分段函数及其应用

合集下载

分段函数的原理和应用

分段函数的原理和应用

分段函数的原理和应用一、分段函数的定义分段函数是一种特殊的数学函数形式,其定义由不同的函数表达式组成,每个函数表达式在定义域的某个特定区间上有效。

在区间之外,函数值不满足定义。

二、分段函数的表示方式分段函数可以通过以下形式进行表示:f(x) = {f1(x), a <= x <= bf2(x), c <= x <= d...fn(x), m <= x <= n}其中,a、b、c、d、m、n分别是定义域上的不同实数值,f1(x)、f2(x)、…、fn(x)是定义域上的不同函数表达式。

三、分段函数的原理分段函数的原理基于函数的定义域和对应的函数表达式。

在不同的区间上,分段函数采用不同的函数表达式来计算函数值。

当自变量的取值落在某个区间上时,对应的函数表达式就会生效,可以有效计算函数值。

四、分段函数的应用分段函数在实际应用中有广泛的用途,以下列举了一些常见的应用场景:1.优惠券使用规则在电商平台中,常常会使用分段函数来表示优惠券的使用规则。

根据订单金额的不同范围,采用不同的优惠折扣。

例如,当订单金额在100元以下时,享受95折优惠;当订单金额在100元至200元之间时,享受9折优惠;以此类推。

这样的分段函数可以灵活地实现不同条件下的优惠券使用规则。

2.温度转换温度转换是另一个常见的分段函数应用。

例如,摄氏度与华氏度的转换就可以采用分段函数来表示。

当给定一个摄氏度的值时,可以通过分段函数来计算对应的华氏度,根据不同的温度范围和转换公式进行计算。

3.信用评分模型信用评分模型通常根据借款人的不同特征来判断其信用等级。

这些特征可以通过分段函数进行建模,根据不同的特征值范围,采用不同的评分规则来计算信用分数。

4.社交网络算法社交网络中的推荐算法和好友关系建模也可以采用分段函数。

根据用户的不同兴趣、社交行为等特征,可以构建分段函数来判断用户之间的关系强度或者推荐和推送不同类型的内容。

分段函数的应用总结

分段函数的应用总结

分段函数的应用总结分段函数是数学中常见的一种函数形式,它在不同的定义域区间上有不同的表达式。

在实际问题中,我们经常遇到需要用分段函数来描述的情况。

本文将总结几个常见的应用场景,以帮助读者理解和应用分段函数。

一、电费计算电费计算是一个常见的应用分段函数的例子。

在电费计算中,电费的计算方式通常与用电量有关。

比如,一个城市的电价标准规定如下:当用电量小于等于100度时,电费为每度0.5元;当用电量大于100度且小于等于200度时,电费为每度0.6元;当用电量大于200度时,电费为每度0.7元。

我们可以用以下分段函数来表示电费的计算方式:\[ f(x) = \begin{cases}0.5x, & \text{if } 0 \leq x \leq 100 \\0.6x, & \text{if } 100 < x \leq 200 \\0.7x, & \text{if } x > 200\end{cases}\]其中,x表示用电量,f(x)表示对应的电费。

通过这个分段函数,我们可以根据不同的用电量来计算相应的电费,帮助人们合理使用电力资源。

二、阶梯药价阶梯药价是医疗领域中常用的分段函数应用。

在一些国家或地区,医疗费用的计算方式与购买的药品数量有关。

通常情况下,每种药品购买的数量越多,单价就越低。

以某种药品为例,假设其价格规定如下:当购买数量小于等于10盒时,单盒价格为30元;当购买数量大于10盒且小于等于50盒时,单盒价格为25元;当购买数量大于50盒时,单盒价格为20元。

我们可以用以下分段函数来表示阶梯药价的计算方式:\[ f(x) = \begin{cases}30x, & \text{if } 0 \leq x \leq 10 \\25x, & \text{if } 10 < x \leq 50 \\20x, & \text{if } x > 50\end{cases}\]其中,x表示购买的盒数,f(x)表示对应的药品费用。

分段函数的应用及思想

分段函数的应用及思想

分段函数的应用及思想分段函数是数学中的一种特殊形式,其定义域被划分成不同的区间,在每个区间内,函数具有不同的表达式或定义方式。

分段函数是解决实际问题和描述现象的一种有效工具,可以应用于多个领域,如物理学、经济学、工程学等。

在这些领域中,分段函数的应用和思想是十分重要的。

一个常见的例子是温度转换函数。

在某些国家,温度的单位是摄氏度,而在其他国家则是华氏度。

要在这两种温度之间进行转换,可以使用一个分段函数。

在摄氏度区间内,温度转换函数为T(摄氏度) = 9/5 * T(华氏度) + 32;在华氏度区间内,温度转换函数为T(华氏度) = (T(摄氏度) - 32) * 5/9。

通过这个分段函数,可以方便地将摄氏度转换为华氏度,或将华氏度转换为摄氏度。

分段函数的思想是将定义域分割成不同的区间,并在每个区间内定义不同的表达式。

这样做的好处是使函数具有更大的灵活性,可以准确地描述和解决复杂的问题。

分段函数的表达式可以是多项式、指数函数、对数函数、三角函数等各种数学函数的组合,根据实际问题的特点选择合适的表达式。

通过分段函数,可以将不连续的现象以连续的方式来描述,更好地理解和解决问题。

在物理学中,分段函数常常用于描述运动过程。

例如,一个运动物体在不同的时间段内可能以不同的速度运动。

可以使用分段函数来描述这个运动过程。

假设在时间t=0 到t=t1 之间,物体以速度v1 运动,而在时间t=t1 到t=t2 之间,物体以速度v2 运动。

那么在整个时间段内,物体的位置可以用分段函数表示,即x(t) = v1 * t,当t< t1;x(t) = v2 * (t - t1) + x(t1),当t1≤t< t2。

这样可以准确地描述物体在运动过程中位置的变化。

在经济学中,分段函数常常用于描述收入的计算方式。

例如,税收计算根据不同收入区间采用不同的税率。

假设一个国家的税收函数为T(收入) = 0.1 * 收入,当收入小于10000;T(收入) = 0.2 * 收入,当收入在10000到50000之间;T(收入) = 0.3 * 收入,当收入大于50000。

分段函数的可导性应用

分段函数的可导性应用

分段函数的可导性应用分段函数在数学中极为常见,在解析几何、微积分、高等代数等各个领域都有广泛的应用。

而在分段函数中,其可导性则是其中一个十分重要的概念。

在本文中,我们将会深入探讨分段函数的可导性及其在实际中的应用。

一、分段函数的概念及定义分段函数是指在一个区间内,根据函数的定义域的不同取值,在不同的区间内采用不同的函数表达式。

比如说,我们可以定义一个函数f(x)如下:$$f(x)=\left\{\begin{aligned}x^2,x\leq 0 \\\sqrt{x},x>0\end{aligned}\right.$$在这里,我们可以看到,当x小于等于0时,f(x)采取的函数表达式是x^2,而当x大于0时,f(x)采取的函数表达式是根号x。

这就是一种典型的分段函数。

二、分段函数的可导性那么,对于一个分段函数来说,其可导性则十分重要。

对于一个函数而言,其可导性是指该函数在某一点处的导数是否存在。

对于分段函数而言,它在某一点可导的条件十分严格。

对于分段函数f(x),在某一点x处可导的条件是:1. x点前后两侧函数的导数存在且相等2. x点处的函数值连续也就是说,对于上述的f(x)函数,如果想要证明其在某一点x可导,需要证明在x点前后两侧的函数x^2和根号x的导数都存在且相等,同时x点处的函数值也需要连续。

