二元一次方程组(培优)

合集下载

二元一次方程组培优竞赛专题讲解

二元一次方程组培优竞赛专题讲解

专题:二元一次方程组例1、二元一次方程组的解1、若m 使方程组22x y x y m -=⎧⎨+=⎩的解的和为6,则m 的值为多少?2、已知方程组1620224ax by cx y +=-⎧⎨+=-⎩的解应为810x y =⎧⎨=-⎩,小明解题时把c 抄错了,得到解1213x y =⎧⎨=-⎩,则222a b c ++值为多少?例2、二元一次方程组的两种通用解法(1)用代入法解方程组1235x y x y -=⎧⎨-=⎩ (2)用加减法解方程组231351x y x y +=⎧⎨+=⎩ﻩ例3、解二元一次方程组及高元一次方程组(综合)(1)解方程组231763172357x y x y +=⎧⎨+=⎩ (2)解方程组1211631102221x y x y ⎧+=⎪--⎪⎨⎪-=⎪--⎩(3)解方程组1156117121134x y y z y z z x z x x y ⎧+=⎪++⎪⎪+=⎨++⎪⎪+=⎪++⎩ (4)解方程组13281237xy x y xy x y ⎧=⎪+⎪⎨⎪=⎪+⎩ (5)若15432a a a a a +++25431a a a a a +++=35421a a a a a +++=45321a a a a a +++=k a a a a a =+++=54321,且054321≠++++a a a a a ,求k 的值。

(6)已知正数,,,,,a b c d e f 满足解方程组49161419116bcdef a acdef b abdef cabcef dabcdf e abcde f ⎧=⎪⎪⎪=⎪⎪⎪=⎪⎨⎪=⎪⎪=⎪⎪⎪=⎪⎩,求()()a c e b d f ++-++的值。

7、解方程组12233419971998199819991219981999 (1)...1999x x x x x x x x x x x x x x +=+=+==+=+=⎧⎨++++=⎩例4、含绝对值的方程组1、解方程组||||72||3||1x y x y +=⎧⎨-=-⎩ 2、解方程组||1||2||3x y x y +=⎧⎨+=⎩例5、含字母系数方程组的解及杂题对于x 、y的方程组中,a 1、b1、c 1、a 2、b2、c2均为已知数,且a1与b 1、a 2与b 2都至少有一个不等于零,则ﻫ ①时,原方程组有惟一解; ②时,原方程组有无穷多组解;ﻫ ③时,原方程组无解.1、当,k b 为何值时,方程组(31)2y kx by k x =+⎧⎨=-+⎩有唯一解,无解,有无穷多解?2、已知关于,x y 的二元一次方程(1)(2)520a x a y a -+++-=,a 每取一个值时就有一个方程,而这些方程有一个公共解,你能求出这个解吗?3、若4360,270(0)x y z x y z xyz --=+-=≠则代数式222222522310x y z x y z+---的值为多少?4、已知m 是整数,方程组436626x y x my -=⎧⎨+=⎩有整数解,求m 的值。

(word完整版)《二元一次方程组》培优学生版附答案

(word完整版)《二元一次方程组》培优学生版附答案

《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. 3.二元一次方程3x +2y =15的正整数解为_______________. 4.2x -3y =4x -y =5的解为_______________.5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________. 6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A)8 (B )9 (C)10 (D )1110.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D )-4或1011.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C)y =2x +1 (D )y =-2x +1 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1) (C )1∶(-2)∶1 (D )1∶2∶(-1) 13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+1cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0 14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )015.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,216.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C)2 (D )-1(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次"两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________. 【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数. 【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x 4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65.7.已知2a=3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a c b a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k的值.【答案】a =61,b =41,c =31.【点评】设“比例系数"是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D)11 【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D)-4或10【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C . 【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A)y =2x +3 (B )y =2x -3 (C)y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程.【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法. 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A)1∶2∶1 (B)1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A)a +4c =2 (B)4a +c =2 (C)a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值.【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B)3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B)1 (C)2 (D)-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a+b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元.【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A B A ,进而求得x ,y .【答案】⎩⎨⎧-==.11y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k ,y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错.【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值. 【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5.【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行. 26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少? 【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x 【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米, 根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。

《二元一次方程组》 培优训练(含答案)

《二元一次方程组》 培优训练(含答案)

