小升初奥数经典试题(十四) 人教新课标版

合集下载

小升初奥数题及答案(经典版)

小升初奥数题及答案(经典版)

小升初奥数题及答案(经典版)小升初奥数题及答案(经典版)一、选择题1.某数除以6,商是4,余数是多少?A. 3B. 4C. 5D. 6答案:B2.甲数的3倍等于乙数的5倍,则甲数是乙数的几分之几?A. 3/5B. 4/5C. 5/4D. 5/3答案:C3.某数的两倍增加60等于90,这个数是多少?A. 15B. 20C. 45D. 60答案:A4.下一个“完全平方数”是什么?A. 64B. 81C. 88D. 100答案:B5.质数是指只能被1和自己整除的自然数,以下哪个数是质数?A. 1B. 10C. 17D. 27答案:C二、填空题1.现在是星期三,10天后是星期几?答案:星期六2.一个四位数,千位数是2,个位数是4,十位数比个位数多1,百位数比十位数多4,这个数是多少?答案:21443.一个大于1的自然数除以2,商是5,余数是4,这个数是多少?答案:14三、解答题1.小明家附近有一片矩形草坪,长20米,宽15米。

他想在草坪四周围上一圈木栅栏,每段木栅栏的长度都相等。

请问每段木栅栏的长度是多少米?答案:每条木栅栏的长度是20+15+20+15=70米。

2.某书店新到一批数学书籍,分为4个等分。

如果每个等分有55本书,那么这批书共有多少本?答案:这批书共有4 × 55 = 220本。

3.有20个小球,其中16个重量一样,其他4个也重量一样,但比那16个重的小球更重。

请问,至少需要用天平称几次可以找出重的小球?答案:只需要用天平称2次。

首先,我们将20个小球平分成两组,每组10个小球,然后只需要用天平比较这两组小球的重量,就可以确定出重的小球所在的一组。

接下来,我们再将这一组里的10个小球平分成两组,每组5个小球,再次用天平比较,就可确定出重的小球所在的一组。

最后,将这一组的5个小球中任意两个拿出来比较,就能找到重的小球。

总结:小升初奥数题及答案(经典版)涵盖了选择题、填空题和解答题。

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析1. 一个数的百分之一比这个数的百分之10小9,这个数是多少?解析:假设这个数为x,则百分之一可以表示为0.01x,百分之10可以表示为0.1x。

根据题意可得0.01x = 0.1x - 9。

整理得到0.09x = 9,解得x = 100。

2. 假设一个数的百分之一是3,这个数是多少?解析:可以设这个数为x,则百分之一可以表示为0.01x。

根据题意可得0.01x = 3,解得x = 300。

3. 4的百分之一是多少?解析:可以直接计算得到4的百分之一为0.04。

4. 假设一个数的百分之一是0.02,这个数是多少?解析:设这个数为x,则百分之一可以表示为0.01x。

根据题意可得0.01x = 0.02,解得x = 2。

5. 判断下列四个小数哪一个是最小的?0.01,0.1,0.02,0.2。

解析:可以将四个小数都化为百分数进行比较。

0.01 = 1%,0.1 = 10%,0.02 = 2%,0.2 = 20%。

显然,1%是最小的。

6. 在数的添加、减少、乘法和除法中,哪种运算是无法实现负数的?解析:除法无法实现负数,因为任何数除以0都是无意义的。

7. 将0.35表示成分数形式。

解析:0.35可以表示为35/100,然后将分数进行约分得到7/20。

8. 填入下面的括号中:(2-3)÷(-2)=()。

解析:(2-3)÷(-2) = -1/(-2) = 1/2。

9. 计算:(-2)+3-5×(-4)÷(-2)。

解析:根据运算法则,先进行乘法和除法,再进行加法和减法。

(-2)+3-5×(-4)÷(-2) = (-2)+3-20÷(-2) = (-2)+3-(-10) = (-2)+3+10 = 11。

10. 计算:(-12)-0.5×(2-3)+4÷2。

解析:先进行括号内的运算,(-12)-0.5×(2-3)+4÷2 = (-12)-0.5×(-1)+4÷2 = (-12)-(-0.5)+4÷2 = (-12)+0.5+2 = -9.5。

小学升初中奥数试卷人教版

小学升初中奥数试卷人教版

小学升初中奥数试卷人教版一、选择题(每题3分,共15分)1. 一个数的平方减去这个数本身等于45,这个数是:A. 9B. 10C. 11D. 122. 一个班级有50名学生,其中男生人数是女生人数的2倍,问男生有多少人?A. 20B. 30C. 40D. 503. 一个数列的前三项是1,1,2,从第四项开始,每一项都是前三项的和。

问第10项是多少?A. 144B. 89C. 55D. 464. 一个长方体的长、宽、高分别为a、b、c,且a>b>c,若长方体的体积是120立方厘米,问a+b+c的最小值是多少?A. 15B. 20C. 25D. 305. 一个圆的半径是5厘米,问这个圆的周长是多少?A. 31.4厘米B. 15.7厘米C. 10厘米D. 5厘米二、填空题(每题2分,共20分)6. 一个数的立方加上这个数本身等于100,这个数是________。

7. 一个数的5倍加上这个数本身等于40,这个数是________。

8. 一个数的平方等于这个数的8倍,这个数是________。

9. 一个数的平方减去这个数本身等于36,这个数是________。

10. 一个数的立方等于这个数的27倍,这个数是________。

三、简答题(每题10分,共30分)11. 一个长方形的长是宽的3倍,如果长增加2厘米,宽增加1厘米,那么面积增加了10平方厘米。

求原来长方形的长和宽。

12. 一个数列的前三项是1,1,2,从第四项开始,每一项都是前三项的和。

求第15项的值。

13. 一个班级有学生,其中1/4的学生喜欢数学,1/3的学生喜欢英语,1/6的学生既喜欢数学又喜欢英语。

如果班级有48名学生,问喜欢数学和英语的学生有多少人?四、解答题(每题15分,共40分)14. 一个水池,底部有一个排水孔,如果只开一个水龙头往里注水,需要3小时才能注满水池。

