带其中的一 块碎片到商店去,就能配 一块与原来一样的三角 形模具吗?如果可以,带 哪块去合适?你能说明其 中理由吗?
问题1:如果已知一个三角形的 问题导学:
两角及一边,那么有几种可能的情况呢? 答:角边角(ASA) 角角边(AAS) 问题2: 做一做:按要求画出三角形,并与 同伴交流 。已知:∠A=600、∠B=450、 AB=3cm 剪下来,与同伴进行比较,它们
1.3探索三角形全等 的条件(2)
温故互查:(二人小组完成)
判断三角形全等至少要有几个条件? 答:至少要有三个条件
小结:如果给出一个三角形的三条边的长 度,那么由此得到的三角形是全等的。
A
B D
判定公理1:三边对应相等的 两个三角形全等,简写成“ C 边边边”或“SSS
∵AB=DE,AC=DF,BC=EF
解:全等。 在ABD和AC E中
E
B
∠ B=∠ C(C 已知) B= ∠AC A=∠ AB= (A 已知) A= AD = AE A (公共角 AAS) ∴△ABD≌△ACE(ASA
D
C
课堂小结:
谈谈你 这节课 的收获 吧!
作业:
习题:1.8 2、 3
) 问题导学:(已知两角和其中一角的对边
3cm 两角和其中一角的对边对应相等的两个三角形全 等. 简写成“角角边”或“AAS”.
60
75
问题导学: A
B C E
D
F
三角形全等的判定公理2:∵∠B=∠E,BC=EF,∠C=∠F
∴ΔABC≌DEF(ASA)
A D
B
C
E
F
三角形全等的判定公理3:∵ ∠B=∠E ,∠C=∠F, AC=DF ∴Δ ABC≌DEF (AAS)
自学检测:
1、如图,已知AB=DE, ∠A =∠D, ,∠B=∠E,则 △ABC ≌△DEF的理由是:角边角(ASA) 2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则 △ABC ≌△DEF的理由是:角角边(AAS) C F
A
B
D
E
自学检测:
1、如图∠ACB=∠DFE,BC=EF,根据ASA或AAS,那么应补 ∠B=∠E或∠A=∠D ,(写出一个即可) 充一个直接条件 -------------------------,才能使△ABC≌△DEF
A F B E
C
D
典型例题:
A= B 例: 如图,AB与CD相交于点O,O是AB的中点, C ,AOC 与 BOD 全等吗?为什么?
两角和夹边对应 相等
A O B
小明
在
AOC 和BOD
中 (已知) (中点的定义)
D
A B
AO BO
AOC BOD
△AOC≌△BOD
做一做 能否互相重合?
C
A
600 3cm
450
B
小结:判定公理2:两角 和它们的夹边对应相等的 两个三角形全等,简写成 “角边角”或“ASA”
已知三角形的两个内角分别为 60 和 75 ,一条边 长为3cm, (1)如果 60 角所对的边为3cm,你能画出这个三角 形吗? (2)如果 75 角所对的边为3cm,你能画出这个三 (这里的条件与1中的条件有什么相 角形吗? 同点和不同点?能转化成1条件吗)
(对顶角相等)
( ASA)
变式: 如图,O是AB的中点,∠C= ∠D, △AOC与△BOD全等吗?为什么?
C
小明 两角和其中 一角的对边 对应相等
A
O
B D
解:在
AOC 和BOD
中
∠C= ∠D (已知) AOC BOD (对顶角相等) (中点的定义) AO BO △ \△ AOC BOD (AAS)