期末复习:《二元一次方程组》培优训练一.选择题1.方程组的解是()A.B.C.D.2.若二元一次方程组的解为则a+b的值为()A.0 B.1 C.2 D.44.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3 B.4 C.5 D.65.我们知道方程组:的解是,则方程组的解是()A.B.C.D.6.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把7m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.47.如果关于x,y的二元一次方程组的解为,则方程组的解为()A.B.C.D.8.关于x,y的方程组的解满足x=y,则k的值是()A.﹣1 B.0 C.1 D.2二.填空题11.若a+2b=8,3a+4b=18,则a+b的值为.12.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.13.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.14.若二元一次方程组的解为,则m+n=15.有大小两种货车,1辆大货车与3辆小货车额定载重量的总和为23吨,2辆大货车与5辆小货车额定载重量的总和为41吨.1辆大货车、1辆小货车的额定载重量分别为多少吨?设1辆大货车的额定载重量为x吨,1辆小货车的额定载重量为y吨,依题意,可以列方程组为.三.解答题18.解方程(1)(2)19.对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.21.某厂准备生产甲、乙两种商品销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.求甲种商品与乙种商品的销售单价各是多少元?22.已知甲种物品毎个重4kg,乙种物品毎个重7kg,现有甲种物品x个,乙种物品y个,共重76kg.(1)列出关于x,y的二元一次方程;(2)若x=12,则y=.(3)若乙种物品有8个,则甲种物品有个.24.阅读理解:小聪在解方程组时,发现方程组中①和②之间存在一定的关系,他发现了一种“整体代换”法,具体解法如下:解:将方程②变形为:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入方程③得:2×3+y=5解得y=﹣1把y=﹣1代入方程①得x=4∴方程组的解是(1)模仿小聪的解法,解方程组(2)已知x,y满足方程组,解答:(ⅰ)求x2+4y2的值;(ⅱ)求3xy的值.参考答案一.选择题1.解:,①+②得,x=2,把x=2代入①得,6+2y=7,解得,故原方程组的解为:.故选:D.2.解:把代入方程组得:,解得:,则a+b=2,故选:C.3.解:设小长方形的长为x,宽为y,如图可知,.故选:A.4.解:设宾馆有客房:单人间x间、二人间y间、三人间z间,根据题意可得,,解得:y+2z=9,y=9﹣2z,∵x,y,z都是小于9的正整数,当z=1时,y=7,x=1;当z=2时,y=5,x=2;当z=3时,y=3,x=3当z=4时,y=1,x=4当z=5时,y=﹣1(不合题意,舍去)∴租房方案有4种.故选:B.5.解:∵方程组:的解是,∴由方程组可得,解得.故选:C.6.解:设截成2m的彩绳x根,截成1m的彩绳y根,依题意,得:2x+y=7,∴y=7﹣2x.又∵x,y均为非零整数,∴或或或,∴共有4种不同的截法.故选:D.7.解:由方程组得,根据题意知,即,故选:C.8.解:解方程组得:,∵x=y,∴=+1,解得:k=0.故选:B.9.解:设雉有x只,兔有y只,依题意,得:,解得:.故选:A.10.解:如图,图中的鞋子为x只,小猪玩具为y只,字母玩具为z只,依题意得:,解得,故x+yz=5+5×2=15.故选:B.二.填空题(共7小题)11.解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.12.解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.13.解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.14.解:①+②得:5x+5y=10∴x+y=2方程组的解为,∴m+n=x+y=2.故答案为:2.15.解:由题意可得,,故答案为:.16.解:∵关于x、y的二元一次方程组的解是,∴关于a.b的二元一次方程组满足,解得.故关于a.b的二元一次方程组的解是.故答案为:.17.解:设笼中有x只雉,y只兔,根据题得,①,解得,不符合题;②,此方程组无整数解,不符合题意;③,解得,符合题意;④,解得,符合题意;故答案为:③④.三.解答题(共7小题)18.解:(1),把①代入②得:3x+10﹣4x=4,解得:x=6,把x=6代入①得:y=﹣7,则方程组的解为;(2)方程组整理得:,把②代入①得:3x+2x+6=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.19.解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=1,则x+y=.20.解:设合伙人为x人,羊价为y钱,依题意,得:,∴甲同学列的方程组正确,解该方程组,得:.答:合伙人为21人,羊价为150钱.21.解:设甲种商品的销售单价为x元/件,乙种商品的销售单价为y元/件,依题意,得:,解得:.答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.22.解:(1)由题意知4x+7y=76;(2)当x=12时,48+7y=76,解得y=4,故答案为:4;(3)当y=8时,4x+56=76,解得:x=5,即甲种物品有5个,故答案为:5.23.解:(1)4+3=7(张),1+2=3(张).故答案为:7;3.(2)设可加工的竖式容器x个,横式容器y个,依题意,得:,解得:.答:可加工的竖式容器100个,横式容器539个.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:,解得:.∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∴可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒24.解:(1)把方程②变形:3(3x﹣2y)+2y=19 ③把①代入③得:15﹣2y=19,得y=2把y=2代入①得x=3则方程组的解为(2)(ⅰ)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③②式整理得2(x2+4y2)+xy=36 ④将③代入④得解得xy=2将xy=2代入③得x2+4y2=17(ⅱ)由(ⅰ)知xy=2,则3xy=6。

