华师版八年级下期末考试数学试卷及答案
最新华东师大版八年级数学下册期末试题带答案3套
最新华东师大版八年级数学下册期末试题带答案3套新华师版八年级下期末卷(一)总分120分120分钟一.选择题(共24分)1.下列计算中,正确的是()A.a2•a3=a6B.C. (﹣3a2b)2=6a4b2 ,D .a5÷a3+a2=2a22.在式子,,,,,10xy﹣2,中,分式的个数是()A.5B.4C.3D.23.不改变分式的值,如果把其分子和分母中的各项的系数都化为整数,那么所得的正确结果为()A.B.C.D.4.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1 5.甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地km(5题)(6题)(7题)6.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75°B.60°C.45°D.30°7.如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形8.甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s=0.63,s=0.51,s=0.48,s=0.42,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁二.填空题(共18分)9.计算:()﹣1+(﹣2)0+|﹣2|﹣(﹣3)的结果为_________.10.若x2﹣3x+1=0,则的值为_________.11.写出一个你喜欢的实数k的值_________,使得反比例函数y=的图象在每一个象限内,y随x的增大而增大.12.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为_________.(12题)(13题)(14题)13.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于_________ cm2.14.如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_________厘米.三.解答题(共10小题)15.(5分)化简,求值:,其中m=.16.(6分)若关于x的方程有增根,试解关于y的不等式5(y﹣2)≤28+k+2y.17.(6分)已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.18.(7分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.19.(8分)初三(1)班共有40名同学,在一次30秒打字速度测试中他们的成绩统计如表:打字数/个50 51 59 62 64 66 69人数 1 2 8 11 5将这些数据按组距5(个字)分组,绘制成如图的频数分布直方图(不完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次打字成绩的众数是_________个,平均数是_________个.。
【华东师大版】八年级数学下期末试卷(及答案)
一、选择题1.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解; (2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和; (4)多边形内角和等于360︒; (5)一组数据1,2,3,4,5的众数是0 A .0个B .1个C .2个D .3个2.一组数据,,,,,,a b c d e f g 的平均数是m ,极差是k ,方差是n ,则23,23,23,23,23,23------a b d e f g 的平均数、极差、和方差分别是( )A .222、、m k nB .23232m k n --、、C .232-、、4m k nD .2323--、、4m k n3.某校10名学生参加某项比赛成绩统计如图所示。
对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是154.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如下表: 选手 甲 乙 丙 丁 平均数(环) 9.0 9.0 9.0 9.0 方差0.251.002.503.00则成绩发挥最不稳定的是( ) A .甲B .乙C .丙D .丁5.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( ) A .12y y >B .12y y =C .12y y <D .不确定6.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y(米)与出发时间x(分)之间的函数关系如图所示,则下列说法正确的是()A.小明到达球场时小华离球场3150米B.小华家距离球场3500米C.小华到家时小明已经在球场待了8分钟D.整个过程一共耗时30分钟7.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或5+1 B.3或5C.2或5D.3或5+1→→→方向运8.如图①,在长方形MNPQ中,动点R从点N出发,沿着N P Q M∆的面积为y,如果y关于x的函数图象动至点M处停止.设点R运动的路程为,x MNR如图②所示,那么下列说法错误的是()A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x = 9.估计26的大小应( ) A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间10.如图,在矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=︒,FO FC =.则下列结论:①FB 垂直平分OC ;②四边形DEBF 为菱形;③OC FB =;④2AM BM =;⑤:3:2BOMAOESS=.其中正确结论的个数是( )A .5个B .4个C .3个D .2个11.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A .3B .423C .2D .35212.如图,△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,△ABC 的面积为120,则△BCD 的面积为( )A .20B .24C .30D .40二、填空题13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 x45 45 42 S 21.82.31.8__.14.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.15.如图,直线y =kx +1经过点A (-2,0)交y 轴于点B ,以线段AB 为一边,向上作等腰Rt ABC ,将ABC 向右平移,当点C 落在直线y =kx +1上的点F 处时,则平移的距离是_________.16.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.17.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b+.18.在△ABC 中, AD 是BC 边上的高线,CE 是AB 边上的中线,CD =AE ,且CE <AC .若AD =6,AB =10,则CE =___________19.若2336y x x =-+-+,则xy 的平方根为________.20.如图,A 点坐标为(3,0),C 点坐标为(0,1),将OAC 沿AC 翻折得ACP △,则P 点坐标为_________.三、解答题21.英语老师对八年级某班级全班同学进行口语测试,并按10分制评分,将评分结果制成了如图两幅统计图(不完整).请根据图表信息,解答下列问题:(1)求该班级学生总人数,并将条形统计图补充完整. (2)求该班学生口语测试所得分数的平均数、中位数、众数. (3)若全年级共有260人,请估计得分在9分及以上的同学有多少人?22.已知一组数据x 1,x 2,x 3,…,x n 的平均数为5,求数据x 1+5,x 2+5,x 3+5,…,x n +5的平均数23.科学研究发现.地表以下岩层的温度y (℃)与所处深度x (千米)之间近似地满足一次函数关系.经测量,在深度2千米的地方,岩层温度为90℃;在深度5千米的地方,岩层温度为195℃.(1)求出y 与x 的函数表达式;(2)求当岩层温达到1805℃时,岩层所处的深度.24.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且3AM =,4DN =,求四边形DEMN 的面积. 25.计算:(1)1850+ (2)(73)(73)+-26.在四边形ABCD 中,90A B ∠=∠=︒,E 为AB 边上的点.(1)连接CE ,DE ,CE DE ⊥; ①如图1,若AE BC =,求证:AD BE =; ②如图2,若AE BE =,求证:CE 平分BCD ∠;(2)如图3,F 是BCD ∠的平分线CE 上的点,连接BF ,DF ,若4BC =,6CD =,362BF DF ==CF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义分别判断后即可确定正确的选项. 【详解】解:(1)二元一次方程组的两个方程的所有公共解,叫做二元一次方程组的解,故原命题错误,不符合题意;(2)如果a >b ,则当c <0时,ac >bc ,故原命题错误,不符合题意;(3)三角形的外角等于与它不相邻的两个内角的和,正确,符合题意;(4)多边形内角和等于(n-2)×180°,故原命题错误,不符合题意;(5)数据1,2,3,4,5没有众数,故错误,不符合题意,正确的个数为1个,故选:B.【点睛】本题考查了二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义,属于基础知识,比较简单.2.C解析:C【分析】根据平均数、极差和方差的变化规律即可得出答案.【详解】∵数据a、b、c、d、e、f、g的平均数是m,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2m−3;∵数据a、b、c、d、e、f、g的极数是k,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2k;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的方差是224n n;故选C.【点睛】此题考查方差、极差、算术平均数,解题关键在于掌握方差、极差、算术平均数变化规律即可.3.C解析:C【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;参赛学生最高成绩与最低成绩之差是:95-80=15;故D正确.故选:C.【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.4.D解析:D 【解析】 【分析】根据方差的定义,方差越小数据越稳定,反之波动越大. 【详解】 由表可知:丁的方差最大,这四个人中,发挥最不稳定的是丁 故选:D 【点睛】本题考查方差的意义,熟知方差越小数据越稳定,反之波动越大是解题关键.5.A解析:A 【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案. 【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >, 故选A . 【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键.6.A解析:A 【分析】先设小华的速度为x 米/分,再根据小华返回时与小明相遇时所走的路程之和=小华家与球场之间的距离列出方程求出小华的速度为450米/分,再根据图象求出小明到达球场的时间,从而求出当小时到达球场时小华从球场出发返回家所用的时间为7分钟,所以根据“路程=速度×时间”即可求出当小时到达球场时小华离球场的距离. 【详解】解:设小华的速度为x 米/分,则依题意得: (20-18)x+180×20=10x解得:x=450∴(450×10-3600)÷180=5(分)∴当小明到达球场时小华离球场的距离为:450×(5+2)=3150(米).故A选项正确;小华家距球场450×10=4500米,故B选项错误;小华到达家时小明在球场呆的时间为:10+8+10-4500÷180=3(分)故C选项错误;整个过程耗时10+8+10=28(分)故D选项错误.故选A.【点睛】本题考查了从函数图象上获取信息的能力,注意观察函数图象,设出合适的未知数求出小华的速度是解题的关键.7.D解析:D【分析】利用一次函数与坐标轴的交点求出△AOB的两条直角边,并运用勾股定理求出AB.根据已知可得∠CAD=∠OBA,分别从∠ACD=90°或∠ADC=90°时,即当△ACD≌△BOA时,AD =AB,或△ACD≌△BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:∵直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,∴A(1,0),B(0,2).∴OA=1,OB=2.∴AB==.∵AP⊥AB,点C是射线AP上,∴∠BAC=90°,即∠OAB+∠CAD=90°,∵∠OAB+∠OBA=90°,∴∠CAD=∠OBA,若以C、D、A为顶点的三角形与△AOB全等,则∠ACD=90°或∠ADC=90°,即△ACD≌△BOA或△ACD≌△BAO.如图1所示,当△ACD≌△BOA时,∠ACD=∠AOB=90°,AD=AB,∴OD=AD+OA=5+1;如图2所示,当△ACD≌△BAO时,∠ADC=∠AOB=90°,AD=OB=2,∴OD=OA+AD=1+2=3.综上所述,OD的长为351.故选:D.【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.8.D解析:D【分析】本题通过右侧的图象可以判断出长方形的边长,然后选项计算,选项A、B、C都可证正确,选项D,面积为8时,对应x值不为10,所以错误.【详解】解:由图2可知,长方形MNPQ的边长,MN=9-4=5,NP=4,故选项A正确;选项B ,长方形周长为2×(4+5)=18,正确;选项C ,x=6时,点R 在QP 上,△MNR 的面积y=12×5×4=10,正确; 选项D ,y=8时,即1852x =⨯,解得 3.2x =, 或()185132x =⨯-,解得9.8x =, 所以,当y=8时,x=3.2或9.8,故选项D 错误;故选:D .【点睛】本题考查了动点问题分类讨论,对运动中的点R 的三种位置都设置了问题,是一道很好的动点问题,读懂函数图象是解题关键.9.C解析:C【分析】先根据二次根式的乘法法则可知,再由16<24<25,利用算术平方根的性质可得4<5,可得结果.【详解】解:∵16<24<25,∴45,即4<5,故选:C .【点睛】本题主要考查了估算无理数的大小,熟练掌握算术平方根的性质及二次根式的乘法法则是解答此题的关键.10.C解析:C【分析】证明△OFB ≌△CFB ,可判断结论①正确;利用菱形的定义,可判断结论②正确; 根据OC=OB ,斜边大于直角边,可判断结论③错误;根据30度角的性质,可判断AB=2BM ,故结论④是错误的;证NE ∥BM ,AN=NO=OM ,所以BM=3NE ,AO=2OM ,利用三角形面积公式计算判断,结论⑤正确.【详解】连接BD ,∵四边形ABCD 是矩形,∴AC=BD ,AC 、BD 互相平分,∵O 为AC 中点,∴BD 也过O 点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,∵FO=FC,BF=BF∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∴△AOE≌△COF,∴OE=OF,FC=AE,∴DF=BE,DF∥BE,∴四边形EBFD是平行四边形,∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴BE=BF,∴四边形EBFD是菱形,∴结论②正确;∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴FB>OB,∵OB=OC,∴FB>OC,∴③错误,在直角三角形AMB中,∵∠BAM=30°,∠AMB=90°,∴AB=2BM,∴④错误,设ED与AC的交点为N,设AE=OE=2x,则NE=x ,BE=4x ,∴AB=6x ,∴BM=3x , ∴11::22BOM AOE S SOM BM AO NE =⋅⋅ =3:2OM x OM x ⋅⋅=3:2,结论⑤正确.故选C .【点睛】本题考查了矩形的性质,等腰三角形三线合一性质,全等三角形,直角三角形30°角的性质,菱形的判定,熟练掌握,灵活运用是解题的关键.11.D解析:D【分析】首先设AG =x ,由矩形纸片ABCD 中,AB =4,AD =3,可求得BD 的长,又由折叠的性质,可求得A′B 的长,然后由勾股定理可得方程:x 2+22=(4-x )2,解此方程即可求得AG 的长,继而求得答案.【详解】解:设AG =x ,∵四边形ABCD 是矩形,∴∠A =90°,∵AB =4,AD =3,∴BD 22AD AB +5,由折叠的性质可得:A′D =AD =3,A′G =AG =x ,∠DA′G =∠A =90°,∴∠BA′G =90°,BG =AB-AG =4-x ,A′B =BD-A′D =5-3=2,∵在Rt △A′BG 中,A′G 2+A′B 2=BG 2,∴x 2+22=(4-x )2,解得:x =32, ∴AG =32, ∴在Rt △ADG 中,DG 22352AD AG +=. 故选:D .【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.12.C解析:C【分析】根据已知条件可知∠A =∠BCD =30°,在Rt △BCD 中设BD =x ,则BC =2x ,由勾股定理求得CD ,在Rt △ACD 中,AC =2BC =,根据△ABC 的面积为120,即11202AC BC ⨯=,求得2x 的值,用三角形的面积公式即可得出△BCD 的面积. 