4-函数及其表示
函数及其表示知识点
函数及其表示知识点一、函数的定义和特征在数学中,函数是一种关系,它将一个或多个输入值映射到一个唯一的输出值。
函数通常用字母表示,例如f(x)或g(y),其中x和y是输入值,f(x)和g(y)是对应的输出。
函数的定义可以用多种方式表达,比如公式、算法或图表。
函数的核心特征是单值性和一对一性。
单值性要求每个输入对应唯一的输出,而一对一性则要求每个输出值只能由一个输入产生。
二、函数的符号表示函数可以用多种符号来表示,最常见的是用函数名和自变量表示函数。
例如,f(x)表示一个以x为自变量的函数。
函数的符号表示还可以用映射符号箭头“→”表示,例如f: x→f(x)。
在离散数学中,函数也可以使用集合的形式表示。
例如,如果定义了一个函数f,将集合A中的元素映射到集合B中的元素,可以用f: A→B表示。
三、函数的图像表示函数的图像是一种常用的表示方式。
通过绘制函数的图像,我们可以直观地了解函数的特点和关系。
函数的图像通常是在笛卡尔坐标系中绘制的。
横轴表示自变量,纵轴表示函数的值。
函数的图像可以是曲线、直线、折线等不同形状。
曲线图像可以反映函数的变化趋势和特征,而直线和折线图像则更加简单明了。
四、函数的性质和分类函数有许多性质和分类。
其中一些重要的性质包括:1. 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的所有可能输出值的集合。
2. 奇偶性:如果一个函数满足f(-x) = -f(x),则称其为奇函数;如果满足f(-x) = f(x),则称其为偶函数。
3. 增减性:函数的增减性描述了函数的单调性。
如果函数在定义域上是递增的,称其为增函数;如果在定义域上是递减的,称其为减函数。
根据函数的具体形式和性质,我们可以将函数进行分类,常见的函数包括:1. 线性函数:形如f(x) = kx + b的函数,其中k和b是常数。
2. 幂函数:形如f(x) = x^a的函数,其中a是常数。
3. 指数函数:形如f(x) = a^x的函数,其中a是常数。
高中数学基础之函数及其表示
1.一种优先意识 函数定义域是研究函数的基础依据,对函数的研究,必须坚持定义域优先的 原则. 2.两个关注点 (1)分段函数是一个函数. (2)分段函数的定义域、值域是各段定义域、值域的并集.
核心考点突破
考点一 函数的概念
【例1】 (1)下列对应是从集合A到B的函数是( A ) A.A=N,B=N,f:x→y=(x-1)2 B.A=N,B=R,f:x→y=± x C.A=N,B=Q,f:x→y=x-1 1 D.A={衡中高三·一班的同学},B=[0,150],f:每个同学与其高考数学的分 数相对应
为相等函数.
3.函数的表示法 表示函数的常用方法有 解析法 、图象法和 列表法 .
4.分段函数 (1)若函数在其定义域的不同子集上,因 对应关系 不同而分别用几个不同的
式子来表示,这种函数称为分段函数. (2)分段函数的定义域等于各段函数的定义域的 并集 ,其值域等于各段函数
的值域的 并集 ,分段函数虽由几个部分组成,但它表示的是一个函数.
角度3:待定系数法求函数解析式 【例2-3】 已知f(x)是一次函数,且满足3f(x+1)- 2f(x-1)=2x+17,则f(x)=__2_x_+__7__.
[思路引导] 设f(x)=ax+b(a≠0)→代入已知条件→解出a、b→得f(x).
[解析] 设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a -2b=ax+5a+b,
角度2:分段函数与不等式问题
【例3-2】 (1)已知函数f(x)= 1)≤1的解集是_(_-__∞__,__-__1_+___2_]_.
-x+1,x<0, x-1,x≥0,
则不等式x+(x+1)f(x+
(2)设函数f(x)= _a_≤___2___.
函数符号大全含义
函数符号大全含义函数符号是数学中常见的一种符号表示方式,用于描述数学中各种数学函数的性质、定义及运算规则。
下面将介绍一系列常见的函数符号及其含义。
加法符号(+)加法是数学中最基础的运算符号,表示两个数的相加结果。
例如,3 + 4 = 7。
减法符号(-)减法是数学中常见的运算符号,表示一个数减去另一个数的结果。
例如,5 - 2 = 3。
乘法符号(×)乘法是数学中常见的运算符号,表示两个数的相乘结果。
例如,2 ×3 = 6。
除法符号(÷)除法是数学中常见的运算符号,表示一个数除以另一个数的结果。
例如,6 ÷ 2 = 3。
等于符号(=)等于符号用于表示两个数或者表达式相等。
例如,2 + 3 = 5。
不等于符号(≠)不等于符号用于表示两个数或者表达式不相等。
例如,2 + 3 ≠ 6。
小于符号(<)小于符号用于比较两个数的大小关系,表示前一个数小于后一个数。
例如,2 < 5。
大于符号(>)大于符号用于比较两个数的大小关系,表示前一个数大于后一个数。
例如,5 > 2。
小于等于符号(≤)小于等于符号用于比较两个数的大小关系,表示前一个数小于等于后一个数。
例如,2 ≤ 2。
大于等于符号(≥)大于等于符号用于比较两个数的大小关系,表示前一个数大于等于后一个数。
例如,3 ≥ 2。
开方符号(√)开方符号用于表示一个数的平方根。
例如,√9 = 3。
绝对值符号(| |)绝对值符号用于表示一个数的非负值。
例如,|-5| = 5。
圆括号(( ))圆括号用于改变运算的优先级,或表示一个集合。
例如,(3 + 2) × 4 = 20。
方括号([ ])方括号常用于表示某个范围或集合。
例如,[1, 5]表示自然数范围从1到5。
大括号({ })大括号常用于表示集合。
例如,{1, 2, 3}表示包含元素1、2、3的集合。
点符号(.)点符号常用于表示两个数的乘法或表示数的小数部分。
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2
第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
高中数学总复习系列之函数及其表示
高中数学总复习系列之函数及其表示第页高考调研·高三总复习·数学(理)第二章函数与基本初等函数第1课时函数及其表示第页高考调研·高三总复习·数学(理)…2018考纲下载…1.了解构成函数的要素会求一些简单函数的定义域和值域.了解映射的概念在实际情景中会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.了解简单的分段函数并能简单应用.请注意本节是函数的起始部分以考查函数的概念、三要素及表示法为主同时函数的图像、分段函数的考查是热点另外实际问题中的建模能力偶有考查.特别是函数的表达式及图像仍是2019年高考考查的重要内容.课前自助餐函数与映射的概念函数映射两集合A设A是两个非空数集设A 是两个非空集合对应关系:A→B 如果按照某种确定的对应关系f使对于集合A中的任意一个数x在集合B中有唯一的数(x)和它对应如果按某一个确定的对应关系f使对于集合A中的任意一个元素x在集合B中有唯一的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=(x),x∈A 对应f:A→B是一个映射函数(1)函数实质上是从一个非空数集到另一个非空数集的映射.(2)函数的三要素:定义域、值域、对应法则.(3)函数的表示法:解析法、图像法、列表法.(4)两个函定义域和对应法则都分别相同时这两个函数才相同.分段函数在一个函数的定义域中对于自变量x的不同取值范围有着不同的对应关系这样的函数叫分段函数分段函数是一个函数而不是几个函数.1.判断下列说法是否正确(打“√”或“×”).(1)f(x)=+(2)A=R=R:x→y=表示从集合A到集合B的映射(也是函数).(3)函数(x)的图像与直线x=1的交点最多有2个.(4)y=2x(x∈{1)的值域是2(5)y=与y=2表示同一函数.(6)f(x)=则f(-x)=答案(1)×(2)×(3)×(4)×(5)×(6)√2.2018年是平年假设月份构成集合A每月的天数构成集合B是月份与天数的对应关系其对应如下:月份 1 2 3 4 5 6 7 8 9 10 11 12 天数 31 28 31 30 31 30 31 31 30 31 30 31对照课本中的函数概念上述从A到B的对应是函数吗?又从B到A的对应是函数吗?答案是不是3.已知(x)=m(x∈R)则f(m)等于(). D.不确定答案4.已知f(x+1)=x-1则(x)=________答案x-2x5.函数y=(x)的图像如图所示那么(x)的定义域是________;值域是________;其中只与x的一个值对应的y值的范围是________.答案[-3]∪[2,3][1][1)∪(4,5]6.