如果这两个条件都满足,那么我们就可以判断该分段函数在x点处可导。

三、分段函数可导性在实际中的应用分段函数的可导性在实际中应用广泛,比如在物理学中,我们可以用分段函数的可导性来描述速度和加速度之间的关系。

在金融学中,我们也可以用其来描述市场变化的趋势。

以物理学为例,我们可以定义一个分段速度函数v(t)如下:$$v(t)=\left\{\begin{aligned}3t,t\leq 0 \\6t,t>0\end{aligned}\right.$$在这里,我们可以将t点前后两侧的速度函数分别设为v1(t)和v2(t),并分别求出其导数:$$v_1(t)=3t \ \ \ \ v_2(t)=6t \ \ \ \ v'_1(t)=3 \ \ \ \ v'_2(t)=6$$可以看到,在t=0这个点处,v1(t)和v2(t)的导数是不相等的,因此v(t)在t=0处不可导,也就是说,在这个点的速度是不存在的。

分段函数在实际生活中的应用

分段函数在实际生活中的应用

分段函数在实际生活中的应用新课标的不断深化,使得各地的教师了解到应不断强化学生对数学思维方式的检查,特别是将学生生活当作背景,在生活中应用分段函数,和分类探讨实现相结合的一类中考数学问题,极为引人注目。

这一类型的试题可以较好地测试学生对一局部根底功能与知识的掌握情况,也测试学生灵活使用知识处理具体问题的技能。

与此同时,还可以检验学生是够使用动和静、变化和不变、特殊和一般的辩证思维。

处理这一类型问题的重点在于必须将问题归纳成设定条件〔分段函数〕,结合自变量的各种取值范围,开展分类求解,从而实现不重不漏,并进行分层讨论求解。

一、分段函数数学模型概念分段函数的数学模型通常利用函数的方式来表达。

然而,也有一些情况,必须利用几个式子来表达。

如果自变量的值位于不同的域中,函数的表达式就会不同。

这样的函数称为分段函数。

如果自变量的值处在不同的域中,函数的表达式就会不同,这样的函数称为分段函数。

在具体使用时,分段函数当中包含了分类讨论的数学思想。

正是由于我们的日常生活中有许多问题需要各种方式来处理,所以分类讨论思想就变得十分重要。

分段函数是解决数学实际问题的一种很有效的工具。

利用分段函数数学模型,可以处理日常生活中遇到的许多问题。

〔一〕生活中的用水用电问题例如:为促进节能减排的开展,某市制定了以下用电收费标准:当每户月用电量低于120度,电价为a元/度;在超过120度以后,不超过局部依旧是a元/度,其他超过的局部那么是b元/度,据了解,某用户5月份用电115度,电费69元;6月份用电140度,电费94元。

〔1〕求出a、b的值;〔2〕用户每月用电量为小时〔度〕,应付电费为y〔元〕。

首先,分别求出0≤某≤120和某>120时,y和某间的函数关系;其次,如果用户方案在7月份的时候使用电费不超出83元,那么其在7月最多可使用多少度?解:〔1〕结合题目含义〔2〕①在0≤某≤120和某>120时,y=0.6某。

分段函数及其在日常生活中的应用研究

分段函数及其在日常生活中的应用研究

分段函数及其在日常生活中的应用研究分段函数是指一种由两个或多个部分组成的函数,各个部分由不同的定义域和函数解析式。

在数学中,分段函数广泛应用于各种数学问题的求解,同时也在日常生活中有着丰富的应用研究。

1. 分段函数的概念分段函数是指在定义域上不同的区间内,函数有着不同的解析式。

通常来说,分段函数由若干段函数组成,每个段函数定义在一个区间上。

而这些段函数在各自的定义域上又具有不同的性质和特点。

在数学上,分段函数常常用于描述一些不连续的现象或问题,比如阶梯函数、绝对值函数等都是典型的分段函数的例子。

2. 分段函数在数学问题中的应用(1)优化问题在数学建模和优化问题中,分段函数常常被用来描述一些实际问题中的非线性关系。

某种产品的售价随销售数量而发生变化,可以用分段函数来描述其价格-数量关系,从而进行成本和利润的分析。

(2)几何问题在几何学中,分段函数也有着重要的应用。

比如描述线段、封闭图形等几何对象时,就可以用到分段函数。

这些分段函数可以描述线段在不同区间上的斜率、长度等特性,从而对几何问题进行分析和求解。

3. 分段函数在工程问题中的应用(1)控制系统在自动控制系统中,分段函数常常被用来描述控制信号和被控对象之间的关系。

在温度控制系统中,温度传感器检测到的温度信号会对应不同的控制策略,这时就可以用分段函数来描述温度信号和控制动作之间的关系。

(2)信号处理在通信系统或信号处理系统中,分段函数也有着重要的应用。

在调制解调过程中,对输入信号的不同部分可能需要不同的处理方式,这时就可以用到分段函数来描述输入信号和处理方式之间的关系。

4. 个人观点与总结从以上的介绍可以看出,分段函数在数学、工程和日常生活中都有着广泛的应用。

它不仅能够描述复杂的不连续关系,同时也能够对各种问题进行建模和求解。

在我看来,学习和理解分段函数的概念和应用,不仅可以帮助我们更好地理解数学和工程问题,同时也可以培养我们对复杂问题的分析和解决能力。

分段函数应用题

分段函数应用题

分段函数应用题分段函数是指一个函数被分成几个不同的部分,每个部分都有不同的定义域和值域。

在实际应用中,我们经常遇到需要使用分段函数来描述问题的情况。

本文将通过几个实际应用的例子,来说明分段函数的应用。

例一:电费计算一家电力公司的电费计算方式如下:- 当用电量小于等于100度时,每度电费用为0.5元。

- 当用电量大于100度小于等于200度时,前100度每度电费用为0.5元,超过100度的部分每度电费用为0.8元。

- 当用电量大于200度时,前100度每度电费用为0.5元,100到200度的部分每度电费用为0.8元,超过200度的部分每度电费用为1元。

根据以上规定,我们可以使用分段函数来计算电费。

设用电量为x度,则电费y(单位:元)可以表示为:```y = 0.5x 0 <= x <= 100y = 0.5 * 100 + 0.8 * (x-100) 100 < x <= 200y = 0.5 * 100 + 0.8 * 100 + 1 * (x-200) x > 200```例二:淘宝购物满减淘宝商城经常会举行满减活动,比如购物满200元减50元。

这个问题可以用分段函数来解决。

设购物金额为x元,满减后支付金额y(单位:元)可以表示为:```y = x 0 <= x < 200y = x - 50 x >= 200```例三:高考成绩转换某城市的高考成绩转换方式如下:- 当总分小于90分时,转换为A等级。

- 当总分大于等于90分且小于95分时,转换为B等级。

- 当总分大于等于95分且小于100分时,转换为C等级。

- 当总分等于100分时,转换为D等级。

根据以上规定,我们可以使用分段函数来计算成绩等级。

设总分为x分,成绩等级为y,可以表示为:```y = A x < 90y = B 90 <= x < 95y = C 95 <= x < 100y = D x = 100```结论:通过以上几个实际应用的例子,我们可以看到分段函数在解决问题中的广泛应用。