【详解】解:∵△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,∴在Rt △ABC 中,∠A =30°,在Rt △BCD 中,∠BCD =30°,∴ 设BD =x ,则BC =2BD =2x ,CD ==, ∴ 在Rt △ACD 中,∠A =30°,∴AC =2BC =,∵△ABC 的面积为120,∴11212022ABC S AC BC x =⨯⨯=⨯⨯=,解得:2x∵21122BCD S BD CD x =⨯⨯=⨯=, 故选:C .【点睛】本题考查了直角三角形中,30°所对的直角边是斜边的一半和勾股定理.熟练掌握各定理所示解题的关键.二、填空题13.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷 解析:甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:7048106⨯+⨯=76(分),故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数.15.5【分析】先把A坐标代入y=kx+1求得k=则直线AB的解析式为y=x+1再确定B点坐标(01)作CH⊥x轴于H如图根据等腰直角三角形的性质得AC=AB∠BAC=90°接着证明△ABO≌△CAH得到解析:5【分析】先把A坐标代入y=kx+1求得k=12,则直线AB的解析式为y=12x+1,再确定B点坐标(0,1),作CH⊥x轴于H,如图,根据等腰直角三角形的性质得AC=AB,∠BAC=90°,接着证明△ABO≌△CAH,得到OB=AH=1,OA=CH=2,于是可确定C点坐标(-3,2),然后根据平移的性质得点F的纵坐标与C点的纵坐标相等,则可把y=2代入y=12x+1得12x+1=2,解得x=2,所以F点的坐标为(2,2),点F与点C的横坐标之差就是平移的距离.【详解】解:把A(-2,0)代入y=kx+1得-2k+1=0,解得k=1 2,则直线AB的解析式为y=12x+1,当x=0时,y=12x=1=1,则B点坐标为(0,1),如图,作CH⊥x轴于H∵△ABC为等腰直角三角形,∴AC=AB,∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠CAH,在△ABO和△CAH中,AOB CHAABO CAHAB CA∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABO≌△CAH,∴OB=AH=1,OA=CH=2,∴OH=OA+AH=3,∴C点坐标为(-3,2),∵△ABC向右平移,∴F的纵坐标与C点的纵坐标相等,把y=2代入y=12x+1得12x+1=2,解得x=2,∴F点的坐标为(2,2),∴点C向右平移了2-(-3)=5个单位.故答案为5.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质和平移的性质.16.【分析】将不等式写成可以理解为一次函数当时求x 的取值范围由函数图象即可得到结果【详解】解:不等式可以写成即一次函数当时x 的取值范围由函数图象可得故答案是:【点睛】本题考查一次函数与不等式的关系解题的 解析:4x >【分析】将不等式1mx n ->写成1mx n ->,可以理解为一次函数y mx n =-,当1y >时,求x 的取值范围,由函数图象即可得到结果.【详解】解:不等式1mx n ->可以写成1mx n ->,即一次函数y mx n =-,当1y >时,x 的取值范围,由函数图象可得4x >.故答案是:4x >.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用一次函数图象解一元一次不等式的方法.17.②③【分析】利用三角形的中位线的性质证明四边形是矩形四边形是菱形四边形是矩形四边形是菱形从而可得到规律序号n 是奇数时四边形是矩形当序号n 是偶数时四边形是菱形再探究n 是奇数时四边形的周长即可解决问题【 解析:②③【分析】利用三角形的中位线的性质证明四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,从而可得到规律,序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,再探究n 是奇数时四边形的周长即可解决问题.【详解】解: 1111,,,A B C D 分别是,,,AB BC CD DA 的中点,1111111111//,,//,,22A B AC A B AC C D AC C D AC ∴== 11//,A D BD 11111111//,,A B C D A B C D ∴=∴ 四边形1111D C B A 是平行四边形,,AC BD ⊥ 11//,A B AC 11//,A D BD 1111,A B A D ∴⊥∴ 四边形1111D C B A 是矩形,1111,AC B D ∴=如图,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,∴ 2211221111,,22A B AC A D B D == 四边形2222A B C D 是平行四边形, 2222,A B A D ∴=∴ 四边形2222A B C D 是菱形,故①不符合题意,2222,A C B D ∴⊥同理可得:四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,故②符合题意,······总结规律:四边形n n n n A B C D , 当序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,111111111111,,2222A B C D AC a A D B C BD b ====== ∴ 四边形1111D C B A 的周长为,a b +如图, 四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,222222112211,,,A C B D A C A D B D A B ∴⊥==由中位线的性质同理可得:33332233332211111111,,22242224A DBC BD a a D C A B A C b b ===⨯====⨯= 所以四边形3333A B C D 的周长为()1,2a b + 由规律可得:四边形5555A B C D 是矩形, 同理可得:四边形5555A B C D 的周长是()11.224a b a b +⨯+=故③符合题意.故答案为②③.【点睛】本题考查三角形的中位线的性质,中点四边形,菱形的判定与性质,矩形的判定与性质,解题的关键是学会从特殊到一般,探究规律,利用规律解决问题.18.【分析】先根据勾股定理求得AB 再做△ABD 的中位线EF 可得EF=3BF=DF=4从而可得CF=1再次利用勾股定理即可求得CE 【详解】解:∵AD 是BC 边上的高线AD=6AB=10∴∠D=90°∵CE 是 解析:10 【分析】先根据勾股定理求得AB ,再做△ABD 的中位线EF ,可得EF=3,BF=DF=4,从而可得CF=1,再次利用勾股定理即可求得CE .【详解】解:∵AD 是BC 边上的高线,AD =6,AB =10,∴∠D=90°,22BD AB AD 8=-=,∵CE 是AB 边上的中线,CD =AE ,∴152CD AE BE AB ====, 取BD 的中点F,连接CF ,∴EF 为△ABD 的中位线,∴132EF AD ==,EF//AD , ∴∠EFB=∠D=90°, 在Rt △BEF 中,根据勾股定理,2222534BF BE EF =-=-=,∴DF=BD-BF=8-4=4,∴CF=CD-DF=5-4=1,在Rt △CEF 中,根据勾股定理,22221310CE CF EF +=+=10【点睛】本题考查三角形中位线的定理,勾股定理.能正确作出辅助线,构造直角三角形是解题关键.19.±3【分析】根据二次根式有意义的条件求出x 进而求出y 根据平方根的概念解答即可【详解】解:要使有意义则x-3≥0同理3-x≥0解得x=3则y=6∴xy=18∵18的平方根是±3∴xy 的平方根为±3故答解析:.【分析】根据二次根式有意义的条件求出x ,进而求出y ,根据平方根的概念解答即可.【详解】有意义,则x-3≥0,同理,3-x≥0,解得,x=3,则y=6,∴xy=18,∵18的平方根是,∴xy 的平方根为,故答案为:.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键. 20.【分析】在Rt △COA 中根据OA=和OC=1根据勾股定理可得AC=2得到根据翻折性质可得继而可得在Rt △PAG 中根据所对直角边等于斜边的一半可以求出AG 的长利用勾股定理可求出PG 的长从而得到P 点坐标解析:32⎫⎪⎪⎝⎭【分析】在Rt △COA 中,根据和OC=1,根据勾股定理可得AC=2,得到30CAO ∠=︒,根据翻折性质可得CAO PAC ∠=∠,继而可得60PAO ∠=︒,30GPA ∠=︒,在Rt △PAG 中,根据30所对直角边等于斜边的一半可以求出AG 的长,利用勾股定理可求出PG 的长,从而得到P 点坐标.【详解】如下图,过点P 作PG x ⊥轴于点G ,∵3,OC=1,∴22+2OA OC =, ∴12OC AC =, ∴30CAO ∠=︒, ∵△AOC 沿AC 翻折得到△APC ,∴CAO PAC ∠=∠,∴=60PAO ∠︒,=30GPA ∠︒,3, ∴132AG AP ==,2232PG PA GA =-=, ∴333 ∴点P 的坐标为3322⎛⎫ ⎪ ⎪⎝⎭,, 故答案为:332⎫⎪⎪⎝⎭,. 【点睛】本题考查折叠的性质、含30︒角的直角三角形及勾股定理,熟练掌握含30︒角的直角三角形及勾股定理是解题的关键.三、解答题21.(1)40人,画图见解析;(2)平均数:8.9分,中位数:9分,众数:9分;(3)182人【分析】(1)用10分的人数÷10分人数所占的百分比,即可得到总人数,根据题意将条形统计图补充完整;(2)根据平均分、中位数、众数的定义即可得到结论;(3)用样本估计总体即可.【详解】(1)该班级学生总人数为:1230%40÷=(人),得分为9分的同学人数为:40481216---=(人),补全条形统计图如下图所示.(2)该班学生口语测试所得分数的平均分()1478816912108.940=⨯+⨯+⨯+⨯=(分), 一共有40人,则中位数为9992+=(分), 9分人数最多,则众数为9(分); (3)9分以上的占161274010+=,则726018210⨯=(人), 故9分以上的共有182人.【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,以及用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.10【分析】本题首先将1x ,2x ,3x ,…,n x 的和表示出来,继而将其求和值代入目标式子中求解本题.【详解】∵1x ,2x ,3x ,…,n x 的平均数为5,∴1235n x x x x n +++⋅⋅⋅+=,∴15x +,25x +,35x +,…,5n x +的平均数为:[]1231231155(5)(5)(5)(5)(5)10n n n n x x x x x x x x n n n n +⨯++++++⋅⋅⋅++=⨯+++⋅⋅⋅++==.【点睛】本题考查平均数,解题关键在于理解其概念,其次注意计算精度.23.(1)3520y x =+;(2)岩层所处的深度是51km【分析】(1)设y 与x 的函数关系式为y kx b =+,把()2,90,()5,195带入求解即可; (2)当1805y =时,求出x 的值即可;【详解】解:(1)设y 与x 的函数关系式为y kx b =+, 2905195k b k b +=⎧⎨+=⎩, 解得,3520k b =⎧⎨=⎩, 即y 与x 的函数关系式为3520y x =+;(2)当1805y =时,18053520x =+,解得,51x =,即当岩层温达到1805℃时,岩层所处的深度是51km .【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.24.(1)见解析;(2)24【分析】(1)依据平行四边形的性质,即可得到△AMB ≌△CND ;(2)依据全等三角形的性质,即可得出四边形DEMN 是平行四边形,再根据等腰三角形的性质,即可得到∠EMN 是直角,进而得到四边形DEMN 是矩形,即可得出四边形DEMN 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,OA OC =,∴BAC DCA ∠=∠,又点M ,N 分别为OA 、OC 的中点, ∴1122===AM AO CO CN , 在AMB 和CND △中, AB CD BAC DCA AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△CND(SAS)(2)∵△AMB ≌△CND ,∴BM=DN ,∠ABM=∠CDN ,又∵BM=EM ,∴DN=EM ,∵AB ∥CD ,∴∠ABO=∠CDO ,∴∠MBO=∠NDO ,∴ME ∥DN ,∴四边形DEMN 是平行四边形,∵BD=2AB ,BD=2BO ,∴AB=OB ,又∵M 是AO 的中点,∴BM ⊥AO ,∴∠EMN=90°,∴四边形DEMN 是矩形,∵AM=3,DN=4,∴AM=MO=3,DN=BM=4,∴MN=6,∴矩形DEMN 的面积=6×4=24.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及矩形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(1)2)4【分析】(1)先将二次根式化为最简,然后合并同类二次根式即可;(2)运用平方差公式进行计算即可.【详解】(1)原式==(2)原式=22734-=-=.【点睛】本题考查二次根式的合并运算,难度不大,注意在计算中一些公式的运用.26.(1)①见解析;②见解析;(2)FC =【分析】(1)①根据条件得出EDA CEB △≌△,即可求证;②延长DE 交CB 的延长线于点G ,得出EDA EGB △≌△再证明GCE DCE △≌△即可;(2)解法1:过点F 分别作FM CD ⊥,FN CB ⊥,得到FCM FCN △≌△,由222BN BF FN =-,222DM DF FM =-,得到DM BN =,设DM BN x ==,求得5CN =,在Rt FBN △和Rt FCN △中,由勾股定理即可求得CF 的长.解法2:在CD 上截取CF BC '=,得出2FF FD '==,过F 作FG CD ⊥,根据22222FC CG FG F F F G ''-==-,即可求得CF 的长.【详解】(1)①证明:90A B DEC ∠=∠=∠=︒,90ADE AED ∴∠+∠=︒,1809090DEA BEC ∠+∠=︒-︒=︒,ADE BEC ∴∠=∠,在DEA △和ECB 中ADE BEC ∠=∠,A B ∠=∠,AE BC =, EDA CEB ∴△≌△,AD BE ∴=.②证明:延长DE 交CB 的延长线于点G ,AED BEG ∴∠=∠,E 90A BG ∠=∠=︒,AE BE =,EDA EGB ∴△≌△,EG ED ∴=,90DEC =︒∠,18090GEC DEC ∴∠=︒-∠=︒,GEC DEC ∴∠=∠,CE CE =,GCE DCE ∴△≌△,GCE DCE ∴∠=∠,CE ∴平分BCD ∠.(2)解法1:如图,过点F 分别作FM CD ⊥,FN CB ⊥,分别交CD 及CB 的延长线于点M ,N .CE 平分BCD ∠,BCF FCD ∴∠=∠,又FM CD ⊥,FN CB ⊥,90CNF FMC ∴∠=∠=︒,在FCM △和FCN △中BCF FCD ∠=∠,CNF FMC ∠=∠,CF CF =,FCM FCN ∴△≌△,FM FN ∴=,CM CN =,在Rt FDM △和Rt FBN △中MF FN =,FB DF =,222BN BF FN =-,222DM DF FM =-DM BN ∴=,设DM BN x ==,6CD =,4CB =,4CN x ∴=+,6CM x =-,CN CM =,46x x ∴+=-,1x ∴=,415CN CB BN ∴=+=+=,在Rt FBN △和Rt FCN △中222FN FB BN =-,222FC FN CN =+,362BF =, 222223625122FN FB BN ⎛∴=-=-= ⎝⎭ 222255(41)622FC FN CN =+=++= 解法2:如图,在CD 上截取CF BC '=,4BC =,6CD =,642DF CD CF ''∴=-=-=,在FCB 和FCF '△中BCF FCD ∠=∠,CF CF =,CB CF '=,FCB FCF '∴△≌△,FF FB '∴=,FB FD =,362FF FD '∴==, 过F 作FG CD ⊥,垂足为G ,112GF GD DF ''∴===, 145CG GF CF ''∴=+=+=, 在Rt FCG △和Rt FF G '△中22222FC CG FG F F F G ''-==-222236512FC ⎛∴-=- ⎝⎭ 56FC ∴=. 【点睛】 本题主要考查了全等三角形的判定和性质,角平分线的判定,以及勾股定理的应用,解题的关键是熟练掌握全等三角形的判定和性质,正确作出辅助线以及利用方程解决问题.。
华师大版数学八年级下册期末数学试卷及答案.doc
若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
