(完整word版)第1章复变函数习题答案习题详解
复变函数习题答案习题详解
第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1)i231+ 解:()()()132349232323231231ii i i i i -=+-=-+-=+ 实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im共轭复数:1323231ii +=⎪⎭⎫⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2) ii i --131 解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im共轭复数:253131ii i i +=⎪⎭⎫⎝⎛-- 模:234434253131222==+=--iii 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+ 4) i ii +-2184解:i i i i ii 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i i i Im 共轭复数:()i i i i 314218+=+- 模:1031422218=+=+-i ii辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()i iy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。
复变函数答案 钟玉泉 第一章习题全解
第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅ 3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)R e (2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()200z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅ 令2001,,A B z C z 2==-=-γ,从而圆周可以写成 0A Z Z B Z B ZC +++=,A C 为实数,且22200B z z AC 2=>-γ=9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周. (2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122yy v y u +-=+=且u y y y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续. 13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 2233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg ,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =.9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143a r g a r g a r g z z z z z z z z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.。
复变函数与积分变换习题答案
第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。
复变函数习题及答案解释
第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
复变函数课后习题答案(全)
习题一谜底之勘阻及广创作2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此, 31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此, 35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此, Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 5.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-, 所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++, 那时0,1,2,3k =, 对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次, 因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥. (2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可, 首先左端221212()()x x y y =+++,而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此, 左端=右端, 即原式成立.(3)若a bi +是实系数代数方程101100n n n a z a z a z a --++++=的一个根, 那么a bi -也是它的一个根.证明:方程两端取共轭, 注意到系数皆为实数, 而且根据复数的乘法运算规则, ()n n z z =, 由此获得:10110()()0n n n a z a z a z a --++++=由此说明:若z 为实系数代数方程的一个根, 则z 也是.结论得证.(4)若1,a =则,b a ∀≠皆有1a b a ab-=- 证明:根据已知条件, 有1aa =, 因此:11()a b a b a b a ab aa ab a a b a---====---, 证毕. (5)若1, 1a b <<, 则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<, 所以, 2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-, 即11a b ab-<-, 结论得证. 7.设1,z ≤试写出使n z a +到达最年夜的z 的表达式, 其中n 为正整数, a 为复数.解:首先, 由复数的三角不等式有1n n z a z a a +≤+≤+, 在上面两个不等式都取等号时n z a +到达最年夜, 为此, 需要取n z 与a 同向且1n z =, 即n z 应为a 的单元化向量, 由此, n a z a=, 8.试用123,,z z z 来表述使这三个点共线的条件.解:要使三点共线, 那么用向量暗示时, 21z z -与31z z -应平行, 因而二者应同向或反向, 即幅角应相差0或π的整数倍, 再由复数的除法运算规则知2131z z Argz z --应为0或π的整数倍, 至此获得: 123,,z z z 三个点共线的条件是2131z z z z --为实数. 9.写出过1212, ()z z z z ≠两点的直线的复参数方程.解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩, 因而, 复参数方程为:其中t 为实参数.10.下列参数方程暗示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)i z t t=+ 解:只需化为实参数方程即可.(1),x t y t ==, 因而暗示直线y x =(2)cos ,sin x a t y b t ==, 因而暗示椭圆22221x y a b+= (3)1,x t y t==, 因而暗示双曲线1xy = 11.证明复平面上的圆周方程可暗示为 0zz az az c +++=, 其中a 为复常数, c 为实常数证明:圆周的实方程可暗示为:220x y Ax By c ++++=, 代入, 22z z z z x y i+-==, 并注意到222x y z zz +==, 由此 022z z z z zz A B c i+-+++=, 整理, 得 022A Bi A Bi zz z z c -++++= 记2A Bi a +=, 则2A Bi a -=, 由此获得 0zz az az c +++=, 结论得证.12.证明:幅角主值函数arg z 在原点及负实轴上不连续. 证明:首先, arg z 在原点无界说, 因而不连续.对00x <, 由arg z 的界说不难看出, 当z 由实轴上方趋于0x 时, arg z π→, 而当z 由实轴下方趋于0x 时, arg z π→-, 由此说明0lim arg z x z →不存在, 因而arg z 在0x 点不连续, 即在负实轴上不连续, 结论得证.13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对1x =, 其方程可暗示为1z yi =+, 代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11y u v y y-==++, 消去参数y , 得 2221,1u v u y +==+即22211()(),22u v -+=暗示一个圆周. 对224x y +=, 其方程可暗示为2cos 2sin z x iy i θθ=+=+代入映射函数中, 得因而映成的像曲线的方程为 11cos , sin 22u v θθ==-, 消去参数θ, 得2214u v +=, 暗示一半径为12的圆周. 14.指出下列各题中点z 的轨迹或所暗示的点集, 并做图: 解:(1)0 (0)z z r r -=>, 说明动点到0z 的距离为一常数, 因而暗示圆心为0z , 半径为r 的圆周.(2)0,z z r -≥是由到0z 的距离年夜于或即是r 的点构成的集合, 即圆心为0z 半径为r 的圆周及圆周外部的点集.(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数, 因而暗示一个椭圆.代入,z x iy ==化为实方程得(4),z i z i +=-说明动点到i 和i -的距离相等, 因而是i 和i -连线的垂直平分线, 即x 轴.(5)arg()4z i π-=, 幅角为一常数, 因而暗示以i 为极点的与x 轴正向夹角为4π的射线. 15.做出下列不等式所确定的区域的图形, 并指出是有界还是无界, 单连通还是多连通.(1)23z <<, 以原点为心, 内、外圆半径分别为2、3的圆环区域, 有界, 多连通(2)arg (02)z αβαβπ<<<<<, 极点在原点, 两条边的倾角分别为,αβ的角形区域, 无界, 单连通(3)312z z ->-, 显然2z ≠, 而且原不等式等价于32z z ->-, 说明z 到3的距离比到2的距离年夜, 因此原不等式暗示2与3 连线的垂直平分线即x =x =2后的点构成的集合, 是一无界, 多连通区域.(4)221z z --+>,显然该区域的鸿沟为双曲线221z z --+=, 化为实方程为 2244115x y -=, 再注意到z 到2与z 到-2的距离之差年夜于1, 因而不等式暗示的应为上述双曲线左边一支的左侧部份, 是一无界单连通区域.(5)141z z -<+, 代入z x iy =+, 化为实不等式, 得 所以暗示圆心为17(,0)15-半径为815的圆周外部, 是一无界多连通区域.习题二谜底1.指出下列函数的解析区域和奇点, 并求出可导点的导数.(1)5(1)z - (2)32z iz + (3)211z + (4)13z z ++ 解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数, 商时分母不为0), 根据和、差、积、商的导数公式及复合函数导数公式, 再注意到区域上可导一定解析, 由此获得:(1)5(1)z -处处解析, 54[(1)]5(1)z z '-=-(2)32z iz +处处解析, 32(2)32z iz z i '+=+(3)211z +的奇点为210z +=, 即z i =±, (4)13z z ++的奇点为3z =-, 2.判别下列函数在何处可导, 何处解析, 并求出可导点的导数.(1)22()f z xy x yi =+ (2)22()f z x y i =+(3)3223()3(3)f z x xy i x y y =-+- (4)1()f z z= 解:根据柯西—黎曼定理:(1)22, u xy v x y ==,四个一阶偏导数皆连续, 因而,u v 处处可微, 再由柯西—黎曼方程, x y y x u v u v ==-解得:0x y ==,因此, 函数在0z =点可导, 0(0)0x x z f u iv ='=+=, 函数处处不解析.(2)22, u x v y ==,四个一阶偏导数皆连续, 因而,u v 处处可微, 再由柯西—黎曼方程, x y y x u v u v ==-解得:x y =,因此, 函数在直线y x =上可导,()2x x y x f x ix u iv x ='+=+=,因可导点集为直线, 构不成区域, 因而函数处处不解析.(3)32233, 3u x xy v x y y =-=-,四个一阶偏导数皆连续, 因而 ,u v 处处可微, 而且 ,u v 处处满足柯西—黎曼方程 , x y y x u v u v ==-因此, 函数处处可导, 处处解析, 且导数为(4)2211()x iy f z x iy x yz +===-+, 2222, x y u v x y x y ==++, 2222222222, ()()x y y x x y u v x y x y --==++, 22222222, ()()y x xy xy u v x y x y --==++, 因函数的界说域为0z ≠, 故此, ,u v 处处不满足柯西—黎曼方程, 因而函数处处不成导, 处处不解析.3.