初中数学证明题解题技巧与步骤.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学证明题解题技巧与步骤

(证明:等腰三角形两底角的平分线相等)为例

1. 弄清题意

此为“文字型”数学证明题,既没有图形,也无直观的已知与求证。如何弄清题意呢?根据命题的定义可知,命题由条件与结论两部分组成,因此区分命题的条件与结论至关重要,是解题成败的关键。命题可以改写成“如果………..,那么……….”的形式,其中“如果………..”就是命题的条件,“那么…….”就是命题的结论,据此对题目进行改写:如果在等腰三角形中分别作两底角的平分线,那么这两条平分线长度相等。于是题目的意思就很清晰了,就是在等腰三角形中作两底角平分线,然后根据已知的条件去求证这两条平分线相等。这样题目要求我们做什么就一目了然了!

2、根据题意,画出图形。

图形对解决证明题,能起到直观形象的提示,所以画图因尽量与题意相符合。并且把题中已知的条件,能标在图形上的尽量标在图形上。

3. 根据题意与图形,用数学的语言与符号写出已知和求证。

众所周知,命题的条件---已知,命题的结论---求证,但要特别注意的是,已知、求证必须用数学的语言和符号来表示。

已知:如图(1),在△ABC中,AB=AC, BD、CE分别是△ABC的角平分线。

求证:BD=CE

4. 分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

分析:此题要想证明 BD=CE ,就要引导学生观察图形(图形(1)),弄清题意。发现BD、CE分别存在于两对三角形中:△ABD与△ACE,△BEC与△CDB,只要能证明其中任何一对三角形全等,即可利用全等三角形性质得到对应边相等。(此

思维属于逆向思维)

5. 根据证明的思路,用数学的语言与符号写出证明的过程

证明过程的书写,其实就是把证明的思路从脑袋中搬到纸张上。这个过程,对数学符号与数学语言的应用要求较高,在讲解时,要提醒学生任何的“因为、所以”,在书写是都要符合公理、定理、推论或以已知条件相吻合,不能无中生有、胡说八道,要有根有据!

证明:

∵AB=AC(已知)

∴∠ABC=∠ACB(等边对等角)

∵BD、CE分别是△ABC的角平分线(已知)

∴∠1=∠ABC,∠2=∠ACB(角平分线的定义)

∴∠1=∠2(等量代换)

在△BEC与△CDB中,

∵∠ACB=∠ABC, BC=CB,∠1=∠2

∴△BEC≌△CDB(ASA)

∴BD=CE(全等三角形的对应边相等)

6. 检查证明的过程,看看是否合理、正确

任何正确的步骤,都有相应的合理性和与之相应证的公理、定理、推论,证明过程书写完毕后,对证明过程的每一步进行检查,是非常重要的,是防止证明过程出现遗漏的关键。最后,同学们在平时练习中要敢于尝试,多分析,多总结。才能做到熟能生巧!

(数学组徐瑞推荐)

相关文档
最新文档