“分段函数”的应用案例

“分段函数”的应用案例

“分段函数”的应用案例分段函数是数学中常见的一种函数形式。

它在实际应用中具有广泛的应用场景。

以下是一些分段函数的应用案例:1.营销策略:假设公司制定了一个销售策略,根据购买数量的不同,打折力度也不同。

具体来说,当购买数量小于等于100件时,不打折;当购买数量在101件到500件之间时,打8折;当购买数量大于500件时,打6折。

这个销售策略就可以使用分段函数来表示。

2.奖励制度:公司的销售团队根据销售业绩的不同,获得不同的奖金。

假设当销售额小于等于100万时,奖金为销售额的5%;当销售额在100万到200万之间时,奖金为销售额的8%;当销售额大于200万时,奖金为销售额的10%。

这种奖励制度可以用分段函数来描述。

3.信用评级:银行在对客户进行信用评级时,通常会考虑客户的收入、负债、还款记录等因素。

假设银行根据收入水平和还款记录划分了A、B、C、D四个信用等级。

如果客户的月收入大于等于1万,并且还款记录良好,评级为A;如果客户的月收入在5000元到1万元之间,并且还款记录较好,评级为B;如果客户的月收入在2000元到5000元之间,评级为C;如果客户的月收入低于2000元,并且还款记录较差,评级为D。

这个信用评级系统可以用分段函数表示。

4.交通费用计算:城市的公交车收费标准为:前3公里每公里2元;超过3公里但不超过10公里的部分,每公里1.5元;超过10公里的部分,每公里1元。

这种交通费用计算可以使用分段函数来表达。

5.温度转换:摄氏温度和华氏温度之间有一种线性关系。

具体来说,华氏温度F和摄氏温度C之间的关系为F=9/5*C+32、如果要将一些摄氏温度转换为华氏温度,可以使用分段函数来定义转换规则。

以上是一些分段函数的应用案例。

分段函数在实际应用中具有灵活性强、实用性强的特点,可以用来描述各种复杂的关系。

全国高考数学复习微专题:分段函数的性质与应用

全国高考数学复习微专题:分段函数的性质与应用

分段函数的性质与应用分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化。

即“分段函数——分段看” 一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

3、分段函数对称性的判断:如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性。

如果不便作出,则只能通过代数方法比较()(),f x f x -的关系,要注意,x x -的范围以代入到正确的解析式。

4、分段函数分析要注意的几个问题(1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将边界值代入每一段函数(其中一段是函数值,另外一段是临界值),若两个值相等,那么分段函数是连续的。

否则是断开的。

例如:()221,34,3x x f x x x -≤⎧=⎨->⎩,将3x =代入两段解析式,计算结果相同,那么此分段函数图像即为一条连续的曲线,其性质便于分析。

再比如 ()221,31,3x x f x x x -≤⎧=⎨->⎩中,两段解析式结果不同,进而分段函数的图像是断开的两段。

(2)每一个含绝对值的函数,都可以通过绝对值内部的符号讨论,将其转化为分段函数。

例如:()13f x x =-+,可转化为:()13,113,1x x f x x x -+≥⎧=⎨-+<⎩5、遇到分段函数要时刻盯住变量的范围,并根据变量的范围选择合适的解析式代入,若变量的范围并不完全在某一段中,要注意进行分类讨论6、如果分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。

分段函数、函数的实际应用

分段函数、函数的实际应用

一、分段函数
在函数定义域内,对于自变量x的不同取值区间,
有着不同的对应法则。这样的函数叫做分段函数。
如f(x)=
x
1 x
1
(x 0) 是分段函数。 (x 0)
1、(2008·山东)设函数
的值为
则f ( 1 ) f (2)
15 A.
16
B . 27 16
1 x2 ,
f
(
x)
x2
x
2,

x 1, x 1,
B
4.某出租车公司规定“打的”收费标准如下:3千米以 内为起步价8元(即行程不超过3千米,一律收费8元), 若超过3千米除起步价外,超过部分再按1.5元/千米 收费计价,若某乘客再与司机约定按四舍五入以元计 费不找零钱,该乘客下车时乘车里程数为7.4,则乘客 应付的车费是 元.
15
5、 (12分)某摩托车生产企业,上年度生产摩托 车的投入成本为1万元/辆,出厂价为1.2万元/辆,年 销售量为1 000辆.本年度为适应市场需求,计划提高 产品档次,适度增加投入成本.若每辆车投入成本增 加的比例为x(0<x<1),则出厂价相应提高的比例为 0.75x, 同时预计年销售量增加的比例为0.6x.已知年 利润=(出厂价-投入成本)×年销售量.
12008山东设函数16271615千米以内为起步价千米除起步价外超过部分再按15千米收费计价若某乘客再与司机约定按四舍五入以元计费不找零钱该乘客下车时乘车里程数为74则乘客应付的车费是12分某摩托车生产企业上年度生产摩托车的投入成本为1万元辆出厂价为12万元辆年销售量为1000辆
§2.1.3
分段函数 函数的实际应用

A
8
C.
D .18

函数中的分段与分段函数的应用

函数中的分段与分段函数的应用

函数中的分段与分段函数的应用函数是数学中的重要概念,它描述了变量之间的关系。

在实际问题中,有些情况下函数的定义可能会根据不同的输入值而发生变化,这就涉及到了函数中的分段。

分段函数是指在定义域的不同区间上,函数的定义方式不同。

本文将探讨函数中的分段以及分段函数的应用。

一、函数中的分段在函数中,分段是指函数的定义在不同的区间上有所不同。

这种情况下,我们可以使用不同的公式或表达式来描述函数在不同区间上的行为。

常见的分段函数有三种形式:分段常数函数、分段线性函数和分段定义函数。

1. 分段常数函数分段常数函数是指在不同的区间上,函数的取值为常数。

例如,考虑函数f(x),当x小于0时,f(x)等于-1;当x大于等于0时,f(x)等于1。

此时,函数f(x)可以表示为:f(x) =-1, x < 01, x ≥ 02. 分段线性函数分段线性函数是指在不同的区间上,函数的定义为线性函数。

例如,考虑函数g(x),当x小于0时,g(x)等于x;当x大于等于0时,g(x)等于2x。

此时,函数g(x)可以表示为:g(x) =x, x < 02x, x ≥ 03. 分段定义函数分段定义函数是指在不同的区间上,函数的定义方式不同。

例如,考虑函数h(x),当x小于0时,h(x)等于x^2;当x大于等于0且小于1时,h(x)等于x;当x 大于等于1时,h(x)等于1。

此时,函数h(x)可以表示为:h(x) =x^2, x < 0x, 0 ≤ x < 11, x ≥ 1二、分段函数的应用分段函数在实际问题中有广泛的应用。

以下是几个常见的例子:1. 温度转换在温度转换中,摄氏度和华氏度之间的关系可以使用分段函数来表示。

当给定摄氏度时,可以使用以下分段函数将其转换为华氏度:F(x) =1.8x + 32, x ≥ -273.15无定义, x < -273.15其中,-273.15是绝对零度,低于此温度时无法进行温度转换。

分段函数的积分及应用

分段函数的积分及应用

分段函数的积分及应用分段函数是指在定义域上由不同的函数表达式组成的函数。

在积分中,我们需要根据不同的定义域范围来确定相应的积分表达式。

本文将介绍分段函数的积分及其应用。

一、分段函数的积分对于分段函数,我们需要根据不同的定义域范围来确定相应的积分表达式。

下面以一个简单的例子来说明。

例1:计算函数f(x) ={x^2, -1 ≤ x ≤ 12x, 1 < x ≤ 3}对于定义域[-1, 1]上的函数x^2,我们可以直接对其进行积分,得到积分表达式F(x) = (1/3)x^3 + C1,其中C1为常数。