当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上处处解析?解:3232, u my nx y v x lxy =+=+22222, 2, 3, 3x y y x u nxy v lxy u my nx v x ly ===+=+, 由柯西—黎曼方程得:由(1)得 n l =, 由(2)得3, 3n m l =-=-, 因而, 最终有4.证明:若()f z 解析, 则有 222(())(())()f z f z f z x y∂∂'+=∂∂ 证明:由柯西—黎曼方程知, 左端22=+222222()()x x x x uu vv uu vv uv vu u v +++-=+=+ 2()f z '==右端, 证毕. 5.证明:若()f z u iv =+在区域D 内解析, 且满足下列条件之一, 则()f z 在D 内一定为常数.(1)()f z 在D 内解析 , (2)u 在D 内为常数,(3)()f z 在D 内为常数, (4)2v u = (5)231u v +=证明:关键证明,u v 的一阶偏导数皆为0!(1)()f z u iv =-, 因其解析, 故此由柯西—黎曼方程得 , x y y x u v u v =-= ------------------------(1)而由()f z 的解析性, 又有, x y y x u v u v ==- ------------------------(2)由(1)、(2)知, 0x y x y u u v v ===≡, 因此12, ,u c v c ≡≡即 12()f z c ic ≡+为常数(2)设1u c ≡, 那么由柯西—黎曼方程得 0, 0x y y x v u v u =-≡=≡,说明v 与,x y 无关, 因而 2v c ≡, 从而12()f z c ic ≡+为常数.(3)由已知, 2220()f z u v c =+≡为常数, 等式两端分别对,x y 求偏导数, 得 220220x x y y uu vv uu vv +=+=----------------------------(1)因()f z 解析, 所以又有 , x y y x u v u v ==--------------------------(2)求解方程组(1)、(2), 得 0x y x y u u v v ===≡, 说明,u v 皆与,x y 无关, 因而为常数, 从而()f z 也为常数. (4)同理, 2v u =两端分别对,x y 求偏导数, 得 再联立柯西—黎曼方程, x y y x u v u v ==-, 仍有(5)同前面一样, 231u v +=两端分别对,x y 求偏导数, 得 考虑到柯西—黎曼方程, x y y x u v u v ==-, 仍有0x y x y u u v v ===≡, 证毕.6.计算下列各值(若是对数还需求出主值)(1)2i eπ- (2)()Ln i - (3)(34)Ln i -+(4)sin i (5)(1)i i + (6)2327解:(1)2cos()sin()22i ei i πππ-=-+-=-(2)1()ln arg()2(2)2Ln i i i k i k i ππ-=-+-+=-+,k 为任意整数,主值为:1()2ln i i π-=-(3)(34)ln 34arg(34)2Ln i i i k i π-+=-++-++ 4ln5(arctan 2)3k i ππ=+-+, k 为任意整数主值为:4ln(34)ln5(arctan )3i i π-+=+-(4)..1sin 22i i i i e e e e i i i ----== (5)(2)2(1)44(1)i i k i k iiLn i i eeeππππ++--++===24(cosln sin k ei ππ--=+, k 为任意整数(6)22224427(272)27333333279Ln ln k i ln k i k i e e e e e πππ+====, 当k 分别取0, 1, 2时获得3个值:9, 4399(1)2i e π=-+, 8399(1)2i e π=-+7.求2z e 和2z Arge 解:2222z x y xyie e-+=, 因此根据指数函数的界说, 有2z e22x y e-=, 222z Arge xy k π=+, (k 为任意整数)8.设i zre θ=, 求Re[(1)]Ln z -解:(1)ln 1[arg(1)2]Ln z z i z k i π-=-+-+, 因此9.解下列方程:(1)1ze =+ (2)ln 2z i π=(3)sin cos 0z z += (4)shz i =解:(1)方程两端取对数得:1(1)ln 2(2)3z Ln k i π=+=++(k 为任意整数)(2)根据对数与指数的关系, 应有(3)由三角函数公式(同实三角函数一样), 方程可变形为 因此,4z k ππ+= 即 4z k ππ=-, k 为任意整数(4)由双曲函数的界说得 2z ze e shz i --==, 解得 2()210z z e ie --=, 即z e i =, 所以(2)2z Lni k i ππ==+ , k 为任意整数10.证明罗比塔法则:若()f z 及()g z 在0z 点解析, 且000()()0, ()0f z g z g z '==≠, 则000()()lim()()z z f z f z g z g z →'=', 并由此求极限 00sin 1lim ; lim z z z z e z z→→-证明:由商的极限运算法则及导数界说知000000000000()()()()lim ()lim lim ()()()()()lim z z z z z z z z f z f z f z f z z z z z f z g z g z g z g z g z z z z z →→→→----==----00()()f zg z '=', 由此, 00sin cos lim lim 11z z z zz →→==11.用对数计算公式直接验证:(1)22Lnz Lnz ≠ (2)12Lnz =解:记i z re θ=, 则(1)左端22()2ln (22)i Ln r e r k i θθπ==++,右端2[ln (2)]2ln (24)r m i r m i θπθπ=++=++, 其中的,k m 为任意整数.显然, 左端所包括的元素比右真个要多(如左端在1k =时的值为2ln (22)r i θπ++, 而右端却取不到这一值), 因此两端不相等.(2)左端221]ln (2)22m i Ln rer m k i θπθππ+==+++右端11[ln (2)]ln ()222r n i r n i θθππ=++=++其中,k n 为任意整数, 而 0,1m =不难看出, 对左端任意的k , 右端n 取2k 或21k +时与其对应;反之, 对右端任意的n , 当2n l =为偶数时, 左端可取,0k l m ==于其对应, 而当21n l =+为奇数时, 左端可取2,1k l m ==于其对应.综上所述, 左右两个集合中的元素相互对应, 即二者相等.12.证明sin sin , cos cos z z z z == 证明:首先有(cos sin )(cos sin )z x x x iy z e e y i y e y i y e e -=+=-== , 因此sin 2i z i z e e z i--==, 第一式子证毕.同理可证第二式子也成立.13.证明Im Im sin z z z e ≤≤ (即sin yy z e ≤≤) 证明:首先, sin 222iz izizizy y ye e e e e e z e i ---+-+=≤=≤, 右端不等式获得证明.其次, 由复数的三角不等式又有sin 2222iz izy yy yiz ize e e e e ee e z i--------=≥==,根据高等数学中的单调性方法可以证明0x ≥时2x xe e x --≥, 因此接着上面的证明, 有sin 2y y e ez y --≥≥, 左端不等式获得证明.14.设z R ≤, 证明sin , cos z chR z chR ≤≤证明:由复数的三角不等式, 有sin 2222iz iz y y iz iz y y e e e e e e e ez ch y i ----+-++=≤===,由已知, y z R ≤≤, 再主要到0x ≥时chx 单调增加, 因此有sin z ch y chR ≤≤,同理,cos 2222iz izy yizizy y e e e e e e e ez ch y chR----++++=≤===≤ 证毕.15.已知平面流场的复势()f z 为(1)2()z i + (2)2z (3)211z +试求流动的速度及流线和等势线方程.解:只需注意, 若记()(,)(,)f z x y i x y ϕψ=+, 则 流场的流速为()v f z '=, 流线为1(,)x y c ψ≡, 等势线为2(,)x y c ϕ≡, 因此, 有(1)2222()[(1)](1)2(1)z i x y i x y x y i +=++=-+++ 流速为()2()2()v f z z i z i '==+=-,流线为1(1)x y c +≡, 等势线为 222(1)x y c -+≡ (2)333223()3(3)z x iy x xy x y y i =+=-+- 流速为22()33()v f z z z '===,流线为2313x y y c -≡, 等势线为 3223x xy c -≡(3)22221111()112z x iy x y xyi==+++-++ 流速为222222()(1)(1)z zv f z z z --'===++, 流线为 122222(1)4xyc x y x y ≡-++, 等势线为 222222221(1)4x y c x y x y-+≡-++ 习题三谜底 1.计算积分2()cx y ix dz -+⎰, 其中c 为从原点到1i +的直线段解:积分曲线的方程为, x t y t ==, 即z x iy t ti =+=+, :01t →, 代入原积分表达式中, 得2.计算积分z ce dz ⎰, 其中c 为 (1)从0到1再到1i +的折线 (2)从0到1i +的直线解:(1)从0到1的线段1c 方程为:, :01z x iy x x =+=→,从1到1i +的线段2c 方程为:1, :01z x iy iy y =+=+→, 代入积分表达式中, 得11(sin1cos1)(cos1sin1)11i e ei i i e i e +=-+-+=+-=-;(2)从0到1i +的直线段的方程为z x iy t ti =+=+, :01t →, 代入积分表达式中, 得1100()(1)(cos sin )zt titce dz e t ti dt i e t i t dt +'=+=++⎰⎰⎰,对上述积分应用分步积分法, 得3.积分2()cx iy dz +⎰, 其中c 为(1)沿y x =从0到1i + (2)沿2y x =从0到1i + 解:(1)积分曲线的方程为z x iy t ti =+=+, :01t →, 代入原积分表达式中, 得(2)积分曲线的方程为 2z x iy x x i =+=+, :01t →, 代入积分表达式中, 得4.计算积分cz dz ⎰, 其中c 为(1)从-1到+1的直线段 (2)从-1到+1的圆心在原点的上半圆周解:(1)c 的方程为z x =, 代入, 得(2)c 的方程为cos sin , :0z x iy i θθθπ=+=+→, 代入, 得5.估计积分212c dz z +⎰的模,其中c 为+1到-1的圆心在原点的上半圆周.解:在c 上, z =1, 因而由积分估计式得222111222c c c cdz ds ds ds z z z ≤≤=++-⎰⎰⎰⎰c =的弧长π= 6.用积分估计式证明:若()f z 在整个复平面上有界, 则正整数1n >时其中R c 为圆心在原点半径为R 的正向圆周. 证明:记()f z M ≤, 则由积分估计式得122n n M M R R Rππ-==, 因1n >, 因此上式两端令R →+∞取极限, 由夹比定理, 得()lim 0Rn R c f z dz z →+∞=⎰, 证毕. 7.通过分析被积函数的奇点分布情况说明下列积分为0的原因, 其中积分曲线c 皆为1z =.(1)2(2)c dzz +⎰ (2)224cdzz z ++⎰(3)22cdzz +⎰(4)cos c dzz ⎰ (5)z cze dz ⎰解:各积分的被积函数的奇点为:(1)2z =-, (2)2(1)30z ++=即1z =-±, (3)z = (4), 2z k k ππ=+为任意整数,(5)被积函数处处解析, 无奇点不难看出, 上述奇点的模皆年夜于1, 即皆在积分曲线之外, 从而在积分曲线内被积函数解析, 因此根据柯西基本定理, 以上积分值都为0. 8.计算下列积分:(1)240ize dz π⎰ (2)2sin iizdz ππ-⎰(3)10sin z zdz ⎰解:以上积分皆与路径无关, 因此用求原函数的方法:(1)4220240111()(1)222ii izz e dz ee e i πππ==-=-⎰ (2)21cos2sin 2sin []224iiii i iz z zzdz dz ππππππ----==-⎰⎰(3)111100sin cos cos cos z zdz zd z z z zdz =-=-+⎰⎰⎰9.