(2018·衡水调研卷)函数(x)=则()=________;方程f(-x)=的解是________答案-2-或1解析f()==-2;当x<0时由f(-x)=(-x)=解得x=-当x>0时由f(-x)=2-x=解得x=1.授人以渔题型一函数与映射的概念(1)下列对A到B的映射能否构成函数?A=N=N:x→y=(x-1);=N=R:x→y=±;=N=Q:x→y=;={衡中高三·一班的同学}=[0],f:每个同学与其高考数学的分数相对应.【解析】①是映射也是函数.不是映射更不是函数因为从A到B的对应为“一对多”.当x =1时值不存在故不是映射更不是函数.是映射但不是函数因为集合A 不是数集.【答案】①是映射也是函数不是映射更不是函数不是映射更不是函数是映射但不是函数(2)下列表格中的x与y能构成函数的是()【解析】中0既是非负数又是非正数;B中0又是偶数;D中自然数也是整数也是有理数.【答案】★状元笔记★映射与函数的含义(1)映射只要求第一个集合A中的每个元素在第二个集合B中有且只有一个元素与之对应;至于B中的元素有无原象、有几个原象却无所谓.(2)函数是特殊的映射:当映射f:A→B中的A 为非空数集时即成为函数.(3)高考对映射的考查往往结合其他思考题1(1)下图中建立了集合P中元素与集合M中元素的对应f.其中为映射的对应是________.【解析】①中:P中元素-3在M中没有象.③中中元素2在M 中有两个不同的元素与之对应.④中中元素1在M中有两个不同的元素与之对应.【答案】②⑤(2)集合A={x|0≤x≤4}={y|0≤y≤2}下列不表示从A到B的函数的是():x→y=.:x→y=:x→y=:x→y=【解析】依据函数概念集合A中任一元素在集合B中都有唯一确定的元素与之对应选项不符合.(2018·湖北宜昌一中月考)已知函数(x)=|x-1|则下列函数中与(x)相等的函数是()(x)=(x)=(x)=(x)=x-1【解析】∵g(x)=与(x)的定义域和对应关系完全一致故选【答案】★状元笔记★判断两个函数是否相同的方法(1)构成函数的三要素中(2)两个函数当且仅当定义域和对应法则相同时才是相同函数.思考题2下列五组函数中表示同一函数的是________(x)=x-1与g(x)=(x)=与g(x)=2(x)=x+2与g(x)=x+2(u)=与f(v)==(x)与y =f(x+1)【答案】④题型二函数的解析式求下列函数的解析式:(1)已知f()=求(x)的解析式;(2)已知f(+)=x+求(x)的解析式;(3)已知(x)是二次函数(x+1)-(x)=2x+1且f(0)=3求(x)的解析式;(4)定义在(0+∞)上的函数(x)满足(x)=()·-1求(x)的解析式.【解析】(1)(换元法)设=t[-1],∵f(cosx)==1-(t)=1-t[-1].即(x)=1-x[-1].(2)(凑配法)∵f(+)=(+)-2(x)=x-2[2,+∞).(3)(待定系数法)因为(x)是二次函数可设(x)=ax+bx+c(a≠0)(x+1)+b(x+1)+c-(ax+bx+c)=2x+1.即2ax+a+b=2x+1解得又∵f(0)=3=3(x)=x+3.(4)(方程组法)在(x)=2f()-1中用代替x得f()=2(x)-1将f()=-1代入(x)=2f()-1中可求得(x)=+【答案】(1)(x)=1-x[-1](2)f(x)=x-2[2,+∞)(3)f(x)=x+3(4)f(x)=+★状元笔记★函数解析式的求法(1)凑配法:由已知条件f(g(x))=(x),可将(x)改写成关于g(x)的表达式然后以x替代g(x)便得(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f(g(x))的解析式可用换元法(4)方程思想:已知关于(x)与f()或f(-x)等的表达式可根据已知条件再构造出另外一个等式组成方程组通过解方程组求出(x).思考题3(1)若函数(x)满足f(1+)=求(x)的解析式.(2)定义在R上的函数(x)满足f(x+1)=2(x),若当0≤x≤1时(x)=x(1-x)当-1≤x≤0时求(x)解析式.(3)已知(x)+2f()=x(x≠0)求(x).【解析】(1)令1+=t=t-1=-1(t)=(x)=(2)当0≤x≤1时(x)=x(1-x)当-1≤x≤00≤x+1≤1(x+1)=(x+1)[1-(x+1)]=-x(x+1)而(x)=(x+1)=--当-1≤x≤0时(x)=--(3)∵f(x)+2f()=x将原式中的x与互换得f()+2(x)=于是得关f(x)的方程组解得(x)=-(x≠0).【答案】(1)(x)=(2)f(x)=--(3)f(x)=(x≠0)题型三分段函数与复合函数(1)已知函数(x)=(x)=x+1则:①g[(x)]=________;②f[g(x)]=________.【解析】①x<0时f(x)=[f(x)]=+1;时(x)=x[f(x)]=x+1.[f(x)]=由x+1<0得x<-1.由x+1≥0得x≥-1.∴f[g(x)]=【答案】①g[(x)]=[g(x)]=(2)(2018·南京金陵中学模拟)已知函数(x)=则使得(x)≤3成立的x的取值范围是________【解析】当x≥0时-1≤3=2当x<0时-2x≤3-2x-3≤0-1≤x<0.综上可得x∈[-1].【答案】[-1]★状元笔记★分段函数、复合函思考题4(1)(2018·河北清苑一中模拟)设(x)=则f(f(-1))=________(x)的最小值是________【解析】∵f(-1)=(-1)+1=2(f(-1))=f(2)=2+-3=0.当x≥1时(x)在[1]上单调递减在[+∞)上单调递增(x)min=f()=2-3<0.当x<1时(x)min=1,∴f(x)的最小值为2-3.【答案】02-3(2)(2017·课标全国Ⅲ)设函数(x)=则满足(x)+f(x-)>1的x的取值范围是________【解析】当x>0时(x)=2x恒成立当x-即x>时(x-)=2-当x-即01恒成立.当x≤0时(x)+f(x-)=x+1+x+=2x+所以-综上所述的取值范围是(-+∞).【答案】(-+∞)常用结论记心中快速解题特轻松:映射问题允许多对一但不允许一对多!换句话说就是允许三石一鸟但不允许一石三鸟!函数问题定义域优先!抽象函数不要怕赋值方法解决它!4.分段函数分段算本课时主要涉及到三类题型:函数的三要素分段函数函数的解析式.通过例题的讲解(有些题目直接源于教材)一方面使学生掌握各类题型的解法;另一方面也要教给学生把握复习的尺度教学大纲是高考命题的依据而教材是贯彻大纲的载体研习教材是学生获取知识、能力的重要途径.从近几年的新课标高考试题可以看到高考试题严格遵循教学大纲及《高考大纲》有一定数量的试题直接源自教材这就要求我们在教学过程中要紧扣教材和大纲全面、系统地抓好对基础知识、基本技能、基本思想和方法的教学对各模块的内容要课外阅读抽象函数设函数(x)的定义域为R对于任意实数x都有f(x)+f(x)=2f()f()(π)=-1则(0)=________.【解析】令x=x=则f()+f()=2f()f(0),∴f(0)=1.【答案】1已知偶函数(x),对任意的x恒有(x1+x)=f(x)+f(x)+2x+1则函数(x)的解析式为________.【解析】取x=x=0所以f(0)=2f(0)+1.所以f(0)=-1.因为f[x +(-x)]=(x)+f(-x)+2x·(-x)+1又f(-x)=(x),所以(x)=x-1.【答案】(x)=x-1【讲评】抽象函数问题的处理一般有两种途径:(1)看其性质符合哪类具(2)利用特殊值代入寻求规律和解法。
高中数学必修一 第1讲函数及其表示
第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。
(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。
北京四中高三数学高考总复习4 函数及表示知识梳理_函数及表示
函数及表示【考纲要求】1. 了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域和值域;2. 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3. 了解简单的分段函数,并能简单应用. 【知识网络】【考点梳理】1、映射的定义设,A B 是两个非空的集合,如果按照对应法则f ,对于集合A 中的任意一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应叫做集合A 到集合B 的映射,记作:f A B →。
映射允许多对一,一对一,但是不允许一对多,允许集合B 中的元素在集合A 中没有元素和它对应。