对于定义域(1, 3]上的函数2x,我们同样可以直接对其进行积分,得到积分表达式F(x) = x^2 + C2,其中C2为常数。

因此,整个函数f(x)的积分表达式为:F(x) ={(1/3)x^3 + C1, -1 ≤ x ≤ 1x^2 + C2, 1 < x ≤ 3}二、分段函数积分的应用分段函数的积分在实际问题中有着广泛的应用。

下面以一个具体的例子来说明。

例2:求曲线y = f(x)的长度,其中f(x) ={x^2, -1 ≤ x ≤ 12x, 1 < x ≤ 3}我们可以将曲线分为两段,分别计算每段的长度,然后将两段长度相加得到整个曲线的长度。

对于定义域[-1, 1]上的函数x^2,我们可以使用长度公式来计算其长度。

长度公式为:L1 = ∫√(1 + (f'(x))^2)dx,其中f'(x)为f(x)的导数。

对于函数f(x) = x^2,其导数为f'(x) = 2x。

代入长度公式,我们可以得到:L1 = ∫√(1 + (2x)^2)dx= ∫√(1 + 4x^2)dx对于定义域(1, 3]上的函数2x,同样可以使用长度公式来计算其长度。

长度公式为:L2 = ∫√(1 + (f'(x))^2)dx,其中f'(x)为f(x)的导数。

对于函数f(x) = 2x,其导数为f'(x) = 2。

分段函数及其在日常生活中的应用研究

分段函数及其在日常生活中的应用研究

标题:深度探索分段函数及其在日常生活中的应用研究一、概述分段函数作为数学中重要的概念,其在日常生活中的应用也是不可忽视的。

从简单的数学模型到复杂的实际问题,分段函数都能够提供有力的分析工具。

在本文中,我们将深入探讨分段函数的定义、性质以及在日常生活中的具体应用,并结合个人观点来全面了解这一概念。

二、分段函数的定义和性质1. 分段函数的定义分段函数是指在定义域的若干个子区间内,其函数值由不同的函数式子来定义的函数。

一般来说,分段函数可以分为线性分段函数、二次分段函数等不同类型。

当x≥0时,y=x;当 x<0 时,y=-x。

这就是一个简单的分段函数的定义。

2. 分段函数的性质分段函数的性质包括函数值的连续性、导数的计算以及函数图像的绘制等方面。

在任意一给定区间,分段函数都具有各自的函数式子和定义域,因此在计算导数和绘制函数图像时需要考虑到这一点。

这些性质对于从简单到复杂的分段函数来说都是通用的。

三、分段函数在日常生活中的应用1. 交通流量模型在城市交通规划中,常常需要通过分段函数来模拟不同时间段内的车辆流量。

早晚高峰期和平常时间的车辆密度就可以用分段函数来描述。

这对于优化交通信号灯的设置和道路设计都有着重要的指导意义。

2. 财务风险评估在金融领域,分段函数也经常被用来评估某个金融产品或投资组合的风险。

通过将不同的市场情况划分为不同的区间,可以更准确地评估风险的发生概率和程度,为投资决策提供科学依据。

3. 健康体能评估体育锻炼中,训练强度和时长的关系也可以用分段函数来描述。

通过分段函数模型,可以帮助运动员或普通人更合理地安排训练计划,避免过度或不足的训练对身体造成的不利影响。

四、个人观点和理解作为一种常见的数学模型,分段函数在解决实际问题中具有广泛的应用价值。

从数学原理到实际应用,我深刻认识到了分段函数的重要性。

通过深入学习和实际应用,我相信分段函数将对我的学习和工作产生深远的影响。

五、总结与回顾分段函数不仅仅是数学中的一个抽象概念,更是一个具有深刻应用价值的数学工具。

考点04 分段函数(解析版)

考点04 分段函数(解析版)

考点4 分段函数以及应用一、 知识储备汇总与命题规律展望1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.(3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。