计算22cdzz a-⎰, 其中c 为不经过a ±的任一简单正向闭曲线.解:被积函数的奇点为a ±, 根据其与c 的位置分四种情况讨论:(1)a ±皆在c 外, 则在c 内被积函数解析, 因而由柯西基本定理(2)a 在c 内, a -在c 外, 则1z a+在c 内解析, 因而由柯西积分公式:22112z a c c dz z a dz i i z a z a a z a ππ=+===-+-⎰⎰ (3)同理, 当a -在c 内, a 在c 外时, (4)a ±皆在c 内此时, 在c 内围绕,a a -分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:注:此题若分解221111()2a z a z a z a=--+-, 则更简单! 10. 计算下列各积分解:(1)11()(2)2z dz i z z =-+⎰, 由柯西积分公式 (2)23221izz i e dz z -=+⎰, 在积分曲线内被积函数只有一个奇点i , 故此同上题一样:(3)2232(1)(4)z dzz z =++⎰在积分曲线内被积函数有两个奇点i ±, 围绕,i i -分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:(4)4221z zdz z -=-⎰, 在积分曲线内被积函数只有一个奇点1,故此 (5)221sin 41z zdz z π=-⎰, 在积分曲线内被积函数有两个奇点1±, 围绕1,1-分别做两条相互外离的小闭合曲线12,c c , 则由复合闭路原理得:(6)22, (1)nnz z dz n z =-⎰为正整数, 由高阶导数公式 11. 计算积分312(1)zc e dz i z z π-⎰, 其中c 为 (1)12z = (2)112z -= (3)2z =解:(1)由柯西积分公式 (2)同理, 由高阶导数公式 (3)由复合闭路原理30(1)z z e z ==-11()2!z z e z =''+12e=-, 其中, 12,c c 为2z =内分别围绕0, 1且相互外离的小闭合曲线.12.积分112z dz z =+⎰的值是什么?并由此证明012cos 054cos d πθθθ+=+⎰解:首先, 由柯西基本定理, 1102z dz z ==+⎰, 因为被积函数的奇点在积分曲线外.其次, 令(cos sin )z r i θθ=+, 代入上述积分中, 得 考察上述积分的被积函数的虚部, 便获得2012cos 054cos d πθθθ+==+⎰, 再由cos θ的周期性, 得 即012cos 054cos d πθθθ+=+⎰, 证毕.13. 设(),()f z g z 都在简单闭曲线c 上及c 内解析, 且在c 上 ()()f z g z =, 证明在c 内也有()()f z g z =. 证明:由柯西积分公式, 对c 内任意点0z ,00001()1()(), ()22c c f z g z f z dz g z dz i z z i z z ππ==--⎰⎰, 由已知, 在积分曲线c 上, ()()f z g z =, 故此有 再由0z 的任意性知, 在c 内恒有()()f z g z =, 证毕. 14. 设()f z 在单连通区域D 内解析, 且()11f z -<, 证明(1)在D 内()0f z ≠;(2)对D 内任一简单闭曲线c , 皆有()0()cf z dz f z '=⎰ 证明:(1)显然, 因为若在某点处()0,f z =则由已知 011-<, 矛盾!(也可直接证明:()1()11f z f z -<-<, 因此1()11f z -<-<, 即0()2f z <<, 说明()0f z ≠)(3)既然()0f z ≠, 再注意到()f z 解析, ()f z '也解析, 因此由函数的解析性法则知()()f z f z '也在区域D 内解析, 这样,根据柯西基本定理, 对D 内任一简单闭曲线c , 皆有()0()cf z dz f z '=⎰, 证毕. 15.求双曲线22y x c -= (0c ≠为常数)的正交(即垂直)曲线族.解:22u y x =-为调和函数, 因此只需求出其共轭调和函数(,)v x y , 则(,)v x y c =即是所要求的曲线族.为此, 由柯西—黎曼方程2x y v u y =-=-, 因此(2)2()v y dx xy g y =-=-+⎰, 再由 2y x v u x ==-知, ()0g y '≡, 即0()g y c =为常数, 因此02v xy c =-+, 从而所求的正交曲线族为xy c ≡(注:实际上, 本题的谜底也可观察出, 因极易想到 222()2f z z y x xyi =-=--解析)16.设sin px v e y =, 求p 的值使得v 为调和函数. 解:由调和函数的界说2sin (sin )0px px xx yy v v p e y e y +=+-=,因此要使v 为某个区域内的调和函数, 即在某区域内上述等式成立, 必需210p -=, 即1p =±.17.已知22255u v x y xy x y +=-+--, 试确定解析函数 解:首先, 等式两端分别对,x y 求偏导数, 得225x x u v x y +=+-----------------------------------(1)225y y u v y x +=-+- -------------------------------(2)再联立上柯西—黎曼方程x y u v =------------------------------------------------------(3)y x u v =-----------------------------------------------------(4)从上述方程组中解出,x y u u , 得这样, 对x u 积分, 得25(),u x x c y =-+再代入y u 中, 得 至此获得:2205,u x x y c =--+由二者之和又可解出 025v xy y c =--, 因此200()5f z u iv z z c c i =+=-+-, 其中0c 为任意实常数. 注:此题还有一种方法:由定理知 由此也可很方便的求出()f z .18.由下列各已知调和函数求解析函数()f z u iv =+ 解:(1)22, ()1u x xy y f i i =+-=-+, 由柯西—黎曼方程,2y x v u x y ==+, 对y 积分, 得212()2v xy y c x =++, 再由x y v u =-得2()2y c x x y '+=-+, 因此201(), ()2c x x c x x c '=-=-+, 所以22011222v xy y x c =+-+,因()1f i =-, 说明0,1x y ==时1v =, 由此求出012c =, 至此获得:2222111()(2)222f z u iv x xy y y x xy i =+=+-+-++,整理后可得:211()(1)22f z i z i =-+(2)22yv x y=+, (2)0f = 此类问题, 除上题采纳的方法外, 也可这样:222222222222()1()()()x y xy z i x y x y z zz -=-==++, 所以 1()f z c z=-+,其中c 为复常数.代入(2)0f =得, 12c =, 故此(3)arctan , (0)yv x x=>同上题一样, ()x x y x f z u iv v iv '=+=+22221x y z i zx y x y zz -=+==++, 因此0()ln f z z c =+,其中的ln z 为对数主值, 0c 为任意实常数. (4)(cos sin )x u e x y y y =-, (0)0f =(sin sin cos )x x y v u e x y y y y =-=++, 对x 积分, 得再由y x v u =得()0c x '=, 所以0()c x c =为常数, 由(0)0f =知, 0x y ==时0v =, 由此确定出00c =, 至此获得:()f z u iv =+=(cos sin )x e x y y y -(sin cos )x ie x y y y ++,整理后可得 ()z f z ze =19.设在1z ≤上()f z 解析, 且()1f z ≤, 证明 (0)1f '≤ 证明:由高阶导数公式及积分估计式, 得1112122z ds πππ=≤==⎰, 证毕. 20.若()f z 在闭圆盘0z z R -≤上解析, 且()f z M ≤, 试证明柯西不等式 ()0!()n n n f z M R≤, 并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定为常数. 证明:由高阶导数公式及积分估计式, 得11111!!!!()2222n n n n z z n n M n M n M f z ds ds R R R R R ππππ+++===≤==⎰⎰, 柯西不等式证毕;下证刘维尔定理:因为函数有界, 无妨设()f z M ≤, 那么由柯西不等式, 对任意0z 都有0()Mf z R'≤, 又因()f z 处处解析, 因此R 可任意年夜, 这样, 令R →+∞, 得0()0f z '≤, 从而0()0f z '=, 即 0()0f z '=, 再由0z 的任意性知()0f z '≡, 因而()f z 为常数, 证毕.习题四谜底1. 考察下列数列是否收敛, 如果收敛, 求出其极限.(1)1n n z i n=+解:因为lim n n i →∞不存在, 所以lim n n z →∞不存在, 由定理4.1知, 数列{}nz 不收敛.(2)(1)2n n i z -=+解:1sin )22i i θθ+=+, 其中1arctan 2θ=, 则()sin )cos sin nnn z i n i n θθθθ-⎤=+=-⎥⎣⎦.因为lim 0nn →∞=,cos sin 1n i n θθ-=, 所以()lim cos sin 0nn n i n θθ→∞-=由界说4.1知, 数列{}n z 收敛, 极限为0.(3)21n i n z e nπ-=解:因为21n i eπ-=, 1lim 0n n →∞=, 所以21lim 0n i n enπ-→∞= 由界说4.1知, 数列{}n z 收敛, 极限为0. (4)()n n zz z=解:设(cos sin )z r i θθ=+, 则()cos 2sin 2n n z z n i n zθθ==+, 因为lim cos 2n n θ→∞, lim sin 2n n θ→∞都不存在, 所以lim n n z →∞不存在, 由定理4.1知, 数列{}n z 不收敛.2. 下列级数是否收敛?是否绝对收敛?(1)1!nn i n ∞=∑解:1!!n i n n =, 由正项级数的比值判别法知该级数收敛, 故级数1!nn i n ∞=∑收敛, 且为绝对收敛. (2)2ln nn i n∞=∑解:222cos sin 22ln ln ln n n n n n n i i n n n ππ∞∞∞====+∑∑∑, 因为2cos11112ln ln 2ln 4ln 6ln 8n n n π∞==-+-++∑是交错级数, 根据交错级数的莱布尼兹审敛法知该级数收敛, 同样可知,2sin111121ln ln 3ln 5ln 7ln 9n n n π∞==-+-++∑也收敛, 故级数2ln nn i n∞=∑是收敛的. 又22111,ln ln ln 1n n n i n n n n ∞∞===>-∑∑, 因为211n n ∞=-∑发散, 故级数21ln n n ∞=∑发散, 从而级数2ln nn i n ∞=∑条件收敛.(3)0cos 2n n in∞=∑解:1110000cos 2222n n n nn n n n n n n n in e e e e --∞∞∞∞+++====+==+∑∑∑∑, 因级数102nn n e ∞+=∑发散, 故cos 2nn in∞=∑发散. (4)()35!nn i n ∞=+∑解:()035!!nn n i n n ∞∞==+=∑∑, 由正项正项级数比值判别法知该级数收敛, 故级数()035!nn i n ∞=+∑收敛, 且为绝对收敛.3.试确定下列幂级数的收敛半径.(1)()01n n n i z ∞=+∑解:1lim 1n n n c i c +→∞=+=故此幂级数的收敛半径R =. (2)0!n nn n z n∞=∑解:11(1)!11lim lim lim 1(1)!(1)n n n n n n n n c n n c n n e n++→∞→∞→∞+=⋅==++, 故此幂级数的收敛半径R e =.(3)1in n n e z π∞=∑解:11lim lim 1in n n n innc e c e ππ++→∞→∞==, 故此幂级数的收敛半径1R =.(4)221212n nn n z ∞-=-∑解:令2z Z =, 则22111212122n n n n n n n n z Z ∞∞--==--=∑∑112112lim lim 2122n n n n nnn c n c ++→∞→∞+==-, 故幂级数11212n n n n Z ∞-=-∑的收敛域为2Z <, 即22z <, 从而幂级数221212n n n n z ∞-=-∑的收敛域为z <, 收敛半径为R =.4.设级数0n n α∞=∑收敛, 而0n n α∞=∑发散, 证明0n n n z α∞=∑的收敛半径为1. 证明:在点1z =处,nnnn n z αα∞∞===∑∑, 因为0n n α∞=∑收敛, 所以n nn z α∞=∑收敛, 故由阿贝尔定理知, 1z <时, 0n nn z α∞=∑收敛, 且为绝对收敛, 即0n n n z α∞=∑收敛.1z >时, 0nn n n n z αα∞∞==>∑∑, 因为0n n α∞=∑发散, 根据正项级数的比力准则可知, 0nn n z α∞=∑发散, 从而0n n n z α∞=∑的收敛半径为1, 由定理4.6, 0n n n z α∞=∑的收敛半径也为1.5.