2、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一的值与它对应,那么称:f A B →为从集合A 到集合B 的一个函数。
记作:)(x f y =.其中x 叫做自变量,y 叫做函数,自变量x 的取值范围(数集A )叫做函数的定义域,与x 的值对应的y值叫做函数值,所有函数值构成的集合{}(),C y y f x x A ==∈叫做这个函数的值域。
3、函数的三要素函数的三要素是定义域、值域、对应法则,在这三要素中,由于值域可由定义域和对应法则唯一确定,故也可说函数只有两个要素。
4、两个函数能成为同一函数的条件当且仅当两个函数的定义域和对应法则完全相同时,这两个函数才是同一函数。
5、区间的概念和记号设,a b R ∈,且a b <,我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为],[b a 。
(2)满足不等式b x a <<的实数x 的集合叫做开区间,表示为),(b a 。
(3)满足不等式a x b ≤<或b x a ≤<的实数x 的集合叫做半闭半开区间,分别表示为),[b a 和],(b a 。
这里的实数a 和b 叫做相应区间的端点。
2021高三数学(理)一轮复习专练4函数及其表示含解析
2021高三数学(理)人教版一轮复习专练4函数及其表示含解析专练4函数及其表示命题范围:函数的概念及其表示、映射、函数的对应法则、函数的定义域、值域.[基础强化]一、选择题1.已知集合A到集合B的映射f:(x,y)→(x+2y,2x-y),在映射f下对应集合B中元素(3,1)的A中元素为()A.(1,3) B.(1,1)C.(3,1)D.(5,5)2.下列各组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=错误!B.f(x)=错误!,g(x)=(错误!)2C.f(x)=x2-1x-1,g(x)=x+1D.f(x)=x+1·错误!,g(x)=错误!3.已知函数f(错误!+1)=x+1,则函数f(x)的解析式为()A.f(x)=x2B.f(x)=x2+1(x≥1)C.f(x)=x2-2x+2(x≥1)D.f(x)=x2-2x(x≥1)4.函数y=错误!的定义域为()A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D。
错误!∪错误!5.若函数y=f(x)的定义域为[1,2 019],则函数g(x)=错误!的定义域为()A.[0,2 018]B.[0,1)∪(1,2 018]C.(1,2 018] D.[-1,1)∪(1,2 018]6.[2020·葫芦岛一中测试]已知f(x)是一次函数,且f[f(x)]=x+2,则函数f(x)=()A.x+1 B.2x-1C.-x+1 D.x+1或-x-17.[2020·邢台一中测试]如图所表示的函数解析式为()A.y=错误!|x-1|,0≤x≤2B.y=错误!-错误!|x-1|,0≤x≤2C.y=32-|x-1|,0≤x≤2D.y=1-|x-1|,0≤x≤28.已知函数f(x)=错误!若f(a)+f(1)=0,则实数a的值等于()A.-4 B.-1C.1 D.49.已知函数f(x)=-x2+4x,x∈[m,5]的值域是[-5,4],则实数m的取值范围是()A.(-∞,-1) B.(-1,2]C.[-1,2]D.[2,5]二、填空题10.函数f(x)=错误!的定义域为________.11.[2020·广东珠海测试]已知函数f(x)=错误!且f(a)=-3,则f(6-a)=________。
高考数学 热点题型和提分秘籍 专题04 函数及其表示 理(含解析)新人教A版-新人教A版高三全册数
2016年高考数学 热点题型和提分秘籍 专题04 函数及其表示 理(含解析)新人教A 版【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f (x )= 1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎪⎫1+1x + 1-x 2的定义域为________.【答案】(1)A (2)(0,1] 【解析】【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f (x )的定义域,求f (g (x ))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.【举一反三】已知f (x )的定义域为⎣⎢⎡⎦⎥⎤-12,12,求函数y =f ⎝⎛⎭⎪⎫x 2-x -12的定义域.题型二 考查函数的解析式例2、(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.【解析】 (1)f (1-cos x )=sin 2x =1-cos 2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2], 即f (x )=2x -x 2,x ∈[0,2].(2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.解方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,得f (x )=23x -x3(x ≠0).【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值X 围.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).【举一反三】已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3 【答案】B题型三 考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f (x ),y =g (x ),定义函数h (x )=⎩⎪⎨⎪⎧fx ,f x ≤g x ,g x ,f x >g x .对于函数y =h (x ),下列结论正确的个数是( )①h (4)=10;②函数h (x )的图象关于直线x =6对称;③函数h (x )的值域为[0,13 ];④函数h (x )的递增区间为(0,5).A .1B .2C .3D .4 【答案】 C 【解析】【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的X 围求的变量值或自变量的取值X 围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值X 围.【举一反三】已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于________.【答案】4【解析】f ⎝ ⎛⎭⎪⎫43=2×43=83, f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=2×23=43,f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4. 【高考风向标】【2015高考某某,理7】存在函数()f x 满足,对任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+ 【答案】D. 【解析】(2014·某某卷)设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎪⎫23π6=( )A.12B.32 C .0 D .-12【答案】A【解析】由已知可得,f ⎝⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎪⎫5π6+sin 5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝ ⎛⎭⎪⎫-π6=sin 5π6=12.(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D(2014·某某卷)函数f (x )=ln(x 2-x )的定义域为( )A .(0,1]B .[0,1]C .