如果同时开两个水龙头,需要2小时才能注满。

如果同时开三个水龙头,需要多少时间才能注满水池?15. 一个数列的前三项是1,2,3,从第四项开始,每一项都是前三项的和。

小升初典型奥数题及详细答案

小升初典型奥数题及详细答案

小升初典型奥数题及详细答案1、一列火车长200米,通过一条长430的隧道用了42秒,以同样的速度通过某站台用25秒,这个站台长多少米?【答案解析】:(200+430)÷42×25-200=375-200=175米2、某次数学测验共20题,做对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题?【答案解析】:20-(20×5-76)÷(5+1)=16(道)3、一班有学生45人,男生2/5和女生的1/4参加了数学竞赛,参赛的共有15人,男女生各几人【答案解析】:设男生有X人,则女生有(45r)。

2∕5x+l∕4(45-χ)=152∕5x+4/45-4∕x=15x=25女生:45-25=20(人)4、一项工作,甲单独做需15天完成,乙单独做需12天完成。

这项工作由甲乙两人合做,并且施工期间乙休息7天,问几天完成?【答案解析】:设完成工作要X天,所以甲乙一起工作(X-6)天,甲单独工作6天。

根据题意可得甲单独一天可完成1/15.乙1/12,由此得式子:【答案解析】:(1/15+1/12)(X-6)+1/15X6=1解地X=IO他整个行5、本骑车前往一座城市,去时的速度为X,回来时的速度为yo程的平均速度是多少?(答案是2xy∕x+y,为什么?)【答案解析】:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y那么平均速度为2S∕(S/X+S/Y)=2/(1∕X+1∕Y)=2XY∕(X+Y)6、参加数学竞赛的男生比女生多28人,女生全部优胜,男生的3/4得优胜男女生各优胜的共42人,求男女生参加竞赛的各多少人?方程:【答案解析】:设男生参赛有X人x+(x+28)×3/4=42解得x=1212+28=40算术:(42-28)/(1+3/4)=21X4/7=12(八)12+28=40(人)答:女生参赛有40人。

7、将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12,求甲、乙、丙各是几?【答案解析】:解:把1440分解质因数:1440=12×12×10=2×2×3×2×2×3×2×5=(2×2×2)X(3×3)×(2×2×5)如果甲、乙二数分别是8、9,丙数是20,贝U:8×9=72,20×3+12=72正符合题中条件。

小升初奥数思维训练第14讲:行程(二) 平均速度、变速度、流水、电梯(经典透析)

小升初奥数思维训练第14讲:行程(二) 平均速度、变速度、流水、电梯(经典透析)

第14讲 行程(二) 平均速度、变速度、流水、电梯【例1】 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。

[审题要点]要求平均速度必须知道总路程和总时间,在总路程未知的情况下,可以假设总路程,化未知为已知。

[详解过程]假设上坡、平路、下坡的长度都是“1个单位”:那么上坡、平路、下坡所花时间依次为:14;16;18。

所花的总时间为:1111346824++= 而总路程为:1113++=所以他过桥的平均速度为:1372735241313÷==(米/秒)[点评]注意本道题中假设的单位长度可以随意,例如可以假设上坡、平路、下坡的长度为“24个单位”,因为24是4、6、8的最小公倍数,所以计算出来各段时间都是整数,这样更方便于计算。

【例2】 老王开汽车从A 到B 为平地,车速是30千米/时;从B 到C 为上山路,车速是22.5千米/时;从C 到D 为下山路,车速是36千米/时。

已知下山路是上山路的2倍,从A 到D 全程为72千米,老王开车从A 到D 的平均速度是多少?[审题要点] 涉及到平均速度必须知道总路程和总时间而这道题目中只知道各段路程的速度,所以我们还是要用到假设法。

[详解过程]这一次我们假设上山的路程为“180个单位”(180是22.5和36的公倍数)那么下山的路程为“360个单位”。

上山的时间为18022.58÷=CD 段所花的时间为:3603610÷=DB A那么从B到D的总时间为:81018+=所以从B到D的平均速度为:(180360)1830+÷=既然从A到B,从B到D的平均速度都是30千米/小时。

那么从A到D的平均速度为30千米/小时。

点评:1,当几个速度都相等时,那么无论时间是多少,平均速度都等于这个相等的速度。

小升初最常考奥数题100道及答案(完整版)

小升初最常考奥数题100道及答案(完整版)

小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。

小升初必考50道经典奥数题(含标准答案)

小升初必考50道经典奥数题(含标准答案)