如果级数0n n n c z ∞=∑在它的收敛圆的圆周上一点0z 处绝对收敛, 证明它在收敛圆所围的闭区域上绝对收敛. 证明:0z z <时, 由阿贝尔定理, 0n n n c z ∞=∑绝对收敛.0z z =时, 00nnn n n n c z c z ∞∞===∑∑, 由已知条件知, 00n n n c z ∞=∑收敛,即0nn n c z ∞=∑收敛, 亦即0n n n c z ∞=∑绝对收敛.6.将下列函数展开为z 的幂级数, 并指出其收敛区域.(1)221(1)z + 解:由于函数221(1)z +的奇点为z i =±, 因此它在1z <内处处解析, 可以在此圆内展开成z 的幂级数.根据例4.2的结果, 可以获得24211(1),11n n z z z z z=-+-+-+<+.将上式两边逐项求导, 即得所要求的展开式221(1)z +='24122211123(1),112n n z z nz z z z +-⋅-=-+++-+<+()(). (2)1(0,0)()()a b z a z b ≠≠-- 解:①a b =时, 由于函数1(0,0)()()a b z a z b ≠≠--的奇点为z a =, 因此它在z a <内处处解析, 可以在此圆内展开成z 的幂级数.='1(1)nn z z a a a⋅++++=111()n n n z a a a -⋅+++=1211,n n n z z a a a -++++<. ②a b ≠时, 由于函数1(0,0)()()a b z a z b ≠≠--的奇点为12,z a z b ==,因此它在min{,}z a b <内处处解析, 可以在此圆内展开成z 的幂级数.=2121111()nnn n z z z z a b a aa b bb ++-----++++-=22111111111[()()],min{,}nn n z z z a b a b b a b a b a ++-+-++-+<-.(3)2cos z解:由于函数2cos z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.4822cos 1(1),2!4!(2)!nnz z z z z n =-+-+-+<+∞.(4)shz解:由于函数shz 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.321321()()()()sin ((1)),3!(21)!3!(21)!n n niz iz z z shz i iz i iz z z n n ++=-=--++-+=++++<+∞++(5)2sin z解:由于函数2sin z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.=221(2)(2)(1),22!2(2)!nn z z z n +++-+<+∞⨯⨯.(6)sin z e z解:由于函数sin z e z 在复平面内处处解析, 所以它在整个复平面内可以展开成z 的幂级数.(1)(1)sin 22iz iz i z i zzze e e e e z e i i-+---=⋅==22221(1)(1)(1)(1)(1(1)1(1))22!!2!!n n n n i z i z i z i z i z i z i n n ++--++++++-------=2122(1)(1)(2)22!!n n n i i i iz z z i n ⋅+--++++=32,3z z z z +++<+∞. 7. 求下列函数展开在指定点0z 处的泰勒展式, 并写出展式成立的区域.(1)0,2(1)(2)zz z z =++解: 21(1)(2)21z z z z z =-++++, 022111(2)222422414nnn z z z z ∞=-==⋅=-+-++∑, 011111(2)212333313nnn z z z z ∞=-==⋅=-+-++∑. 由于函数(1)(2)zz z ++的奇点为121,2z z =-=-, 所以这两个展开式在23z -<内处处成立.所以有:210001(2)1(2)11()(2),23(1)(2)243323n n n n n n nn n n z z z z z z z ∞∞∞+===--=-=---<++∑∑∑.(2)021,1z z = 解:由于2111(1)(1)(1)(1),1111n n z z z z z z ==--+-++--+-<-+ 所以'11211()12(1)(1)(1),11n n z n z z z z --=-=--++--+-<.(3)01,143z i z=+- 解:1111134343(1)33133(1)131(1)13z z i i i z i i z i i===⋅--------------- =100133(1)(1)13(13)(13)n n n n n n n n z i z i i i i ∞∞+==⋅--=-----∑∑.展开式成立的区域:3(1)113z i i--<-, 即13z i --< (4)0tan ,4z z π=解:'2tan sec z z =,''2tan 2sec tan z z z=,'''22tan 2sec (2tan 1)z z z =+, ……,'24tan sec 24z z ππ===, ''244tan 2sec tan 2z z zz zππ====,'''22448tan 2sec (2tan 1)3z z zz z ππ===+=……, 故有因为tan z 的奇点为,2z k k Z ππ=+∈, 所以这个等式在44z ππ-<的范围内处处成立.8. 将下列函数在指定的圆域内展开成洛朗级数.(1)21,12(1)(2)z z z <<+- 解:2221112()(1)(2)5211z z z z z z =--+--++,222222002221212(1)(1)111n nn n n n z z z z z z∞∞+====-=-++∑∑, 故有2121220001112((1)(1))(1)(2)52n nn n n n n n n z z z z z ∞∞∞+++====-+-+-+-∑∑∑(2)21,01,1(1)z z z z z +<<<<+∞- 解:222112(1)(1)z z z z z z +=+--①在01z <<内 ②在1z <<+∞内 (3)1,011,12(1)(2)z z z z <-<<-<+∞--解:①在011z <-<内, ②在12z <-<+∞内20111111111(1)(1)1(1)(2)22122(2)(2)(2)12nnn n n n z z z z z z z z z z ∞∞+===⋅=⋅=-=-----+-----+-∑∑(4)1sin ,011z z<-<+∞- 解:在01z <-<+∞内(5)cos,011zz z <-<+∞- 解:111cos cos(1)cos1cos sin1sin 1111z z z z z =+=----- 在01z <-<+∞内故有9.将221()(1)f z z =+在z i =的去心邻域内展开成洛朗级数.解:因为函数221()(1)f z z =+的奇点为z i =±, 所以它以点z i =为心的去心邻域是圆环域02z i <-<.在02z i <-<内又11001111()()(1)(1)()222(2)(2)12n n n n n n n n z i z i z i z i i i i i i i∞∞++==---=-⋅=--=---++∑∑ 故有222222001111()(1)()(1)()(1)()(2)(2)n n n n n n n n n n f z z i z i z z i i i ∞∞-++==++==⋅--=--+-∑∑ 10.函数()ln f z z =能否在圆环域0(0)z R R <<<<+∞内展开为洛朗级数?为什么?答:不能.函数()ln f z z =的奇点为,0,z z R ≤∈, 所以对,0R R ∀<<+∞, 0z R <<内都有()f z 的奇点, 即()f z 以0z =为环心的处处解析的圆环域不存在, 所以函数()ln f z z =不能在圆环域0(0)z R R <<<<+∞内展开为洛朗级数.习题五谜底1. 求下列各函数的孤立奇点, 说明其类型, 如果是极点, 指出它的级. (1)221(1)z z z -+解:函数的孤立奇点是0,z z i ==±, 因222222221111111(1)(1)()()()()z z z z z z z z z i z z i z i z z i ----=⋅=⋅=⋅++-++- 由性质5.2知, 0z =是函数的1级极点, z i =±均是函数的2级极点. (2)3sin zz 解:函数的孤立奇点是z =, 因32133sin 1((1))3!(21)!n nz z z z z z n +=-++-+, 由极点界说知, 0z =是函数的2级极点. (3)ln(1)z z+ 解:函数的孤立奇点是0z =, 因0ln(1)lim1z z z→+=, 由性质5.1知,0z =是函数可去奇点.(4)21(1)z z e -解:函数的孤立奇点是2z k i π=,①0k =, 即0z =时, 因4223(1)2!!n zz z z e z n +-=++++所以0z =是2(1)z z e -的3级零点, 由性质5.5知, 它是21(1)z z e -的3级极点②2z k i π=, 0k ≠时, 令2()(1)z g z z e =-, '2()2(1)z z g z z e z e =-+, 因(2)0g k i π=, '2(2)(2)0g k i k i ππ=≠, 由界说 5.2知,2(0)z k i k π=≠是()g z 的1级零点, 由性质5.5知, 它是21(1)z z e -的1级极点 (5)2(1)(1)zzz e π++ 解:函数的孤立奇点是(21),z k i k Z =+∈,令2()(1)(1)z g z z e π=++,'2()2(1)(1)z z g z z e e z πππ=+++, ''22()2(1)4(1)z z z g z e ze e z πππππ=++++①0z i =±时, 0()0g z =, '0()0g z =, ''0()0g z ≠, 由界说5.2知,0z i =±是()g z 的2级零点, 由性质5.5知, 它是21(1)(1)z z e π++的2级极点, 故0z i =±是2(1)(1)zzz e π++的2级极点.②1(21),1,2,z k i k =+=±时, 1()0g z =, '1()0g z ≠, 由界说5.2知, 1(21),1,2,z k i k =+=±是()g z 的1级零点, 由性质5.5知, 它是21(1)(1)z z e π++的1级极点, 故是2(1)(1)z zz e π++的1级极点.(6)21sin z解:函数的孤立奇点是0z =, 1,2,z z k ==±= 令2()sin g z z =, '2()2cos g z z z =,①0z =时, 因64222()sin (1)3!(21)!n nz z g z z z n +==-++-++, 所以0z =是()g z 的2级零点, 从而它是21sin z 的2级极点.②1,2,z z k ==±=时, ()0g z =, '()0g z ≠, 由界说5.2知,1,2,z z k ==±=是()g z 的1级零点, 由性质5.5知,它是21sin z的1级极点. 2. 指出下列各函数的所有零点, 并说明其级数.(1)sin z z解:函数的零点是,z k k Z π=∈, 记()sin f z z z =,'()sin cos f z z z z =+①0z =时, 因4222sin (1)3!(21)!n nz z z z z n +=-++-++, 故0z =是sin z z的2级零点.②,0z k k π=≠时, ()0z k f z π==, '()0z k f z π=≠, 由界说5.2知,,0z k k π=≠是sin z z 的1级零点. (2)22z z e解:函数的零点是0z =, 因242222(1)2!!n z z z z e z z n =+++++, 所以由性质5.4知, 0z =是22z z e 的2级零点.(3)2sin (1)z z e z -解:函数的零点是00z =, 1z k π=, 22z k i π=, 0k ≠,记2()sin (1)z f z z e z =-, '22()cos (1)sin [2(1)]z z z f z z e z z e z z e =-++-①0z =时, 0z =是sin z 的1级零点, , 1z e -的1级零点, 2z 的2级零点, 所以0z =是2sin (1)z z e z -的4级零点.②1z k π=, 0k ≠时, 1()0f z =, '1()0f z ≠, 由界说 5.2知, 1z k π=, 0k ≠是()f z 的1级零点.③22z k i π=, 0k ≠时, 1()0f z =, '1()0f z ≠, 由界说 5.2知, 22z k i π=, 0k ≠是()f z 的1级零点.3. 0z =是函数2(sin 2)z shz z -+-的几级极点?答:记()sin 2f z z shz z =+-, 则'()cos 2f z z chz =+-, ''()sin f z z shz =-+,'''()cos f z z chz =-+, (4)()sin f z z shz =+, (5)()cos f z z chz =+, 将0z =代入, 得:''''''(4)(0)(0)(0)(0)(0)0f f f f f =====, (5)()0f z ≠, 由界说5.2知, 0z =是函数()sin 2f z z shz z =+-的5级零点, 故是2(sin 2)z shz z -+-的10级极点.4. 证明:如果0z 是()f z 的(1)m m >级零点, 那么0z 是'()f z 的1m -级零点.证明:因为0z 是()f z 的m 级零点, 所以'''10000()()()()0m f z f z f z f z -=====,0()0m f z ≠, 即''''2000()(())(())0m f z f z f z -====, '10(())0m f z -≠, 由界说5.2知, 0z 是'()f z 的1m -级零点.5. 求下列函数在有限孤立奇点处的留数. (1)212z z z+- 解:函数的有限孤立奇点是0,2z z ==, 且0,2z z ==均是其1级。