二元一次方程组提高训练题李维一用的2

二元一次方程组提高训练题李维一用的2

二元一次方程组培优训练1下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C .⎪⎩⎪⎨⎧=-=+51302y x z x D .5723z x y =⎧⎪⎨+=⎪⎩ 2一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、 ⎩⎨⎧=+=+yx xy y x 188B 、⎩⎨⎧+=++=+y x y x y x 1018108C 、 ⎩⎨⎧=++=+yx y x y x 18108 D 、⎩⎨⎧=+=+yxy x y x )(1083若解方程⎩⎨⎧=+=-121my x y x 的解x 和y 也是二元一次方程x +y =3的解,则m 的值为( )A .2B .1C .3D .-34.若2x │m│+(m+1)y=3m-1是关于x 、y 的二元一次方程,则m 的取值范围是( ) A 、m≠-1 B 、m=±1 C 、m=1 D 、m=05.下列方程组中,有唯一一组解的是( )A .⎩⎨⎧=-=-12334y x y xB .⎩⎨⎧=--=--0531008310y x y xC .⎩⎨⎧-=-=-6223x y y xD .⎩⎨⎧=+=+842743y x y x6.方程7x+4y=100的正整数解有( )组A.1 B.2 C.3 D.4 7.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”那么驴子原来所驮货物有( )袋A. 4B. 5C. 6D. 78.已知⎩⎨⎧=-+=+-0340254z y x z y x (xyz≠0),则x ∶y ∶z 的值为( ) A 、1∶2∶3B 、3∶2∶1C 、2∶1∶3D 、不能确定9.如果方程组⎩⎨⎧=-=+1293y x y ax 无解,则a 为A.6B.-6C.9D.-910.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+ky x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为A .43-B .43 C . 34D .34-11.小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( )A .⊗ = 1,⊕ = 1B .⊗ = 2,⊕ = 1C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 212.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A. 400 cm 2B. 500 cm 2C. 600 cm 2D. 4000 cm 213.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A .4种B .3种C .2种D .1种14.请写出一个x 的系数为2,且以⎩⎨⎧=-=12y x 为一个解的二元一次方程15.当k =________时,下列方程①2350x y --=,②3420x y --=,③3y kx =+ 有公共解16.若二元一次方程组⎩⎨⎧=+=-11532by ax y x 和⎩⎨⎧=+=-15y x ay cx 同解,则a=______;b= 17.已知a+2b-3c=4,5a-6b+7c=82,则代数式9a+2b-5c 的值为 。

二元一次方程组培优竞赛测试题(2)

二元一次方程组培优竞赛测试题(2)

二元一次方程组测试题姓名: 得分:一、选择题(每小题3分,共30分):1、若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y =0,则m ∶n 等于( ).(A)3∶4(B)-3∶4(C)-1∶4(D)-1∶122、已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ).(A)31-=x y (B)21+=y x (C)352-=x y(D)312--=x y3、方程1132=+++--y x y x 的整数解的个数是( ). A .1个 B .2个 C .3个 D .4个4、方程组0ax by mx ny +=⎧⎨+=⎩有不等于零的解的条件是( )(A ) 0a ≠ (B )0b ≠ (C )am =bn (D )an =bm5、已知方程组 ||10||12x x y y x y ++=⎧⎨+-=⎩,则x+y 的值为()(A )185 (B )195 (C )4 (D )2156、已知:一等腰三角形的两边长x y 、满足方程组23328x y x y -=⎧⎨+=⎩,,则此等腰三角形的周长为( )A.5B.4C.3D.5或47、小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的31给我,我就有10颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组是( )A .⎩⎨⎧=+=+303202y x y xB .⎩⎨⎧=+=+103102y x y xC .⎩⎨⎧=+=+103202y x y xD .⎩⎨⎧=+=+303102y x y x8、如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=09、若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,210、若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是( )(A )0 (B )1 (C )2 (D )-1 选择题答题卡二、填空题(每小题3分,共15分)11、已知(k -2)x|k |-1-2y =1,则k ______ 时,它是二元一次方程;k =______ 时,它是一元一次方程.12、已知m 为正整数,二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x 、y 均为整数,则2m =______.13、如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是1,则六边形 的周长是_________.14、某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则他的付款方式有____ 种(指付出2元和5元钱的张数);付款方式付出的张数最少的是 ____ 张。

二元一次方程(组)补习、培优、竞赛经典归类讲解、练习及答案

二元一次方程(组)补习、培优、竞赛经典归类讲解、练习及答案

二元一次方程(组)补习、培优、竞赛归类讲解及练习答案知识点:1、二元一次方程:(1)方程的两边都是整式,(2)含有两个未知数,(3)未知数的最高次数是一次。

2、二元一次方程的一个解:使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的一个解。

3、二元一次方程组:含有两个未知数的两个二元一次方程所组成的方程组。

4、二元一次方程组的解:二元一次方程组中各个方程的公共解。

(使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值)无论是二元一次方程还是二元一次方程组的解都应该写成⎩⎨⎧==y x 的形式。