(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞) 【答案】C【解析】由x 2-x >0,得x >1或x <0. (2014·某某卷)函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C. ⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D. ⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 【答案】C【解析】根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C. (2013·某某卷)已知函数f(x)=a ⎝ ⎛⎭⎪⎫1-2⎪⎪⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值X 围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△A BC 的面积为S(a),讨论S(a)的单调性.【解析】当a>12时,有f(f(x))=⎩⎪⎪⎨⎪⎪⎧4a 2x ,x ≤14a,2a -4a 2x ,14a <x ≤12,2a (1-2a )+4a 2x ,12<x ≤4a -14a ,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a 1+4a 2,2a 1+2a ,4a 21+4a 2,又f(0)=0,f ⎝ ⎛⎭⎪⎫2a 1+2a =2a 1+2a,f ⎝ ⎛⎭⎪⎫2a 1+4a 2≠2a 1+4a 2,f ⎝ ⎛⎭⎪⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值X 围为a>12.(2013·某某卷)设函数f(x)在(0,+∞)内可导,且f(e x)=x +e x,则f′(1)=________. 【答案】2【解析】f(e x )=x +e x,利用换元法可得f(x)=ln x +x ,f′(x)=1x +1,所以f′(1)=2.(2013·某某卷)如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )图1-3图1-4 【答案】D 【解析】(2013·某某卷)函数y =xln(1-x)的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1] 【答案】B【解析】x≥0且1-x>0,得x∈[0,1),故选B.(2013·某某卷)已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2(a -2)x -a 2+8.设H 1(x)=max {}f (x ),g (x ),H 2(x)=min {}f (x ),g (x )(max {}p ,q 表示p ,q 中的较大值,min {}p ,q 表示p ,q 中的较小值).记H 1(x)的最小值为A , H 2(x)的最大值为B ,则A -B =( )A .16B .-16C .a 2-2a -16 D .a 2+2a -16【答案】B【解析】由题意知当f(x)=g(x)时,即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8, 整理得x 2-2ax +a 2-4=0,所以x =a +2或x =a -2,所以H 1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x 2-2(a +2)x +a 2(x≤a-2),-x 2+2(a -2)x -a 2+8(a -2<x<a +2),x 2-2(a +2)x +a 2(x≥a+2),H 2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x 2+2(a -2)x -a 2+8(x≤a-2),x 2-2(a +2)x +a 2(a -2<x<a +2),-x 2+2(a -2)x -a 2+8(x≥a+2).由图形(图形略)可知,A =H 1(x)min =-4a -4,B =H 2(x)max =12-4a ,则A -B =-16. 故选B.(2013·全国卷)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎪⎫-1,-12C .(-1,0) D.⎝ ⎛⎭⎪⎫12,1【答案】B【解析】对于f(2x +1),-1<2x +1<0,解得-1<x<-12,即函数f(2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. (2013·某某卷)设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x<0,-x ,x≥0,则当x>0时,f[f(x)]表达式的展开式中常数项为( )A .-20B .20C .-15D .15 【答案】A(2013·某某卷)函数y =x33x -1的图像大致是( )图1-5【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A;当x<0时,x3<0,3x-1<0,故y>0,排除选项B;当x→+∞时,y>0且y→0,故为选项C中的图像.(2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.【解析】(3)依题意可得T 的分布列为T 45 000 53 000 61 000 65 000 P0.10.20.30.4所以E(T)=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400. 【高考押题】1. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )【答案】B【解析】注意定义域和值域的限制,只有B 正确.2.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于 ( )A. 12 B. 45C. 2D. 9【答案】C3. 函数f (x )=2x -1log 3x 的定义域为 ( )A. (0,+∞)B. (1,+∞)C. (0,1)D. (0,1)∪(1,+∞)【答案】D【解析】由log 3x ≠0得x >0且x ≠1,因此,函数f (x )=2x -1log 3x 的定义域是(0,1)∪(1,+∞),选D.4.已知映射f :A →B ,其中A =B =R ,对应法则f :x →y =|x |12,若对实数k ∈B ,在集合A 中不存在元素x 使得f :x →k ,则k 的取值X 围是( )A. k ≤0B. k >0C. k ≥0D. k <0【答案】D【解析】由题易知y =|x |12的值域为[0,+∞),要使集合A 中不存在元素x 使得f :x →k ,只需k 不在此值域中,即k <0.5.如右图,是X 大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示X 大爷家的位置,则X 大爷散步行走的路线可能是( )【答案】D【解析】6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A. x -1B. x +1C. 2x +1D. 3x +3【答案】B【解析】在2f (x )-f (-x )=3x +1① 将①中x 换为-x ,则有 2f (-x )-f (x )=-3x +1② ①×2+②得3f (x )=3x +3, ∴f (x )=x +1. 7. 已知函数f (x )=1x +1,则函数f [f (x )]的定义域是________. 【答案】{x |x ≠-1,且x ≠-2} 【解析】由x +1≠0且1x +1+1≠0,得x ≠-1,且x ≠-2. ∴定义域为{x |x ≠-1,且x ≠-2}. 8.若函数f (x )=⎩⎪⎨⎪⎧2x x <3,3x -m x ≥3,且f (f (2))>7,则实数m 的取值X 围为________.【答案】m <5【解析】因为f (2)=4,所以f (f (2))=f (4)=12-m >7,解得m <5. 9.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.【答案】±1【解析】若a ≥0,则a +1=2,得a =1;若a <0,则-a +1=2,得a =-1.故a =±1. 10. 根据下列条件分别求出函数f (x )的解析式: (1)f (x +1)=x +2x ;(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).解:(1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, 即f (x )=x 2-1,x ∈[1,+∞). (2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴a =2,b =7,故f (x )=2x +7.11. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0,(1)求f [g (2)]与g [f (2)]. (2)求f [g (x )]与g [f (x )]的表达式.12.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (分)的关系.试写出y =f (x )的函数解析式.。