期末数学试卷、选择题1.函数 y = x 的自变量 x 的取值范围是 ( ) x -2 A .x ≥0且 x ≠ 2 B .x ≥ 0 C .x ≠ 2D .x>22. H7N9 禽流感病毒颗粒有多种形状,其中球形直径约为 记数法表示为 ( A . 0.1 ×10-7C . 0.1 ×10-63.已知点 P (x ,3-x )在第二象限,则 x 的取值范围为 A .x <0 B .x <3 C .x > 3 D .0<x < 3 4. 2016 年欧洲杯足球赛中,某国家足球队首发上场的A .180,182 C . 182,182 D . 5.如图,在平行四边形 A . ∠ 1=∠ 2B . C. D . B . ∠ BAD =∠ BCD AB =CDAC ⊥BD 180, 180 3,2 ABCD 中,下列结论中错误的是( 6.已知分式 第 8 题图x -1)( x +2)的值为 0,那么 x 的值是 ( x 2-1A .20B .24C . 28D .40A .- 1B . -2C .1D .1 或- 2) B .1×10-7D .1×10 -60.0000001m. 将 0.0000001 用科学 身高 (cm) 176 178 180 182 186188 192 人数 1 2 3 2 1 1111 名队员身高如下表: 则这 11名队员身高的众数和中位数分别是 (单位: cm )( )49.如图,函数 y =- x 与函数 y =- x 的图象相交于 A ,B 两点,过 A ,B 两点分别作 y 轴的x垂线,垂足分别为点 C , D ,则四边形 ACBD 的面积为 ( )10.如图,正方形 ABCD 中, AB =3,点 E 在边 CD 上,且 CD =3DE.将△ADE 沿 AE 对折至△ AFE ,延长 EF 交边 BC 于点 G ,连接 AG ,CF.下列结论:①点 G 是 BC 中点;② FG =9FC ;③ S △FGC =10.其中正确的是 ( )A .①②B .①③C .②③D .①②③、填空题11.化简:(x 2-9)·x -13= ______k12.若点 (- 2,1)在反比例函数 y =x 的图象上,则该函数的图象位于第 ______ 象限.x 13.一组数据 5,- 2,3,x ,3,- 2,若每个数据都是这组数据的众数,则这组数据的平均数是 ______ .14.如图,在矩形纸片 ABCD 中,AB =12,BC =5,点 E 在AB 上,将 △DAE 沿DE 折叠, 使点 A 落在对角线 BD 上的点 A ′处,则 AE 的长为 ______ .第 14 题图 第 18 题图15.直线 y = 3x + 1 向右平移 2 个单位,再向下平移 3 个单位得到的直线解析式为x - 3 ≥0,16.一组数据 3,4,6,8,x 的中位数是 x ,且 x 是满足不等式组 的整数,则这组 5- x > 0数据的平均数是 _______ .17.为了创建园林城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运 10趟可完成.已知甲、乙两车单独运完此堆垃圾,乙车所运的趟数是甲车的 2 倍, 则甲车单独运完此堆垃圾需要运的趟数为 __________ .18.甲、乙两地相距 50 千米,星期天上午 8:00 小聪同学在父亲陪同下骑山地车从甲地前往乙地 .2 小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地, 他们行驶的路程 y(千第 10 题图米)与小聪行驶的时间 x(小时 )之间的函数关系如图所示,小明父亲出发 ______ 小时,行进中 的两车相距 8 千米.三、解答题19.计算或解方程:1 - 2(1) -22+ 13 -|- 9|-( π-2016)0;x2- 1 x + 1120.先化简: 2x ÷x +1·x - 1 ,然后 x 在-1,0,1,2 四个数中选一个你认为合适的x - 2x + 1 x x数代入求值.21.如图,四边形 ABCD 是平行四边形,点 E , F 是对角线 BD 上的点,∠ 1=∠ 2.求证: (1) BE = DF ; (2) AF ∥ CE .22.如图,在平面直角坐标系中,直线 y =2x +b(b <0)与坐标轴交于 A ,B 两点,与双曲线 y =k x (x >0)交于 D 点,过点 D 作 DC ⊥x 轴,垂足为 C ,连接 OD.已知△ AOB ≌△ ACD .x (1) 如果 b =- 2,求 k 的值;(2) 试探究 k 与 b 的数量关系,并求出直线 OD 的解析式.(2) 2+x + 2-x16 =x 2-4=-1.23.)我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出 5 名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的 5 名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(3)计算两队决赛成绩的方差并判断哪一个代表队选手的成绩较为稳定.24.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家 1 小时50 分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(千米)与小明离家的时间x(小时)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25 分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD 所在直线的函数解析式.25.如图,在Rt△ABC 中,∠ ACB=90°,过点C 的直线MN∥AB,D 为AB 边上一点,过点 D 作DE ⊥BC,交直线MN 于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当 D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3) 若 D 为AB 中点,则当∠ A 为多少度时,四边形BECD 是正方形?请说明你的理由.、选择题1. A 2.B 3.A 4.B 5.D 6.B 7.D 8.A 9.D10.B 解析:∵四边形 ABCD 是正方形,∴ AB =AD =DC =3,∠ B =D =90°.∵CD = 3DE ,∴DE =1,则CE =2.∵△ADE 沿AE 折叠得到 △AFE ,∴DE =EF =1,AD =AF ,∠D =∠ AFE = 90°,∴∠ AFG =90°,AF =AB.在 Rt △ABG 和 Rt △ AFG 中,∴Rt △ABG ≌Rt △AFG (HL ),∴BG =FG ,∠AGB =∠AGF.设 BG = x ,则 CG =BC -BG =3 -x ,GE = GF +EF =BG +DE =x + 1.在 Rt △ECG 中,由勾股定理得CG 2+ CE 2=EG 2.即(3 -x )2+22=(x +1)2,解得 x = 1.5,∴ BG =GF =CG =1.5,①正确,②不正确.∵△ CFG 和 △CEG 中,分别把 FG 和 GE 看作底边,则这两个三角形的高相同.1 39∵ S △GCE = ×1.5 ×2= 1.5 ,∴ S △ CFG = ×1.5=,③正确.故选2 5 10二、填空题1011. x +3 12.二、四 13.2 14. 3 15.y =3x -8 16.5 17.152418.32或 34 解析:由图可知,小聪及父亲的速度为 36÷3=12(千米 /时), 33小明的父亲速度为 36÷(3- 2)= 36(千米 /时).设小明的父亲出发 x 小时两车相距 8 千米,则小聪及父亲出发的时间为 (x +2)小时 根据题意,得 12( x + 2)- 36x = 8 或 36x -12(x +2)=8,24解得 x = 23或 x = 43,24 所以,出发 23或43小时时,行进中的两车相距 8 千米. 3319.解: (1)原式=- 4+ 9-3-1=1.(2)方程的两边同乘 (x -2)(x +2),得- (x +2)2+ 16=4- x 2,解得 x =2. 检验:当 x =2 时, (x -2)(x +2)=0,所以原方程无解.(x +1)( x -1) x x 2- 120.解:原式=( x - 1) 2 ·x + 1·x∵x - 1≠0,x + 1≠0, x ≠0,∴ x ≠1,x ≠-1,x ≠0,∴在- 1,0,1,2 四个数中,使原式有意义的值只有 2, ∴当 x = 2 时,原式= 2+1= 3.参考答案AG =AG ,AB =AF , B.S △CFG =FG =1.5S △CEG =GE =2.53, 解答题x ·(x +1)x( x -1)=x +1. x - 1 x21.证明: (1)∵四边形 ABCD 为平行四边形, ∴AB =CD ,AB ∥CD ,∴∠ ABE =∠ CDF .∵∠ 1=∠ 2,∴∠ AEB =∠ CFD .∠ ABE =∠ CDF ,在△ABE 与△CDF 中, ∠ AEB =∠ CFD ,AB =CD ,∴△ ABE ≌△ CDF , ∴BE =DF.(2)∵△ ABE ≌△ CDF ,∴ AE =CF.∵∠ 1=∠ 2,∴ AE ∥ CF ,∴四边形 AECF 为平行四边形,∴ AF ∥ CE.22.解: (1)当 b =- 2时, y =2x - 2.令y =0,则 2x - 2= 0,解得 x =1; 令 x =0,则 y =- 2,∴ A (1, 0), B (0 ,- 2).∵△AOB ≌△ACD ,∴CD =OB ,AO =AC ,∴点 D 的坐标为 (2,2). k ∵点 D 在双曲线 y =kx (x>0)的图象上,∴ k = 2×2= 4.xb(2)直线 y = 2x +b 与坐标轴交点的坐标为 A-b 2,0,B (0, b ). ∵△AOB ≌△ACD ,∴CD=OB ,AO =AC ,∴点 D 的坐标为 (-b ,-b ).k∵点 D 在双曲线 y =x ( x >0)的图象上,∴ k =(-b )·(-b )=b 2.即 k 与 b 的数量关系为 k = b 2.23.解: (1)从左到右,从上到下,依次为 85, 85,80(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同 的情况下,中位数高的初中部成绩好些.11(3)∵s 2初=5[(75- 85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]= 70,s 2高=5[(70 -85)2 +(100-85)2+(100-85)2+(75-85)2+(80-85)2] =160,∴s 2初 < s 2高,∴初中代表队选手的成绩较为稳定.24.解: (1)20 1÷=20(千米 /时),2-1=1(小时 ), 即小明的骑车速度为 20 千米 /时,在南亚所游玩的时间为 1 小时.(2)从南亚所到湖光岩的路程为 20×2650-6100 =5(千米 ),20+5=25(千米 ),161+2605=49(小9时),则点 C 的坐标为 4,25 .925= k +b , 4 解得110= 6k +b ,k = 60,故 CD 所在直线的解析式为 y = 60x -110. b =- 110.25. (1)证明:∵ DE ⊥BC ,∴∠ DFB =90°. 又∵∠ ACB =90°,∴ AC ∥DE.设直线 CD 的解析式为9 11y =kx +b ,把点 4,25, 6 ,0 代入得∵AD ∥CE,∴四边形ADEC 为平行四边形,∴ CE=AD.(2) 解:当 D 在AB 中点时,四边形BECD 为菱形.理由如下:∵D 为AB 中点,∴ AD =BD.∵CE=AD,∴ CE=BD.∵CE ∥BD,∴四边形BDCE 为平行四边形.∵DE ⊥CB,∴四边形BECD 为菱形.(3) 解:若 D 为AB 中点,当∠ A=45°时,四边形BECD 为正方形.理由如下:由(2) 得四边形BECD 为菱形.∵∠ A=45°,∠ ACB =90°,∴∠ ABC=90°-45°=45°,∴△ ACB为等腰直角三角形.∵D 为AB 中点,∴∠ CDB =90°,∴四边形BECD 为正方形.。
华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知,则直线y=kx﹣k一定经过的象限是()A.第一、三、四象限B.第一、二、四象限C.第一、四象限D.第二、三象限2、下列各组的分式不一定相等的是()A. 与B. 与C. 与D. 与3、给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有()A.1个B.2个C.3个D.4个4、在平面直角坐标系中,点(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限5、一艘游船在同一航线上往返于甲、乙两地,已知游船在静水中的速度为15km/h,水流速度为5km/h.游船先从甲地逆水航行到乙地,在乙地停留一段时间后,又从乙地顺水航行返回到甲地,设游船航行的时间为t(h),离开甲地的距离为s(km),则s与t之间的函数关系用图象表示大致是()A. B. C. D.6、如图,点在反比例函数的图象上,点在轴上,且,直线与双曲线交于点,则(n 为正整数)的坐标是()A. B. C. D.7、下列命题中,真命题是A.两对角线相等的四边形是矩形B.两对角线互相垂直的四边形是菱形 C.两对角线互相垂直平分且相等的四边形是正方形 D.一组对边相等另一组对边平行的四边形是平行四边形8、下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形9、若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.610、若函数y= ,当x>0时,y随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<111、如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是( )A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为C.5min~20min,王阿姨步行速度由慢到快 D.曲线段AB的函数解析式为12、今年余姚市上半年接待国内外游客650多万人次,实现旅游总收入61亿元,其中,61亿用科学记数法表示是()A. B. C. D.13、已知:如图,在平行四边形ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,则ED的长为( )A.4B.3C. D.214、八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A. B. C. D.15、二亿七千零九写作(),省略亿位后面的尾数约是()A.200007009;2亿B.20007009;2亿1千万C.20007009;2亿 D.20000709;2亿1千万二、填空题(共10题,共计30分)16、对于正比例函数y=m, y的值随x的值增大而减小,则m的值为________17、为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的和分别表示去年和今年的水费(元)和用水量()之间的函数关系图象.如果小明家今年和去年都是用水150 ,要比去年多交水费________元.18、我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AH,CF于点P、Q.在正方形EFGH的EH、FG两边上分别取点M,N,且MN 经过点O,若MH=3ME,BD=2MN=4 .则△APD的面积为________.19、如图,三个边长均为2的正方形重叠在一起,O1, O2是其中两个正方形的对角线交点,若把这样的n个小正方形按如图所示方式摆放,则重叠部分的面积为________.20、小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离(米)与小明出发的时间(分)之间的关系,则小明出发________分钟后与爸爸相遇.21、在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为________.22、在直角坐标系中,O是坐标原点,正方形OABC的顶点A恰好落在双曲线(x>0)上,且OA与x轴正方向的夹角为30°.则正方形OABC的面积是________.23、在菱形ABCD中,∠A=60°,AB=4 ,点P在菱形内,若PB=PD=4,则∠PDC的度数为________.24、已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为________.25、反比例函数y1= (a>0,a为常数)和y2= 在第一象限内的图象如图所示,点M在y2= 的图象上,MC⊥x轴于点C,交y1= 的图象于点A;MD⊥y轴于点D,交y1= 的图象于点B,当点M在y2= 的图象上运动时,以下结论:①S△ODB =S△OCA;②四边形OAMB的面积为2﹣a;③当a=1时,点A是MC的中点;④若S四边形OAMB =S△ODB+S△OCA,则四边形OCMD为正方形.其中正确的是________.(把所有正确结论的序号都填在横线上)三、解答题(共5题,共计25分)26、解分式方程: ﹣=1.27、如图,A(1,0),B(4,0),M(5,3).动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线l:y=﹣x+b也随之移动.设移动时间为t秒.(1)当t=1时,求l的解析式;(2)若l与线段BM有公共点,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在y轴上.28、如果实数x满足,求代数式的值29、已知:,,求的值.30、我市某一周各天的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3(1)写出这组数据的中位数与众数;(2)求出这组数据的平均数.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、B6、D7、C8、D9、B10、A11、C12、C13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
八年级数学下期末测试及答案(华师大)
04-05学年度(下)八年级数学期末测试(华师大)姓名 成绩一、选择题(每题2分,共20 分) 1、下列实数010010001.0,1.0,3,4,8,3,323-π……,其中无理数共有( ) A 、2个 B 、3个 C 、4个 D 、5个2、点P (-2,-3)关于x 轴对称点的坐标是( ) A 、(2,-3) B 、(2,3) C 、(-2,3) D 、(-3,2)3、有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为( ) A 、3 B 、41 C 、3或31 D 、3或414、下列四个函数中,当x 增大时,y 值减小的函数是( ) A 、x y 5= B 、x y 3-= C 、23+=x y D 、xy 1= 5、如图:在函数xy 4=(x >0)的图象上,四边形COAB 是正方形,四边形FOEP 是矩形,点B 、P 在曲线上,下列说法不正确的是( ) A 、矩形BCFG 和矩形GAEP 面积相等 B 、点B 的坐标是(4,4)C 、图象关于过O 、B 两点的直线对称D 、矩形FOEP 和正方形COAB 面积相等6、在同一直角坐标系中,画出函数k kx y +=和xky =的图象可能是( )7.下列说法错误的是( ). ( A )所有的等边三角形都相似 ( B )所有的等腰直角三角形都相似 ( C )所有的正方形都相似 ( D )所有的直角三角形都相似 8.△ABC 中,AB 、AC 边上的高CE 、BD 相交于点P ,图中所有的相似三角形共有( ) ( A ) 2 对 ( B ) 3 对 ( C ) 4 对 ( D ) 5 对 9.“早穿皮袄午穿纱”是对一天中温度的最佳写照,它的含义是( ) ( A )一天中的最高气温 ( B )最低温度 ( C )平均温度 ( D )温度极差10、口袋中有1个红球和2个白球,搅匀后从中摸出第一个球,然后放回口袋,搅匀后摸出第二个球,两次摸的球都是红球的机会是( ) A 、91 B 、61 C 、41 D 、31 二、填空题(每小题2分,共20 分) 11、16的平方根是 。