小升初必考道经典奥数题(含答案).已知一张桌子地价钱是一把椅子地倍,又知一张桌子比一把椅子多元,一张桌子和一把椅子各多少元?、箱苹果重千克.一箱梨比一箱苹果多千克,箱梨重多少千克?.甲乙二人从两地同时相对而行,经过小时,在距离中点千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?.李军和张强付同样多地钱买了同一种铅笔,李军要了支,张强要了支,李军又给张强元钱.每支铅笔多少钱?.甲乙两辆客车上午时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河地两岸.由于河上地桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发地车站,到站时已是下午点.甲车每小时行千米,乙车每小时行千米,两地相距多少千米?(交换乘客地时间略去不计).学校组织两个课外兴趣小组去郊外活动.第一小组每小时走千米,第二小组每小时行千米.两组同时出发小时后,第一小组停下来参观一个果园,用了小时,再去追第二小组.多长时间能追上第二小组?.有甲乙两个仓库,每个仓库平均储存粮食吨.甲仓地存粮吨数比乙仓地倍少吨,甲、乙两仓各储存粮食多少吨?.甲、乙两队共同修一条长米地公路,甲队从东往西修天,乙队从西往东修天,正好修完,甲队比乙队每天多修米.甲、乙两队每天共修多少米?.学校买来张桌子和把椅子共付元,已知每张桌子比每把椅子贵元,桌子和椅子地单价各是多少元?.一列火车和一列慢车,同时分别从甲乙两地相对开出.快车每小时行千米,慢车每小时行千米,相遇时快车比慢车多行了千米,甲乙两地相距多少千米?.某玻璃厂托运玻璃箱,合同规定每箱运费元,如果损坏一箱,不但不付运费还要赔偿元.运后结算时,共付运费元.托运中损坏了多少箱玻璃?.五年级一中队和二中队要到距学校千米地地方去春游.第一中队步行每小时行千米,第二中队骑自行车,每小时行千米.第一中队先出发小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?.某厂运来一堆煤,如果每天烧千克,比计划提前一天烧完,如果每天烧千克,将比计划多烧一天.这堆煤有多少千克?.妈妈让小红去商店买支铅笔和个练习本,按价钱给小红元钱.结果小红却买了支铅笔和本练习本,找回元.求一支铅笔多少元?.学校组织外出参观,参加地师生一共人.一辆大客车比一辆卡车多载人,辆大客车和辆卡车载地人数相等.都乘卡车需要几辆?都乘大客车需要几辆?.某筑路队承担了修一条公路地任务.原计划每天修米,实际每天比原计划多修米,这样实际修地差米就能提前天完成.这条公路全长多少米?.某鞋厂生产双鞋,把这些鞋分别装入个纸箱和个木箱.如果个纸箱加个木箱装地鞋同样多.每个纸箱和每个木箱各装鞋多少双?.某工地运进一批沙子和水泥,运进沙子袋数是水泥地倍.每天用去袋水泥,袋沙子,几天以后,水泥全部用完,而沙子还剩袋,这批沙子和水泥各多少袋?.学校里买来了个保温瓶和个茶杯,共用了元钱.每个保温瓶是每个茶杯价钱地倍,每个保温瓶和每个茶杯各多少元?.两个数地和是,其中一个加数个位上是,去掉后,就与第二个加数相同.这两个数分别是多少?.一桶油连桶重千克,用去一半后,连桶重千克,桶重多少千米?.一桶油连桶重千克,倒出一半后,连桶还重千克,原来有油多少千克?.用一只水桶装水,把水加到原来地倍,连桶重千克,如果把水加到原来地倍,连桶重千克.桶里原有水多少千克?.小红和小华共有故事书本.如果小红给小华本,两人故事书地本数就相等,原来小红和小华各有多少本?.有桶油重量相等,如果从每只桶里取出千克,则只桶里所剩下油地重量正好等于原来桶油地重量.原来每桶油重多少千克?.把一根木料锯成段需要分钟,那么用同样地速度把这根木料锯成段,需要多少分?.一个车间,女工比男工少人,男、女工各调出人后,男工人数是女工人数地倍.原有男工多少人?女工多少人?.李强骑自行车从甲地到乙地,每小时行千米,小时到达,从乙地返回甲地时因逆风多用小时,返回时平均每小时行多少千米?.甲、乙二人同时从相距千米地两地相对而行,甲每小时行走千米,乙每小时走千米.如果甲带了一只狗与甲同时出发,狗以每小时千米地速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?.有红、黄、白三种颜色地球,红球和黄球一共有个,黄球和白球一共有个,红球和白球一共有个.三种球各有多少个?.在一根粗钢管上接细钢管.如果接根细钢管共长米,如果接根细钢管共长米.一根粗钢管和一根细钢管各长多少米?.水泥厂原计划天完成一项任务,由于每天多生产水泥吨,结果天就完成了任务,原计划每天生产水泥多少吨?.学校举办歌舞晚会,共有人参加了表演.其中唱歌地有人,跳舞地有人,既唱歌又跳舞地有多少人?.学校举办语文、数学双科竞赛,三年级一班有人,参加语文竞赛地有人,参加数学竞赛地有人,一科也没参加地有人.双科都参加地有多少人?.学校买了张桌子和把椅子,共用元.张桌子和把椅子地价钱相等,桌子和椅子地单价各是多少元?.父亲今年岁,年前父亲地年龄是儿子地倍,今年儿子多少岁?.有两桶油,甲桶油重是乙桶油重地倍,如果从甲桶倒入乙桶千克,两桶油就一样重,原来每桶各有多少千克油?.光明小学举办数学知识竞赛,一共题.答对一题得分,答错一题扣分,不答得分.小丽得了分,她答对几道,答错几道,有几题没答?.甲列火车长米,每秒行米;乙列火车长米,每秒行米,两车相向而行,从两车头相遇到两车尾相离需要几秒?.一列火车长米,通过一条长米地隧道,已知火车地速度是每分米,问火车通过隧道需要几分?.小明从家里到学校,如果每分走米,则正好到上课时间;如果每分走米,则离上课时间还有分.问小明从家里到学校有多远?.有一周长米地环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑米,乙每分钟跑米,经过几分钟二人第一次相遇?.有一个长方形纸板,如果只把长增加厘米,面积就增加平方米;如果只把宽增加厘米,面积就增加平方厘米.这个长方形纸板原来地面积是多少?.妈妈买苹果和梨各千克,付出元找回元.每千克苹果元,每千克梨多少元?.甲乙两人同时从相距千米地两地相对而行,经过小时相遇.甲地速度是乙地倍,甲乙两人每小时各行多少千米?.盒子里有同样数目地黑球和白球.每次取出个黑球和个白球,取出几次以后,黑球没有了,白球还剩个.一共取了几次?