高一新知必修1第一章 第2节《函数及其表示》
1)题意分析:已知 f ( x 1) ,求 f ( x ) 2)解题思路:换元法 解答过程:令 t x 1 ,则 x t 1 , f (t ) 2(t 1)2 1 2t 2 4t 3 。
f ( x) 2 x2 4 x 3 。
当 x >-2 时, y = 解题后的思考: 分段函数的定义域是各段函数解析式中自变量取值集合的并集; 分段函数的值域是各段函数 取值集合的并集。 例 9 解答过程:∵-3<0 ∴ f (-3)=0, ∴ f ( f (-3) )= f (0)= ,又 >0 ∴ f ( f ( f (3))) =f( )= +1。 解题后的思考:求分段函数的函数值时,首先应确定自变量在定义域中所处的范围,然后按相应的对应关系 求值。
三、考点分析:
掌握函数的概念与表示,对于映射的概念只需要了解,本节知识点在单独出题时多为简单题,揉在综合题中 考查。
1、函数的概念: 一般地,设 A、B 是非空的数集,如果按照某种确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在 集合 B 中都有唯一确定的数 f ( x ) 和它对应,那么就称 f :A→B 为从集合 A 到集合 B 的一个函数,记作:
(3) f ( x) x , g ( x)
x2 ;
(4) f ( x) 3 x 4 x3 , F ( x) x 3 x 1 ; (5) f1 ( x) ( 2x 5) 2 , f 2 ( x) 2 x 5 。 A. (1) 、 (2) B. (2) 、 (3) C. (4) D. (3) 、 (5) 2. 函数 y f ( x) 的图象与直线 x 1 的公共点的数目是( ) 3. 已知集合 A 1, 2,3, k , B 4, 7, a , a 3a ,且 a N * , x A, y B ,若使 B 中元素 y 3x 1 和 A 中
高一数学《函数及其表示》知识讲解
高一数学《函数及其表示》知识讲解高一数学《函数及其表示》知识讲解《函数及其表示》是高一数学的一个知识点,下面小编为大家介绍高一数学《函数及其表示》知识讲解,希望能帮到大家!考点一映射的概念1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在唯一的一个元素y 与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。
包括:一对一多对一考点二函数的概念1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在唯一确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。
记作y=f(x),xA.其中x叫自变量,x的.取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。
函数是特殊的映射,是非空数集A到非空数集B的映射。
2.函数的三要素:定义域、值域、对应关系。
这是判断两个函数是否为同一函数的依据。
3.区间的概念:设a,bR,且a<b.我们规定:①(a,b)={xa<x<b}②[a,b]={xa≤x≤b}③[a,b)={xa≤x<b}④(a,b]= {xa<x≤b}⑤(a,+∞)={xx>a}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xx<b}⑧(-∞,b]={xx≤b}⑨(-∞,+∞)=R考点三函数的表示方法1.函数的三种表示方法列表法图象法解析法2.分段函数:定义域的不同部分,有不同的对应法则的函数。
注意两点:①分段函数是一个函数,不要误认为是几个函数。
②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
能力知识清单考点一求定义域的几种情况①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是对数函数,真数应大于零。
数学函数符号大全
数学函数符号大全1.单位函数符号:-f(x):表示函数f对自变量x的依赖关系。
-y=f(x):表示函数f对自变量x的依赖关系,并将其结果表示为因变量y。
2.常见数学函数符号:-+:表示两个数的加法运算。
--:表示两个数的减法运算。
-×:表示两个数的乘法运算。
-÷:表示两个数的除法运算。
-=:表示两个数或表达式之间的相等关系。
-≠:表示两个数或表达式之间的不等关系。
3.基本数学函数符号:- sin(x):表示正弦函数,x为弧度。
- cos(x):表示余弦函数,x为弧度。
- tan(x):表示正切函数,x为弧度。
- cot(x):表示余切函数,x为弧度。
- sec(x):表示正割函数,x为弧度。
- csc(x):表示余割函数,x为弧度。
- arcsin(x):表示反正弦函数,x为正弦值。
- arccos(x):表示反余弦函数,x为余弦值。
- arctan(x):表示反正切函数,x为正切值。
- arcsec(x):表示反正割函数,x为正割值。
- arccsc(x):表示反余割函数,x为余割值。
- log(x):表示以10为底的对数函数,x为参数。
4.指数和幂函数符号:-a^x:表示以a为底的x次幂,a为底数,x为指数。
-b^(x/y):表示以b为底,x的y次方根,b为底数,x为被开方数,y为根数。
5.对数函数符号:- log_a(x):表示以a为底的对数函数,a为底数,x为参数。
6.三角函数符号:- sin(x):表示正弦函数,x为弧度。
- cos(x):表示余弦函数,x为弧度。
- tan(x):表示正切函数,x为弧度。
- cot(x):表示余切函数,x为弧度。
- sec(x):表示正割函数,x为弧度。
- csc(x):表示余割函数,x为弧度。
7.双曲函数符号:- sinh(x):表示双曲正弦函数,x为实数。
- cosh(x):表示双曲余弦函数,x为实数。
- tanh(x):表示双曲正切函数,x为实数。
4函数及其表示、定义域、值域
汾阳二中高二文科数学一轮复习(3)函数的定义域与值域一.函数的定义域1、已知函数的解析式(具体函数),求定义域问题的类型: (1)、若解析式是整式,则函数的定义域为全体实数R ; (2)、若解析式中含有分式,则分母不为零; (3)、若解析式中含有偶次根式,则被开方数为非负; (4)、若解析式中含有0x ,则底数x 不为零;(5)、若解析式中含有对数式,则真数大于零,底数大于零且不等于1; (6)、实际问题中不仅要考虑解析式的意义,还应该注意其实际意义; (7)、若解析式中含有以上某几种情况,则应该去它们的交集; 2、例题分析例1、求下列函数的定义域(1)()f x =2)0()f x=3)4()lg4xf x x -=+例2、(06广东卷)函数2()lg(31)f x x =+的定义域是( )A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-例3、(11年安徽文13)函数y =的定义域是例4、(11年广东文4)函数1()lg(1)1f x x x=++-的定义域是 ( ) A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-+∞ D .(,)-∞+∞ 3、巩固练习求下列函数的定义域:⑴y = ⑵y =⑶01(21)111y x x =+-+-4、抽象函数的定义域问题:(1) 类型一:已知()y f x =定义域为A ,求[()]f g x 定义域问题(2) 类型二:已知[()]y f g x =定义域为A ,求()y f x =的定义域问题 1、已知函数()y f x =定义域是(0,1),则函数1(1)2y f x =-的定义域为 ____________2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为__________;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数()f x 的定义域是___________;函数(21)f x -的定义域是(0,2);函数1(2)f x+的定义域为 。
高三一轮复习--4函数及其表示
返回
本例中将“f(a)=3”改为“f(a2+1)=3”,则a的值又如何?