复变函数参考答案(1-8章)
复变函数与积分变换同步练习参考答案中北大学复变函数教研室编印1复变函数同步练习第一章参考答案三、作业题1、(1)设23412i z i +⎛⎞=⎜⎟−⎝⎠,则z = 5 ,辐角主值为4arctan()3π−。
(2)设55(1)1(1)1i z i −−=++,则其实部为125−,虚部为3225−。
提示:本题注意到2(1)2i i −=−,2(1)2i i +=。
则52225222(1)1[(1)](1)1(2)(1)1132(1)1[(1)](1)1(2)(1)12525i i i i i z i i i i i i −−−−−−−−====−−+++++++ 。
(3)一复数对应的向量按逆时针方向旋转23π时对应的复数为1i +,则原复数为1122−+−+。
提示:本题相当于解23111(1)()(1)2222i z ei i i i π−−+−=+=−−+=+。
(4)设1z =2z i =−,则12z z 的指数式i122e π,12zz 的三角式为 155[cos sin 21212i ππ+。
(5)2122lim1z zz z z z →+−−=−32。
提示:211122(2)(1)23limlim lim 1(1)(1)12z z z zz z z z z z z z z z →→→+−−+−+===−−++。
(6)设复数z 满足arg(2)3z π+=,5arg(2)6z π−=,那么z=1−+。
提示:(利用复数的几何意义)向量2z −与向量2z +夹角为5632πππ−=,在复平面上,代表复数2z −、z 、2z +的点在平行于x 轴的直线上(由于此三点的虚轴没有发生变2化)。
连接0,2z +,2z −的三角形为Rt Δ。
因此推出向量2z =,2arg 3z π=,即1z =−+。
本题也可以利用代数法来做。
2、把复数πααα≤≤+−=0,sin cos 1i z 化为三角表示式与指数表示式,并求z 的辐角主值。
复变函数课后习题答案(全)
创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。
复变函数答案 钟玉泉 第一章习题全解
第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅ 3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)R e (2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()200z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅ 令2001,,A B z C z 2==-=-γ,从而圆周可以写成 0A Z Z B Z B ZC +++=,A C 为实数,且22200B z z AC 2=>-γ=9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周. (2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122yy v y u +-=+=且u y y y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续. 13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 2233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg ,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =.9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143a r g a r g a r g z z z z z z z z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.。
复变函数习题及答案解析(东南大学版)
第1章 复数与复变函数1.1 复数及复平面1-1若1||1,n nz z z ω==+(n 是正整数),则(). (A )Re()0ω=(B )Im()0ω=(C )arg()0ω=(D )arg()πω=解由||1z =知1z z=,因此1n n n n z z z z+=+为实数,故Im()0ω=. 选(B )||1z =时n z =1/.n n z z =1-23311()()22n n--+=(). (A )(1)2n -(B )1(1)2n --(C )2 (D )2-解2i π3e =2i π3e =知,等式中两项皆为1. 选(C )1-3i |(1e )|n θ+=().(A )2cos2n nθ(B )2sin2n nθ(C )/222(1cos )n n θ+(D )/222(1sin )n n θ+解i 222|1e |(1cos )sin 2(1cos )θθθθ+=++=+故i /22|(1e )|2(1cos ).n nn θθ+=+选(C )本题容易错选(A)项,因为2(1+2cos )4cos 2θθ=得i |1e |θ+=2cos .2θ错在cos 2θ应加上绝对值.1-442max{|i |||1}z z z +≤=(). (A(BC(D )2 解由4242|i |||||2,z z z z +≤+≤而当i4e z π=时,πi4i π2422e 1,i ie 1,|i |2z z z z ==-==-+=,故最大值为2.选(D )用不等式确定最大值是常用方法. 1-5对任意复数12,z z ,证明不等式121212||||||||||||.z z z z z z -≤±≤+证1121212*********|||()|||||||||||||||||z z z z z z z z z z z z z z z -=+-≤+-=+=+-≤++故1212||||||z z z z -≤+,同理2112||||||z z z z -≤+ 即121212||||||||z z z z z z -+≤-≤+ 也就是1212||||||||.z z z z -≤+证2(代数法)设i (1,2)k k k z x y k =+= 则只要证222121122||||2||||||z z z z z z +≤++即只要证1212x x y y +≤1) 只要证2222212121122()()()x x y y x y x y +≤++ 此不等式等价于22221221112220x y x y x y x y +-≥由于,k k x y 皆是实数,上式左边是完全平方式,故此不等式成立,也就是1212||||||z z z z +≤+成立,以下同证1.证3(三角法).设12i i 1122e ,e ,z r z r θθ==则2221211221122||(cos cos )(sin sin )z z r r r r θθθθ+=+++222212*********cos()2r r r r r r r r θθ=+-≤+ 21212()(||||)r r z z =+=+即1212||||||z z z z +≤+成立,以下同证1.1-6 当1||≤z 时,求||α+nz 的最大与最小值,n 是正整数,a 是复常数. 解1(代数法).由1-5题知.||1||||||||||||αα+≤+≤+≤-a z z z z n n n我们知道,当1||=nz ,且向量n z 与α夹角为0°时右边不等式等号成立.故||α+nz 的最大值是.||1α+对左边不等式,要分情况讨论.(1)若1||>α,则.1||||||||-≥-≥+αααnnz z 等号当,1||=z 且nz 与α方向相反时成立.这时最小值是.1||-α(2)若1||≤α,则由0||≥+αn z ,当α-=nz 时等号成立,最小值为0.总之,不论α为何复数,|1|+nz 的最大值是||1α+;而当1||>α时,最小值为1||-α.当1||≤α时,最小值为0.解2 (几何法).我们仅就1||>α加以证明.由1||≤z 知1||≤nz 。
复变函数习题解答(第1章)
p44第一章习题(一)[ 13, 16, 17 , 20]13. 试证arg z ( -π < arg z ≤π )在负实轴(包括原点)上不连续,除此而外在z平面上处处连续.【解】记f(z) = arg z,D = \{ z∈ | Im(z) = 0,Re(z) ≤ 0},D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0}.(1) 首先,f(z)在原点无定义,故f(z)在原点处不连续.(2) 设a∈ ,且a < 0.则f(a) = π.考察点列z n = | a | (cos(1/n-π)+ i sin(1/n-π)),n∈ +.显然,-π < 1/n-π≤π,故f(z n) = 1/n-π.而lim n→∞z n = lim n→∞( | a | (cos(1/n-π)+ i sin(1/n-π)) ) = a,但lim n→∞f(z n) = lim n→∞(1/n-π) = -π≠f(a).故f(z)在a处不连续.(3) 下面证明f(z)在D1, D2, D3这三个区域上都连续.设z = x + i y,x, y∈ .(3.1) 在D1上,f(z) = arctan(y/x),因arctan(y/x)是{(x, y)∈ 2 | x > 0 }上的二元连续函数,故f(z)是D1上的连续函数.(3.2) 在D2上,f(z) = arccot(x/y),因arccot(x/y)是{(x, y)∈ 2 | y > 0 }上的二元连续函数,故f(z)是D2上的连续函数.(3.3) 在D3上,f(z) = arccot(x/y) -π,因arccot(x/y) -π是{(x, y)∈ 2 | y < 0 }上的二元连续函数,故f(z)是D3上的连续函数.(4) 最后证明f(z)是D = \{ z∈ | Im(z) = 0,Re(z) ≤ 0}上的连续函数.∀a∈D,因为D = D1⋂D2⋂D3,故存在k (k = 1, 2, 3),使得a∈D k.因D k是开集故存在r > 0,使得U r(a) = { z∈ | | z –a | < r } ⊆D k.根据(3),f(z)在D k上是连续的,故∀ε > 0,∃η> 0,使得∀z∈D k,当| z–a | < η时,| f(z) -f(a) | < ε.设δ= min { r, η},则∀z∈D,当| z–a | < δ时,z∈U r(a) ⊆D k,又因| z–a | < δ< η,故必有| f(z) -f(a) | < ε.所以,f在a处连续.由a的任意性,f(z)是上的连续函数.[连续性部分的证明可以用几何的方法,而且写起来会简单些.但我们之所以选择这个看起来很复杂的方法,是可以从这里看出θ(z) = arg(z)作为(x, y)的二元函数,在D1, D2, D3上都有很明显的可导的表达式,因此它在区域D上不仅是连续的,而且是连续可导二元函数:θx = y/(x2 + y2),θy = -x/(x2 + y2).证明中的第四部分并不是多余的,这是因为若f在两个集合A, B上都连续(即使它们有公共的部分),一般说来,并不能保证f在两个集合A⋂B上也连续.问题:若f在区域A, B上都连续,且A ⋃B ≠∅,问f在A⋂B上是否必连续?] 16. 试问函数f(z) = 1/(1 –z )在单位圆| z | < 1内是否连续?是否一致连续?【解】(1) f(z)在单位圆| z | < 1内连续.因为z在 内连续,故f(z) = 1/(1 –z )在 \{1}内连续(连续函数的四则运算),因此f(z)在单位圆| z | < 1内连续.(2) f(z)在单位圆| z | < 1内不一致连续.令z n= 1 – 1/n,w n= 1 – 1/(n + 1),n∈ +.则z n, w n都在单位圆| z | < 1内,| z n-w n | → 0,但| f(z n)-f(w n)| = | n - (n + 1) | = 1 > 0,故f(z)在单位圆| z | < 1内不一致连续.[也可以直接用实函数f(x) = 1/(1 –x )在(0, 1)不一致连续来说明,只要把这个实函数看成是f(z)在E = { z∈ | Im(z) = 0, 0 < Re(z) < 1 }上的限制即可.]17. 试证:复数列z n = x n + i y n以z0 = x0 + i y0为极限的充要条件是实数列{x n}及{y n}分别以x0及y0为极限.【解】(⇒) 若复数列z n = x n + i y n以z0 = x0 + i y0为极限,则∀ε > 0,∃N∈ +,使得∀n > N,有| z n -z0| < ε.