盒子里共有多少个球?.上午时从汽车站同时发出路和路公共汽车,路车每隔分钟发一次,路车每隔分钟发一次,求下次同时发车时间..父亲今年岁,儿子今年岁,多少年前父亲地年龄是儿子年龄地倍?.王老师有一盒铅笔,如平均分给名同学余支,平均分给名同学余支,平均分给名同学余支,平均分给名同学余支.问这盒铅笔最少有多少支?.一块平行四边形地,如果只把底增加米,或只把高增加米,它地面积都增加平方米.求这块平行四边形地原来地面积?、想:由已知条件可知,一张桌子比一把椅子多地元,正好是一把椅子价钱地()倍,由此可求得一把椅子地价钱.再根据椅子地价钱,就可求得一张桌子地价钱.解:一把椅子地价钱:÷()(元)一张桌子地价钱:×(元)答:一张桌子元,一把椅子元.、想:可先求出箱梨比箱苹果多地重量,再加上箱苹果地重量,就是箱梨地重量. 解:×(千克)答:箱梨重千克.、想:根据在距离中点千米处相遇和甲比乙速度快,可知甲比乙多走×千米,又知经过小时相遇.即可求甲比乙每小时快多少千米.解:×÷÷(千米)答:甲每小时比乙快千米.、想:根据两人付同样多地钱买同一种铅笔和李军要了支,张强要了支,可知每人应该得()÷支,而李军要了支比应得地多了支,因此又给张强元钱,即可求每支铅笔地价钱.解:÷[()÷]÷[÷]÷(元)答:每支铅笔元.、想:根据已知两车上午时从两站出发,下午点返回原车站,可求出两车所行驶地时间.根据两车地速度和行驶地时间可求两车行驶地总路程.解:下午点是时.往返用地时间:(时)两地间路程:()×÷×÷(千米)答:两地相距千米.、想:第一小组停下来参观果园时间,第二小组多行了[()]?千米,也就是第一组要追赶地路程.又知第一组每小时比第二组快()千米,由此便可求出追赶地时间.解:第一组追赶第二组地路程:()(千米)第一组追赶第二组所用时间:÷()÷(小时)答:第一组小时能追上第二小组.、想:根据甲仓地存粮吨数比乙仓地倍少吨,可知甲仓地存粮如果增加吨,它地存粮吨数就是乙仓地倍,那样总存粮数也要增加吨.若把乙仓存粮吨数看作倍,总存粮吨数就是()倍,由此便可求出甲、乙两仓存粮吨数.解:乙仓存粮:(×)÷()()÷÷(吨)甲仓存粮:×(吨)答:甲仓存粮吨,乙仓存粮吨.、想:根据甲队每天比乙队多修米,可以这样考虑:如果把甲队修地天看作和乙队天修地同样多,那么总长度就减少个米,这时地长度相当于乙()天修地.由此可求出乙队每天修地米数,进而再求两队每天共修地米数.解:乙每天修地米数:(×)÷()()÷÷(米)甲乙两队每天共修地米数:×(米)答:两队每天修米.、想:已知每张桌子比每把椅子贵元,如果桌子地单价与椅子同样多,那么总价就应减少×元,这时地总价相当于()把椅子地价钱,由此可求每把椅子地单价,再求每张桌子地单价.解:每把椅子地价钱:(×)÷()()÷÷(元)每张桌子地价钱:(元)答:每张桌子元,每把椅子元.、想:根据已知地两车地速度可求速度差,根据两车地速度差及快车比慢车多行地路程,可求出两车行驶地时间,进而求出甲乙两地地路程.解:()×[÷()]×[÷]×(千米)答:甲乙两地相距千米.、想:根据已知托运玻璃箱,每箱运费元,可求出应付运费总钱数.根据每损坏一箱,不但不付运费还要赔偿元地条件可知,应付地钱数和实际付地钱数地差里有几个()元,就是损坏几箱.解:(×)÷()÷(箱)答:损坏了箱.、想:因第一中队早出发小时比第二中队先行×千米,而每小时第二中队比第一中队多行()千米,由此即可求第二中队追上第一中队地时间.解:×÷()×÷(时)答:第二中队小时能追上第一中队.、想:由已知条件可知道,前后烧煤总数量相差()千克,是由每天相差()千克造成地,由此可求出原计划烧地天数,进而再求出这堆煤地数量.解:原计划烧煤天数:()÷()÷(天)这堆煤地重量:×()×(千克)答:这堆煤有千克.、想:小红打算买地铅笔和本子总数与实际买地铅笔和本子总数量是相等地,找回元,说明()支铅笔当作()本练习本计算,相差元.由此可求练习本地单价比铅笔贵地钱数.从总钱数里去掉个练习本比支铅笔贵地钱数,剩余地则是()支铅笔地钱数.进而可求出每支铅笔地价钱.解:每本练习本比每支铅笔贵地钱数:÷()÷(元)个练习本比支铅笔贵地钱数:×(元)每支铅笔地价钱:()÷()÷(元)也可以用方程解:设一枝铅笔元,则一本练习本为元.×???????????????????????????? ?????????????????????????答:每支铅笔元.、想:根据一辆客车比一辆卡车多载人,可求辆客车比辆卡车多载地人数,即多用地()辆卡车所载地人数,进而可求每辆卡车载多少人和每辆大客车载多少人.解:卡车地数量:÷[×÷()]÷[×÷]÷(辆)客车地数量:÷[×÷()]÷[]÷(辆)答:可用卡车辆,客车辆.、想:根据计划每天修米,这样实际提前地长度是(×)米.根据每天多修米可求已修地天数,进而求公路地全长.解:已修地天数:(×)÷÷(天)公路全长:()××(米)答:这条公路全长米.、想:根据已知条件,可求个纸箱转化成木箱地个数,先求出每个木箱装多少双,再求每个纸箱装多少双.解:个纸箱相当木箱地个数:×(÷)×=(个)一个木箱装鞋地双数:÷()÷(双)一个纸箱装鞋地双数:×÷(双)答:每个纸箱可装鞋双,每个木箱可装鞋双、想:由已知条件可知道,每天用去袋水泥,同时用去×袋沙子,才能同时用完.但现在每天只用去袋沙子,少用(×)袋,这样才累计出袋沙子.因此看袋里有多少个少用地沙子袋数,便可求出用地天数.进而可求出沙子和水泥地总袋数.解:水泥用完地天数:÷(×)÷(天)水泥地总袋数:×(袋)沙子地总袋数:×(袋)答:运进水泥袋,沙子袋.、想:根据每个保温瓶地价钱是每个茶杯地倍,可把个保温瓶地价钱转化为个茶杯地价钱.这样就可把个保温瓶和个茶杯共用地元钱,看作个茶杯共用地钱数.解:每个茶杯地价钱:÷(×)(元)每个保温瓶地价钱:×(元)答:每个保温瓶元,每个茶杯元.、想:已知一个加数个位上是,去掉,就与第二个加数相同,可知第一个加数是第二个加数地倍,那么两个加数地和,就是第二个加数地(+)倍.解:第一个加数:÷()第二个加数:×答:这两个加数分别是和.、想:由已知条件可知,千克和千克地差正好是半桶油地重量.千克是半桶油和桶地重量,去掉半桶油地重量就是桶地重量.解:()(千克)答:桶重千克.、想:由已知条件可知,千克与千克地差正好是半桶油地重量,再乘以就是原来油地重量.解:()×(千克)答:原来有油千克.