5、二元一次方程组的解法:基本思路是消元。

(1)代入消元法:将一个方程变形,用一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。

主要步骤:变形——用一个未知数的代数式表示另一个未知数。

代入——消去一个元。

求解——分别求出两个未知数的值。

写解——写出方程组的解。

(2)加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。

变形——同一个未知数的系数相同或互为相反数。

加减——消去一个元。

求解——分别求出两个未知数的值。

写解——写出方程组的解。

(3)列方程解应用题的一般步骤是:关键是找出题目中的两个相等关系,列出方程组。

列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:① 审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数。

② 找:找出能够表示题意两个相等关系。

③ 列:根据这两个相等关系列出必需的代数式,从而列出方程组。

④ 解:解这个方程组,求出两个未知数的值。

⑤ 答:在对求出的方程的解做出是否合理判断的基础上,写出答案。

6、二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。

第八章 二元一次方程组复习(培优训练)

第八章 二元一次方程组复习(培优训练)

3x 2 y 2 x y 2 x 5y 3.解方程组: 4 5 3
5(3x 2 y ) 4( 2 x y 2) 解 : 原方程组可化为 3(3x 2 y ) 4( x 5 y ) 7 x 6 y 8 即 13x 26 y 解之得 x 2 y 1
x( x y z ) 6 4 . 解方程组: y ( x y z ) 12 z ( x y z ) 18
解 : (1) (2) (3) (1) (4) 得 x 1 (2) (4) 得 y 2 (3) (4) 得 z 3 x 1 x 1 原方程组的解是 y 2 和 y 2 z 3 z 3 ( x y z ) 36
2
(1) ( 2) (3)
( 4)
x y z 6
• 某厂计划第一、二季度共生产产品420台, 结果第一季度实际完成计划的1.1倍,第二 季度超产15%,两季度实际共生产473台, 求两季度计划各生产多少台?
解:设第一季度共生产 x台,第二季度共 生产y台,由题意,得:
1.1x (1 15%) y 473, x y 420. x 200 解得: y 220
2 3
解:由方程①-②得: -x+y=-3,即 x-y=3; 由方程①+②得: 4009x+4009y=4009,即 x+y=1; ∴ x y 2 x y 3 12 33 28
Ax By 2 1、甲、乙两人同解方程 组 Cx 3 y 2, x 1 x 2 甲正确解得 ,乙抄错C,解得 , y 1 y 6 求A、B、C的值。

二元一次方程组及其解法(培优)

二元一次方程组及其解法(培优)

二元一次方程组及其解法(培优)二元一次方程组及其解法在研究二元一次方程组之前,需要先了解二元一次方程的概念。

二元一次方程必须同时具备三个条件:(1)这个方程中有且只有两个未知数;(2)含未知数的次数是1;(3)对未知数而言,构成方程的代数式是整式。

解二元一次方程的解和二元一次方程组的解的意义是相同的,都是指方程的解集。

熟练掌握二元一次方程组的解法,可以用来解决许多实际问题。

例如,已知下列方程2xm1+3yn3=5是二元一次方程,则m+n=0.根据二元一次方程的概念可知:m-1=1,n+3=1,解得m=2,n=-2,故m+n=0.除了解二元一次方程组的基本方法外,还有加减消元法、代入法等解法。

在解题时需要根据具体情况选择最合适的方法。

变式题组:01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由。

⑴2x+5y=16 - 是二元一次方程,符合三个条件。

⑵2x+y+z=3 - 不是二元一次方程,因为含有三个未知数z。

02.若方程2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x是二元一次方程,则a=,b=。

根据二元一次方程的定义,2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x不是二元一次方程,因为含有x的二次项。

03.在下列四个方程组①{4x+3y=10.2x-4y=9},②{4x+y=12.7xy=29},③{1/x-2y=-45.2x+3y=4},④{7x+8y=5.x-4y=1}中,是二元一次方程组的有()只有①和③是二元一次方程组,因为它们都符合三个条件。

例2:(十堰中考)二元一次方程组{3x-2y=7.x+2y=5}的解是()解法:二元一次方程组的解,就是它的两个方程的公共解。

根据此概念,此类题有两种解法:(1)若方程组较难解,则将每个解中的两未知数分别带入方程组,若使方程组都成立,则为该方程组的解,若使其中任一方程不成立,则不是该方程组的解;(2)若方程组较易解,则直接解方程组可得答案。

初中七年级数学下册第八单元《二元一次方程组》(培优练)

初中七年级数学下册第八单元《二元一次方程组》(培优练)