华东师大版八年级数学下册期末考试及答案【A4打印版】
华东师大版八年级数学下册期末考试及答案【A4打印版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.菱形不具备的性质是( )A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=__________.3.若m+1m=3,则m2+21m=________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b -++=.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D5、C6、B7、D8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、13、74、a+c5、706、8三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、1a b-+,-1 3、(1)见解析;(2)经过,理由见解析4、略.5、CD 的长为3cm.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
华师大版八年级数学下册《期末测试卷》(5套附答案)
3题号一二三总分161718192021222324得分得分 评卷人一、选择题(每小题 3 分,共 18 分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.x + 11. 若分式x -1有意义,则 x 的取值范围是( )A .x =-1B .x =1C .x ≠-1D .x ≠11 2. 分别以下列四组数为一个三角形的三边长:(1) ,3 1 , 1;(2)3,4,5;(3)1, 2, ; 4 5(4)4,5,6.其中一定能构成直角三角形的有 ()A .1 组B .2 组C .3 组D .4 组a +b 3. 在分式ab中,把 a 、b 的值分别变为原来的 2 倍,则分式的值()A .不变B .变为原来的 2 倍1 C. 变为原来的2D. 变为原来的 4 倍4. 如图是小敏同学 6 次数学测验的成绩统计图,则该同学 6次成绩的中位数是 ()A .85 分B .80 分C .75 分D .70 分5. 在函数 y =- k(k 是常数,且 k >0)的图像上有三点(-3,学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……xy1)、(-1,y2)、(2,y3),则y1、y2、y3 的大小关系是( )(第4 题)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 16. 如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为 10cm ,正方形 A 的边长为 6cm 、B 的边长为 5cm 、C 的边长为 5cm ,则正方形 D 的边长为 ( ) A .3cm得分 评卷人二、填空题(每小题 3 分,共 27 分) x 2 -1 7. 当 x =时,分式x -1的值为 0.D .4cm(第 6 题)8.计算:(2x -3y 4)2·3x 2y -3= .9. 某水晶商店一段时间内销售了各种不同价格的水晶项链 75 条,其价格和销售数量如下表:价格(元) 20 25 30 35 40 50 70 80 100 150 销售数量(条)13967316642下次进货时,你建议该商店应多进价格为 元的水晶项链. 10. 在四边形 ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA的中点,要使四边形 EFGH 为菱形,则四边形 ABCD 的对角线应满足的条件是 .11. 已知 E 、F 分别是正方形 ABCD 两边 AB 、BC 的中点,AF 、CE 交于点 G ,若正方形 ABCD 的面积等于 4,则四边形 AGCD 的面积为 .12.在 Rt △ABC 中,已知∠C =90°,∠A =30°,BC =1,则边(第 11 题)AC 的长为 .13. 已知梯形的上、下底长分别为 6,8,一腰长为 7,则梯形另一腰长 a 的取值范围是 . 14. 如图,菱形 ABCD 的两条对角线长分别为 6 和 8,点 P 是对角线 AC 上的一个动点,点 M 、N 分别是边 AB 、BC 的中点则 PM +PN 的最小值是 .x + a(第 14 题)15. 已知关于 x 的方程x - 2= -1 有解且大于 0,则 a 的取值范围是.C . 15cm B . 14cm三、解答题(本题共9 个小题,满分75 分)得分评卷人16.(7 分)先化简( 的值.1-x -11) ÷x +1x2x2 -2, 然后选择一个你喜欢的x 的值代入求原式得分评卷人17.(7 分)“玉树地震,情牵国人”,某厂计划加工1500 顶帐篷支援灾区人民,在加工了300 顶帐篷后,由于救灾需要,工作效率提高到原来的1.5 倍,结果比原计划提前4 天完成了任务.求原计划每天加工多少顶帐篷?得分评卷人18.(8 分)如图,在□ABCD 中,分别以AD、BC 为边向内作等边△ADE 和等边△BCF,连结BE、DF.求证:四边形BEDF 是平行四边形.得分评卷人19.(8 分)一次数学活动课中,甲、乙两组学生各自对学校的旗杆进行了5 次测量,所得的数据如下表所示:旗杆高度(m) 11.90 11.95 12.00 12.05甲组测得次数1022乙组测得次数0212得分评卷人20.(8 分)为了预防流感,某学校在星期天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(小时)成正比例;药物释放完毕后,y 与x 成反比例,如图所示.根据以上信息解答下列问题:(1)求药物释放完毕后,y 与x 之间的函数关系式并写出自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25 毫克以下时,学生方可进入教室,那么,从星期天下午5:00 开始对某教室释放药物进行消毒,到星期一早上7:00 时学生能否进入教室?m 得分 评卷人21.(9 分)将矩形纸片 ABCD 按如图方式折叠,使点 D 与点 B 重合,点 C 落到 C ′处,折痕为 EF .若 AD =9AB =6,求折痕 EF 的长.得分 评卷人22.(9 分)如图,一次函数 y =kx +b 与反比例函数 y =的图象交于A (-4,n ),B (2,x-4)两点.(1) 求反比例函数和一次函数的解析式;(2) 求直线 AB 与 x 轴的交点 C 的坐标及△AOB 的面积; (3) 根据图象直接写出关于 x 的方程 kx + b -m = 0 的解及x不等式 kx + b - m x< 0 的解集.得分评卷人23.(9 分)如图,在梯形ABCD 中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC 到E,使CE=AD.(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(2)探究:当梯形ABCD 的高DF 等于多少时,对角线AC 与BD 互相垂直?请回答并说明理由.得分评卷人24.(10 分)如图,在Rt△ABC 中,∠ABC=90°∠ACB=60°.将Rt△ABC 绕点C 顺时针方向旋转后得到△DEC(△DEC≌△ABC),点E在AC 上,再将Rt△ABC 沿着AB 所在直线翻转180°得到△ABF,连接AD.(1)求证:四边形AFCD 是菱形;(2)连接BE并延长交AD于点G,连接CG.请问:四边形ABCG 是什么特殊平行四边形?为什么?x 参考答案一、选择题(每小题 3 分,共 18 分) 1.D 2.B 3.C4.C5.A 6.B二、填空题(每小题 3 分,共 27 分) 12 y 5 7.-18. x49.50 10.AC =BD11. 82(或2 )12. 3 313.5<a <914.5 15.a <2 且 a ≠-2 三、解答题(本题共 9 个小题,满分 75 分) 16.(7 分)解:原式=(1 - x -1 1 x +1 2(x2 -1) ) x……1 分= 2(x +1) -2(x 2 -1) ……5 分x4 =x代入求值略(只要 x 不取 0,1,-1 即可).……7 分 17.(7 分)解:设原计划每天加工 x 顶帐篷.……1 分 1500 - (300 + 1200 ) = 4……3 分 x x 1.5x解这个方程,得 x =100 ……5 分经检验 x =100 是原分式方程的解. ……6 分 答:原计划每天加工 100 顶帐篷.……7 分18.(8 分)证明:∵四边形 ABCD 是平行四边形,∴CD =AB ,AD =CB ,∠DAB =∠BCD ……2 分又∵△ADE 和△BCF 都是等边三角形∴DE =AE =AD ,BF =CF =CB ,∠DAE =∠BCF =60°. ∴DE =BF ,AE =CF . ……4 分 ∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE . ∴△DCF ≌△BAE (SAS ). ……7 分3⋅3 3 3 ∴DF =BE .∴四边形 BEDF 是平行四边形.……8 分19.(8 分)解: x 甲 = 1⨯ (11.90 +12.00 ⨯ 2 +12.05⨯ 2) = 12.00 5x 乙 = 1x (11.95⨯ 2 +12.00 +12.05⨯ 2) = 12.00 5……3 分S 2 = 1×[(11.90-12.00)2+(12.00-12.00)2+(12.00-12.00)2+(12.05- 甲512.00)2+(12.05-12.00)2]=0.003S 2 = 1×[(11.95-12.00)2+(11.95-12.00)2+(12.00-12.00)2+(12.05- 乙512.00)2+(12.05-12.00)2]=0.002 ……7 分 ∵ S 2< S 2,∴乙组测得旗杆高度比较一致.……8 分乙甲20 . 解:(1) 设药物释放完毕后 y 与 x 的函数关系式为y = k(k =/ 0).x由题意,得1.5 =k,∴ k = 3. 2∴药物释放完毕后的函数关系式为 y =. ……3 分x在 y =中,令y =3,得 x =1.x∴Q (1,3).∴在 y =中,自变量x 的取值范围为 x >1(或 x ≥1).……5 分x 3 (2) 解不等式 <0.25,得x >12. ……7 分x21.(9 分)∵从星期天下午 5:00 到星期一早上 7:00 时,共有 12-5+7=14(小时), 而 14>12,所以到星期一早上 7:00 时学生能够进入教室. ……8 分解:依题意,得:BE =DE ,∠A =90°,∠BEF =∠DEF .∵AD ∥BC ,∴∠DEF =∠BFE .42 + 62⎩⎩b ∴∠BFE =∠BEF .∴BF =BE . ……2 分在 Rt △ABE 中,设 AE =x ,则 BE =DE =9-x . 由勾股定理,得 x 2+62=(9-x )2∴ x = 5 2,即 AE = 52. ……4 分∴BE =BF =DE =AD -AE =132……5 分过 E 点作 EG ⊥BF 于 G 点,则得矩形 ABGE .…6 分EG =AB =6,BG =AE =52∴FG =BF -BG = 13 2 -5 2= 4 .……8 分EF == = 52.即折痕 EF 长为 22.(9 分)解:(1)依题意,得……9 分∴ -m= n , m= -4.∴m =-8,n =2. ……2 分 4 2∴反比例函数解析式为 y = - 8x……3 分又∵直线 y =kx +b 过 A (-4,2),B (2,-4)两点,∴⎧- 4k + b = 2, ∴⎧k = -1,⎨2k + b = -4. ⎨= -2.∴一次函数解析式为 y =-x -2……4 分(2)依题意,令-x -2=0,x =-2 即 C (-2,0)……5 分S ∆AOB =S ∆ AOC +S ∆BOC = 12⨯ 2 ⨯ 2 +12⨯ 2 ⨯ 4 = 6……6 分(3) 方程 kx + b -m = 0 的解为 x =2 或 x =-4 ……7 分 x不等式kx + b -m < 0 的解集为 x >2 或-4<x <0……9 分x23.(9 分)解:(1)△CDA ≌△DCE ,△BAD ≌△DCE .……2 分FG 2 + EG 2 52∵AD ∥BC ,∴∠ADC =∠ECD . ∵CE =DA ,DC =CD , ∴△CDA ≌△DCE . ……4 分 (2)当 DF =3 时,AC ⊥BD . ……5 分理由如下:∵AD ∥BC ,AB =CD ,∴AC =BD .∵AD ∥BC ,CE =AD ,∴四边形 ACED 为平行四边形 ∴AC =DE ,∴BD =DE .∵DF ⊥BE ,∴ BF = EF = 1 BE = 2 1 ⨯ (2 + 4) = 3 224.(10 分)∵DF =3,∴DF =BF =EF .∴∠DBF =∠BDF =45°,∠E =∠EDF =45°. ∴∠BDE =90°.∴BD ⊥DE . ∵AC ∥DE ,∴AC ⊥BD .……9 分(1) 证明:△DEC 是由 Rt △ABC 绕 C 点旋转后得到.∴AC =DC ,∠ACD =∠ACB =60°. ∴△ACD 是等边三角形, ∴AD =DC =AC .……2 分又∵Rt △ABF 是由 Rt △ABC 沿 AB 所在直线翻转 180°得到 ∴AC =AF ,∠ABF =∠ABC =90°. ∴∠FBC 是平角,∴ 点 F 、B 、C 三点共线 ∴△AFC 是等边三角形∴AF =FC =AC .……3 分∴AD =DC =FC =AF . ……4 分 ∴四边形 AFCD 是菱形.……5 分(2)四边形 ABCG 是矩形.……6 分证明:由(1)可知:△ACD 是等边三角形,∠DEC =∠ABC =90°.∴DE ⊥AC 于 E .∴AE =EC . ……7 分 ∵四边形 AFCD 是菱形,∴AG ∥BC . ∴∠EAG =∠ECB ,∠AGE =∠EBC . ∴△AEG ≌△CEB ,∴BE =EG . ……8 分 ∴四边形 ABCG 是平行四边形. ……9 分而∠ACB =90°,∴四边形 ABCG 是矩形. ……10 分一、选择题(每小题3分,共30分)1.若反比例函数y= kx 的图像经过点(1,-2),则k= ( )A.-2B.2C. 12 C.- 122.如果把分式 a+2ba−2b 中的a 、b 都扩大3倍,那么分式的值一定 ( )A.是原来的3倍B.是原来的5倍C.是原来的 13C.不变3.已知直线y=2x+b 与坐标围成的三角形的面积是4,则b 的值是 ( ) A.4 B.2 C.±4 C. ±24.一次函数y=kx+k(k ≠0)和反比例函数y= kx (k ≠0)在同一直角坐标系中的图像大致是 ( )A. B. C. D.5. A ,B ,C ,D 在同一平面内,从①AB ∥CD ,②AB=CD ,③BC ∥AD ,④BC=AD 这四个中任选两个作为条件,能使四边形ABCD 为平行四边形的选法有学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……()A. 3种B. 4种C. 5种D. 6种6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A. 64B. 60C. 52D. 507.平行四边形一边的长是10cm,这个平行四边形的两条对角线长可以是()A. 4cm,6cmB. 6cm,8cmC. 8cm,12cmD. 20cm,30cm8.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转1800得△CFE,则四边形ADCF一定是()A. 矩形B. 菱形C. 正方形D. 梯形第8题图第9题图第10题图9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= kx(x<0)的图像经过顶点B,则k的值为()A. -12B. -27C. -32D. -3610.如图所示,正方形ABCD的边长为4,E为BC上一点,BE=1,P为AC上一动点,则当PB+PE取最小值时,求PB+PE= ()A. 3B. 4C. 5D. 6二、填空题(每小题3分,共15分)11.将直线y=-2x+1向下平移4个单位得到直线l,则直线l的解析式为___________。
(华师版)数学八年级(下)期末质量测试卷13(附答案)
当x=1时. .
当x=5时. .
由已知.得 解得. .
∴ .
当 时.y随x增大而减小.
当x=1时. .
当x=5时. .
由已知.得 解得. .
∴ .
∴综上.k的取值范围为: . .
(4)根据题意.如图:
∵ .
∴ .
令 .则 .
∴点D为( .0);
令 .则 .
∴点E为( .4);
当点P在线段AD上时.有 .即 .
当点P在线段AD的延长线上时.有 .即 .
∴当以P、D、C、Q为顶点的四边形是平行四边形时.t的值为2或6;
(4)如图.若PE=BE=5.当点P在线段AD上时.过点P作PG⊥BC于点G.
∵ . .
∴∠ABG=∠A=∠BGP=90°.
∴四边形ABGP是矩形.
∴PG=AB=4.AP=BG.
12.如图.菱形 周长为40.对角线 .则菱形 的面积为______.
13.如图.在矩形 中. . .点 、 分别在 、 上.将矩形 沿 折叠.使点 、 分别落在矩形 外部的点 、 处.则整个阴影部分图形的周长为______.
14.如图.矩形ABCD的顶点A、B、C的坐标分别为(0.5)、(0.2)、(1.2).将矩形ABCD向右平移t个单位.若平移后的矩形ABCD与函数y= (x>0)的图象有公共点.则t的取值范围是______.
经检验 是原分式方程的解.且符合题意.
答:每台甲种电脑的价格为0.3万元.
17.(1) 直线 经过点 和点 .
解得
直线 所对应的函数表达式为 .
(2)当 时. .
的值为 .
18.(1)证明:在▱ABCD中.AD∥BC.AD=BC.