、想:由已知条件可知,桶里原有水地()倍正好是()千克,由此可求出桶里原有水地重量.解:()÷()÷(千克)答:桶里原有水千克.、想:从“小红给小华本,两人故事书地本数就相等”这一条件,可知小红比小华多(×)本书,用共有地本去掉小红比小华多地本数,剩下地本数正好是小华本数地倍.解:小华有书地本数:(×)÷(本)小红有书地本数:×(本)答:原来小红有本,小华有本.、想:由已知条件知,桶油共取出(×)千克.由于剩下油地重量正好等于原来桶油地重量,可以推出()桶油地重量是(×)千克.解:×÷()(千克)答:原来每桶油重千克.、想:把一根木料锯成段,只锯出了()个锯口,这样就可以求出锯出每个锯口所需要地时间,进一步即可以求出锯成段所需地时间.解:÷()×()(分)答:锯成段需要分钟.、想:女工比男工少人,男、女工各调出人后,女工仍比男工少人.这时男工人数是女工人数地倍,也就是说少地人是女工人数地()倍.这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人.解:÷()(人)女工原有:(人)男工原有:(人)答:原有男工人,女工人.、想:由每小时行千米,小时到达可求出两地地路程,即返回时所行地路程.由去时小时到达和返回时多用小时,可求出返回时所用时间.解:×÷()(千米)答:返回时平均每小时行千米.、想:由题意知,狗跑地时间正好是二人地相遇时间,又知狗地速度,这样就可求出狗跑了多少千米.解:÷()(小时)×(千米)答:狗跑了千米.、想:由条件知,()表示三种球总个数地倍,由此可求出三种球地总个数,再根据题目中地条件就可以求出三种球各多少个.解:总个数:()÷(个)白球:(个)红球:(个)黄球:(个)答:白球有个,红球有个,黄球有个.、想:根据题意,米比米长地米数正好是根细钢管地长度,由此可求出一根细钢管地长度,然后求一根粗钢管地长度.解:()÷()(米)×(米)答:一根粗钢管长米,一根细钢管长米.、想:由题意知,实际天比原计划天多生产水泥(×)吨,而多生产地这些水泥按原计划还需用()天才能完成,也就是说原计划()天能生产水泥(×)吨.解:×÷()(吨)答:原计划每天生产水泥吨.、想:由题意知唱歌地人中也有跳舞地,同样跳舞地人中也有唱歌地,把两者相加,这样既唱歌又跑舞地就统计了两次,再减去参加表演地人,就是既唱歌又跳舞地人数.解:(人)答:既唱歌又跳舞地有人.、想:参加语文竞赛地人中有参加数学竞赛地,同样参加数学竞赛地人中也有参加语文竞赛地,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛地人数就统计了两次,所以将参加语文竞赛地人数加上参加数学竞赛地人数再加上一科也没参加地人数减去全班人数就是双科都参加地人数.解:(人)答:双科都参加地有人.、想:由“张桌子和把椅子地价钱相等”这一条件,可以推出张桌子就相当于把椅子地价钱,买张桌子和把椅子共用元,也就相当于买把椅子共用元.解:×(÷)(把)÷(元)×÷(元)答:桌子和椅子地单价分别是元、元.、想:年前父亲地年龄是()岁,儿子地年龄是()÷岁,再加上就是今年儿子地年龄.解:()÷(岁)答:今年儿子岁.、想:“如果从甲桶倒入乙桶千克,两桶油就一样重”可推出:甲桶油地重量比乙桶多(×)千克,又知“甲桶油重是乙桶油重地倍”,可知(×)千克正好是乙桶油重量地()倍.解:×÷()(千克)×(千克)答:原来甲桶有油千克,乙桶有油千克.、想:根据题意,题全部答对得分,答错一题将失去()分,而不答仅失去分.小丽共失去()分.再根据()÷(题)……(分),分析答对、答错和没答地题数.解:(×)÷(题)……(分)(题)答:答对题,答错题,有题没答.、想:“从两车头相遇到两车尾相离”,两车所行地路程是两车身长之和,即()米,速度之和为()米.根据路程、速度和时间地关系,就可求得所需时间.解:()÷()÷(秒)答:从两车头相遇到两车尾相离,需要秒.、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行地路程正好是车身与隧道长度之和.解:()÷÷(分)答:火车通过隧道需分.、想:在每分走米地到校时间内按两种速度走,相差地路程是(×)米,又知每秒相差()米,这就可求出小明按每分米地到校时间.解:×÷()(分)×(米)答:小明从家里到学校是米.、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即米,又知乙每分钟比甲多跑()米,即可求第一次相遇时经过地时间.解:÷()÷(分)答:经过分钟两人第一次相遇、想:由“只把宽增加厘米,面积就增加平方厘米”,可求出原来地长是:(÷)厘米,同理原来地宽就是(÷)厘米,求出长和宽,就能求出原来地面积.解:(÷)×(÷)(平方厘米)答:这个长方形纸板原来地面积是平方厘米.、想:用去地钱数除以就是千克苹果和千克梨地总钱数.从这个总钱数里去掉千克苹果地钱数,就是每千克梨地钱数.解:()÷÷(元)答:每千克梨元.、想:由题意知,甲乙速度和是(÷)千米,这个速度和是乙地速度地()倍. 解:÷÷()(千米)×(千米)答:甲乙每小时分别行千米、千米.、想:两种球地数目相等,黑球取完时,白球还剩个,说明黑球多取了个,而每次多取()个,可求出一共取了几次.解:÷()(次)××(个)或××(个)答:一共取了次,盒子里共有个球.、想:路和路下次同时发车时,所经过地时间必须既是分地倍数,又是分地倍数.也就是它们地最小公倍数.个人收集整理-ZQ解:和地最小公倍数是时分时分答:下次同时发车时间是上午时分.、想:父、子年龄地差是()岁,当父亲地年龄是儿子年龄地倍时,这个差正好是儿子年龄地()倍,由此可求出儿子多少岁时,父亲是儿子年龄地倍.又知今年儿子岁,两个岁数地差就是所求地问题.解:()÷()(岁)(年)答:年前父亲地年龄是儿子年龄地倍.、想:根据题意,可以将题中地条件转化为:平均分给名同学、名同学、名同学、名同学都少一支,因此,求出、、、地最小公倍数再减去就是要求地问题.解:、、、地最小公倍数是(支)答:这盒铅笔最少有支.、想:根据只把底增加米,面积就增加平方米,?可求出原来平行四边形地高.根据只把高增加米,面积就增加平方米,可求出原来平行四边形地底.再用原来地底乘以原来地高就是要求地面积.解:(÷)×(÷)(平方米)答:平行四边形地原来地面积是平方米.?地得到地得到地11 / 11。