(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题.(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决.(8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望.二、题型与相关高考题解读 1.分段函数求值1.1考题展示与解读例1.(2017山东文9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( )A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B.2. 【变式2:改编结论】设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C【变式3:改编问法】已知f (x )是R 上的奇函数,且f (x )=,则f (﹣)=( )A .B .C .1D .﹣1【答案】C .【解析】∵f (x )是R 上的奇函数,且f (x )=,则f (﹣)=﹣f ()=﹣f ()=﹣log 2=1,故选C .【变式4:函数迭代】已知a ∈R ,函数()24,2,3, 2.x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则a = . 【答案】2【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【解析】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2. 2.分段函数的最值与值域2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解析】如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =-是函数()g x 的极大值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】 【变式1:改编条件】设函数的最小值是1,则实数a 的取值范围是( )A .(﹣∞,4]B .[4,+∞)C .(﹣∞,5]D .[5,+∞) 【答案】B【解析】由题知,当x <1时,f (x )=x 2﹣4x+a=(x ﹣2)2+a ﹣4,且为减函数,可得f (x )>f (1)=a ﹣3,由x≥1时,f (x )递增,可得f (x )的最小值为f (1)=1,由题意可得a ﹣3≥1,即a≥4,故选B .【变式2:改编结论】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a --- =0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【变式3:改编问法】已知函数f (x )=,函数g (x )=asin (x )﹣2a+2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( ) A .[﹣,1] B .[,] C .[,] D .[,2] 【答案】B【解析】当x ∈[0,]时,y=﹣x ,值域是[0,];x ∈(,1]时,y=,y′=>0恒成立,故为增函数,值域为(,1].则x ∈[0,1]时,f (x )的值域为[0,1],当x ∈[0,1]时,g (x )=asin (x )﹣2a+2(a >0),为增函数,值域是[2﹣2a ,2﹣],∵存在x 1、x 2∈[0,1]使得f (x 1)=g (x 2)成立,∴[0,1]∩[2﹣2a ,2﹣]≠∅,若[0,1]∩[2﹣2a ,2﹣]=∅,则2﹣2a >1或2﹣<0,即a <,或a >.∴a 的取值范围是[,],故选B .3.分段函数的解析式3.1考题展示与解读例3.(2021年高考天津卷9)设a ∈R ,函数()()()22cos 22,,215,x a x a f x x a x a x aπ-π<⎧⎪=⎨-+++≥⎪⎩,若函数()f x 在区间()0,+∞内恰有6个零点,则a 的取值范围是 ( )A .95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ B .7511,2,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ C .9112,,344⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭ D .711,2,344⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】A【分析】由()222150x a x a -+++=最多有2个根,可得()cos 220x a π-π=至少有4个根,分别讨论当x a <和x a ≥时两个函数零点个数情况,再结合考虑即可得出. 【解析】()222150x a x a -+++=最多有2个根,()cos 220x a ∴π-π=至少有4个根,由22,2x a k k ππ-π=+π∈Z 可得1,24k x a k =++∈Z ,由1024k a a <++<可得11222a k --<<-. (1)x a <时,当15242a -≤--<-时,()f x 有4个零点,即7944a <≤;当16252a -≤--<-,()f x 有5个零点,即91144a <≤;当17262a -≤--<-,()f x 有6个零点,即111344a <≤.(2)当x a ≥时,()()22215f x x a x a =-+++,()()()22Δ414582a a a =+-+=-,当2a <时,∆<0,()f x 无零点;当2a =时,0∆=,()f x 有1个零点; 当2a >时,令()()22215250f a a a a a a =-+++=-+≥,则522a <≤,此时()f x 有2个零点;∴若52a >时,()f x 有1个零点.综上,要使()f x 在区间()0,+∞内恰有6个零点,则应满足7944522a a ⎧<≤⎪⎪⎨⎪<≤⎪⎩或91144522a a a ⎧<≤⎪⎪⎨⎪=>⎪⎩或或1113442a a ⎧<≤⎪⎨⎪<⎩,则可解得a 的取值范围是95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦.【点睛】关键点睛:解决本题的关键是分x a <和x a ≥两种情况分别讨论两个函数的零点个数情况. 【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解. 3.2【典型考题变式】【变式1:改变条件】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【变式2:改编条件】已知函数f(x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,则k的取值范围是()A.(﹣2]∪{}B.(﹣2+,0]∪{}C.(﹣2]∪{}D.(﹣2+,0]∪{}【答案】D【解答】函数f(x)=,可得f(1﹣x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,即为f(1﹣x)=kx﹣k+有三个不同的实根,作出y=f(1﹣x)和y=kx﹣k+的图象,当直线y=kx﹣k+与曲线y=(x≤1)相切于原点时,即k=时,两图象恰有三个交点;当直线y=kx﹣k+与曲线y=(x﹣2)2(1<x<2)相切,设切点为(m,n),可得切线的斜率为k=2(m﹣2),且km﹣k+=(m﹣2)2,解得m=1+,k=﹣2,即﹣2<k≤0时,两图象恰有三个交点;综上可得,k的范围是(﹣2,0]∪{},故选D.【变式3:改编结论】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( ) (A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式4:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f 解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-,因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+,所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点,所以方程2)(-=x x f 解的个数为3.4.分段函数图像4.1考题展示与解读例4.(2021高考上海卷14)已知参数方程[]334,1,12x t t t y ⎧=-⎪∈-⎨=⎪⎩,下列选项的图中,符合该方程的是 ( )【答案】B【解析】当0,0,0,t x y ===∴过原点,排除A ;当1t =时1,0x y =-=,排除C 和D ;当31230,340,0,,22x t t t t t =-===-=时,1230,,22y y y ==-=,故选B . 4.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,g (x )=f (x )+x +a .若g (x )存在2个零点,则a的取值范围是( ) A .[﹣1,0)B .[0,+∞)C .[﹣1,+∞)D .[1,+∞)【命题意图探究】本题主要考查利用分段函数图像解含参数函数零点问题,是难题. 【答案】C【解析】由g (x )=0得f (x )=﹣x ﹣a ,作出函数f (x )和y =﹣x ﹣a 的图象如图,当直线y =﹣x ﹣a 的截距﹣a ≤1,即a ≥﹣1时,两个函数的图象都有2个交点,即函数g (x )存在2个零点,故实数a 的取值范围是[﹣1,+∞),故选C .【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.【变式2:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞ C. [)()1,04,-⋃+∞ D. [)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式3:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( ) (A )0 (B )1 (C )2 (D )3 【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式4:改编问法】已知函数,则函数f (x )的图象是( )A .B .C .D .【答案】D 【解析】函数,当x <0时,函数是二次函数,开口向下,对称轴为x=﹣1,排除选项B ,C ;当x≥0时,是指数函数向下平移1单位,排除选项A ,故选D .5.分段函数性质5.1考题展示与解读例5【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题. 【答案】C【解析】由()f x 在R 上递减可知43020131a a a -⎧-≥⎪⎪<<⎨⎪≥⎪⎩,解得1334a ≤≤,由方程|()|2f x x =-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数a 的去范围是123[,]{}334,故选C.【解题能力要求】数形结合思想、分类整合思想、运算求解能力. 【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.2【典型考题变式】【变式1:改编条件】已知函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,则实数a 的取值范围是( ) A .(﹣∞,] B .[,+∞)C .[,]D .(,)【答案】C【解析】由于函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,2a≥e ﹣a ,解得a≥.排除A ,D ,当a=2时,x=1可得e x ﹣2x 2=e ﹣2;2a+lnx=4>e ﹣2,显然不成立,排除B ,故选C .【变式2:改编结论】已知()2243,0,23,0,x x x f x x x x ⎧-+≤=⎨--+>⎩不等式()()2f x a f a x +>-在上恒成立,则实数的取值范围是( ) A. B.C.D.【答案】A【解析】二次函数243x x -+的对称轴是2x =,所以该函数在(],0-∞上单调递减; 2433x x ∴-+≥,同样可知函数223x x --+, 2233x x ∴--+<,在()0,+∞上单调递减, ()f x ∴在R 上单调递减,;,所以由()()2f x a f a x +>-得到2x a a x +<-,即2x a < , 2x a ∴<在[],1a a +上恒成立,()21;2a a a ∴+<∴<-,所以实数a 的取值范围是(),2-∞-,故选A.【变式3:改编问法】已知函数则下列结论错误的是( )A .f (x )不是周期函数B .f (x )在上是增函数C .f (x )的值域为[﹣1,+∞)D .f (x )的图象上存在不同的两点关于原点对称 【答案】D 【解析】函数的图象如图所示,则f (x )不为周期函数,A 正确;f (x )在[﹣,+∞)递增,B 正确;f (x )的最小值为﹣1,无最大值,则C 正确;由于x <0时,f (x )=sinx ,与原点对称的函数为y=sinx (x >0),而sinx=x 在x >0无交点,则D 不正确,故选D .6.分段函数的综合应用6.1考题展示与解读例2【2018全国卷Ⅰ】设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是( )A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】D【解析】当0x ≤时,函数()2xf x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.6.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,则不等式f (x+2)<f (x 2+2x )的解集是( )A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C【解析】函数f (x )=,可得x≥0,f (x )递增;x <0时,f (x )递增;且x=0时函数连续,则f (x )在R 上递增,不等式f (x+2)<f (x 2+2x ),可化为x+2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2,则原不等式的解集为(﹣∞,﹣2)∪(1,+∞),故选C .