此时有| x n -x0| ≤ | z n -z0| < ε;| y n -y0| ≤ | z n -z0| < ε.故实数列{x n}及{y n}分别以x0及y0为极限.(⇐) 若实数列{x n}及{y n}分别以x0及y0为极限,则∀ε > 0,∃N1∈ +,使得∀n > N1,有| x n -x0| < ε/2;∃N2∈ +,使得∀n > N2,有| y n -y0| < ε/2.令N = max{N1, N2},则∀n > N,有n > N1且n > N2,故有| z n -z0| = | (x n -x0) + i (y n -y0)| ≤ | x n -x0| + | y n -y0| < ε/2 + ε/2 = ε.所以,复数列z n = x n + i y n以z0 = x0 + i y0为极限.20. 如果复数列{z n}合于lim n→∞z n = z0≠∞,证明lim n→∞ (z1 + z2 + ... + z n)/n = z0.当z0≠∞时,结论是否正确?【解】(1) ∀ε > 0,∃K∈ +,使得∀n > K,有| z n -z0| < ε/2.记M = | z1-z0 | + ... + | z K-z0 |,则当n > K时,有| (z1 + z2 + ... + z n)/n-z0 | = | (z1-z0) + (z2-z0) + ... + (z n-z0) |/n≤ ( | z1-z0 | + | z2-z0 | + ... + | z n-z0 |)/n= ( | z1-z0 | + ... + | z K-z0 |)/n + ( | z K +1-z0 | + ... + | z n-z0 |)/n≤M/n + (n-K)/n · (ε/2) ≤M/n + ε/2.因lim n→∞ (M/n) = 0,故∃L∈ +,使得∀n > L,有M/n < ε/2.令N = max{K, L},则当n > K时,有| (z 1 + z 2 + ... + z n )/n - z 0 | ≤ M /n + ε /2 < ε /2 + ε /2 = ε.所以,lim n →∞ (z 1 + z 2 + ... + z n )/n = z 0.(2) 当z 0 ≠ ∞时,结论不成立.这可由下面的反例看出.例:z n = (-1)n · n ,n ∈ +.显然lim n →∞ z n = ∞.但∀k ∈ +,有(z 1 + z 2 + ... + z 2k )/(2k ) = 1/2,因此数列{(z 1 + z 2 + ... + z n )/n }不趋向于∞.[这个结论的证明的方法与实数列的情况完全相同,甚至反例都是一样的.]p45第一章习题(二)[ 6, 8, 9, 11, 12 ]6. 设| z | = 1,试证:| (a z + b )/(b * z + a * ) | = 1.(z *表示复数z 的共轭)【解】此题应该要求b * z + a * ≠ 0.| a z + b | = | (a z + b )* | = | a * z * + b * | = | a * z * + b * | · | z | = | (a * z * + b *) · z | = | a * z * · z + b * · z | = | a * | z |2 + b * · z | = | b * z + a * |.故| (a z + b )/(b * z + a * ) | = 1.8. 试证:以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件为111332211w z w z w z = 0. 【解】两个三角形同向相似是指其中一个三角形经过(一系列的)旋转、平移、位似这三种初等几何变换后可以变成另一个三角形(注意没有反射变换).例如z'z 312我们将采用下述的观点来证明:以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件是:将它们的一对对应顶点都平移到原点后,它们只相差一个位似旋转. 记f 1(z ) = z - z 1 (将z 1变到0的平移);f 3(z ) = z - w 1 (将0变到w 1的平移); 那么,三角形z 1z 2z 3与三角形w 1w 2w 3同向相似⇔ 存在某个绕原点的旋转位似变换f 2(z ) = z 0 z ,使得f 2 ( f 1(z k )) = f 3(w k ),(k = 2, 3),其中z 0∈ \{0}⇔ 存在z 0∈ \{0},使得z 0(z k - z 1) = w k - w 1,(k = 2, 3)⇔ (w 2 - w 1)/(z 2 - z 1) = (w 3 - w 1)/(z 3 - z 1)⇔ 13131212w w z z w w z z ----= 0⇔ 1110013131212w w z z w w z z ----= 0⇔ 111332211w z w z w z = 0.[证完]9. 试证:四个相异点z 1, z 2, z 3, z 4共圆周或共直线的充要条件是(z 1 – z 4)/(z 1 – z 2) : (z 3 – z 4)/(z 3 – z 2)为实数.【解】在平面几何中,共线的四个点A , B , C , D 的交比定义为(A , B ; C , D ) = (AC /CB ) : (AD /DB ).这是射影几何中的重要的不变量.类似地,在复平面上,(不一定共线的)四个点z 1, z 2, z 3, z 4的交比定义为[z 1z 2, z 3z 4] = (z 1 – z 3)/(z 2 – z 3) : (z 1 – z 4)/(z 2 – z 4).本题的结论是说:复平面上四个点共圆或共线的充要条件是其交比为实数. (⇒) 分两种情况讨论(1) 若(z 1 – z 4)/(z 1 – z 2)为实数,则(z 3 – z 4)/(z 3 – z 2)也是实数.设(z 1 – z 4)/(z 1 – z 2) = t ,t ∈ .则z 4 = (1 – t )z 1 + t z 2,故z 4在z 1, z 2所确定的直线上,即z 1, z 2, z 4共线.因此,同理,z 1, z 2, z 3也共线.所以,z 1, z 2, z 3, z 4是共线的.(2) 若(z 1 – z 4)/(z 1 – z 2)为虚数,则(z 3 – z 4)/(z 3 – z 2)也是虚数.故Arg ((z 1 – z 4)/(z 1 – z 2)) ≠ k π,Arg ((z 3 – z 4)/(z 3 – z 2)) ≠ k π.而Arg ((z 1 – z 4)/(z 1 – z 2)) – Arg ((z 3 – z 4)/(z 3 – z 2))= Arg ((z 1 – z 4)/(z 1 – z 2) : (z 3 – z 4)/(z 3 – z 2)) = k π.注意到Arg ((z – z 4)/(z – z 2)) = Arg ((z 4 – z )/(z 2 – z ))是z 2 – z 到z 4 – z 的正向夹角, 若Arg ((z 1 – z 4)/(z 1 – z 2)) = Arg ((z 3 – z 4)/(z 3 – z 2)),则z 1, z 3在z 2, z 4所确定的直线的同侧,且它们对z 2, z 4所张的角的大小相同, 故z 1, z 2, z 3, z 4是共圆的.若Arg ((z 1 – z 4)/(z 1 – z 2)) = Arg ((z 3 – z 4)/(z 3 – z 2)) + π,则z 1, z 3在z 2, z 4所确定的直线的异侧,且它们对z 2, z 4所张的角的大小互补, 故z 1, z 2, z 3, z 4也是共圆的.(⇐) 也分两种情况讨论(1) 若z1, z2, z3, z4是共线的,则存在s, t∈ \{0, 1},使得z4 = (1 –s)z3 + s z2,z4 = (1 –t)z1 + t z2,那么,z3–z4 = s (z3 –z2),即(z3–z4)/(z3–z2) = s;而z1–z4 = t (z1 –z2),即(z1–z4)/(z1–z2) = t,所以,(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2) = t/s∈ .(2) 若z1, z2, z3, z4是共圆的,若z1, z3在z2, z4所确定的直线的同侧,那么,Arg ((z4–z1)/(z2–z1)) = Arg ((z4–z3)/(z2–z3))因此(z4–z1)/(z2–z1) : (z4–z3)/(z2–z3)是实数.也就是说(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)是实数.若z1, z3在z2, z4所确定的直线的异侧,则Arg ((z4–z1)/(z2–z1)) + Arg ((z2–z3)/(z4–z3)) = (2k + 1)π,故Arg ((z1–z4)/(z1–z2) : (z3–z4)/(z3–z2))= Arg ((z1–z4)/(z1–z2)) – Arg ((z3–z4)/(z3–z2))= Arg ((z1–z4)/(z1–z2)) + Arg ((z3–z2)/(z3–z4))= Arg ((z4–z1)/(z2–z1)) + Arg ((z2–z3)/(z4–z3)) = (2k + 1)π,所以,(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)仍为实数.[证完]这个题目写的很长,欢迎同学们给出更简单的解法.11. 试证:方程| z -z1 |/| z -z2 | = k ( 0 < k ≠ 1,z1≠z2 )表示z平面的一个圆周,其圆心为z0,半径为ρ,且z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.【解】到两定点距离成定比的点的轨迹是圆或直线.当比值不等于1时,轨迹是一个圆,这个圆就是平面几何中著名的Apollonius圆.设0 < k ≠ 1,z1≠z2,z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.∀z∈ ,| z -z0 | = ρ⇔| z - (z1 -k2 z2)/(1-k2)| = k | z1 -z2|/| 1-k2 |⇔| z(1-k2)- (z1 -k2 z2) | = k | z1 -z2 |⇔| (z -z1) -k2 (z-z2)| = k | z1 -z2|⇔| (z -z1)/k-k (z-z2) | = | z1 -z2|⇔| (z -z1)/k-k (z-z2) | = | (z -z1)- (z-z2) |⇔| (z -z1)/k-k (z-z2) |2 = | (z -z1) - (z-z2) |2⇔| z -z1 |2/k2 + k2 | z-z2 |2 = | z -z1 |2 + | z-z2 |2⇔(1/k2 - 1)| z -z1 |2 = (1-k2 ) | z-z2 |2⇔| z -z1 |2/k2 = | z-z2 |2⇔| z -z1 |/| z-z2 | = k.[证完]直接地双向验证,可能需要下面的结论,其几何意义非常明显的.命题:若复数z, w≠ 0,则| | z | ·w /| w| - | w| ·z /| z| | = | w -z |.证明:我们用z*表示复数z的共轭.| | z | ·w /| w| - | w| ·z /| z| |2= | | z | ·w /| w| |2 + | | w| ·z /| z| |2- 2Re[( | z | ·w /| w|) · (| w| ·z /| z|)* ]= | z |2 + | w|2- 2Re( w ·z* ) = | w -z |2.或更直接地,| | z | ·w /| w| - | w| ·z /| z| |= | | z | ·w /| w| - | w| ·z /| z| | · | z*/| z| | · | w*/| w| |= | (| z | ·w /| w| - | w| ·z /| z|) ·(z*/| z|) · (w*/| w|) |= | (| z | · (z*/| z|) - | w| ·(w*/| w|)) | = | w -z |.12. 试证:Re(z) > 0 ⇔ | (1 -z)/(1 + z) | < 1,并能从几何意义上来读本题.【解】Re(z) > 0 ⇔点z在y轴右侧⇔点z在点-1和点1为端点的线段的垂直平分线的右侧⇔点z在点-1和点1为端点的线段的垂直平分线的与1同侧的那一侧⇔点z到点-1的距离大于点z到点1的距离⇔|1 + z | > | 1 -z | ⇔| (1 -z)/(1 + z) | < 1.不用几何意义可以用下面的方法证明:设z = x + i y,x, y∈ .| (1 -z)/(1 + z) | < 1 ⇔|1 + z | > | 1 -z | ⇔|1 + z |2 > | 1 -z |2⇔ 1 + z2 + 2Re(z) > 1 + z2- 2Re(z) ⇔Re(z) > 0.[由本题结论,可知映射f(z) = (1 -z)/(1 + z)必然把右半平面中的点映射到单位圆内的点.并且容易看出,映射f(z)把虚轴上的点映射到单位圆周上的点.问题:f(z)在右半平面上的限制是不是到单位圆的双射?f(z)在虚轴上的限制是不是到单位圆周的双射?]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
复变函数经典习题及答案
于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C
•
O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6