1 解:当 a +1<2 时,2(a +1)=3,即 a = . 2
2 2 2
a2+12 2 ∴a=± .当 a2+1≥2 时, =3, 2 2
1
即 a2= 6-1,∴a=± 6-1) (
2
.
1 2 综上可知 a=± 或 a=± 6-1) 2 . ( 2
返回
3.相等函数
如果两个函数的 定义域 相同,并且 对应关系 完全一致,
则这两个函数为相等函数. 4.函数的表示方法 表示函数的常用方法有: 解析法 、 列表法 和 图象法 .
返回
5.分段函数 若函数在其定义域的不同子集上,因 对应关系 不同而分 别用几个不同的式子来表示,这种函数称为分段函数,分
返回
[悟一法] 1.要检验两个变量之间是否存在函数关系,只需检验:
①定义域和对应关系是否给出;②根据给出的对应关
系,自变量x在其定义域中的每一个值,是否都能找 到唯一的函数值y与之对应. 2.判断两个函数是否相同,要先看定义域是否一致,若 定义域一致,再看对应法则是否一致,由此即可判断.
返回
[通一类] 1.下列对应关系是集合P上的函数的是________. (1)P=Z,Q=N * ,对应关系f:对集合P中的元素取绝对 值与集合Q中的元素相对应;
返回
有时也用解方程组法, f(x)满足某个等式, 即 这等式除 f(x) 1 是未知数外,还出现其他未知量,如 f(-x),f(x)等,必须 根据已知等式再构造其他等式组成方程组,通过解方程组 得 f(x).
返回
[通一类] 1 2.若f(x)满足2f(x)+f(x)=3x,求f(x). 1 解:2f(x)+f(x)=3x
新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析
3.1.1函数及其表示方法第三章函数3.1 函数的概念与性质3.1.1函数及其表示方法课时1 函数的概念考点1函数的概念1.下列说法正确的是()。
A.函数值域中每一个数在定义域中一定只有一个数与之对应B.函数的定义域和值域可以是空集C.函数的定义域和值域一定是数集D.函数的定义域和值域确定后,函数的对应法则也就确定了答案:C解析:由函数的定义可知,函数的定义域和值域为非空的数集。
2.下列四个图形中,不是以x为自变量的函数的图像是()。
图3-1-1-1-1答案:C解析:根据函数定义,知对自变量x的任意一个值,都有唯一确定的实数(函数值)与之对应。
显然选项A,B,D 满足函数的定义,而选项C不满足。
故选C。
3.(2018·河北衡水中学高一月考)下列四组函数中,表示同一函数的是()。
3 B.y=1与y=x0A.y=√x2与y=√x3C.y=2x+1与y=2t+1D.y=x与y=(√x)2答案:C3=x,它们的对应关系不同,不是同一函数;对于B,y=1(x∈R),y=x0=1(x≠0),它们的解析:对于A,y=√x2=|x|,y=√x3定义域不同,不是同一函数;对于C,y=2x+1与y=2t+1,它们的定义域相同,对应关系也相同,是同一函数;对于D,y=x(x∈R),y=(√x)2=x(x≥0),它们的定义域不同,不是同一函数。
【易错点拨】考查同一函数的问题,注意把握同一函数的定义,必须保证是三要素完全相同,才是同一函数。
4.(2019·西安高一检测)下列式子中不能表示函数y=f(x)的是()。
A.x=y2B.y=x+1C.x+y=0D.y=x2答案:A5.给出下列两个集合间的对应关系:①A={-1,0,1},B={-1,0,1},f:A中的数的平方;②A={0,1},B={-1,0,1},f:A中的数的开方;③A=Z,B=Q,f:A中的数的倒数;④A=R,B={正实数},f:A中的数取绝对值;⑤A={1,2,3,4},B={2,4,6,8},f:A中的数的2倍。
2022版高中全程复习方略配套课件:函数及其表示(北师大版·数学理)
【即时应用】 (1)思考:函数定义中对集合A中的元素有什么要求? 提示:①全部参与对应;②在集合B中对应元素存在且唯一确定.
(2)判断下列对应关系f是否是从A到B的函数.(请在括号中填“
是”或“否”)
①A=R,B={x|x>0},f:x→|x|;
()
②A=R,B=R,f:x→x2;
()
③A=Z,B=R,f:x→
分段函数及其应用 【方法点睛】分段函数求值、解不等式及求解析式的方法 处理分段函数的求值、解不等式及求解析式等相关问题时,首先 要确定自变量的值属于哪个区间,其次选定相应关系代入计算求 解,特别要注意分段区间端点的取舍,当自变量的值不确定时, 要分类讨论. 【提醒】分段函数虽由几个部分组成,但它表示的是一个函数.
(3)求下列函数的值域.
①y=x2+2x,x∈[0,3];②y=log3x+logx3-1; ③
【解题指南】(1)根据解析式求定义域,只需构建使解析式有意 义的不等式组求解即可; (2)求抽象函数的定义域,要明确2x与f(x)中x的含义; (3)根据解析式的特点,分别选用①图像观察法;②均值不等式 法;③单调性法求值域.
【反思·感悟】对于这类给出函数所满足的抽象的性质,但不知 道函数解析式的求值问题,求解时应根据该抽象的函数关系的 结构特征,结合待求值的特点,给变量赋予特殊值,从而使问 题具体化、简单化,达到求出函数值的目的.