【变式2:改编结论】.已知函数(),0{2,lnx x e f x lnx x e<≤=->,若正实数,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围为( )A. ()2,e eB. ()21,e C. 1,e e ⎛⎫ ⎪⎝⎭ D. 21,e e⎛⎫ ⎪⎝⎭【答案】A【解析】作出)(x f 的图像,不妨设c b a <<,由图知,201a b e c e <<<<<<,由题知,|ln ||ln |b a =,即b a ln ln =-,所以0)ln(ln ln ==+ab b a ,所以ab =1,则c abc =),(2e e ∈,故选A.【变式3:改编问法】已知函数f (x )=,函数y=f (x )﹣a 有四个不同的零点,从小到大依次为x 1,x 2,x 3,x 4,则x 1x 2+x 3x 4的取值范围为( ) A .[4,5) B .(4,5] C .[4,+∞) D .(﹣∞,4]【答案】A【解析】当x >0时,f (x )=x+﹣3≥2﹣3=1,可得f (x )在x >2递增,在0<x <2处递减,由f(x )=e,x≤0,当x <﹣1时,f (x )递减;﹣1<x <0时,f (x )递增,可得x=﹣1处取得极小值1,作出f (x )的图象,以及直线y=a ,可得e=e=x 3+﹣3=x 4+﹣3,即有x 1+1+x 2+1=0,可得x 1=﹣2﹣x 2,﹣1<x 2≤0,x 3﹣x 4=﹣=,可得x 3x 4=4,x 1x 2+x 3x 4=4﹣2x 2﹣x 22=﹣(x 2+1)2+5,在﹣1<x 2≤0递减,可得所求范围为[4,5),故选A .三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=, 所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练一、单选题1.(2021·四川成都零模(文))已知函数2log (2),1()e ,1xx x f x x -<⎧=⎨≥⎩则(2)(ln 4)f f -+=( ) A .2 B .4C .6D .8【答案】C 【分析】分别求出()2f -和()ln 4f 的值再求它们的和,从而可得正确的选项. 【详解】()22log 42f -==,()ln4ln 44f e ==,故(2)(ln 4)6f f -+=,故选:C. 【点睛】易错点睛:本题考查分段函数的函数值的计算,注意根据自变量的大小选择合适的解析式来计算,本题属于基础题.2.(2021·四川射洪模拟(理))定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,例如:[1.3]1=,[ 1.5]2-=-,[2]2=.当*[))0,(x n n N ∈∈时,()f x 的值域为n A .记集合n A 中元素的个数为n a ,则2020211i i a =-∑的值为( ) A .40402021B .20192021C .20192020D .20191010【答案】D【分析】先根据条件分析出当[)0,x n ∈时,集合n A 中的元素个数为222n n n a -+=,进而可得111211n a n n ⎛⎫=- ⎪--⎝⎭,再结合裂项相消法进行求和可得结果. 【详解】因为[][)[)[)[)0,0,11,1,22,2,3......1,1,x x x x n x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[][)[)[)()[)0,0,1,1,22,2,3......1,1,x x x x x x x n x x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[]x x 在各个区间中的元素个数分别为:1,1,2,3,4,......,1n -,所以当[)*0,,x n n N ∈∈时,()f x 的值域为n A ,集合n A 中元素个数为:()()2121123 (1122)n n n n n a n --+=+++++-=+=,所以()1112211n n a n n ⎛⎫=-≥ ⎪--⎝⎭, 所以2020211111112019212...22112232019202020201010i ia =⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑,故选:D. 3.(2021·山东高三其他模拟)已知函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是( )A .()0,1a ∈B .3,14a ⎡⎫∈⎪⎢⎣⎭C .30,4a ⎛⎤∈ ⎥⎝⎦D .3,24a ⎡⎫∈⎪⎢⎣⎭【答案】C 【分析】 将条件()()12120f x f x x x -<-等价于函数函数()f x 为定义域上的单调减函数,由分段函数的单调性要求,结合指数函数、一次函数的单调性得到关于a 的不等式组,求解即得. 【详解】由题意,函数()f x 对任意的12x x ≠都有()()12120f x f x x x -<-成立,即函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩为R 上的减函数,可得0120,123a a a a<<⎧⎪-<⎨⎪≥-+⎩解得304a <≤,故选:C.4.(2021·江苏南京模拟(理))我们知道,任何一个正实数N 都可以表示成10110,()n N a a n Z =⨯≤<∈.定义:(),00,0N n W N N n ≥⎧⎨<⎩的整数部分的位数=的非有效数字的个数,如()()()2211.2103,(1.2310)2,3102, 3.001101W W W W --⨯=⨯=⨯=⨯=,则下列说法错误的是( )A .当1,1M N >>时,()()()W M N W M W N ⋅=+B .当0n <时,()W N n =-C .当0,()1n W N n >=+D .若1002,lg 20.301N ≈=,则()31W N = 【答案】A【分析】A .理解()W N 的含义,举例分析即可;B .根据0n <分析所表示数的特点,由此可得()W N 的结果;C .根据0n >分析所表示数的特点,由此可得()W N 的结果;D .先将N 化为10110,()n N a a n Z =⨯≤<∈的形式,然后计算出()W N 的值.【详解】当[)0,100N ∈时,N 的整数部分位数为2,当[)100,1000N ∈,N 的整数部分位数为3,一般地,)()110,100,1,2,3,4,......n n N n +⎡∈=⎣时,N 的整数部分位数为1n +; 当[)0.1,1N ∈时,N 的非有效数字0的个数为1,当[)0.01,0.1N ∈时,N 的非有效数字0的个数为2,一般地,)()110,101,2,3,4,5,......n n N n +⎡∈=-----⎣时,N 的非有效数字0的个数为n -,A .取210,10M N ==,所以()()()()33,2,104W M W N W M N W ==⋅==,()()325W M W N +=+=,所以()()()W M N W M W N ⋅≠+,故错误;B .当0n <时,)11010,10n n n N a +⎡=⨯∈⎣,N 的非有效数字0的个数为n -,所以()W N n =-,故正确;C .当0n >时,)11010,10n n n N a +⎡=⨯∈⎣,N 整数部分位数为1n +,所以()1W N n =+,故正确; D .因为1002N =,所以lg =100lg230.1N ≈,所以30.110N ≈,所以)303110,10N ⎡∈⎣,所以()30131W N =+=,故正确,故选:A.【点睛】关键点点睛:解答本题的关键在于理解()W N 的含义以及计算的方法, 通过对10n N a =⨯的分析,首先判断n 与0的关系,然后决定采用哪一种计算方法(类似分段函数).5.(2021·安徽皖江名校联考)已知函数()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,方程()10f x -=有两解,则a 的取值范围是( ) A .1(,1)2B .1(0,)2C .(0,1)D .()1,+∞【答案】B【分析】根据已知条件对a 进行分类讨论:01a <<、1a >,然后分别考虑每段函数的单调性以及取值范围,确定出方程()10f x -=有两解时a 所满足的不等式,由此求解出a 的取值范围. 【详解】因为()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,所以0a >且1a ≠, 当01a <<时,()f x 在(,1]x ∈-∞-时单调递增,所以()()max 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,且()()12f x f a >-=, 因为方程()10f x -=有两解,所以21a <,所以102a <<; 当1a >时,()f x 在(,1]x ∈-∞-时单调递减,()()min 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,()()12f x f a >-=, 因为方程()10f x -=要有两解,所以21a <,此时不成立. 综上可得10,2a ⎛⎫∈ ⎪⎝⎭,故选:B.【点睛】方法点睛:根据方程解的个数求解参数范围的常见方法:方法(1):将方程解的个数问题转化为函数的图象的交点个数问题,通过图象直观解答问题;方法(2):若方程中有指、对数式且底数为未知数,则需要对底数进行分类讨论,然后分析()f x 的单调性并求解出其值域,由此列出关于参数的不等式,求解出参数范围.6.(2021·山东济南模拟)若函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则实数a 的取值范围是( ) A .(]0,1 B .(]0,2C .30,2⎛⎫ ⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭【答案】A 【分析】由分段函数单调递增的特性结合单调增函数的图象特征列出不等式组求解即得. 【详解】因函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则有2y ax =-在(,2]-∞上递增,()()32ln 1y a x =--在(2,)+∞上也递增, 根据增函数图象特征知,点(2,22)a -不能在点(2,0)上方,于是得0320220a a a >⎧⎪->⎨⎪-≤⎩ ,解得01a <≤,所以实数a 的取值范围是(]0,1. 故选:A7.(2021·山西名校联考)已知函数()cos ()ln f x x g x x ==,用max{,}a b 表示a ,b 中的最大值,则函数{}()max (),()(0)h x f x g x x =>的零点个数为( ) A .0 B .1C .2D .3【答案】C 【分析】分1x >,1x =,01x <<三种情况讨论可得结果. 【详解】 分三种情况讨论:① 当1x >时,()ln 0g x x =>,所以()()0h x g x ≥>,故()h x 无零点;② 当1x =时,(1)cos110f =-<,(1)0g =,所以(1)0h =,故1x =是()h x 的零点;③ 当01x <<时,()ln 0g x x =<,所以()f x 的零点就是()h x 的零点.显然,()cos f x x =(0,1)上单调递减,且(0)10=>f ,(1)cos110f =-<, 故()f x 在(0,1)内有唯一零点,即()g x 在(0,1)内有唯一零点. 综上可知,函数()h x 在0x >时有2个零点. 故选:C. 【点睛】关键点点睛:本题的关键点是:分1x >,1x =,01x <<三种情况讨论.8.(2021·北京市十一学校高三其他模拟)已知函数()22,0313,0x x f x x x ⎧≤⎪=⎨--+>⎪⎩,若存在唯一的整数x ,使得()10f x x a->-成立,则满足条件的整数a 的个数为( ) A .2 B .3C .4D .无数【答案】C 【分析】作出f (x )的函数图象,利用直线的斜率,根据不等式只有1整数解得出a 的范围. 【详解】作出f (x )的函数图象如图所示:()1f x x a--表示点(,())x f x 和点(,1)a 所在直线的斜率,即曲线上只有一个点(,())x f x 且x 是整数和点(,1)a 所在直线的斜率大于零.如图所示,动点(,1)a 在直线1y =上运动.因为(0)0,(1)3,(2)0f f f ===,当[1,0]a ∈-时,只有点(1,3)这个点满足()10f x x a ->-,当[1,2]a ∈时,只有点(0,0)这个点满足()10f x x a->-. 所以a ∈][1,01,2⎡⎤-⋃⎣⎦.所以满足条件的整数a 有4个.故选:C.【点睛】关键点睛:本题主要考查函数的图像,考查直线的斜率,关键在于考查学生对这些知识的掌握水平和数形结合分析推理能力. 二、多选题9.(2021·重庆高三三模)()f x 是定义在R 上周期为4的函数,且()(](]1,112,1,3x f x x x ⎧∈-⎪=⎨--∈⎪⎩,则下列说法中正确的是( ) A .f ()x 的值域为[]0,2B .当(]3,5x ∈时,()f x =C .()f x 图象的对称轴为直线4,x k k Z =∈D .方程3f x x 恰有5个实数解【答案】ABD 【分析】画出()f x 的部分图象结合图形分析每一个选项即可. 【详解】根据周期性,画出()f x 的部分图象如下图所示,由图可知,选项A ,D 正确,C 不正确;根据周期为4,当(3,5]x ∈时,()(4)f x f x =-==B 正确.故选:ABD.10.(2021·辽宁铁岭二模)设函数()21,0,cos ,0.x x f x x x ⎧+≥=⎨<⎩则( )A .()f x 是偶函数B .()f x 值域为[)1,-+∞C .存在00x <,使得()()00f x f =D .()f x 与()f x -具有相同的单调区间【答案】BC【分析】根据函数奇偶性的定义判断A ,由分段函数求值域确定B ,由余弦函数性质确定C ,由二次函数及余弦函数的单调性确定D.【详解】因为()21,0,cos ,0.x x f x x x ⎧+≤-=⎨>⎩.所以()()f x f x -≠,()f x 不是偶函数,故选项A 错误. 当0x ≥时,211x +≥,当0x <时,cos [1,1]x ∈-,所以()f x 值域为[)1,-+∞,故B 正确; 因为()01f =,()21f π-=,选项C 正确.因为()f x 具有单调性的区间与()f x -具有单调性的区间不同,是数轴上关于原点对称的,选项D 错误(由()f x -表达式也可以看出).故选:BC 。