最新华东师大版八年级数学下册期末试卷 含答案
华东师大版八年级数学下册期末检测一、选择题(每小题3分,共30分)1.下列计算中,正确的是( )A.a+cb+c=abB.(-178)0=1C.1a+3-1a-3=6a2-9D.(-y2x)3=-y36x32.高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5A.众数是20 B.中位数是17 C.平均数是12 D.方差是263.已知某病毒的直径约为0.000 000 823米,将0.000 000 823用科学记数法表示为( )A.8.23×10-6 B.8.23×10-7 C.8.23×106 D.8.23×1074.已知关于x的分式方程m-2x+1=1的解是负数,则m的取值范围是( )A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠25.一次函数y=ax+b和反比例函数y=a-bx在同一直角坐标系中的大致图象是( )6.如图,▱ABCD中,E为BC边上一点,且AE交DC延长线于F,连结BF,BD,DE,下列关于面积的结论中错误的是( )A.S△ABD=S△ADE B.S△ABD=S△ADF C.S△ABD=12S▱ABCDD.S△ADE=12S▱ABCD7.若顺次连结四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为菱形,应添加的条件是( )A.AD∥BC B.AC=BD C.AC⊥BD D.AD=AB8.某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( )年龄192021222426人数11x y 2 1A.22,3 B9.如图,在矩形ABCD中,BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上点F处,则DE的长是( )A.3 B.245C.5 D.891610.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35 h时,选择B方式最省钱D.每月上网时间超过70 h时,选择C方式最省钱二、填空题(每小题3分,共15分)11.分式x-3(x+3)(x-4)有意义,则x满足的条件是____.12.在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是____.13.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD 交BC于点E,若△CDE的周长为10,则平行四边形ABCD的周长为____.14.已知关于x的分式方程xx-3-2=kx-3有一个正数解,则k的取值范围为____.15.如图,正比例函数y=kx与反比例函数y=6x的图象有一个交点A(2,m),A B⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是____.三、解答题(共75分)16.(8分)先化简,再求值:(1+x2+2x-2)÷x+1x2-4x+4,其中x满足x2-2x-5=0.17.(9分)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,过点O 的一条直线分别交AD ,BC 于点E ,F.求证:AE =CF.18.(9分)某种型号汽车油箱容量为40 L ,每行驶100 km 耗油10 L .设一辆加满油的该型号汽车行驶路程为x(km ),行驶过程中油箱内剩余油量为y(L ).(1)求y 与x 之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的14,按此建议,求该辆汽车最多行驶的路程.19.(9分)如图,四边形ABCD 是平行四边形,点A (1,0),B (3,1),C (3,3).反比例函数y =mx(x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k (k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的表达式;(2)通过计算,说明一次函数y =kx +3-3k (k ≠0)的图象一定过点C ; (3)对于一次函数y =kx +3-3k (k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)20.(9分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.21.(10分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:对这频数分布表(1)填空:a=________,b=________,c=________;(2)若将月销售额不低于25万元确定为销售目标,则有________位营业员获得奖励;(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.22.(10分)如图,反比例函数y=kx(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.23.(11分) A,B两城决定向C,D两乡运送肥料以支持农村生产,已知A,B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C,D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C,D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费;(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?答案选择题:BCBDA BBDCD 填空题11. x ≠-3且x ≠4 12. 8 13. 20.14. k <6且k ≠315. y =32x -316. 解:原式=x -2+x 2+2x -2·(x -2)2x +1=x (x +1)x -2·(x -2)2x +1=x(x -2)=x 2-2x ,由x 2-2x -5=0,得到x 2-2x =5,则原式=517. 证明:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,AD ∥BC ,∴∠EAC =∠FCO,在△AOE 和△COF 中⎩⎨⎧∠EAO=∠FCO,AO =CO ,∠AOE =∠COF,∴△AOE ≌△COF(ASA),∴AE =CF18. 解:(1)由题意可知y =40-x100×10,即y =-0.1x +40,∴y 与x 之间的函数表达式:y =-0.1x +40(2)∵油箱内剩余油量不低于油箱容量的14,∴y≥40×14=10,则-0.1x +40≥10.∴x≤300,故该辆汽车最多行驶的路程是300 km19. (1)由题意,得AD =BC =2,故点D 的坐标为(1,2).∵反比例函数y =mx (x>0)的图象经过点D(1,2),∴2=m 1,∴m =2,∴反比例函数的表达式为y =2x(2)当x =3时,y =3k +3-3k =3,∴一次函数y =kx +3-3k(k≠0)的图象一定过点C(3)设点P 的横坐标为a ,23<a <320. 解:(1)∵点F ,G ,H 分别是BC ,BE ,CE 的中点,∴FH ∥BE ,FH =12BE ,FH=BG ,∴∠CFH =∠CBG,∵BF =CF ,∴△BGF ≌△FHC (2)当四边形EGFH 是正方形时,连结GH ,EF ,可得EF⊥GH 且EF =GH ,∵在△BEC 中,点G ,H 分别是BE ,CE 的中点,∴GH =12BC =12AD =12a ,且GH∥BC,∴EF ⊥BC ,∵AD ∥BC ,AB ⊥BC ,∴AB =EF =GH =12a ,∴矩形ABCD 的面积=AB·AD=12a·a=12a 221. 解:(1)在22≤x<25范围内的数据有3个,在28≤x<31范围内的数据有4个,15出现的次数最多,则众数为15,故答案为3,4,15(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为8(3)想让一半左右的营业员都能达到销售目标,则月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标22. 解:(1)把点A(3,4)代入y =kx (x >0),得k =xy =3×4=12,故该反比例函数表达式为y =12x .∵点C(6,0),BC ⊥x 轴,∴把x =6代入反比例函数y =12x,得y =126=2.则B(6,2).综上所述,k 的值是12,B 点的坐标是(6,2)(2)①如图,当四边形ABCD 为平行四边形时,AD ∥BC 且AD =BC.∵A(3,4),B(6,2),C(6,0),∴点D 的横坐标为3,y A -y D =y B -y C 即4-y D =2-0,故y D =2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD ′∥CB 且AD′=CB.∵A(3,4),B(6,2),C(6,0),∴点D 的横坐标为3,y D ′-y A =y B -y C ,即y D -4=2-0,故y D ′=6.所以D′(3,6).③如图,当四边形AC D″B 为平行四边形时,AC ∥BD ″且AC =BD″.∵A(3,4),B(6,2),C(6,0),∴x D ″-x B =x C -x A 即x D ″-6=6-3,故x D ″=9.y D ″-y B =y C -y A 即y D ″-2=0-4,故y D ″=-2.所以D″(9,-2).综上所述,符合条件的点D 的坐标是(3,2)或(3,6)或(9,-2)23. 解:(1)设A 城有化肥a 吨,B 城有化肥b 吨,根据题意,得⎩⎨⎧b +a =500,b -a =100,解得⎩⎨⎧a =200,b =300,答:A 城和B 城分别有200吨和300吨肥料 (2)设从A 城运往C 乡肥料x 吨,则运往D 乡(200-x)吨,从B 城运往C 乡肥料(240-x)吨,则运往D 乡(60+x)吨,设总运费为y 元,根据题意,则y =20x +25(200-x)+15(240-x)+24(60+x)=4x +10040,由于函数是一次函数,k =4>0,所以当x =0时,运费最少,最少运费是10040元(3)从A 城运往C 乡肥料x 吨,由于A 城运往C 乡的运费每吨减少a(0<a <6)元,所以y =(20-a)x +25(200-x)+15(240-x)+24(60+x)=(4-a)x +10040,当0<a≤4时,∵4-a≥0,∴当x =0时,运费最少;当4<a <6时,∵4-a <0,∴当x =240时,运费最少.所以当0<a≤4时,A 城化肥全部运往D 乡,B 城运往C 乡240吨,运往D 乡60吨,运费最少;当4<a <6时,A 城化肥全部运往C 乡,B 城运往C 乡40吨,运往D 乡260吨,运费最少。
华师版八下数学期末测试及答案
新华东师大版数学八年级下册期末模拟测试数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
总分150分。
考试时间120分钟。
第Ⅰ卷(选择题,满分48分)一、选择题(每小题都有A 、B 、C 、D 四个选项,其中只有一个选项是正确的。
每小题3分,共48分) 1. 若分式12x -有意义,则x 的取值范围是≠1 >1 <1 =12.下列约分正确的是 A .326xx x = B .b a c b c a =++ C .0=++a b b a D .1-xy y x =-- 3. 若分式方程114-=-+x m x x 有增根,则m 的值是 B.-4 C. 34.已知在正方形网格中如图1,每个小正方格都是边长为1的正方形,A 、B•两点在小正方格的顶点上,位置如图所示,点C 也在小正方格的顶点上,且以A 、B 、C•为顶点的三角形面积为1个平方单位,则点C 的个数为( ).A .3个 B .4个 C .5个 D .6个5. 在平面直角坐标系中,点(x-2,x)在第二象限,则x 的取值范围是 <2 B. 0<x <2 C. x >0 D. x >26.与直线y=23x+1平行,且经过点(0,2)的一次函数的关系式是A . y=23x+2B . y=23x -1C . y=-23x+1 D . y=32x -27.我市永逸百货某品牌女装销售专柜对一月来的销售情况进行了统计,销售情况如下表所示:经理决定下月进女装时多进一些红色的,可用来解释这一决定的统计知识是A .平均数 B .中位数 C .众数 D .方差 8.关于反比例函数xy 2=,下列说法不正确的是 A.点(-2 ,-1)在它的图象上 B.它的图象在第一、三象限C.当x >0时,y 随x 的增大而增大 <0时,y 随x 的增大而减小9.如图是一位同学设计的他家各项支出的扇形统计图,该图中教育费 扇形圆心角的度数是A . 120oB . 126oC . 130oD . 140o10.函数y=2x+1与y=21-x+6的图象的交点坐标是A. (-1,-1)B. (2,5)C. (1,6)D. (-2,5)11. 四边形ABCD 的对角线相交于点O ,能判定它是正方形的条件是( ). A .AB=BC=CD=DA B .AO=CO ,BO=DO ,AC ⊥BD C .AC=BD ,AC ⊥BD 且AC 、BD 互相平分 D .AB=BC ,CD=DA12. 已知菱形的两条对角线长分别是6cm 和8cm ,则菱形的边长是( ).A .12cmB .10cmC .7cmD .5cm13. 如果一个四边形的面积正好等于它的两条对角线乘积的一半,•那么这个四边形一定是( ). A .菱形 B .矩形 C .正方形 D .对角线互相垂直的四边形 14. 下列说法错误的是( ).A .对角线互相平分的四边形是平行四边形B .对角线互相垂直的四边形是矩形C .对角线相等的平行四边形是矩形D .对角线互相垂直的矩形是正方形 15.如图所示,有一张一个角为60°的直角三角形纸片,沿虚线剪开后,不能拼成的四边形是 A .邻边不等的矩形 B .等腰梯形C .有一组对角是锐角的菱形D .正方形16.在如图的方格纸中有一个四边形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个小正方形的边长都为1,则关于四边形ABCD 的以下说法,错误的是 A.四有形ABCD 是菱形 B.边长AB=BC=CD=DA=13C.四边形ABCD 的面积是12D.∠ABC=∠ADC=60o第Ⅱ卷(非选择题,满分102分)二、填空题(每小题4分,32共分)17.人体中成熟的红细胞的平均直径为0.0000077m ,用科学记数法表示为 m 。
华师大版八年级下册数学期末测试卷及含答案(精炼题)
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知点A(2,﹣2),B(﹣1,﹣2),则直线AB与x轴的位置关系是()A.相交B.平行C.相互垂直D.不能确定2、在“2008北京”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.6×108帕的钢材,那么4.6×108的原数为()A.4 600 000B.46 000 000C.460 000 000D.4 600 000 0003、如图,是的中线,四边形是平行四边形,增加下列条件,能判断是菱形的是( )A. B. C. D.4、方程的根是()A.﹣1B.2C.﹣1或2D.05、一个长方体木箱的长为4㎝,宽为,高为宽的2倍,则这个长方体的表面积S与的关系及长方体的体积V与的关系分别是()A. ,B. ,C. ,D. ,6、下列结论中,正确的是()A.四边相等的四边形是正方形B.对角线相等的菱形是正方形C.正方形两条对角线相等,但不互相垂直平分D.矩形、菱形、正方形都具有“对角线相等”的性质7、反比例函数y=,当x≤3时,y的取值范围是()A.y≤B.y≥C.y≥或y<0D.0<y≤8、某校在一次学生演讲比赛中,共有7个评委,某学生所得分数为:9.7,9.6,9.5,9.6,9.7,9.5,9.6,那么这组数据的众数与中位数分别是()A.9.6,9.6B.9.5,9.6C.9.6,9.58D.9.6,9.79、盛世中华,国之大典,今年10月1日,20余万军民以盛大的阅兵仪式和群众游行欢庆新中国70华诞,全球瞩目,精彩不断.数据20万用科学记数法可表示为()A. B. C. D.10、如图,在矩形ABCD中,对角线AC, BD相交于点O,若边AB的长不变,边BC的长逐渐增大,下列说法正确的是()A.边CD的长也逐渐增大B.∠AOB也逐渐增大C.边OD的长也逐渐增大D.∠ACB也逐渐增大11、某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108B.中位数是105C.平均数是101D.方差是9312、下列运算正确的是()A. B. C. D.13、四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠CB.AD∥BCC.∠A=∠BD.对角线互相平分14、平面直角坐标系中有一点P,点P到y轴的距离为2,点P的纵坐标为﹣3,则点P的坐标是()A.(﹣3,﹣2)B.(﹣2,﹣3)C.(2,﹣3)D.(2,﹣3)或(﹣2,﹣3)15、已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1B.x>4C.﹣1<x<4D.x<﹣1或x>4二、填空题(共10题,共计30分)16、如图,四边形为菱形,四边形为矩形,,,三点的坐标为,,,则点的坐标为________.17、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,分别以AB,AC,BC 为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S 1, S2, S3, S4,则S1+S2+S3+S4=________.18、我们把满足某种条件的所有点组成的图形,叫做符合这个条件的点的轨迹,如图,在Rt△ABC中,∠C=90°,AC=8,BC=12,动点P从点A开始沿射线AC方向以1个单位秒的速度向点C运动,动点Q从点C开始沿射线CB方向以2个单位/秒的速度向点运动,P、Q两点分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,在整个运动过程中,线段PQ的中点M运动的轨迹长为________.19、同分母的分式相加减,分母________,把分子________,即: ±=________.20、某样本方差的计算公式是,则它的样本容量是________,样本的平均数是________,样本的平方和是176时,标准差是________.21、如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是________22、如图,函数y=ax+b和y=k x的图象交于点P,则二元一次方程组的解是________.23、已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是________km/h.24、如图,抛物线y=﹣x2+bx+c与x轴交于点A、B,与y轴交于点C,点O为坐标原点,点D为抛物线顶点,点E在抛物线上,点F在x轴上,四边形OCEF 为矩形,且OF=2,EF=3,则△ABD的面积为________.25、如图,矩形0ABC的顶点B在反比例函数的图像上,,则 K=________。
(华师版)数学八年级(下)期末质量测试卷8(附答案)
∴①当45<a<50时.50﹣a>0.
∴W随x的增大而增大.
当x=40时.W有最大值;
②当a=50时.W 定值32000元;
③当50<a<55时.50﹣a<0.
∴W随x的增大而减小.又x为整数.
∴当x=27时.W有最大值.
综上.当45<a<50时.商场购进A型号的制氧机40台.则购进B型号的制氧机40台.获得最大利润;当a=50时.商场购进A、B型号的制氧机的台数在符合题意范围内均可.获利润为32000元;当50<a<55.商场购进A型号的制氧机27台.则购进B型号的制氧机53台.获得最大利润.
(1)求药物在燃烧释放过程中.y与x之间的函数关系式及自变量的取值范围;
(2)根据药物说明书要求.只有当空气中每立方米的含药量不低于4毫克时.对预防才有作用.且至少持续作用15分钟以上.才能完全消灭病毒.请问这次消毒是否彻底?
24.如图.在正方形ABCD中.点E在BC边上.AF平分∠DAE.交CD于点F.且CF=DF.连接EF.