【创新探究】与函数有关的新定义问题 【典例】(2011·广东高考)设f(x),g(x),h(x)是R上的任意 实值函数,如下定义两个函数(f g)(x)和(f·g)(x):对任意 x∈R,(f g)(x)=f(g(x));(f·g)(x)=f(x)g(x).则下列等 式恒成立的是( )
高中数学必修一之知识讲解-函数及其表示方法
函数及其表示方法【学习目标】(1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)求简单分段函数的解析式;了解分段函数及其简单应用.【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。
2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:<<= {x|a≤x≤b}=[a,b];x a x b a b{|}(,);(]x a x b a b{|},≤<=;x a x b a b<≤=;[){|},(][)≤=∞≤=+∞.x x b b x a x a{|}-,; {|},要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.3.函数定义域的求法(1)确定函数定义域的原则①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.③当函数用表格给出时,函数的定义域是指表格中实数x的集合。
函数及其表示法
指数表示法
使用指数函数的公式来表示函数,例如 $f(x) = e^x$。
优点
可以方便地表示快速增长或衰减的函数。
3
缺点
对于非指数型函数,可能不适用,且公式较为复 杂。
04 函数的参数表示法
参数方程的概念
参数方程定义
参数方程是一种描述函数关系的 方法,通过引入一个或多个参数, 将自变量和因变量的关系表示出 来。
分段函数的应用
解决实际问题
分段函数常常用于解决一些实际问题,例如利润计算、成本分析、人口统计等。通过分段来表示不同情况下的函数关 系,能够更准确地描述实际问题。
数学建模
在数学建模中,分段函数也经常被用来描述一些复杂的现象或关系。例如,在物理学、生物学、经济学等领域中,分 段函数可以用来描述一些非线性关系或突变现象。
01
Байду номын сангаас
02
03
观察图像形状
通过观察图像的形状,可 以初步判断函数的单调性、 周期性等性质。
分析函数性质
结合函数表达式和图像, 可以分析函数的极值点、 拐点等关键点,从而理解 函数的性质。
比较函数差异
通过比较不同函数的图像, 可以直观地了解它们之间 的差异和联系。
函数图像的应用
解决实际问题
教育与教学
在解决一些实际问题时,如最优化问 题、物理现象模拟等,可以通过绘制 函数图像来直观地理解和分析问题。
优点
简洁明了,易于理解和计算。
缺点
对于复杂的函数,可能难以找到合适的代数表示法。
三角表示法
三角表示法
使用三角函数的公式来表示函数,例如 $f(x) = sin(x) + cos(x)$。
优点
第四讲 函数及其表示
{y|y=f(x),x∈A}叫做这个函数的值域.
第3页 共 54 页
2.构成函数的要素:定义域、对应关系、值域. 3.两个函数的相等 当两个函数的定义域和对应关系都分别相同时,这两个函数
才是同一个函数.
4.常用的函数表示法 (1)解析法;(2)列表法;(3)图象法.
第4页 共 54 页
5.分段函数 在函数的定义域内,对于自变量x的不同取值区间,有着不同的 对应法则,这样的函数通常叫做分段函数.
第二模块
(必修1:第一章
函数
基本
函数概念;第二章
初等函数(Ⅰ);第三章 函数的应用)
第1页 共 54 页
第四讲
函数及其表示
第2页 共 54 页
回归课本 1.函数的概念 设集合A,B是非空的数集,如果按照某种确定的对应关系f,使
对A中的任意一个数x,在集合B中,都有唯一确定的数f(x)和
它对应,那么就称f:A→B为从集合A到集合B的一个函数,记 作y=f(x),x∈A.其中x叫做自变量,自变量的取值范围叫做 这个函数的定义域.自变量取值a,则由法则f确定的值y称为 函数在a处的函数值,记作y=f(a).所有函数值构成的集合
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义易知②③成立,故选C. 答案:C
第8页 共 54 页
3.下列函数中是相等函数的为 A. f ( x) x
2
x 1, g ( x) x( x 1)
x 4 B. f ( x) , g ( x) x 2 x2 C.f x x 2 2x 1, g t t 2 2t 1 D.f n 2n 1, g n 2n 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
()x A xf x x A A<=≥考点4 函数及其表示※考纲解读※● 了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.● 在实际情境中,会根据不同的需要选择恰当的方法表示函数. ● 了解简单的分段函数,并能简单的运用.※重点难点※● 函数的三种表示方法,利用集合与对应的语言来刻画函数. ● 了解简单的分段函数,并能简单的运用.※命题探究※● 函数是整个高中数学的重点,函数思想是最重要的数学思想方法,函数问题在历年高考中都占据相当大的比例,从近几年来看,对本部分内容的考查形势稳中求变,向着更灵活的方向发展.● 在高考中主要考查映射与函数的概念,例如求象、原象以及映射的个数等,另外,在高考中常以函数作为背景, 结合不等式、方程、数列等知识,考查学生处理综合问题的能力.● 在高考命题上仍以考查基本概念与基本计算为主,题型主要是选择和填空题,也有可能把定义一种新运算作为考 查的目的.● 本内容涉及的考点有:①求函数的解析式;②分段函数;③函数的综合应用。
※高考赏析※1.(2011·北京).根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A xf x x A A<⎪⎪=⎨⎪≥⎪⎩(A ,c 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品时用时15分钟,那么c 和A 的值分别是A. 75,25B. 75,16C. 60,25D. 60,16【解析】由条件可知,x A ≥时所用时间为常数,所以组装第4件产品用时必然满足第一个分段函数,即(4)30604f c ==⇒=,()1516f A A A=⇒=,选D 。
2.(2010·陕西) 某学校要召开学生代表大会,规定各班每10人推选一名代表 ,当各班人数除以10的余数大于..6.时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x]( [x]表示不大于x 的最大整数)可以表示为A. y 10x ⎡⎤=⎢⎥⎣⎦B. 3y 10x +⎡⎤=⎢⎥⎣⎦C. 4y 10x +⎡⎤=⎢⎥⎣⎦D. 5y 10x +⎡⎤=⎢⎥⎣⎦【解析】法一:设)90(10≤≤+=ααm x ,,时⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤≤10103103,60x m m x αα 1101103103,96+⎥⎦⎤⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤<x m m x αα时当,所以选B 法二:特殊取值法,若x=56,y=5,排除C 、D ,若x=57,y=6,排除A ,所以选B3.(2009·辽宁) 若1x 满足225,xx +=2x 满足222log (1)5,x x +-=则1x +2x =A.52B.3C.72D.4【解析】由题意11225,xx += ① 22222log (1)5,x x +-= ② 所以11121252,log (52),x x x x =-=-即12122log (52),x x =- 令1272,x t =- 代入上式得22722log (22)22log (1),t t t -=-=+-2522log (1),t t ∴-=-与②式比较得2t x =于是12272x x =-,127.2x x ∴+=另法:数形结合法.