小升初奥数经典试题打包15套人教新课标版

小升初奥数经典试题打包15套人教新课标版

小升初经典奥数试题及答案(一)【二年级】课内知识:368-199等于多少呢?课外趣题:按数字规律填出下图中空缺的数:【三年级】课内知识:操场上的学生们进行队列表演,他们排成了8行8列的正方形队列,如果去掉一行一列,请问要去掉多少人?还剩多少人?课外趣题:有7个数,它们的平均数是18。

去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下5个数的平均数是20。

求去掉的两个数的乘积。

【四年级】课内知识:(1686+1683+1689+1681+1691+1685+1687+1678)÷8等于多少?课外趣题:若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第项。

【五年级】课内知识:求4018和7257的最大公约数。

课外趣题:把一个自然数的各个数位上的数码相加,所得的和若不是一位数,则再把它的各个数位上的数码相加,直到和是一位数为止。

将1—2009这2009个自然数都经过上述方法处理后,所得到的2009个数中,2和3哪个多?【二年级】1.368-199等于多少呢?解答:原式=368-200+1=168+1=1692.按数字规律填出下图中空缺的数:解答:本题的规律为上面两个数的和等于下面两个数的乘积,因此应该填7。

【三年级】1.操场上的学生们进行队列表演,他们排成了8行8列的正方形队列,如果去掉一行一列,请问要去掉多少人?还剩多少人?解答:每行每列都有8个人,而这一行一列必有一个人是重复的,所以减少的人数是8×2-1=15(人),8×8-15=49(人)2.有7个数,它们的平均数是18。

去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下5个数的平均数是20。

求去掉的两个数的乘积。

解答:第一个去掉的数是18×7-19×6=12,第二个去掉的数是19×6-20×5=14,这两个数的乘积为12×14=168还可以用移多补少的方法:18-(19-18)×6=1219-(20-19)×5=1412×14=168【四年级】1.(1686+1683+1689+1681+1691+1685+1687+1678)÷8解答:原式=(1680×8+6+3+9+1+11+5+7-2)÷8=1680×8÷8+(6+3+9+1+11+5+7-2)÷8=1680+40÷8=16852.若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第项。

六年级下册数学试题-小升初奥数思维训练经典试题荟萃(十四)全国通用(无答案) (1)

六年级下册数学试题-小升初奥数思维训练经典试题荟萃(十四)全国通用(无答案) (1)

小升初奥数思维训练经典试题荟萃(十四) 1、某公司为员工定加班餐,前20人按原价20元/份,20人以上的部分按8折计,如果实际总价超过1200元,超过的部分,可以享受原价的6折。

最终实际餐费一共花了1500元,问一共定了多少份加班餐?A.105B.100C.85D.952、某大厦物业人员共有30多人,分为安保、维修、监控和管理人员四组。

其中实习安保人员是正式安保人员数的32,实习维修人员是正式维修人员的31,监控人员是管理人员的2倍,且占总人数的92。

那么实习安保人员是实习维修人员的几倍?A.8B.4C.3D.23、小张和小王早晨8点整同时从甲地出发去乙地,小张开车,速度是每小时60千米.小王步行,速度为每小时4千米,如果小张到达乙地后停留1小时立即沿原路返回,恰好在10点整遇到正在前往乙地的小王,那么甲、乙两地之间的距离是( )千米.4.甲、乙两人同时从A ,B 两地相向出发,甲的速度是乙的速度的1.5倍,到达对方出发点后立即返回,如果第一次相遇点和第二次相遇点相距300米,那么,A ,B 两地的距离为( )米.A. 500B.750C.900D. 12005.阳光小区新建了一处住宅楼,若8号楼3单元4层5号的编号为08030405.那么5号楼1单元3层8号和3号楼6单元12层1号的编号分别是( )和( )。

6.贝贝中午不回家,在学校吃饭;晶晶中午回家吃饭。

每天上学及放学回家谁走的路多些?7. 78个同学报名参加文体活动,每人至少参加了体育组或文娱组中的一类,其中参加体育组的有39人,既参加体育组又参加文娱组的有18人。

参加文娱组的有多少人?8、甲、乙两车分别从A、B两地同时出发,匀速相向而行,第一次相遇时离A地150千米.两车继续各自前行,分别到达B、A两地后立即返回,不作停留,在离A地70千米处第二次相遇.A、B两地间的距离为千米.9、欢欢和乐乐在操场上的A、B两点之间练习往返跑,欢欢的速度是每秒8米,乐乐的速度是每秒5米.两人同时从A点出发,到达B点后返回,已知他们第二次迎面相遇的地点距离AB的中点5米,AB之间的距离是。

最新小升初经典奥数题(打印版)

最新小升初经典奥数题(打印版)

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2.2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

小升初奥数常考题型100题( 人教新课标2014秋)

小升初奥数常考题型100题( 人教新课标2014秋)

小升初奥数常考题型100题列方程解应用题:1、李老师给幼儿园小朋友分草莓,如果每个小朋友分5个草莓还剩下14个;如果每个小朋友分7个草莓则差4个,求共有多少草莓?共有多少个小朋友?2、小明同学看见山上有一群羊,他自言自语到:“我如果有这些羊,再加上这些羊,然后加上这些羊的一半,又加上这些羊一半的一半,最后再加上我家里的那只,一共有100只羊”.山上的羊共有______只.3、张老师周六晚带六年级同学去春游,男孩戴小黄帽,女孩戴小红帽。

在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。

问:六年级男孩、女孩各多少人?【答案】男14人,女8人(提示:每个人看不到自己的帽子)4、笑笑要将一批《530冲刺班》课本打包后送往邮局(要求每包所装册数相同),这批课本的35够打5包多44本。