7.若▱ABCD添加一个条件后.能推出它是矩形.则添加的条件可以是( ) 。
A AB=ADB.AC平分∠BADC.AC⊥BDD.AB⊥BC
8.周末.小芳骑电动车到郊外游玩.她从家出发先到甲地.玩一段时间后按原速继续前往乙地.刚到达乙地.就接到家里电话.立即返回.图中x(时)表示时间.y(千米)表示小芳离家的距离.根据图中的信息.下列说法正确的是( ) 。
A.小芳在甲地玩了1.5小时
B.小芳家与甲地距离10千米
C.小芳从甲地出发到乙地的平均速度是10千米/时
D.甲、乙两地相距30千米
9.若点A(x1.﹣5).B(x2.2).C(x3.3)在反比例函数 的图象上.则x1.x2.x3的大小关系是( ) 。
华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、函数y=的自变量x的取值范围是( )A.x≠0B.x≠2C.x 2D.x>22、已知函数y=(m+1)x m2−5是反比例函数,且图象在第二、四象限内,则m的值是()A.2B.-2C.±2D.-3、如图,△ABC是一张锐角三角形的纸片,AD是边BC上的高,已知BC=20cm,AD=15cm,从这张纸片上剪一下一个矩形,使矩形的一边在BC上,另两个顶点分别在AB、AC上。
则下列结论不正确的是()A.当△AHG的面积等于矩形面积时,HE的长为5cmB.当HE的长为6cm 时,剪下的矩形的边HG是HE的2倍C.当矩形的边HG是HE的2倍时,矩形面积最大D.当矩形的面积最大时,HG的长是10cm4、关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.当x<0时,图象在第二象限C.无论x取何值时,y随x的增大而增大D.图象是轴对称图形,但不是中心对称图形5、对角线互相平分且相等的四边形是()A.菱形;B.矩形;C.正方形;D.等腰梯形.6、“天问一号”探测器由长征五号运载火箭直接送入地火转移轨道,飞行期间已成功完成地月合影获取、两次轨道中途修正、载荷自检等工作,截至10月1日凌晨,探测器已飞行约188000000千米,飞行状态良好,把188000000用科学记数法表示,结果正确的是()A. B. C. D.7、下列说法错误的是()A.对角线互相垂直的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线相等的平行四边形是矩形D.对角线互相平分的四边形是平行四边形8、如果要从函数y=-3x的图象得到函数y=-3(x+1)的图象,应把y=-3x的图象( ).A.向上移1个单位B.向下移1个单位C.向上移3个单位D.向下移3个单位9、计算,结果是()A.x﹣2B.x+2C.D.10、早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下来往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟后妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法中错误的是()A.打电话时,小刚和妈妈的距离为1250米B.打完电话后,经过23分钟小刚到达学校C.小刚和妈妈相遇后,妈妈回家的速度为150米/分 D.小刚家与学校的距离为2550米11、已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<012、如图,将平行四边形ABCD沿翻折,使点恰好落在上的点处,则下列结论不一定成立的是()A.AF=EFB.AB=EFC.AE=AFD.AF=BE13、如图,矩形ABC0的两边OC,OA分别位于x轴,y轴上,点B的坐标为(-,5),D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,则过点E的反比例函数解析式是()A. B. C. D.14、如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹.反弹时反射角等于入射角,当点P第2015次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)15、如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A. B. C. D.二、填空题(共10题,共计30分)16、如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.线段DC上有一点E,当△ABE的面积等于5时,点E的坐标为________.17、计算:﹣22+()﹣1+= ________ .18、某市为治理污水,需要铺设一段全长600 m的污水排放管道,铺设120 m 后,为加快施工进度,后来每天比原计划多铺设20 m,结果共用8天完成这一任务,则原计划每天铺设管道的长度为________.19、如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,则AD=________.20、某市多措并举,加强空气质量治理,空气质量达标天数显著增加,重污染天数逐年减少,越来越多的蓝天出现在人们的生活中.下图是该市4月1日至15日的空气质量指数趋势图,空气质量指数小于100表示空气质量为优良.由上图信息,在该市4月1日至15日空气质量为优良的时间里,从第________日开始,连续三天空气质量指数的方差最小.21、如图,AB∥CD, AD∥BC,点E、F分别是线段BC和CD上的动点,在两点运动到某一位置时,恰好使得∠AEF=∠AFE , 此时量得∠BAE=15°,∠FEC=12°,∠DAF=25°,则∠EFC=________°.22、设甲组数:1,1,2,5的方差为S甲2,乙组数是:6,6,6,6的方差为S乙2,则S甲2与S乙2的大小关系是S甲2________S乙2(选择“>”、“<”或“=”填空).23、图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为________24、如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线>0)上,则k的值为________.25、在平面直角坐标系中,关于的一次函数,其中常数k满足,常数满足b>0且b是2和8的比例中项,则该一次函数的解析式为________.三、解答题(共5题,共计25分)26、先化简,再求值:(1- )÷,其中x= .27、请写出一个同时满足下列条件的分式:①分式的值不可能为0;②分式有意义时,的取值范围是;③当时,分式的值为﹣1.28、在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD 相交于点O,求证:OA=OE.29、已知矩形ABCD中,AD= ,AB= ,求这个矩形的的对角线AC的长及其面积30、已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,且AO=CO.求证:四边形ABCD是平行四边形.参考答案一、单选题(共15题,共计45分)1、B3、C4、B5、B6、B7、A8、D9、B10、C11、D12、C13、C14、A15、B二、填空题(共10题,共计30分)16、17、19、20、22、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
华师大版初中八年级下学期数学期末试题及答案
(
2)在(
1)的条件下,连结 BF ,求 ∠DBF 的度数 .
ABCD 的周长是 22;③AD =CD ;④△ABP 面积的最大值
为 32.
其中正确的有
A1 个
B
2 个
C
3 个
( )
第 8 题图
如 图,矩 形 ABOC 中 点 A 的 坐 标 为 (
15.
4,
5),
E是
象于点 P .
生成绩的 平 均 数,所 以 至 少 有 一 半 女 生 的 成 绩 比 小 英
高.
你认同小红的说法吗? 请说明理由 .
(
19.
9 分)如图,四边形 ABCD 的对角线 AC 、
BD 相交于点 O ,
四边形 OBEC 是矩形,△BOC ≌△DOA .
(
1)求证:四边形 ABCD 是菱形;
(
2)若 BC =13,
2,-1),
经过点 A 、
D 的一次函数y=mx+n 的图象与反比例函数Βιβλιοθήκη 生? 并说明理由 .
当点 P 是 AC 的中点时,求得图中阴影部分 的 面
( )
D
4 个
如图,在菱形 ABCD 中,∠B =60
5.
°,
AB =2,则以 AC 为一边
的正方形 ACEF 的周长为
(考查范围:本册教材全部内容)
满分:
120 分 考试时间:
100 分钟
一、选择题(每小题3 分,共30 分)下列各小题均有四个选项,其
中只有一个是正确的 .
( )
下列分式中,有意义的条件为 x≠2 的是
1.
1
A
华师大版八年级数学下册《期末试卷》(解析版)
3题号一二三总分161718192021222324得分得分 评卷人一、选择题(每小题 3 分,共 18 分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.x + 11. 若分式x -1有意义,则 x 的取值范围是( )A .x =-1B .x =1C .x ≠-1D .x ≠11 2.分别以下列四组数为一个三角形的三边长:(1) , 3 1 , 1;(2)3,4,5;(3)1, 2, ;4 5(4)4,5,6.其中一定能构成直角三角形的有 ( )A .1 组B .2 组C .3 组D .4 组a +b 3. 在分式ab中,把 a 、b 的值分别变为原来的 2 倍,则分式的值()A .不变B .变为原来的 2 倍1 C. 变为原来的2D. 变为原来的 4 倍4. 如图是小敏同学 6 次数学测验的成绩统计图,则该同学 6次成绩的中位数是 ()A .85 分B .80 分C .75 分D .70 分5. 在函数 y =- k(k 是常数,且 k >0)的图像上有三点(-3,学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……xy1)、(-1,y2)、(2,y3),则y1、y2、y3 的大小关系是( )(第4 题)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 16. 如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为 10cm ,正方形 A 的边长为 6cm 、B 的边长为 5cm 、C 的边长为 5cm ,则正方形 D 的边长为 ( ) A .3cm得分 评卷人二、填空题(每小题 3 分,共 27 分) x 2 -1 7. 当 x =时,分式x -1的值为 0.D .4cm(第 6 题)8.计算:(2x -3y 4)2·3x 2y -3= .9. 某水晶商店一段时间内销售了各种不同价格的水晶项链 75 条,其价格和销售数量如下表:价格(元) 20 25 30 35 40 50 70 80 100 150 销售数量(条)13967316642下次进货时,你建议该商店应多进价格为 元的水晶项链. 10. 在四边形 ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA的中点,要使四边形 EFGH 为菱形,则四边形 ABCD 的对角线应满足的条件是 .11. 已知 E 、F 分别是正方形 ABCD 两边 AB 、BC 的中点,AF 、CE 交于点 G ,若正方形 ABCD 的面积等于 4,则四边形 AGCD 的面积为 .12.在 Rt △ABC 中,已知∠C =90°,∠A =30°,BC =1,则边(第 11 题)AC 的长为 .13. 已知梯形的上、下底长分别为 6,8,一腰长为 7,则梯形另一腰长 a 的取值范围是 . 14. 如图,菱形 ABCD 的两条对角线长分别为 6 和 8,点 P 是对角线 AC 上的一个动点,点 M 、N 分别是边 AB 、BC 的中点则 PM +PN 的最小值是 .x + a(第 14 题)15. 已知关于 x 的方程x - 2= -1 有解且大于 0,则 a 的取值范围是.C . 15cm B . 14cm三、解答题(本题共9 个小题,满分75 分)得分评卷人16.(7 分)先化简( 的值.1-x -11) ÷x +1x2x2 -2, 然后选择一个你喜欢的x 的值代入求原式得分评卷人17.(7 分)“玉树地震,情牵国人”,某厂计划加工1500 顶帐篷支援灾区人民,在加工了300 顶帐篷后,由于救灾需要,工作效率提高到原来的1.5 倍,结果比原计划提前4 天完成了任务.求原计划每天加工多少顶帐篷?得分评卷人18.(8 分)如图,在□ABCD 中,分别以AD、BC 为边向内作等边△ADE 和等边△BCF,连结BE、DF.求证:四边形BEDF 是平行四边形.得分评卷人19.(8 分)一次数学活动课中,甲、乙两组学生各自对学校的旗杆进行了5 次测量,所得的数据如下表所示:旗杆高度(m) 11.90 11.95 12.00 12.05甲组测得次数1022乙组测得次数0212得分评卷人20.(8 分)为了预防流感,某学校在星期天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(小时)成正比例;药物释放完毕后,y 与x 成反比例,如图所示.根据以上信息解答下列问题:(1)求药物释放完毕后,y 与x 之间的函数关系式并写出自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25 毫克以下时,学生方可进入教室,那么,从星期天下午5:00 开始对某教室释放药物进行消毒,到星期一早上7:00 时学生能否进入教室?m 得分 评卷人21.(9 分)将矩形纸片 ABCD 按如图方式折叠,使点 D 与点 B 重合,点 C 落到 C ′处,折痕为 EF .若 AD =9AB =6,求折痕 EF 的长.得分 评卷人22.(9 分)如图,一次函数 y =kx +b 与反比例函数 y =的图象交于A (-4,n ),B (2,x-4)两点.(1) 求反比例函数和一次函数的解析式;(2) 求直线 AB 与 x 轴的交点 C 的坐标及△AOB 的面积; (3) 根据图象直接写出关于 x 的方程 kx + b -m = 0 的解及x不等式 kx + b - m x< 0 的解集.得分评卷人23.(9 分)如图,在梯形ABCD 中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC 到E,使CE=AD.(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(2)探究:当梯形ABCD 的高DF 等于多少时,对角线AC 与BD 互相垂直?请回答并说明理由.得分评卷人24.(10 分)如图,在Rt△ABC 中,∠ABC=90°∠ACB=60°.将Rt△ABC 绕点C 顺时针方向旋转后得到△DEC(△DEC≌△ABC),点E在AC 上,再将Rt△ABC 沿着AB 所在直线翻转180°得到△ABF,连接AD.(1)求证:四边形AFCD 是菱形;(2)连接BE并延长交AD于点G,连接CG.请问:四边形ABCG 是什么特殊平行四边形?为什么?x 参考答案一、选择题(每小题 3 分,共 18 分) 1.D 2.B 3.C4.C5.A 6.B二、填空题(每小题 3 分,共 27 分) 12 y 5 7.-18. x49.50 10.AC =BD11. 82(或2 )12. 3 313.5<a <914.5 15.a <2 且 a ≠-2 三、解答题(本题共 9 个小题,满分 75 分) 16.(7 分)解:原式=(1 - x -1 1 x +1 2(x2 -1) ) x……1 分= 2(x +1) -2(x 2 -1) ……5 分x4 =x代入求值略(只要 x 不取 0,1,-1 即可).……7 分 17.(7 分)解:设原计划每天加工 x 顶帐篷.……1 分 1500 - (300 + 1200 ) = 4……3 分 x x 1.5x解这个方程,得 x =100 ……5 分经检验 x =100 是原分式方程的解. ……6 分 答:原计划每天加工 100 顶帐篷.……7 分18.(8 分)证明:∵四边形 ABCD 是平行四边形,∴CD =AB ,AD =CB ,∠DAB =∠BCD ……2 分又∵△ADE 和△BCF 都是等边三角形∴DE =AE =AD ,BF =CF =CB ,∠DAE =∠BCF =60°. ∴DE =BF ,AE =CF . ……4 分 ∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE . ∴△DCF ≌△BAE (SAS ). ……7 分3⋅3 3 3 ∴DF =BE .∴四边形 BEDF 是平行四边形.……8 分19.(8 分)解: x 甲 = 1⨯ (11.90 +12.00 ⨯ 2 +12.05⨯ 2) = 12.00 5x 乙 = 1x (11.95⨯ 2 +12.00 +12.05⨯ 2) = 12.00 5……3 分S 2 = 1×[(11.90-12.00)2+(12.00-12.00)2+(12.00-12.00)2+(12.05- 甲512.00)2+(12.05-12.00)2]=0.003S 2 = 1×[(11.95-12.00)2+(11.95-12.00)2+(12.00-12.00)2+(12.05- 乙512.00)2+(12.05-12.00)2]=0.002 ……7 分 ∵ S 2< S 2,∴乙组测得旗杆高度比较一致.……8 分乙甲20 . 解:(1) 设药物释放完毕后 y 与 x 的函数关系式为y = k(k =/ 0).x由题意,得1.5 =k,∴ k = 3. 2∴药物释放完毕后的函数关系式为 y =. ……3 分x在 y =中,令y =3,得 x =1.x∴Q (1,3).∴在 y =中,自变量x 的取值范围为 x >1(或 x ≥1).……5 分x 3 (2) 解不等式 <0.25,得x >12. ……7 分x21.(9 分)∵从星期天下午 5:00 到星期一早上 7:00 时,共有 12-5+7=14(小时), 而 14>12,所以到星期一早上 7:00 时学生能够进入教室. ……8 分解:依题意,得:BE =DE ,∠A =90°,∠BEF =∠DEF .