一、选择题1.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( ) A .3 B .4 C .2 D .12.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( )A .14和6B .24和16C .28和12D .30和1 3.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .16 4.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是( )A .2018B .2019C .2020D .2021 5.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm6.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -= C .93t = D .91t = 7.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )A .1种B .2种C .3种D .4种8.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩9.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩ 10.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .280B .140C .70D .19611.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元 12.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分 13.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩14.二元一次方程组425x y x y +=⎧⎨-=⎩的解为( ) A .13x y =⎧⎨=⎩ B .22x y =⎧⎨=⎩ C .31x y =⎧⎨=⎩ D .40x y =⎧⎨=⎩15.下列方程是二元一次方程的是( ). A .32x y -= B .1xy = C .2+3=x x D .153x y -= 二、填空题16.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本.17.写出方程35x y -=的一组解_________.18.若2(321)4330x y x y -++--=,则x y -=_____. 19.二元一次方程组31x y x y +=⎧⎨-=-⎩的解是__________ . 20.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__. 21.设 a 、b 是有理数,且满足等式2322152a b b ++=-则a+b=___________.22.已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩的解是___. 23.已知方程组32223x y m x y m+=+⎧⎨+=⎩的解适合8x y +=,则m =_______.24.我们称使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(),x y . (1)若()6,y 是“相伴数对”,则y 的值为______;(2)若(),a b 是“相伴数对”,请用含a 的代数式表示b =______.25.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_______cm .26.对于任意有理数a ,b ,c ,d ,我们规定a bad bc c d =-.已知x ,y 同时满足514x y=-,513y x =-,则xy =________.三、解答题27.学校准备租用客车外出活动.现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车送330名师生集体外出活动(无空座),最节省的租车费用是多少?28.“滴滴打车”深受大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/千米计算,耗时费按q 元/分钟计算,小明、小亮两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表: 时间(分钟) 里程数(千米) 车费(元)小明 7 512.1 小亮 64.5 10.8 (2)“滴滴”推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费.某天,小丽两次使用“滴滴打车”共花费52元,总里程20千米,已知两次“滴滴打车”行驶的平均速度为40千米/小时,求小丽第一次“滴滴打车”的里程数? 29.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本?(2)请你解释,小明为什么不可能找回68元?30.近几年大部分家庭流行用不锈钢钢管做防盗窗,小芳家的防盗窗按设计要求,需要长为0.8米的钢管100根,及长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的,经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)将一根长为6米的钢管进行裁剪(余料作废),有下面几种方法,请完成填空:方法①:只裁长为0.8米的钢管时,最多可裁________根.方法②:先裁下1根2.5米长的钢管,余下部分最多能裁0.8米长的钢管____根.方法③:先裁下2根2.5米长的钢管,余下部分最多能裁0.8米长的钢管________根.(2)用(1)中的三种方法里面的两种进行结合来裁剪6米长的钢管,在尽量减少用料的情况下,如何裁剪才能得到所需要的相应数量的材料?。

二元一次方程组培优试题

二元一次方程组培优试题

数学试题一、选择题 1、用代入消元法解方程组 代入消元,正确的是( )A 、由①得y=3x+2,代入②后得3x=11-2(3x+2)代入②得y y 21132113-=-⨯ B 、由①得C 、由①得 代入②得D 、由②得3x =11-2y ,代入①得11-2y -y =22、加减法解方程组⎩⎨⎧=-=+1123332y x y x 时,有下列四种变形,其中正确的是( ) A 、⎩⎨⎧=-=+1169364y x y x B 、⎩⎨⎧=-=+2226936y x y x C 、⎩⎨⎧=-=+3369664y x y x D 、 ⎩⎨⎧=-=+1146396y x y x 3.如果方程组1x y ax by c+=⎧⎨+=⎩有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠14、6年前,A 的年龄是B 的3倍,现在A 的年龄是B 的2倍,则A 现在的年龄为 ( )A 、12B 、18C 、24D 、305、若方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( )A.-2 B .0 C.2 D.46、若4x -3y -6z =0,x +2y -7z =0, (xyz ≠0),则式子222222103225z y x z y x ---+的值等于 ( ) A .-21 B .-219 C .-15 D .-13 7、若方程组⎩⎨⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2.13.8b a ,则方程组⎩⎨⎧=--+=--+9.30)1(5)2(313)1(3)2(4y x y x 的解是 ( )A . ⎩⎨⎧==2.23.6y xB . ⎩⎨⎧==2.13.8y x C . ⎩⎨⎧==2.23.10y x D . ⎩⎨⎧==2.03.10y x8、今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本32yx -=yy 2112-=-32y x -=⎩⎨⎧=+=-②①112323y x y x至少买3本,则张老师购买笔记本的方案共有( )A.3种B.4种C.5种D.6种 二、填空题9、若2x +3y -1=y -x -8=x +6,则2x -y =___________.10、请你写出一个二元一次方程组,使它的解为⎩⎨⎧==21y x ,这个方程组是_________. 11、若3x 2m+5n+9+4y 724--n m =2是关于x 、y 的二元一次方程,则m = ,n = 。