高中数学讲义:分段函数的性质与应用

高中数学讲义:分段函数的性质与应用

分段函数的性质与应⽤分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化。

即“分段函数——分段看”一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

3、分段函数对称性的判断:如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性。

如果不便作出,则只能通过代数方法比较()(),f x f x -的关系,要注意,x x -的范围以代入到正确的解析式。

4、分段函数分析要注意的几个问题(1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将边界值代入每一段函数(其中一段是函数值,另外一段是临界值),若两个值相等,那么分段函数是连续的。

否则是断开的。

例如:()221,34,3x x f x x x -£ì=í->î,将3x =代入两段解析式,计算结果相同,那么此分段函数图像即为一条连续的曲线,其性质便于分析。

再比如()221,31,3x x f x x x -£ì=í->î中,两段解析式结果不同,进而分段函数的图像是断开的两段。

(2)每一个含绝对值的函数,都可以通过绝对值内部的符号讨论,将其转化为分段函数。

例如:()13f x x =-+,可转化为:()13,113,1x x f x x x -+³ì=í-+<î5、遇到分段函数要时刻盯住变量的范围,并根据变量的范围选择合适的解析式代入,若变量的范围并不完全在某一段中,要注意进行分类讨论6、如果分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。

分段函数的积分及应用

分段函数的积分及应用

分段函数的积分及应用在数学分析中,分段函数是一个重要的概念,它不仅在理论上有深远影响,在实际应用中同样发挥着重要作用。

分段函数的积分,作为研究其性质的重要工具,可以帮助我们更好地理解复杂问题的规律。

在本文中,我们将详细探讨分段函数的定义、积分方法、积分的性质以及其在实际中的应用。

分段函数的定义分段函数是指在不同区间上有不同表达式的函数。

例如,设函数( f(x) ) 定义如下:[ f(x) =]这个函数在 ( x < 0 ) 的时候,其值为 ( x^2 );在 ( 0 x <3 ) 的时候,其值为 ( 2x + 1 );而在 ( x ) 的时候,其值为常数( 5 )。

这样的定义使得分段函数能够针对不同区域表现出不同的性质。

分段函数的积分对于分段函数来说,其积分通常也是分区间进行计算。

我们以上面的 ( f(x) ) 为例来说明如何进行定积分。

定义定积分定积分是用于求取被积区间内函数值总和的一种方式,表示为:[ _a^b f(x) dx ]其中,( a ) 和 ( b ) 是积分的上下限。

对于分段函数,我们要将整个区间划分成多个子区间,并针对每个子区间计算各自的积分。

积分计算步骤以 ( f(x) ) 为例,我们来计算其在区间 ( [-1, 4] ) 上的定积分:确定分割点:分析定义域,找到分段点。

这里我们有两个重要分割点:( x = 0 ) 和 ( x = 3 )。

拆分积分:根据上述定义,我们可以将定积分拆分为几个部分:[ {-1}^4 f(x) dx = {-1}^0 f(x) dx + {0}^3 f(x) dx +{3}^4 f(x) dx ]逐个计算:第一个部分:对于区间 ( [-1, 0] ),( f(x) = x^2 ),因此:[ {-1}^0 x^2 dx = {-1}^{0} = 0 - (-) = ]第二个部分:对于区间 ( [0, 3] ),( f(x) = 2x + 1 ),因此:[ {0}^3 (2x + 1) dx = [x^2 + x]{0}^{3} = (9 + 3) - (0 + 0) = 12 ]第三个部分:对于区间 ( [3, 4] ),( f(x) = 5 ),因此:[ {3}^4 5 dx = [5x]{3}^{4} = (20 - 15) = 5 ]汇总:将以上三个部分相加,即可得到最终结果:[ _{-1}^4 f(x) dx = + 12 + 5 = 17 + = 17.333… ]计算得到,定积分的值为 ( 17 )。