∵AD ∥BC ,∴∠DEF =∠BFE .42 + 62⎩⎩b ∴∠BFE =∠BEF .∴BF =BE . ……2 分在 Rt △ABE 中,设 AE =x ,则 BE =DE =9-x . 由勾股定理,得 x 2+62=(9-x )2∴ x = 5 2,即 AE = 52. ……4 分∴BE =BF =DE =AD -AE =132……5 分过 E 点作 EG ⊥BF 于 G 点,则得矩形 ABGE .…6 分EG =AB =6,BG =AE =52∴FG =BF -BG = 13 2 -5 2= 4 .……8 分EF == = 52.即折痕 EF 长为 22.(9 分)解:(1)依题意,得……9 分∴ -m= n , m= -4.∴m =-8,n =2. ……2 分 4 2∴反比例函数解析式为 y = - 8x……3 分又∵直线 y =kx +b 过 A (-4,2),B (2,-4)两点,∴⎧- 4k + b = 2, ∴⎧k = -1,⎨2k + b = -4. ⎨= -2.∴一次函数解析式为 y =-x -2……4 分(2)依题意,令-x -2=0,x =-2 即 C (-2,0)……5 分S ∆AOB =S ∆ AOC +S ∆BOC = 12⨯ 2 ⨯ 2 +12⨯ 2 ⨯ 4 = 6……6 分(3) 方程 kx + b -m = 0 的解为 x =2 或 x =-4 ……7 分 x不等式kx + b -m < 0 的解集为 x >2 或-4<x <0……9 分x23.(9 分)解:(1)△CDA ≌△DCE ,△BAD ≌△DCE .……2 分FG 2 + EG 2 52∵AD ∥BC ,∴∠ADC =∠ECD .∵CE =DA ,DC =CD ,∴△CDA ≌△DCE .……4 分 (2)当 DF =3 时,AC ⊥BD .……5 分理由如下:∵AD ∥BC ,AB =CD ,∴AC =BD .∵AD ∥BC ,CE =AD ,∴四边形 ACED 为平行四边形∴AC =DE ,∴BD =DE .∵DF ⊥BE ,∴ BF = EF = 1 BE = 2 1 ⨯ (2 + 4) = 3 224.(10 分)∵DF =3,∴DF =BF =EF . ∴∠DBF =∠BDF =45°,∠E =∠EDF =45°. ∴∠BDE =90°.∴BD ⊥DE .∵AC ∥DE ,∴AC ⊥BD .……9 分 (1) 证明:△DEC 是由 Rt △ABC 绕 C 点旋转后得到.∴AC =DC ,∠ACD =∠ACB =60°.∴△ACD 是等边三角形,∴AD =DC =AC . ……2 分 又∵Rt △ABF 是由 Rt △ABC 沿 AB 所在直线翻转 180°得到∴AC =AF ,∠ABF =∠ABC =90°.∴∠FBC 是平角,∴ 点 F 、B 、C 三点共线∴△AFC 是等边三角形∴AF =FC =AC .……3 分 ∴AD =DC =FC =AF .……4 分 ∴四边形 AFCD 是菱形.……5 分(2)四边形 ABCG 是矩形. ……6 分证明:由(1)可知:△ACD 是等边三角形,∠DEC =∠ABC =90°.∴DE ⊥AC 于 E .∴AE =EC . ……7 分 ∵四边形 AFCD 是菱形,∴AG ∥BC .∴∠EAG =∠ECB ,∠AGE =∠EBC .∴△AEG ≌△CEB ,∴BE =EG . ……8 分 ∴四边形 ABCG 是平行四边形. ……9 分而∠ACB =90°,∴四边形 ABCG 是矩形. ……10 分。
华师版八年级数学下册期末测试卷附答案.docx
华师版八年级数学下册期末测试卷八年级数学•下(HS版)时间:120分钟满分:150分一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中, 只有一项是符合要求的)1.下列计算正确的是()A.(2o2)3 = 6tz6B. —a2b2-3ab i=—3a2b5b , a a2—1 1C.+ —=-lD. ------ •—T=-1a —b b—a a a~rl2.某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如下表:如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐, 那么应推荐的作品是()A.甲B.乙C.丙D. 丁3.下列说法不正确的是()A.某种细胞的直径是0.000 067 cm,将0.000 067用科学记数法可表示为6.7X10%V—I—1B.若函数| |有意义,贝ijx尹±33 —MC.分式化为最简分式为丁bx~5by bD.(寸2 021T)。
-[话瓦| 1=2 0204.在平面直角坐标系中,将函数y=2x的图象向上平移m(m>0)个单位,使其与直线y=—x+4的交点位于第二象限,则m的取值范围为()A. 0<m<2B. 2<m<4D. m>4C. m^45. 已知一次函数y=kx+b~x 的图象与x 轴的正半轴相交,且函数值y 随自变量 x的增大而增大,则k, b 的取值情况为()A. k>l, b<0B. k>\, b>06. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽. ”其大意为:现请人代 买一批椽,这批椽的价钱为6 210文.如果每株椽的运费是3文,那么少拿 一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6 210文能买多少 株椽?设这批椽的数量为》株,则符合题意的方程是()A ・ 3(L 1)=罕C. 3—迦如图,在RtAABC 中, 为对角线的所有MDCE 中,DE 的最小值是( ) A. 2B. 3C. 4D. 5(第7题) (第8题) (第9题) (第10题)8. 如图,点。
华师大版八年级下册数学期末测试题(含答案)
八年级数学下册期末测试题一、选择题(每小题3分,共30分)1.若反比例函数y= kx的图像经过点(1,-2),则k= ()A.-2B.2C.12C.-122.如果把分式a+2ba−2b中的a、b都扩大3倍,那么分式的值一定()A.是原来的3倍B.是原来的5倍C.是原来的13C.不变3.已知直线y=2x+b与坐标围成的三角形的面积是4,则b的值是()A.4B.2C.±4 C. ±24.一次函数y=kx+k(k≠0)和反比例函数y= kx(k≠0)在同一直角坐标系中的图像大致是()A. B. C. D.5. A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A. 3种B. 4种C. 5种D. 6种6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A. 64B. 60C. 52D. 507.平行四边形一边的长是10cm,这个平行四边形的两条对角线长可以是()A. 4cm,6cmB. 6cm,8cmC. 8cm,12cmD. 20cm,30cm8.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转1800得△CFE,则四边形ADCF一定是()A. 矩形B. 菱形C. 正方形D. 梯形第8题图第9题图第10题图9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= kx(x<0)的图像经过顶点B,则k的值为()A. -12B. -27C. -32D. -3610.如图所示,正方形ABCD的边长为4,E为BC上一点,BE=1,P为AC上一动点,则当PB+PE取最小值时,求PB+PE= ()A. 3B. 4C. 5D. 6二、填空题(每小题3分,共15分)11.将直线y=-2x+1向下平移4个单位得到直线l,则直线l的解析式为___________。
华师大版初中数学八下期末测试试题试卷含答案
期末测试一、选择题(共10小题). 1.下列各数中最小的数是( ) A .1B .12C .02D .122.成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( ) A .74610 B .74.610 C .64.610D .50.46103.下列所述图形中,仅是中心对称图形的是( ) A .等边三角形B .平行四边形C .矩形D .菱形4.下列等式成立的是( )A .22b b a a B .22b b a a C .22b b a a D .22b b a a 5.学校志愿者队的6位同学在一次垃圾分类活动中捡废弃塑料袋的个数分别为6,4,5,10,15,15,这组数据的中位数、众数分别为( ) A .15,15B .10,15C .8,8D .8,156.已知点 ,24P m m 在x 轴上,则点 1,Q m m 在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.函数ky x与 0y kx k k 在同一平面直角坐标系中的图象可能是( )ABCD8.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定ABCD 是菱形的只有( )A .AC BDB .AB BC C .AC BDD .129.如图,在矩形ABCD 中,分别以点A ,C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N 作直线MN ,交BC 于点E ,交AD 于点F ,若3BE ,5AF ,则矩形的周长为( )A .24B .12C .8D .3610.如图,在矩形ABCD 中,2AB ,3BC ,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )ABCD二、填空题(每小题3分,共15分) 11.若分式4aa 有意义,则实数a 的取值范围是_________. 12.如图ABCD ,点M 是边AD 上的一点,且BM 平分ABC ,MN CD 于点N ,若30DMN ,则BMN 的度数为_________.13.若点 12,y , 21,y , 33,y 在双曲线 0ky k x<上,则1y ,2y ,3y 的大小关系是_________. 14.如图,四边形ABCD 是边长为2的正方形,BPC 是等边三角形,则图中阴影部分的面积为_________.15.如图,在矩形ABCD 中,5AD ,8AB ,点E 为射线DC 上一个动点,把ADE △沿直线AE 折叠,当点D 的对应点F 刚好落在线段AB 的垂直平分线上时,则DE 的长为_________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简:22144114x x x x,再从1 ,0,1和2中选一个你认为合适的数作为x 的值代入求值.17.(9分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如图所示的统计图和统计表:(1)这次接受调查的学生总人数是_________人.(2)频数分布表中m _________,扇形统计图中n _________. (3)这次测试成绩的中位数落在_________组.(4)若该校共有3000名学生,请计算成绩在80~100分的人数.18.(9分)如图,在ABC △中,D 是BC 边上的中点,F ,E 分别是AD 及其延长线上的点,CF BE ∥,连结BF ,CE .(1)求证:四边形BECF 是平行四边形; (2)填空:①若5AB ,则AC 的长为_________时,四边形BECF 是菱形; ②若5AB ,6BC 且四边形BECF 是正方形,则AF 的长为_________.19.(9分)已知反比例函数12my x(m 为常数)的图象在第一、三象限. (1)求m 的取值范围;(2)如图,若该反比例函数的图象经过ABOD 的顶点D ,点A ,B 的坐标分别为 0,3, 2,0 . ①求出该反比例函数的解析式;②若点P 在x 轴上,当3ODP S △时,则点P 的坐标为_________.20.(9分)某运动鞋专卖店通过市场调研,准备销售A 、B 两种运动鞋,其中A 种运动鞋的进价比B 运动鞋的进价高20元,已知鞋店用3 200元购进A 运动鞋的数量与用2 560元购进B 运动鞋的数量相同. (1)求两种运动鞋的进价;(2)若A 运动鞋的售价为250元/双,B 运动鞋的售价是180元/双,鞋店共进货两种运动鞋200双,设A运动鞋进货m 双,且90105m ≤≤,要使该专卖店获得最大利润,应如何进货?21.(10分)某校八年级“数学兴趣小组”尝试对函数212y x的图象和性质进行探究,探究过程如下: (1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m _________.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画该函数图象的另一部分.(3)若直线y kx b 与函数212y x的图象交于点11,2A 、93,2B,请结合图象直接写出: ①方程组212y kx by x的解为_________;②不等式212kx b x >的解集为_________.22.(10分)已知四边形ABCD 和AEFG 均为正方形. (1)观察猜想如图①,当点A ,B ,G 三点在一条直线上时,连结BE ,DG ,则线段BE 与DG 的数量关系是_________,位置关系是_________. (2)类比探究如图②,将正方形AEFG 在平面内绕点A 逆时针旋转到图②时,则(1)的结论是否成立,若成立,请证明,若不成立,请说明理由; (3)拓展延伸在(2)的条件下,将正方形AEFG 在平面内绕点A 任意旋转,若2AE ,5AB ,则BE 的最大值为_________,最小值为_________.23.(11分)如图,在平面直角坐标系中,一次函数y kx b 与x 轴交于点 4,0A 与y 轴交于点 0,8B . (1)求这个一次函数的解析式;(2)若点P 是线段AB 上一动点,过点P 作PC x 轴于点C ,PD y 轴于点D ,当四边形PCOD 的邻边之比为2:1时,求线段PC 的长.(3)若点Q 是平面内任意一点,是否存在以A ,O ,B ,Q 为顶点的四边形是平行四边形,若存在请直接写出点Q 的坐标,若不存在,请说明理由.期末测试 答案解析一、 1.【答案】A【解析】021 ∵,1122, 0112212>>>∴.故最小的数为:1 . 故选:A . 2.【答案】C【解析】60.0 000 046 4.610 . 故选:C . 3.【答案】B【解析】A 、等边三角形不是中心对称图形,是轴对称图形,故本选项不合题意; B 、平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意; C 、矩形既是中心对称图形,又是轴对称图形,故本选项不合题意; D 、菱形既是中心对称图形,又是轴对称图形,故本选项正确. 故选:B . 4.【答案】B【解析】A .2222b ab b b a a ab a ,故不成立;B .22b b a a ,故成立;C .22b b a a ,故不成立;D .22b b a a ,故不成立. 故选:B . 5.【答案】D【解析】将这组数据重新排列为4,5,6,10,15,15, 所以这组数据的中位数为61082,众数为15, 故选:D . 6.【答案】C【解析】由点 ,24P m m 在x 轴上,得240m ,解得2m ,11m ∴,2m ,1,Q m m ∴在第三象限.故选:C . 7.【答案】A【解析】A 、∵由反比例函数的图象在二、四象限可知,0k <,0k ∴>-,∴一次函数y kx k 的图象经过一、二、四象限,故本选项正确;B 、∵由反比例函数的图象在二、四象限可知,0k <,0k ∴>,∴一次函数y kx k 的图象经过一、二、四象限,故本选项错误;C 、∵由反比例函数的图象在一、三象限可知,0k >,0k ∴<,∴一次函数y kx k 的图象经过一、三、四象限,故本选项错误;D 、∵由反比例函数的图象在一、三象限可知,0k >,0k ∴<,∴一次函数y kx k 的图象经过一、三、四象限,故本选项错误; 故选:A . 8.【答案】C【解析】A 、正确.对角线垂直的平行四边形的菱形. B 、正确.邻边相等的平行四边形是菱形.C 、错误.对角线相等的平行四边形是矩形,不一定是菱形.D 、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形. 故选:C . 9.【答案】A【解析】∵四边形ABCD 是矩形,AD BC ∴,AD BC ∥, FAC ECA ∴,根据作图过程可知:MN 是AC 的垂直平分线,90FOA EOC ∴,AO CO ,在△AFO 和△CEO 中,FAC ECA FOA EOC AO CO, AFO CEO AAS △≌△∴,AF CE ∴,连接AE ,AE CE ∵, 5AE CE AF ∴, 358BC BE CE ∴,在Rt ABE △中,根据勾股定理,得4AB ,∴矩形的周长为 224824AB BC .故选:A . 10.【答案】D【解析】由题意当03x ≤≤时,3y , 当35x <<时, 131535222y x x . 故选:D . 二.11.【答案】4a【解析】由题意可知:40a ,4a ∴,故答案是:4a . 12.【答案】120°【解析】MN CD ∵于点N ,30DMN ,903060D ∴,∵四边形ABCD 是平行四边形,120A ∴,60ABCBM ∵平分ABC ,30ABM ∴,1801203030AMB ∴, 1803030120BMN ∴,13.【答案】312 y y y <<【解析】∵点 12,y , 21,y , 33,y 在双曲线 0ky k x<上, 12,y ∴, 21,y 分布在第二象限, 33,y 在第四象限,每个象限内,y 随x 的增大而增大, 312y y y ∴<<.故答案为312y y y <<.141 【解析】如图,过P 作PE CD ,PF BC ,∵正方形ABCD 的边长是4,BPC △为正三角形,60PBC PCB ∴,2PB PC BC CD , 30PCE ∴,sin 602PF PB ∴,sin301PE PC , 11121222121222BCDPBC PDC BCD PBCD S S S S S S △△△△阴影四边形故答1. 