浙教版2022-2023学年七下数学第二章 二元一次方程组 培优测试卷(解析版)

浙教版2022-2023学年七下数学第二章 二元一次方程组 培优测试卷(解析版)

浙教版2022-2023学年七下数学第二章 二元一次方程组 培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.若(k −1)x |k|−5y =2是关于x 、y 的二元一次方程,那么k 的取值满足( ) A .k =−1 B .k =1 C .k ≠1 D .k =±1【答案】A【解析】∵(k −1)x |k|−5y =2是关于x 、y 的二元一次方程,∴|k|=1,k-1≠0,解得:k=-1.故答案为:A .2.把方程 7x -2y =15 写成用含 x 的代数式表示 y 的形式,得( )A .y =2x−517B .x =15+2y 7C .y =7x−152D .y =15−7x 2 【答案】C【解析】由 7x -2y =15 移项得 2y =7x -15 ,化系数为1得 y =7x−152 ,故答案为:C . 3.解方程组 {3x +y =8(1)x −y =1(2),下列最佳方法是( ) A .代入法消去x ,由(2)得:x=1+yB .代入法消去y ,由(1)得:y=1-x=0C .加减法消去x ,由(1)-(2)x3得:4y=5D .加减法消去y ,由(1)+(2)得:4x=9【答案】D【解析】由未知数y 的系数互为相反数,用(1)+(2)直接消去y ,得4x=9.故答案为:D.4.若方程组{4x +3y =1kx +(k −1)y =3的解 x 和 y 的值相等,则k 的值等于( ) A .4 B .10 C .11 D .12【答案】C【解析】把y=x 代入4x+3y=1得:7x=1,解得x=17, ∴y=x=17. 把y=x=17得:17k+17 (k−1)=3, 解得:k=11.故答案为:C.5.若 (x −2y +1)2+(x +2y −3)2=0 ,则x,y 的值是( ) A .{x =−1y =0 B .{x =−1y =2 C .{x =1y =1 D .{x =1y =2【答案】C【解析】∵(x −2y +1)2+(x +2y −3)2=0 ,∴{x −2y +1=0①x +2y −3=0②①+②得,2x-2=0,解得,x=1②-①得,4y-4=0,解得,y=1,所以方程组的解为 {x =1y =1 .故答案为:C .6.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中正确的是( )A .{x +y =180x =y −30B .{x +y =180x =y +30C .{x +y =90x =y −30D .{x +y =90x =y +30【答案】D【解析】∠A 比∠B 大30°,则有x=y+30,∠A ,∠B 互余,则有x+y=90.则方程组为 {x +y =90x =y +30. 故答案为:D .7.《九章算术》中的“方程”一章中讲述了算筹图,如图1、图2所示,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与相应的常数项,图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{3x +2y =114x +3y =26,类似地,图2所示的算筹图我们可以表述为( )A .{2x +3y =233x +4y =32B .{2x +3y =233x +4y =37C .{11x +3y =233x +4y =32D .{3x +2y =234x +3y =32【答案】B【解析】由题意可得,图2所示的算筹图我们可以表述为:{2x +3y =233x +4y =37, 故答案为:B .8.运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.则每节火车车厢,每辆汽车平均各装化肥分别是( )A .8吨,50吨B .54吨,8吨C .50吨,4吨D .4吨,50吨【答案】C【解析】根据题意: {8x+10y=4406x+15y=360 ,解得: {y=4x=50 , 故答案为:C.9.二元一次方程x+2y=9的所有正整数的解有( )A .1个B .2个C .3个D .4个【答案】D【解析】 二元一次方程x+2y=9的所有正整数的解有{x =1y =4,{x =3y =3,{x =5y =2,{x =7y =1.故答案为:D.10.若a 、b 、c 、d 是正整数,且a+b =20,a+c =24,a+d =22,设a+b+c+d 的最大值为M ,最小值为N ,则M ﹣N =( )A .28B .12C .48D .36【答案】D【解析】∵a+b =20①,a+c =24②,a+d =22③,由②-①得:c-b=4,由③-①得:d-b=2,∴c=b+4,d=b+2,∴a+b+c+d=2b+26,又∵a ,b 为正整数,(a+b+c+d )的最大值为M ,最小值为N ,∴b 的最大值为19,b 的最小值为1,∴M=2×19+26=64, N=2×1+26=28,∴M-N=64-28=36.故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.{x =1y =3是二元一次方程2x+ay =5的一个解,则a 的值为 . 【答案】1【解析】将{x =1y =3代入二元一次方程2x+ay =5,得2+3a =5, 解得a =1.故答案为:1.12.解方程组 {3x +2y =55x −2y =3, ,用 消元法较简便,它的解是 . 【答案】加减;{x =1y =1【解析】观察可知y 的系数互为相反数,所以用加减消元法比较简单,{3x +2y =55x −2y =3①②①+②得 8x =8 ,解得 x =1 ,将 x =1 代入①得 3+2y =5 ,解得 y =1 ,故该方程组的解为: {x =1y =1 ,故答案为:加减; {x =1y =1 .13.已知x =2﹣t ,y =3t ﹣1,用含x 的代数式表示y ,可得y= .【答案】5-3x【解析】∵x=2-t ,∴t=2-x ,代入y=3t-1得,y=3(2-x )-1=5-3x ,即y=5-3x .故答案为:5-3x .14.若关于 x ,y 的二元一次方程组 {3x +my =6x +y =4的解都为正整数,则整数 m = 【答案】0或1或−3【解析】{3x +my =6①x +y =4②, 由②得:y=4−x ,再代入①得:3x+m (4−x )=6, 解得: x =6−4m 3−m , 再代入②得: y =63−m , ∵x 、y 都为正整数,∴{6−4m 3−m >063−m >0, 即:0<3−m ⩽6,0<3−m ⩽6−4m ,解得:−3⩽m ⩽1,m 取整数为:−3,−2,−1,0,1,经验算−1,−2不合题意舍去.故答案为0或1或−3.15.小明在拼图时,发现8个一样大小的长方形如图1那样,恰好可以拼成一个大的长方形.小红看见了,说:“我来试一试.”结果小红七拼八凑,拼成如图2那样的正方形.“咳,怎么中间还留了一个洞,恰好是边长为2mm 的小正方形!”请你写出这些长方形的长和宽 .