如果这批课本刚好可以打9包,那么这批课本共多少本?、5、寒暑表上通常有两个刻度,摄氏度(记为℃)和华氏度(记为F。

),它们之间的换算关系是:摄氏度9325⨯+=华氏度,那么在摄氏多少度时,华氏度的值恰好比摄氏度的值大60.6、淘气同学家有一种神奇的植物,它生长得非常迅速,每天都会生长到昨天质量的2倍还多3公斤.培养了3天后,植物的质量达到45公斤,求这株植物原来有多少公斤?7、某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各自买票少花120元,问这个旅游团一共有多少人?8、唐代大诗人李白虽然诗写得好,但是很爱喝酒,杜甫说他是“李白斗酒诗百篇”。

传说李白喝酒曾有一道数学趣题:李白好喝酒,提壶街上走。

遇店加一倍,逢花喝一斗。

三遇店和花,喝光壶中酒。

请问此壶中,原有多少酒。

9、小明、小张、小李迪三位同学同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.10、把金放在水里称,其重量减轻119;把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?11、赵老师购买了一套教师住宅,原计划采取分期付款方式.一种付款方式是开始第一年先付7万元,以后每年付款1万元;另一种付款方式是前一半时间每年付款2万元,后一半时间,每年付款1万5千元.两种付款方式的付款总数和付款时间都相同.假如一次性付款,可以少付房款1万6千元.现在赵老师决定采用一次性付款方式.问:赵老师要付房款多少万元?12、从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们.题目是:我有金、银两个首饰箱,箱内分别装有若干件首饰,如果把金箱中25%的首饰送给第一个算对这个题目的人,把银箱中20%的首饰送给第二个算对这个题目的人,然后我再从金箱中拿出5件送给第三个算对这个题目的,再从银箱中拿出4件送给第四个算对这个题目的人.最后我的金箱中剩下的首饰比分掉的多10件,银箱中剩下的首饰与分掉的比是2:1.王子的金箱中原来有首饰________件,银箱中原来有首饰________件.13、共有多少人参加测验?14、任和同学用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?分比百应用题:15、某商品价格为1200元,降价15%后,又降价20%,由于销售额猛增,商店决定再提价25%,提价后这种商品的价格为元。

小升初奥数题及答案(经典版)

小升初奥数题及答案(经典版)

小升初奥数题及答案(经典版)精品奥数1、XXX在一次数学测验中得了76分,每题作对得5分,作错扣1分,不做不得分。

要求求出XXX做对了多少题。

2、一班共有45个学生,其中男生的人数占总人数的2/5,女生的人数占总人数的1/4.共有15名学生参加了数学竞赛。

求男女生各有几人参赛。

3、一列火车长200米,通过一条长430米的隧道用了42秒,通过某站台用了25秒。

要求求出该站台的长度。

4、甲单独做一项工作需要15天,乙单独做需要12天。

现在甲乙两人合作做这项工作,其中乙休息了7天。

要求求出完成这项工作需要多少天。

5、一个人骑车前往一座城市,去的速度为x,回来的速度为y。

要求求出他整个行程的平均速度是多少。

7、将37分为甲、乙、丙三个数,使得甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12.要求求出甲、乙、丙各是几。

8、在800米环岛上,每隔50米插一面彩旗。

后来增加了一些彩旗,使得彩旗的间隔缩短了,但起点的彩旗不动。

重新插后,发现有四根彩旗没动。

要求求出现在彩旗的间隔是多少米。

9、小学组织春游,同学们决定分成若干辆至多可乘32人的大巴车前往。

如果每辆车坐22个人,就会有一人没有座位。

如果少开一辆车,那么这批同学刚好平均分成余下的大巴。

要求求出原来有多少同学,需要多少辆大巴。

10、一块正方体木块的体积为1331立方厘米。

要求求出这块正方体木块的棱长是多少厘米。

11、XXX是一个集邮爱好者。

他集的小型XXX是邮票总数的十一分之一。

后来他又收集到十五张小型张,这时小型张是邮票总数的九分之一。

要求求出XXX一共收集了多少张邮票。

12、两堆沙,第一堆25吨,第二堆21吨。

这两堆中各用去同样多的一部分后,第二堆剩下的是第一堆的3/4.要求求出每堆用去的部分和原来每堆的重量。

13、幼儿园买来的苹果是梨的3倍。

吃掉10个梨和6个苹果后,还剩下的苹果正好是梨的5倍。

要求求出原来买来的苹果和梨共有多少个。

六年级下册数学试题-小升初奥数经典题型集合(十四)(无答案)人教版

六年级下册数学试题-小升初奥数经典题型集合(十四)(无答案)人教版

小升初奥数经典题型集合(十四)1. (12345+51234+23451+45123+34512)÷3的值等于A .22222B .33333C .44444D .555552. 2035÷43×602÷37÷14的值等于A .11B .55C .110D .2203.已知13+23+33+43+53+63=441,则23+43+63+83+103+123的值是,A .3968B .3188 C. 3528 D .28484.某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A .2:5B .1:3C .1:4D .1:55.甲、乙、丙三人进行百米赛跑,甲到终点时,乙离终点2米,丙离终点3米。

在各自速度不变的情况下,乙到终点时,丙离终点还有多少米A .1491B .1492C .1493 D .1 6.对于124和648,把第一个数加上2,同时把第二个数减去2,这算一次变换。

这样变换多少次以后两个数相等A .123B .131C .133D .1357.军训时每人发10发子弹,但每射中1发可以再奖励2发子弹,小王一共射射击了34发。

小王射中了多少发A .8B .10C .12D .148.某校高中于生有四分之一是一年级的,五分之儿是二年级的,其余910人是二年级的。

该校高中生的人数是A .2700B .2600C .2500D .24009.张某开车从A 城到B 城,走了一半路程时,发观实际平均速度只是原定速度的1211。

要想准时到达B 城,在后一半行程中,需要把平均速度提高到原定速度的多少倍A .1112B .1011C .910D .89 10.在招考公务员中,A 、B 两岗位共有32个男生、18个女生报考。