15.【答案】52或10 【解析】分两种情况:①如图,当点F 在矩形内部时,∵点F 在AB 的垂直平分线MN 上,4AN ∴;由勾股定理得3FN ,2FM ∴,设DE 为y ,则4EM y ,FE y ,在EMF △中,由勾股定理得: 22242y y , 52y ∴, 即DE 的长为52. ②如图,当点F 在矩形外部时,同①的方法可得3FN ,8FM ∴,设DE 为z ,则4EM z ,FE z ,在EMF △中,由勾股定理得: 22248z z , 10z ∴,即DE 的长为10.综上所述,点F 刚好落在线段AB 的垂直平分线上时,DE 的长为52或10 故答案为:52或10. 三. 16.【答案】22144114x x x x 121(2)(2)1(2)x x x x x 2212x x x x2=1x x , ∵当1x ,2或2 时,原分式无意义,当0x 时,原式02=201. 17.【答案】(1)200(2)3019%(3)B(4)成绩在80~100分的人数为 300030%15%1350 (人)【解析】(1)这次接受调查的学生总人数是7236%200 (人),故答案为:200;(2)频数分布表中20015%30m ,扇形统计图中38100%19%200n, 故答案为:30,19%; (3)19%36%55%50% >∵, ∴第100、101个数据均落在B 组,∴这次测试成绩的中位数落在B 组,故答案为:B ;(4)成绩在80~100分的人数为 300030%15%1350 (人).18.【答案】(1)D ∵是BC 边的中点,BD CD ∴,CF BE ∵∥,CFD BED ∴,在CFD △和BED △中,CFD BED CD BD FDC EDB, CFD BED AAS △≌△∴,CF BE ∴,∴四边形BFCE 是平行四边形;(2)①5②1【解析】(1)D ∵是BC 边的中点,BD CD ∴,CF BE ∵∥,CFD BED ∴,在CFD △和BED △中,CFD BED CD BD FDC EDB, CFD BED AAS △≌△∴,CF BE ∴,∴四边形BFCE 是平行四边形;(2)①当5AC 时,四边形BECF 是菱形;理由如下:5AB ∵,AB AC ∴,D ∵是BC 边的中点,AD BC ∴,EF BC ∴,∵四边形BECF 为平行四边形,∴四边形BECF 是菱形.故答案为5;②∵四边形BEFC 是正方形,6EF BC ∴,EF BC ,∵点D 是BC 的中点,3BD CD DF DE ∴,4AD ∴,431AF AD DF ∴,故答案为1.19.【答案】(1)∵反比例函数12m y x(m 为常数)的图象在第一、三象限, 120m ∴>,12m ∴<; (2)①∵四边形ABOD 为平行四边形,AD OB ∴∥,2AD OB ,A ∵的坐标为 0,3,D ∴点坐标为 2,3,12236m ∴,∴该反比例函数的解析式为6y x; ② 2,0或 2,0【解析】(1)∵反比例函数12m y x(m 为常数)的图象在第一、三象限, 120m ∴>,12m ∴<; (2)①∵四边形ABOD 为平行四边形,AD OB ∴∥,2AD OB ,A ∵的坐标为 0,3,D ∴点坐标为 2,3,12236m ∴,∴该反比例函数的解析式为6y x; ②1332ODP S OP △∵, 2OP ∴,∴点P 的坐标为 2,0或 2,0 .故答案为: 2,0或 2,0 .20.【答案】(1)设A 种运动鞋的进价为x 元,3 200 2 56020x x , 解得100x ,经检验,100x 是原分式方程的解,2080x ∴,答:A 运动鞋的进价为100元/双,B 运动鞋的进价是80元/双;(2)设总利润为w 元,则 250100180802005020 000w m m m(), 500∵>,w 随m 的增大而增大,又90105m ≤∵≤,∴当105m 时,w 取得最大值,20095m ,答:要使该专卖店获得最大利润,此时应购进甲种运动鞋105双,购进乙种运动鞋95双.21.【答案】(1)2(2)(3)①112x y 或392x y ②13x <<【解析】解:(1)把2x 代入函数解析式便得2122y x , 2m ∴,故答案为2;(2)用描点法画出函数图象如下:(3)根据题意作出函数图象如下:①由函数图象可知,方程组212y kx b y x 的解为112x y 或392x y ,故答案为:112x y 或392x y ; ②根据函数图象可知,当13x <<时,直线y kx b 在抛物线的上方,∴不等式212kx b x >的解集为13x <<, 故答案为:13x <<.22.【答案】(1)BE DG BE DG(2)(1)的结论仍然成立,理由如下:设BE 交AD 于O ,DG 于N ,∵四边形ABCD 和四边形AEFG 是正方形,AE AG ∴,AB AD ,90BAD EAG ,BAE DAG ∴,在ABE △和DAG △中,AB AD BAE DAG AE AG, ABE DAG SAS △≌△∴,BE DG ∴;ABE ADG ,90ABE AOB ∵,90ADG AOB ADG DON ∴,90DNO ∴,BE DG ∴;(3)7 3【解析】解:(1)如图1,延长BE 交DG 于H ,∵四边形ABCD 和四边形AEFG 是正方形,AE AG ∴,AB AD ,90BAD EAG ,ABE DAG SAS △≌△∴,BE DG ∴,ABE ADG ,90ADG DGA ∵,90ABE DGA ∴,90GHB ∴,BE DG ∴,故答案为:BE DG ,BE DG ;(2)(1)的结论仍然成立,理由如下:设BE 交AD 于O ,DG 于N ,∵四边形ABCD 和四边形AEFG 是正方形,AE AG ∴,AB AD ,90BAD EAG ,BAE DAG ∴,在ABE △和DAG △中,AB AD BAE DAG AE AG, ABE DAG SAS △≌△∴,BE DG ∴;ABE ADG ,90ABE AOB ∵,90ADG AOB ADG DON ∴,90DNO ∴,BE DG ∴;(3)∵将正方形AEFG 在平面内绕点A 任意旋转,∴当点E 在线段AB 上时,BE 有最小值523AB AE ,当点E 在线段BA 的延长线上时,BE 有最大值527AB AE ,故答案为:7,3.23.【答案】(1)∵一次函数y kx b 与x 轴交于点 4,0A 与y 轴交于点 0,8B , 804b k b∴, 解得:28k b, ∴一次函数的解析式为28y x ;(2)设点 ,28P x x ,OC x ∴,28PC x ,∵四边形PCOD 的邻边之比为2:1,2OC PC ∴或2PC OC ,228x x ∴)或282x x ,165x∴或2x , 4PC ∴或85; (3)设点 ,Q m n ,当AB 是对角线时,∵四边形AOBQ 是平行四边形,AB ∴与OQ 互相平分,04022m ∴,08022n , 4m ∴,8n ,∴点 4,8Q ;当AO 是对角线时,∵四边形ABOQ 是平行四边形,AO ∴与BQ 互相平分,04022m ∴,08022n , 4m ∴,8n ,∴点 4,8Q ;当OB 是对角线时,∵四边形AOQB 是平行四边形,AQ ∴与BO 互相平分,40022m ∴,08022n , 4m ∴,8n ,∴点 4,8Q ,综上所述:点Q 的坐标为 4,8或 4,8Q 或 4,8Q .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OCDBA一、选择题(每题3分,共36分) 1.若分式21x -无意义,则( ) A .1x ≥ B .1x ≠C .1x ≥- D .1x =2.在下列函数中,自变量x 的取值范围是3x ≥的函数是( )A .13y x =- B .13y x =- C .3y x =- D .3y x =- 3.如图,平行四边形ABCD 的周长为40,△BOC 的周长 比△AOB 的周长多10,则AB 为( ) A .20 B .15 C .10 D .5 4.下列约分正确的是( ) A .632a a a = B .a x a b x b+=+ C .22a b a b a b +=++ D .1x y x y --=-+ 5.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数2ky x=-的图象上,若点A 的坐标为 (-2,-2),则k 的值为( )A.4 B.-4 C.8D.—86.计算:111x x x ---的结果为( ) A .1 B .2 C .1- D .2- 7.分式2211,x x x x-+的最简公分母是( ) A .(1)(1)x x +- B .(1)(1)x x x +- C .2(1)(1)x x x +- D .2(1)x x - 8.如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为 ( )A. 6B. 4C. 3D. 29.在4月14日玉树发生的地震导致公路破坏,为抢修一段120米的公路,施工队每天比原来计划多修5米,结果提前4天通了汽车,问原计划每天修多少米?若设原计划每天修x 米,则所列方程正确的是( )A .12012045x x -=+B .12012045x x -=+C .12012045x x -=-D .12012045x x -=- 10.函数k y x =的图象经过点(4-,6),则下列各点中,在函数ky x =图象上的是( )A .(3,8)B .(3,8-)C .(8-,3-)D .(4-,6-) 11.若点P (3,21m -)在第四象限,则m 的取值范围是( ) A .12m >B .12m <C .12m ≥-D .12m ≤ 12.如图,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( ).(A )98 (B )196 (C )280 (D )284二、填空题(每题4分,共24分) 13.计算:25(3)a a ⋅=__________.14.某小食堂存煤25000千克,可使用的天数x 和平均每天的用煤m (千克)的函数关系式为:_____________________.15.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO 的周长为________.16.四边形ABCD 中,已知AD ∥BC ,若要判定四边形ABCD 是平行四边形,则还需要满足的条件是:_______________.(只填写一个条件即可)17.若2(3)310a b ++-=,则20092010a b ⋅=____________. 18.如图,将直角三角板EFG 的直角顶点E 放置在平行ECDBAEF D CBAFECDBAFE CDBA四边形ABCD 内,顶点F 、G 分别在AD 、BC 上,若10AFE ∠=,则EGB ∠=________. 三、解答题(19小题6分,20小题7分,共13分)19.计算:2121()a a a a a-+-÷20.如图,在平行四边形ABCD 中,E 、F 为BC 上两点,且BE =CF ,AF =DE . 求证:(1)△ABF ≌△DCE ;(2)四边形ABCD 是矩形.四、本大题共2个小题,21小题7分,22小题8分,共15分.21.今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?22.如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式;(2五、本大题共3个小题,23小题10分,24小题10分,25小题12分,共32分.23.如图,已知△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线,交CE 的延长线于点F ,且AF =BD ,连接BF .(1)求证:BD =CD ;(2)如果AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.24.今年,我省部分地区出现持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池.该村共有243户村民,准备维护和新建的储水池共有20个,费用和可供使用的户数及用地情况如下表:已知可支配使用土地面积为106m2,若新建储水池x个,新建和维护的总费用为y万元.(1)求y与x之间的函数关系式;(2)满足要求的方案各有几种;(3)在以上备选方案中,若平均每户捐2000元时,村里出资最多和最少分别是多少?25.某火车站有甲种货物60吨,乙种货物90吨,现计划用30节A、B两种型号的车厢将这批货物运出.设30节车厢中有A型车厢a节,(1)请用含a的代数式表示30节车厢中有B型车厢的节数;(2)如果甲种货物全部用A型车厢运送,乙种货物全部用B型车厢运送,则A 型、B型车厢平均每节运送的货物吨数刚好相同,请求出a的值;(3)在(2)的条件下,已知每节A型车厢的运费是x万元,每节B型车厢的运费比每节A型车厢的运费少1万元,设总运费为y万元,求y与x之间的函数关系式.如果已知每节A型车厢的运费不超过5万元,而每节B型车厢的运费又不低于3万元,求总运费y的取值范围.一、选择题(每题3分,共36分)DDDDD CBDAB BC二、填空题(每题4分,共24分)13.79a14.25000xm=15.16cm 16.AB∥DC等17.13-18.80°等三、解答题:19小题6分,20小题各7分,共13分19.原式=22121a aa a a-⨯-+………………2分=2(1)(1)(1)a a aa a+-⨯-………………4分=11aa+-…………………………………6分20.证明:(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.…………………………………………………………2分∵四边形ABCD是平行四边形,∴AB=DC.………………………………………………………3分FE CDBA在△ABF 和△DCE 中, ∵AB=DC ,BF=CE ,AF=DE ,∴△ABF ≌△DCE .………………………………………………4分 (2)∵△ABF ≌△DCE ,∴∠B=∠C…………………………………………………………5分 ∵四边形ABCD 是平行四边形, ∴AB ∥CD . ∴∠B+∠C=180°.∴∠B=∠C=90°.………………………………………………6分 ∴四边形ABCD 是矩形.………………………………………7分21.解:设自行车的速度为x 千米/时,则汽车的速度为(x+60)千米/时. 根据题意得:………………1分20162060x x -=+……………………………4分 解得:x=15(千米/时)……………………5分 经检验,x=15是原方程的解.……………6分 则汽车的速度为:60156075x +=+=(千米/时)答:汽车和自行车的速度分别是75千米/时、15千米/时.……………7分22.解:(1)当my x =经过点A (2-,1)时,可得2m =-, ∴反比例函数为:2y x-=………………………………………………1分当2y x-=经过点B (1,n )时,可得2n =-,………………………2分∴点B 的坐标为:B (1,2-)…………………………………………3分 又∵直线经过A (2-,1)、B (1,2-)两点,∴122k b k b =-+⎧⎨-=+⎩ 解得11k b =-⎧⎨=-⎩………………………………………5分∴一次函数的解析式为:1y x =-- …………………………………6分(2)由图象可知:当2x <-或01x <<时,一次函数的值大于反比例函数的值.…8分23.(10分)证明:(1)∵AF ∥BC ,∴∠AFE=∠DCE ∵E 是AD 的中点,∴AE=DE . …………………………1分∵AFE DCE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………3分 ∴△AEF ≌△DEC∴AF=DC………………………………4分 ∴AF=BD∴BD=CD ………………………………5分 (2)四边形AFBD 是矩形.……………6分 理由:∵AB=AC ,D 是BC 的中点,∴AD ⊥BC .∴∠ADB=90°………………8分 ∵AF=BD ,AF ∥BC∴四边形AFBD 是平行四边形又∵∠ADB=90° ∴四边形AFBD 是矩形 ………………10分24.(10分)解:(1)根据题意得:43(20)y x x =+-,即60y x =+………………2分(2)根据题意得:518(20)24346(20)106x x x x +-≥⎧⎨+-≤⎩…………………………4分解得:79x ≤≤ ………………………………………………………5分 故满足要求的方案有三种: ①新建7个,维护13个; ②新建8个,维护12个;③新建9个,维护11个.………………………………………………6分 (3)由60y x =+知y 随x 的增大而增大 …………………………7分 当x=7时,y 最小=67万元 ……………………………………………8分 当x=9时,y 最大=69万元 ……………………………………………9分 而村民捐款共2430.248.6⨯=(万元)村里出资最多20.4万元,最少18.4万元.……………………25.(本小题13分)解:(1)a -30; -------------------------------- (3分) (2)xx -=309060 -------------------------------- (5分) 解得12=x -------------------------------- (6分) 经检验,12=x 是原方程的解,且符合题意. ----------------- (7分) (3))1(1812-+=x x y -------------------------------- (9分) 1830-=x -------------------------------- (10分)由⎩⎨⎧≥-≤315x x 得54≤≤x -------------------------------- (11分)∵在1830-=x y 中,y 随x 的增大而增大 ∴当x =4时,y 最小值=102当x =5时,y 最大值=132∴总运费y 的取值范围是132102≤≤y . ------------------ (12分)。