分段函数的解与应用

分段函数的解与应用

分段函数的解与应用分段函数是指一个函数由多个子函数组成,每个子函数在特定的区间内有效。

分段函数常常用于描述实际问题中的非线性关系,如温度变化、利润曲线等。

本文将介绍分段函数的解和应用,并展示其在实际问题中的运用。

一、分段函数的解分段函数的解即找到使得函数取特定值的自变量的取值。

为了解分段函数,我们需要根据函数的定义域和每个子函数的定义条件来寻找解。

例如,考虑以下分段函数:f(x) =-x + 3, 当x ≤ 2x^2, 当 x > 2我们首先要确定每个子函数的定义域。

在这个例子中,第一个子函数的定义域为负无穷到2,第二个子函数的定义域为2到正无穷。

接下来,我们分别解每个子函数的方程,以找到使得整个函数取特定值的自变量的取值。

对于第一个子函数 -x + 3,当函数取特定值时,即解方程 -x + 3 = y。

解这个方程得到 x = 3 - y。

对于第二个子函数 x^2,同样地,解方程 x^2 = y,得到x = √y。

综合考虑两个子函数的定义域和解得的解,我们得到整个分段函数的解为:当 y < 1 时,x = 3 - y当 y ≥ 1 时,x = √y 或者 x = -√y二、分段函数的应用分段函数在实际问题中有广泛的应用。

下面我们将介绍两个常见的应用案例:温度转换和利润最大化。

1. 温度转换在某些情况下,我们需要将温度从一种度量方式转换到另一种度量方式。

这时候可以使用分段函数来完成。

假设我们需要将摄氏温度转换成华氏温度。

根据转换公式,当温度低于或等于0摄氏度时,转换公式为 F = C × 9/5 + 32;当温度高于0摄氏度时,转换公式为 F = C × 9/5 + 32。

由于转换公式中存在两个不同的算法,我们可以使用分段函数来表示该问题。

定义一个分段函数 f(C),其中 C 表示摄氏温度,F 表示华氏温度。

f(C) =C × 9/5 + 32, 当C ≤ 0C × 9/5 + 32, 当 C > 0通过这个分段函数,我们可以方便地将摄氏温度转换成华氏温度。

数学沪科版八年级(上册)第4课时分段函数及其应用

数学沪科版八年级(上册)第4课时分段函数及其应用
1.从教材习题中选取, 2.完成练习册本课时的习题.
状元成才路
状元成才路
(2)函数y在x的某个范围内可能是特殊函数,如一次函数.
(3)由于问题的不同,分段函数也可能在自变量某范围内
不是一次函数而是其他形式的函数,在这里我们不予
讨论.
状元成才路
状元成才路
议一议
我们生活中还有哪些分段函数? 如:出租车计费问题,阶梯水费、电费,个人所得税, 邮资……
状元成才路
状元成才路
练习
(4)该市一户某月缴水费26.6元,求该户这个月用水量.
状元成才路
状元成才路
分析: (1)x≤8时,每立方米收费(1+0.3)元 (2)x>8时,超过的部分每立方米收费(1.5+1.2)元
解(1)y与x之间的函数表达式为:
y
1 0.3 x 1.5 1.2
1.3x 0 x x 8 1.38
第4课时 分段函数及其应用
状元成才路
沪科版·八年级上册
状元成才路
新课导入
前面我们学习了有关一次函数的一些知识及如 何确定解析式,如何利用一次函数知识解决相关实 际问题呢?这将是我们这节课要解决的主要问题.
状元成才路
状元成才路
推进新课
例5 为节约用水,某城市制定以下用水收费标准:每户每月 用水不超过8m3时,每立方米收取1元外加0.3元的污水处理 费;超过8m3时,超过部分每立方米收取1.5元外加1.2元的 污水处理费.设一户每月用水量为xm3,应缴水费y元. (1)给出y关于x的函数关系式; (2)画出上述函数图象; (3)当该市一户某月的用水量为x=5m3或x=10m3时,求其 应缴的水费;
状元成才路
状元成才路
解:(1)由题意,得

分段函数的名词解释

分段函数的名词解释

分段函数的名词解释分段函数是数学中常见的一种函数形式,它由不同的几个部分组成,并且每个部分有不同的定义域。

在这篇文章中,我们将介绍分段函数的基本概念、特点和应用。

一、分段函数的基本概念分段函数是以不同的方式定义在不同区间上的函数。

它可以使用不同的表达式或算式描述,并根据自变量的取值范围选择适当的定义。

通常情况下,分段函数可以分为有限段和无限段两种类型。

有限段分段函数是指函数在有限个区间上有不同的表达式。

例如,考虑一个分段函数f(x),在区间(-∞, 0]和(0, ∞)上具有不同的定义,可以表示为:f(x) = x^2, x ≤ 0f(x) = √x, x > 0在此例中,当x小于等于0时,函数f(x)的定义为x的平方;当x大于0时,函数f(x)的定义为x的平方根。

无限段分段函数是指函数在无限多个区间上有不同的表达式。

例如,考虑一个分段函数g(x),在整个实数轴上具有不同的定义,可以表示为:g(x) = 2x, x < -1g(x) = x^2 - 1, -1 ≤ x ≤ 1g(x) = 2, x > 1在此例中,函数g(x)根据x的取值可以分为三个部分。

当x小于-1时,函数g(x)的定义为2x;当x介于-1和1之间时,函数g(x)的定义为x的平方减1;当x 大于1时,函数g(x)的定义为2。

二、分段函数的特点分段函数具有以下几个特点:1. 非连续性:由于分段函数在不同区间上有不同的定义,因此在分段函数的转折点或交叉点处通常出现函数值的突变。

这种突变导致了函数在这些点上的不连续性。

2. 多样性:分段函数可以包含多个不同的表达式,因此在不同的区间内可以表现出不同的数学特性。

这使得分段函数非常适用于描述复杂的数学关系或现实世界中的问题。

3. 简化表达式:通过使用分段函数,我们可以将复杂的数学函数或关系简化为几个简单的部分,从而更容易理解和处理。

这种简化过程有助于提高问题解决的效率。

三、分段函数的应用分段函数在数学和实际应用中具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 x1 ,
2 1 x 2
求函数 f ( x)的定义域及 f ( x 1)的定义域.
解: 分段函数的定义域,是使函数有定义的实 数的全体.
故(1) f ( x) 的定义域
D :[0,1] (1,2] D :[0,2] D {x | 0 x 2}
( 2)f ( x 1) 的定义域
因为
1分段函数及其应用
Байду номын сангаас
引例 电脉冲发生器发出一个三角形脉冲波, 如图所示,求电压和时间的函数关系?
u
15
o
10 20 t
一、分段函数
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数, 称为分段函数。
例如
f
(
x
)
2x
x
2
1, 1,
x0 x0
y x2 1
y 2x 1
例1 设
x2 f (x)
( x 1)2 f ( x 1)
0 x11
2 1 x1 2
( x 1)2 1 x 2
2 2 x3
所以 f ( x 1) 的定义域为 D { x | 1 x 3}
二、几个特殊的分段函数举例
(1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
y
1
o
x
-1
(2)狄里克雷函数
1, x 为有理数 0, x 为无理数
例2 建立函数关系举例
2014年7月15日起,保定市出租车启用 了如下收费标准:起步价8元/3公里,每公里 运价为1.5元,取消每乘次1.5元的燃油附加 费。请根据相关信息得出出租车计费模型。
解 设车费为 y ,乘坐公里数为 x
y
8,
0
8 1.5(x-3),
x3 x3
练习 电脉冲发生器发出一个三角形脉冲波, 如图所示,求电压和时间的函数关系?
u
15
o
10 20 t
•请同学们自己寻找一个分段函数的实际案例? •如个人所得税、土地增值税、阶梯水价(电价)等。 •2015年建模国赛的土地增值税问题。
感谢聆听
相关文档
最新文档