【答案】10mm 和6mm【解析】设这些长方形的长为xmm ,宽为ymm ,依题意得:{3x =5y x +2=2y , 解得:{x =10y =6,∴这些长方形的长和宽为10mm 和6mm.故答案为:10mm 和6mm.16.对于问题“若方程组 {a 1x +b 1y =c 1a 2x +b 2y =c 2 的解是 {x =6y =8 ,求方程组 {3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2的解.”有同学提出了把第二个方程组的两个方程的两边都除以5,然后用“换元法”来解决,请用“换元法”求出该方程组的解为 .【答案】{x =10y =20 【解析】∵方程组 {a 1x +b 1y =c 1a 2x +b 2y =c 2的解是 {x =6y =8 , ∴将第二个方程组的两个方程的两边都除以5,得:{a 1⋅3x 5+b 1⋅2y 5=c 1a 2⋅3x 5+b 2⋅2y 5=c 2, ∴{3x 5=62y 5=8 , 解得: {x =10y =20 .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解下列方程组: (1){2x =3y 5x −3y =9 (2){12x −32y =−12x +y =3【答案】(1)解:{2x =3y①5x −3y =9②,把①代入②得:x +1=0,解得x =3,把x =3代入①得:2×3=3y ,解得:y =2,∴原方程组的解为:{x =3y =2.(2)解:{12x −32y =−1①2x +y =3②,由①得:2x −6y =−4③,②-③得:7y =7,解得:y =1,把y =1代入②得:2x +1=3,解得:x =1,∴原方程组的解为:{x =1y =1.18.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?【答案】(1)解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得 {x +y =130.8x +2y =20 . (2)解:设有x 只鸡,y 个笼,根据题意得 {4y +1=x 5(y −1)=x . 19.已知{x =12y =4是二元一次方程2x +y =a 的一个解. (1)则a =(2)试直接写出二元一次方程2x +y =a 的所有正整数解.【答案】(1)5(2)解:所有正整数解为:{x =1y =3,{x =2y =1.【解析】(1)将{x =12y =4代入二元一次方程2x+y=a 中可得:2×12+4=a ,a=5;故答案为:5 (2)把a=5代入方程2x+y=a 中可得:2x+y=5,所以可列出所有正整数解为:{x =1y =3,{x =2y =1.20.为有效防控新冠肺炎疫情,小明的妈妈让他到药店购买口罩和酒精湿巾,若购买2包口罩和3包酒精湿巾共需19元,购买5包口罩和1包酒精湿巾共需28元.(1)求每包口罩和每包酒精湿巾的单价;(2)妈妈给了小明50元钱全部用于购买此口罩和酒精湿巾(且都要购买),请问小明有哪几种购买方案?【答案】(1)解:设每包口罩x 元,每包酒精湿巾y 元,由题意得,{2x +3y =19①5x +y =28②, ②×3得,15x +3y =84③, ③-①得,13x =65,解得x =5,将x =5代入①得,y =3,故原方程组的解为,{x =5y =3, 答:每包口罩5元,每包酒精湿巾3元.(2)解:设购买口罩a 包,酒精湿巾b 包,由题意得,5a +3b =50,∵a ,b 均为正整数,∴{a =1b =15或{a =4b =10或{a =7b =5, 答:一共有三种方案,分别为:7包口罩和5包酒精湿巾、4包口罩和10包酒精湿巾、1包口罩和15包酒精湿巾.21.解方程组 {ax +by =6cx −4y =−2时,小强正确解得 {x =2y =2 ,而小刚只看错了c ,解得 {x =−2y =2 (1)小刚把c 错看成了什么数?并求出原方程组中的c 值.(2)求a ,b 的值.【答案】(1)解:把 {x =−2y =2 代入cx ﹣4y =﹣2,得﹣2c ﹣16=﹣2,解得c =﹣7,所以小刚把c 错看成了﹣7,把 {x =2y =2 代入cx ﹣4y =﹣2,得2c ﹣8=﹣2,解得c =3,所以原方程组中的c 值是3;(2)解:由题意得,{2a +2b =6−2a +4b =6 , 解得 {a =1b =2 , 所以a 、b 的值分别为1,2.22.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【答案】(1)解:设计划调配36座新能源客车x 辆,该大学共有y 名志愿者,由题意得{36x +2=y 22(x +4)−2=y解得:{x =6y =218 答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)解:设需调配36座客车m 辆,22座客车n 辆,由题意得 36m +22n =218,∴n =109−18m 11又∵m ,n 均为正整数,∴{m =3n =5,答:需调配36座客车3辆,22座客车5辆.23.阅读下列方程组的解法,然后解答相关问题:解方程组{27x +26y =25①25x +24y =23②时,若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得2x +2y =2,即x +y =1.③②-③×24,得x =−1. 把x =−1代入③,解得y =2.故原方程组的解是{x =−1y =2.(1)请利用上述方法解方程组{19x +21y =2311x +13y =15. (2)猜想并写出关于x ,y 的方程组{ax +(a −m)y =a −2m bx +(b −m)y =b −2m的解,并加以检验. 【答案】(1)解:{19x +21y =23①11x +13y =15②解①-②,得8x +8y =8,即x +y =1③解②-③×11,得y =2.把y =2代入③,解得x =−1. 故这个方程组的解是{x =−1y =2.(2)解:猜想方程组{ax +(a −m)y =a −2m①bx +(b −m)y =b −2m②解是{x =−1y =2. 检验:把{x =−1y =2代入方程①的左边,左边=−a +2(a −m)=a −2m ,右边=a −2m ,∴左边=右边,∴{x =−1y =2方程①的解.把{x =−1y =2代入方程②的左边,左边=−b +2(b −m)=b −2m ,右边=b −2m ,∴左边=右边,∴{x =−1y =2是方程②的解.∴{x =−1y =2,是方程组{ax +(a −m)y =a −2m bx +(b −m)y =b −2m的解. 24.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲乙、丙三种不同型号)购买丙型设备 台(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?【答案】(1)(60-x-y)(2)解:由题意得,1000x+800y+500(60-x-y)=56000,化简整理得:5x+3y=260, ∴x=52- 35 y 当y=5时,x=49,60-x-y=6;当y=10时,x=46,60-x-y=4;当y=15时,x=43,60-x-y=2。