故选C.X(年)4.(2005·湖南)设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=ABc PBC S S ∆∆,λ2=ABCPCA S S∆∆,λ3=ABCPAB S S ∆∆,定义123()(,,),f P λλλ=若G 是△ABC 的重心,111()(,,),236f Q =则A.点Q 在△GAB 内B.点Q 在△GBC 内C.点Q 在△GCA 内D.点Q 与点G 重合【解析】A5.(2006·陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4,a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 A.4,6,1,7 B.7,6,1,4 C.6,4,1,7 D.1,6,4,7【解析】当接收方收到密文14,9,23,28时,则214292323428a b b c c d d +=⎧⎪+=⎪⎨+=⎪⎪=⎩,解得6417a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,解密得到的明文为C .※基础巩固※6.设集合A 和B 都是自然数集合N,映射f:B A →把集合A 中的元素n,映射到集合B 中的元n n +2,则在 映射 f 下,象20的原象是A.4B.3C.2D. 5【解析】A7.我校门前的磁卡电话收费标准为:前三分钟内收费0.4元,以后每分钟收费0.2元.某同学一次(或 多次)通话共7分钟,最低话费应是A.0.8元B.1元C.1.2元D.1.4元 【解析】B8.某集镇近20年来的常住人口y(千人)与时间x(年)的函数如右图,考虑下列说法:①前16年的常住人口是逐年增加的;②第16年后常住人口实现零增长;③前8年的人口增长率大于1; ④第8年到第16年的人口增长率小于1.在上述说法中,只有一种说法是错误的,这个错误的说法是A.①B.②C.③ D ④ 【解析】C.9.如果函数()f x 对任意实数x ,存在常数M,使得不等式|()|||f x M x ≤恒成立,那么就称函数()f x 为有界泛函,下面有4个函数:①1)(=x f ; ②2)(x x f =; ③x x x x f )cos (sin )(+=; ④1)(2++=x x x x f .其中有两个属于有界泛涵,它们是.A.①,②B.③,④C.①,③D.②,④【解析】x x x x x f 2cos sin )(≤+=,取2=M ,所以③符合有界泛涵定义.x x x x x xx f 3443)21(1)(22≤++=++=,取34=M ,所以④符合有界泛涵定义.故选B.10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002t M t M -=,其中0M 为0=t 时铯137的含量,已知30=t 时,铯137的含量的变.化率..是2ln 10-(太贝克/年),则()=60M A. 5太贝克 B. 2ln 75太贝克 C. 2ln 150太贝克 D. 150太贝克【解析】因为()300/22ln 301tM t M -⨯-=,则()2ln 1022ln 3013030300/-=⨯-=-M M ,解得6000=M ,所以()302600t t M -⨯=,那么()150416002600603060=⨯=⨯=-M (太贝克),故选D. 11.定义在实数集上的函数,如果存在函数,使得对于一切实数都成立,那么称为函数的一个承托函数.给出如下命题:①对给定的函数,其承托函数可能不存在,也可能有无数个 ②定义域和值域都是R 的函数不存在承托函数;③为函数的一个承托函数; ④为函数的一个承托函数其中,正确的命题个数是A .0B .1C .2D .3 【解析】C12.设函数()f n k =(其中*n N ∈),k 是π的小数点后的第n 位数字, 3.1415926535,π=则100{[(10)]}f ff f 个等于 .【解析】(10)5,(5)9,(9)3,(3)1,(1) 1.f f f f f =====从此后均为(1) 1.f =13.如图,一条直角走廊宽为1.5m ,一转动灵活的平板手推车其, 平板面为矩形,宽为1m .问:要想顺利通过直角走廊,平板手 推车的长度不能超过 .【解析】223-.14.)]()([21)2(:)(21212,1x f x f x x f R x x x f R +≤+∈都有对任意满足上的函数定义在,则称函数f (x )是R 上的凹函数.已知二次函数2()(,0).f x ax x a R a =+∈≠(1)求证:当0a >时,函数()f x 是凹函数;(2)如果[0,1]x ∈时,|()|1,f x ≤试求实数a 的取值范围.【解析】(1)对任意12,,0,x x R a ∈>]2)2([2)2(2)]()([212212221212121x x x x a x ax x ax x x f x f x f +++-+++=+-+ )]()([21)2x f( 0)(212121221x f x f x x x a +≤+∴≥-= ∴函数f (x )是凹函数. (2)111)(11|)(|2≤+≤-⇔≤≤-⇔≤x ax x f x f 由 当x =0时,a ∈R ;当x ∈(0,1)时,1.5m1.5m恒成立恒成立⎪⎪⎩⎪⎪⎨⎧--≤++-≥∴⎪⎩⎪⎨⎧+-≤--≥41)211(41)211(112222x a x a x ax x ax 20a ∴-≤<. 综上,a 的范围是[2,0].-15.已知函数a a x f x 3)(+=(0>a ,1≠a )的反函数是)(1x f y -=,而且函数)(x g y =的图象与函数)(1x f y -=的图象关于点)0,(a 对称. (Ⅰ)求函数)(x g y =的解析式;(Ⅱ)若函数)()()(1x g x f x F --=-在]3,2[++∈a a x 上有意义,a 求的取值范围.【解析】(Ⅰ)由a a x f x 3)(+=(0>a ,1≠a ),得)3(log )(1a x x f a -=-又函数)(x g y =的图象与函数)(1x f y -=的图象关于点)0,(a 对称,则)()(1x a fx a g --=+-,于是,)(log )2()(1a x x a f x g a ---=--=-.(a x -<)(Ⅱ)由(Ⅰ)的结论,有)(log )3(log )()()(1a x a x x g x fx F a a -+-=--=-.要使)(x F 有意义,必须⎩⎨⎧>->-.0,03a x a x 又0>a ,故a x 3>.由题设)(x F 在]3,2[++∈a a x 上有意义,所以a a 32>+,1<a 即.于是,10<<a .※应用创新※16.某地区上年度电价为0.8元/kW ·h,年用电量为akW ·h,本年度计划将电价降到0.55元/kW ·h 至0.75元/kW ·h 之间,而用户期望电价为0.4元/kW ·h ,经测算,下调电价后新增的用电量与实 际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/kW ·h .(Ⅰ)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(Ⅱ)设k=0.2a ,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%? (注:收益=实际用电量×(实际电价-成本价))【解析】(Ⅰ)设下调后的电价为x 元/,kWh ·依题意知用电量增至,0.4ka x +-电力部门收益).75.055.0)(3.0)(4.0(≤≤x x a x ky -+-=(Ⅱ)依题意有⎪⎩⎪⎨⎧+--+-75.055.0%),201)](3.08.0([)3.0)(4.02.0(≤≤×≥x a x a x a整理,得2 1.10.30,0.550.75x x x ⎧-+⎨⎩≥≤≤ 解此不等式得0.600.75.x ≤≤故当电价最低定为0.60元/k 仍可保证电力部门的收益比上年增长W ·h20%。