复变函数课后习题答案(全)
习题一答案之马矢奏春创作1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值: (1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 4.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 5. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=>解:(1)z i+=由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),(1),1),(1)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。
复变函数习题第一章答案
34 3 5 ; z = ( )2 + ( )2 = 2 2 2
5 arg z = − arctan( ) . 3 (3 + 4i )(1 + 2i ) 2 3 + 4i 2 − 5 + 10i 2 (2) z = ( ] =( ) =[ ) 2 2 1 − 2i 5 1 +2
= (−1 + 2i ) 2 = −3 − 4i ,
x + 1 + i ( y − 3) = (1 + i )(5 + 3i ) ,即 x + 1 + i ( y − 3) = 2 + 5i ,
根据复数相等的概念,有
1
x +1 = 2 x =1 , 即 . y − 3 = 8 y = 11
⒊ 将下列复数化为三角式和指数式: (1) − 5i ; (3) 1 + i 3 ; 解 (1) (2) − 1 ; (4)
− i 2
π
π
π
.
(2) 这里 x = −1 , y = 0 ,则 z =
(−1) 2 + (0) 2 = 1 ,
从而有 cos θ = −1 , sin θ = 0 ; 得 arg z = π , 则三角式与指数式分别为:
z = [cos(π ) + i sin(π )] , z = e πi .
5
(1) x + y = 4 ;
2 2
(2) y = x ; (4) ( x − 1) + y = 1 .
2 2
(3) x = 1 ; 解
ω=
x 1 y , = 2 −i 2 2 z x +y x + y2
第1章复变函数习题答案习题详解
第一章习题详解1.求下列复数的实部与虚部,共轭复数、模与辐角:z 1)i231+解:()()()132349232323231231ii i i i i -=+-=-+-=+实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im 共轭复数:1323231ii +=⎪⎭⎫⎝⎛+模:1311323231222=+=+i 辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2)ii i --131解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im 共轭复数:253131i i i i +=⎪⎭⎫⎝⎛--模:234434253131222==+=--ii i 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re 虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i 辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+4)ii i +-2184解:ii i i i i 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i ii Im 共轭复数:()ii i i 314218+=+-模:1031422218=+=+-i ii 辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg 2.当、等于什么实数时,等式成立?x y ()i iy i x +=+-++13531解:根据复数相等,即两个复数的实部和虚部分别相等。
第一章复变函数习题及解答
第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数)(1)1-; (2)ππ2(cosisin )33-; (3)1cos isin αα-+;(4)1ie +; (5)i sin R e θ; (6)i + 答案 (1)实部-1;虚部2;辐角为 4π2π,0,1,2,3k k +=±±L;主辐角为4π3;原题即为代数形式;三角形式为4π4π2(cosisin )33+;指数形式为4πi32e .(2)略为 5πi 35π5π2[cos sin ], 233i e +(3)略为 i arctan[tan(/2)][2sin()]2c e αα(4)略为 i;(cos1isin1)ee e +(5)略为:cos(sin )isin(sin )R R θθ+(6)该复数取两个值略为i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+=+=+1.2 计算下列复数 1)()103i 1+-;2)()31i 1+-;答案 1)3512i 512+-;2)()13π/42k πi632e0,1,2k +=;1.3计算下列复数(1(2答案 (1)(2)(/62/3)i n e ππ+1.4 已知x【解】令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到2212()2i x p q xy +=-+,根据复数相等,所以即实部为,x ±虚部为 说明 已考虑根式函数是两个值,即为±值.1.5 如果 ||1,z =试证明对于任何复常数,a b 有||1az bbz a +=+【证明】 因为||1,11/z zz z z =∴=∴=,所以1.6 如果复数b a i +是实系数方程()01110=++++=--n n n n a z a z a z a z P Λ的根,则b a i -一定也是该方程的根.证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()()kkz z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得即()0i ≡-b a P.故b a i -也是()0=z P 之根.注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.【解】 因为222244444444(1)2(cos sin )2(cos sin )(1)2(cos sin )2(cos sin )n nnnn n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以44sin sin n n ππ=- 即为4sin 0n π=所以4,4,(0,1,2,)n k n k k ππ===±±L1.9将下列复数表为sin ,cos θθ的幂的形式 (1)cos5θ; (2)sin5θ答案 53244235(1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθθθθθθ-+-+1.10 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有1.11 对于复数,k k αβ,证明复数形式的柯西(Cauchy)不等式:22221111||(||||)||||nnnnk k k k k kk k k k αβαβαβ====≤≤∑∑∑∑ 成立。
第1章复变函数习题答案习题详解
精心整理第一章习题详解1.求下列复数z的实部与虚部,共轭复数、模与辐角:解:()()()132349232323231231iiiiii-=+-=-+-=+实部:133231=⎪⎭⎫⎝⎛+iRe解:1i-模:234434253131222==+=--iii辐角:πππkarctgkarctgkiiiiiiArg235223252131131+⎪⎭⎫⎝⎛-=+⎪⎪⎪⎭⎫⎝⎛-=+⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛--arg解:()()()22672267272625243iii iiii--=-+=--=-+实部:()()2725243-=⎪⎭⎫⎝⎛-+iiiRe虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i解:i8-模:2. 当x 即x3. 证明:i-14. 证明证明:设iy x z +=,则iy x z -=证明:设111iy x z +=,222iy x z +=,则有: 证明:设111θi e r z =,222θi e r z =,则有: 证明:设111θi e r z =,222θi er z =,则有:证明:设iy x z +=,则有证明:设iy x z +=,则iy x z -= 5. 对任何22,z z z =是否成立?如果是,就给出证明。
如果不是,对哪些z 值才成立?解:设iy x z+=,则有:故当0=y ,即iy x z +=是实数时,22z z =成立。
6. 当1≤z 时,求a z n +的最大值,其中n 为正整数,a 为复数。
解:a z a z a z nn n +=+≤+1≤z a z n +7. 1) 若c 2) 若z 3)i 2<4) 5) 6)1z +解:假命题。
设有两个数i z i z -==21,,使2121z z z z +=+不成立。
复变函数课后习题答案(全)
习题一答案1.求以下复数的实部、虚部、模、幅角主值及共轭复数:( 1)1(2)i2i1)(i2)3(i(3)13i(4)i84i 21i i1i解:( 1)z132i 32i13,所以: Re z 3,Im z2,13 13( 2)z(ii2)1i3i ,1)(i3i10所以, Re z 3 ,Im z1,1010( 3)z 13ii33i35i i1i2,2所以, Re z 3 ,Im z5,32( 4)z i 84i 21i 1 4i i 1 3i 所以, Re z1,Im z3,2.将以下复数化为三角表达式和指数表达式:( 1)i ()13i() r (sin i cos ) 23( 4)r (cos i sin) (5)1 cos i sin(02)解:( 1)i cos i sini e2222(cos 2i sin22(2)13i)i 2e333( 3)r (sin i cos) r[cos()i sin()]() i re 222( ) r (cosi sin )r[cos( ) i sin( )] rei4(5) 1 cosi sin2sin 22i sin cos2 2 23. 求以下各式的值:(1)( 3i)5( 2) (1 i )100(1 i)100(13i )(cosi sin)(cos5 i sin 5 )2 (3)i )(cosi sin ) (4)(cos3 i sin 3 )3(1(5) 3i ( 6)1 i解:( 1) ( 3 i )5[2(cos() i sin())] 56 6(2) (1 i )100(1i)100(2i )50( 2i )502(2)50251(1 3i )(cos i sin )(3)i )(cosi sin )(1(4) (cos5i sin 5 ) 2 (cos3i sin 3 )3(5) 3i3cosi sin22(6) 1i2(cosi sin )444. 设z 1 1i, z 23 i, 试用三角形式表示 z z 与z 121 2z 2解: zcos i sin, z 22[cos() i sin( )] ,所以14466z 1z 2 2[cos(4) i sin(4)] 2(cos i sin ) ,6 612 125. 解以下方程:(1) (z i )51z4a 40 ( a 0)( 2)解:( 1) zi51,由此z51i2k ii , (k0,1,2,3,4)e5( 2)z4a44 a4 (cos i sin)a[cos 1(2k)i sin1(2k)] ,当 k0,1,2,3 时,对应的4个根分别为:44a(1i ),a(1i),a( 1 i ),a(1i)22226.证明以下各题:( 1)设z x iy, 则x yz x y 2证明:第一,明显有z x2y2x y ;其次,因 x2y2 2 x y , 固此有 2( x2y2 )( x y )2 ,进而 z x2y2x y2。
复变函数第一章习题答案~
显然 z ≠ 0时,tan(Argzபைடு நூலகம்) =
由此得 :
z2 + z1 ≤ z2 + z1 z2 − z1 ≥ z2 − z1
( 三角不等式)
还容易看出 z = z , argz = -arg z . 3.复数的三角表示 根据 x = r cos θ , y = r sin θ 可以得到 z = r (cos θ + i sin θ ). 上式称为复数的三角表 示. 4. 复数的指数表示 由欧拉公式 e iθ = cos θ + i sin θ 可以得到复数的指数表示式: z = re iθ . 5.复数的球面表示 (1) 南极、北极的定义
θ
1
θ + 2π
n
1
+ i sin
θ + 2π
n
)
θ + 4π
n
θ + 4π
n
)
wn−1 = r n (cos
θ + 2(n−1)π
n
+ i sin
θ + 2(n−1)π
n
)
1.任一非零复数开 n 次方,有且仅有 n 个不同的根; 2.它们均匀分布在以原点为中心 r n 为半径的圆周上.