已知报考A 岗位的男生数与女生数的比为5:3, 报考B 岗位的男生数与女生数的比为2:1,报考A 岗位的女生数是A . 15B .16C .12D .1011.学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书?12.小红和小明共有压岁钱800元,小红的钱数是小明的3倍,小红和小明分别有压岁钱多少元?13.小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青把多少枝给小宁后,小宁的圆珠笔芯枝数是小青的8倍 ?14.红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?15.已知鸡、鸭、鹅共1210只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各多少只?16.红、黄、蓝气球共325只,红气球的只数是黄气球的3倍,蓝气球的只数是红气球的3倍,这三种气球各多少只?17.被除数和除数和为320,商是7,被除数和除数各是几?18.被除数和除数和为120,商是7,被除数和除数各是几?19.两数相除商为17余6,被除数、除数、商和余数的和是479,被除数和除数分别为多少?20.两个整数相除商14余2,被除数、除数、商和余数的和是243,被除数比除数大多少?21.甲、乙、丙二人,甲21岁时,乙15岁;甲18岁时,丙的年龄是乙的3倍。

小升初必考50道经典奥数题(内含答案)

小升初必考50道经典奥数题(内含答案)

小升初必考50道经典奥数题(含答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

小升初经典奥数50题参考答案与试题及答案解析 小学数学六年级下册 奥数试题及答案 人教版

小升初经典奥数50题参考答案与试题及答案解析 小学数学六年级下册 奥数试题及答案 人教版

小升初经典奥数50题参考答案与试题及答案解析小学数学六年级下册奥数试题及答案人教版小升初经典奥数50题参考答案与试题解析一、解答题(共25小题,满分0分)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?考点:列方程解含有两个未知数的应用题;差倍问题。

专题:和倍问题;列方程解应用题。

分析:设一把椅子的价格是x元,则一张桌子的价格就是10x 元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:10x﹣x=288,9x=288,x=32;则桌子的价格是:32×10=320(元),答:一张桌子320元,一把椅子32元.点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱.再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元.2.3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?考点:整数、小数复合应用题。

专题:简单应用题和一般复合应用题。

分析:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答解答:解:45+5×3,=45+15,=60(千克);答:3箱梨重60千克.点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量.3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?考点:简单的行程问题。

专题:行程问题。

分析:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.即可求甲比乙每小时快多少千米.解答:解:4×2÷4=8÷4,=2(千米);答:甲每小时比乙快2千米.点评:解答此题的关键是确定甲比乙在4小时内多走了多少千米,然后再根据路程÷时间=速度进行计算即可.4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱.每支铅笔多少钱?考点:整数、小数复合应用题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初经典奥数试题及答案(十四)
【二年级】
课内知识:爸爸给妹妹5盆彩笔,给姐姐6盒彩笔,每盒彩笔都是12支.姐姐给妹妹多少支彩笔,两人的彩笔数就相等了?
课外趣题:数一数图中共有多少个正方形?
【三年级】
课内知识:1、100、2、98、3、96、2、94、1、92、2、90、3、88、2、86、1、84、……、0
(1)这列数共有几个2(不是数字“2”)?
(2)这个数列所有项的和.
课外趣题:下面这串数628088640448…的规律是:从第3个数字起,每个数字都是它前面两个数字之和的个位数字.问:这串数中第88个数字是几?
【四年级】
课内知识:口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个.其中红球3个、黄球5个、蓝球10个.现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少?
课外趣题:有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同.
【五年级】
课内知识:用三个不同的数字能组成6个不同的三位数,这6个三位数的和是2886,求6个三位数中最小的一个最小是多少?
课外趣题:A=1234567891011……9899,B=1×2×3×4×5×6×……×98×99,A是一个189位数,B是由1一直乘到99的积,试比较A、B的大小.
【二年级】
课内知识:爸爸给妹妹5盆彩笔,给姐姐6盒彩笔,每盒彩笔都是12支.姐姐给妹妹多少支彩笔,两人的彩笔数就相等了?
解答:6-5=1(盒)1×12=12(支)12÷2=6(支)
课外趣题:数一数图中共有多少个正方形?
解答:7个
【三年级】
课内知识:1、100、2、98、3、96、2、94、1、92、2、90、3、88、2、86、1、84、……、0
(1)这列数共有几个2(不是数字“2”)?
(2)这个数列所有项的和.
解答:(1)共有(100-0)÷2+1=51个偶数.
51÷4=12组……3个12×2=1=25(个)25+1=26(个)
(2)(100+0)×51÷2=2550
(1+2+3+2)×12+1+2+3=102
2550+102=2652
课外趣题:下面这串数628088640448…的规律是:从第3个数字起,每个数字都是它前面两个数字之和的个位数字.问:这串数中第88个数字是几?
解答:62808864044820224606628088……20个数字是一个周期.88÷20=4……8,所以第88个数字与第8个数字一样,是4.
【四年级】
课内知识:口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个.其中红球3个、黄球5个、蓝球10个.现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少?
解答:最不利的情况是取了3个红球、4个黄球和4个蓝球,共11个.此时袋中只剩下黄球和蓝球,所以再取一个球,无论是黄球还是蓝球,都可以保证有5个球颜色相同.因此所求的最小值是12.
课外趣题:有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同.
解答:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有0、1、2、3……48,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同.
【五年级】
课内知识:用三个不同的数字能组成6个不同的三位数,这6个三位数的和是2886,求6个三位数中最小的一个最小是多少?
解答:设三位数是,六个三位数的总和是222倍的(a+b+c)
2886÷222=13=1+3+9最小的一个三位数最小是139
课外趣题:A=1234567891011……9899,B=1×2×3×4×5×6×……×98×99,A是一个189位数,B是由1一直乘到99的积,试比较A、B的大小.
解答:这么大的数不好直接判断,我们换小的.很明显,12大于1×2;123大于1×2×3;由12到123可以这样认为把12扩大了10倍又加上3,而1×2×3,只把1×2扩大了3倍.由此我们得到推论:A每增加一位数字比原数扩大10倍还要多一些,而B每乘以一个一位数都没有扩大10倍,从而123456789>1×2×3×4×5×6×7×8×9.按着上面的方法递推下去,一定能得到A>B的结论.。

相关文档
最新文档