1
π π + 2kπ + 2kπ 8 4 4 4 wk = 1 + i = 2 ( cos + isin ) 4 4 ( k = 0,1, 2, 3) (见图)
本讲小结: 1、复数的各种表示法 2、复数的四则运算、共轭运算
§3
1.乘积与商
设
复数的乘幂与方根
z1 = r1 (cos θ1 + i sin θ 1 ) = r1e iθ1 , z2 = r2 (cos θ 2 + i sin θ 2 ) = r2 e iθ 2 ,
复变函数第1章测验题参考解答
3 3 3 , 2 2
x2 y2 1 , 所以复数 z 构成的平 【解析】因为复数方程 z i z i 6 可化为直角方程 8 9
面点集为椭圆.或者由等式的几何意义,它表示动点 z 到两定点 i 的距离之和为常数 6 ,因 此 z 的集合表示平面上的椭圆. 3. sin
【答案】B 【解析】设 z r (cos i sin ) ,则
2
,故选 B.
2
【答案】 C 【解析】因为
3 3
科
( 3 i ) 2 cos i sin 23 cos i sin , 6 6 2 2
3
i cos
3
的三角表示为 cos(
) i sin( ) . 6 6
(
3
3
6
【答案】错误
是正三角形.
5. 在球极射影下, xOy 平面上的圆 z 1 上的点不变.(
科
大
【解析】例如 z1 1 i, z2 1 i, z3 2 满足 z1 z2 z3 0 ,但以它们为顶点的三角形不
函
数
). ).
国
防
科
(A)
大
(C) 【答案】A 6. 满足不等式
z 1 2 的复数 z 表示的平面点集所对应的阴影图形是( z 1
“复
(B) (D)
变
”
(A)
(B)
(C) 【答案】A 二、 是非题 1. 点集 E 的聚点一定是 E 中的点. 【答案】错误 (
(D)
【解析】例如 z 0 是点集 E { | n 1, 2,} 的聚点,但 0C) 0 arg z
复变函数习题一解答
第一章习题解答(一)1.设z =,求z 及Arcz 。
解:由于3i z e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=± 。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z ,知321z z z ∆的三个顶点均在单位圆上。
因为 33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又 )())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1)i231+ 解:()()()132349232323231231ii i i i i -=+-=-+-=+实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im共轭复数:1323231ii +=⎪⎭⎫⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2) ii i --131 解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im共轭复数:253131i i i i +=⎪⎭⎫⎝⎛-- 模:234434253131222==+=--iii 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+ 4) i ii +-2184解:i i i i ii 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i ii Im共轭复数:()i i i i 314218+=+- 模:1031422218=+=+-i ii辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()i iy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。
有:()()()i i i y i x 8235131+=++=-++⎩⎨⎧=-=+8321y x ⎩⎨⎧==⇒111y x 即1=x 、11=y 时,等式成立。
3. 证明虚数单位i 有这样的性质:i i i ==--1证明:i i i i i-===-211 i i i i -=-=+=00 i i i ==-∴-14. 证明 1) z z z=2证明:设iy x z +=,则iy x z -=()()2222222y xyx iy x z +=+=+=∴()()22y x iy x iy x z z +=-+=z z z =∴22) 2121z z z z ±=±证明:设111iy x z +=,222iy x z +=,则有:()()()()()()21212121221121y y i x x y y i x x iy x iy x z z ±-±=±+±=+±+=± ()()()()()()21212211221121y y i x x iy x iy x iy x iy x z z ±-±=-±-=+±+=± 2121z z z z ±=±∴3) 2121z z z z = 证明:设111θi er z =,222θi er z =,则有:()()21212121212121θθθθθθ+-+===i i i i e r r e r r e r e r z z ()21212121212121θθθθθθ+---==•=i i i i i e r r e r e r e r e r z z 2121z z z z =∴ 4) 022121≠=⎪⎪⎭⎫⎝⎛z z z z z , 证明:设111θi e r z =,222θi er z =,则有:()()21212121212121θθθθθθ---===⎪⎪⎭⎫ ⎝⎛i i i i e r r e r r e r e r z z()21212121212121θθθθθθ----===i i i i i e r r e r e r e r e r z z 2121z z z z =∴ 5) z z =证明:设iy x z +=,则有z iy x iy x iy x z =+=-=+=6) ()()()()z z iz z z z -=+=2121Im ,Re 证明:设iy x z +=,则iy x z -=()()()z x iy x iy x z z Re ==++-=+2121 ()()()[]()()z y y i iiy x iy x i z z i Im ===--+=-2212121 5. 对任何22,z z z =是否成立?如果是,就给出证明。
如果不是,对哪些z 值才成立? 解:设iy x z +=,则有:()22222y xyi x iy x z -+=+= ()()22222y x iy x iy x z+=+=+=22z z =Θ ⎩⎨⎧=-=+∴022222xy y x y x ⇒ 0=y故当0=y ,即iy x z +=是实数时,22z z =成立。
6. 当1≤z 时,求a z n +的最大值,其中n 为正整数,a 为复数。
解:a z a za z nnn+=+≤+1≤z Θ 1≤∴nz ⇒ a a z n+≤+1 即a a z n +≤+1a z n+的最大值是a +17. 判定下列命题的真假: 1) 若c 为实常数,则c c =;解:真命题。
因为实数的共轭复数就是它本身。
2) 若z 为纯虚数,则z z ≠;解:真命题。
设()0≠=y iy z ,则iy z -=,显然z z ≠。
3) i i 2<;解:假命题。
两个不全为实数的复数不能比较大小。
4) 零的幅角是零解:假命题。
复数0的幅角是任意的,也是无意义的。
5) 仅存在一个数z ,使得z z-=1; 解:假命题。
有两个数i z i z -==,,使z z-=1成立。
6) 2121z z z z +=+;解:假命题。
设有两个数i z i z -==21,,使2121z z z z +=+不成立。
7)iz z i=1解:真命题。
iz z i z i=-=18. 将下列复数化为三角表示式和指数表示式: 1) i解:1==i r ,()2π=i arg222πππie i i =+=∴sincos2) 1-解:11=-=r ,()π=-1arg πππi e i =+=-∴sin cos 1 3) 31i +解:231=+=i r ,()31331π==+arctgi arg 33331πππie i i =+=+∴sincos4) ()πϕϕϕ≤≤+-01sin cos i 解:()ϕϕϕϕϕϕϕ22222111sin cos cos sin cos sin cos +-+=+-=+-=i r()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=-=-=22122212122222ϕϕϕϕϕϕsin cos cos cos cos22242212222ϕϕϕϕsin sin sin cos ==⎥⎦⎤⎢⎣⎡+-=()22211ϕπϕπϕϕϕϕϕ-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=-=+-tg arctg arcctg arctg arctgi cos sin sin cos arg ⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+-∴22222221ϕπϕϕπϕπϕϕϕi e i i sin sin cos sin sin cos另:222222222112ϕϕϕϕϕϕϕϕϕcos sin sin sin cos sin cos i i i +=⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛+-=+-22222222222ϕπϕϕπϕπϕϕϕϕ-=⎪⎭⎫⎝⎛-+-=⎪⎭⎫ ⎝⎛+=iei i sin sincossin cos sin sin另:()()ϕϕϕϕϕϕsin sin cos cos sin cos sin cos sin cos ++-=+-+=+-00001i i i i22222222*********ϕπϕϕϕϕϕϕϕϕ-=⎪⎭⎫ ⎝⎛+-=-++-+-=iei i sin cos sin sin cos sin sin sin5)ii+-12解:()i ii i i i -=-=--=+-12222121221=-=i r ,()()4111π-=-=-=-arg arg arg i424421πππi e i i -=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-∴sin cos6)()()323sin 3cos 5sin 5cos ϕϕϕϕi i -+解:()()ϕϕϕϕ1025255i i e e i ==+sin cos()()()[]()i i e e i i ϕϕϕϕϕϕ933333333--==-+-=-sin cos sin cos ()()()()ϕϕϕϕϕϕϕϕϕ191933551991032sin cos sin cos sin cos i e ee i i i i i +===-+∴- 9. 将下列坐标公式写成复数的形式:1) 平移公式:⎩⎨⎧+=+=1111b y y a x x解:将方程组中的第二个方程乘以虚数单位加到第一个方程,得:()()1111ib a iy x iy x +++=+即:A z z +=1 2) 旋转公式:⎩⎨⎧+=-=ααααcos sin sin cos 1111y x y y x x解:将方程组中的第二个方程乘以虚数单位加到第一个方程,得:()()11111111ix y iy x iy y ix x iy x --+=+-+=+ααααααsin cos cos sin sin cos ()()()()()11111111iy x i iy x ix y i i iy x +++=---+=ααααsin cos sin cos ()()()αααi e iy x i iy x 1111+=++=sin cos ()αααi e z i z z 11=+=∴sin cos10. 一个复数乘以i -,它的模与辐角有何改变? 解:设θi re z = 2πiei -=-⎪⎭⎫ ⎝⎛--==-∴22πθπθi ii ree re iz即:一个复数乘以i -,它的模不变,辐角减小2π。