《二元一次方程组》培优教材附答案

《二元一次方程组》培优教材附答案

《二元一次方程组》培优教材附答案二元一次方程组培优教材附答案引言本教材旨在为学生提供研究和理解二元一次方程组的优质教材,并附有详细的答案,以帮助学生巩固所学知识。

二元一次方程组是初中数学中的重要内容,掌握它对于学生进一步研究代数和解决实际问题具有重要意义。

通过本教材的研究,学生将能够独立解决和应用二元一次方程组。

教材内容第一章:二元一次方程组基础知识- 引入二元一次方程组的概念和基本形式- 讲解方程组的解的概念和方法- 通过实例演示如何解决常见的二元一次方程组第二章:图像法解二元一次方程组- 介绍图像法解二元一次方程组的原理和步骤- 指导学生通过绘图解决方程组- 提供多个练题,帮助学生掌握图像法的应用第三章:代入法解二元一次方程组- 引导学生了解代入法解二元一次方程组的步骤和原理- 提供大量例题和题,让学生通过代入法解决方程组第四章:消元法解二元一次方程组- 讲解消元法解二元一次方程组的概念和步骤- 提供简单到复杂的例题和题,帮助学生掌握消元法的使用技巧第五章:应用题- 提供实际生活中的问题,并要求学生应用所学知识解决问题- 给出详细的解答和解题思路,帮助学生理解问题的解决过程答案部分本教材附带详细的答案部分,对每章节的题进行了详细解答。

学生可以通过对照答案,检查和纠正自己的解题方法和答案。

答案部分还包含了解答过程中的关键步骤和解题思路,帮助学生理解解题过程。

结语《二元一次方程组》培优教材附答案是一本全面而系统的教材,旨在帮助学生提高对二元一次方程组的理解和应用能力。

通过研究本教材,学生将能够熟练解决和应用二元一次方程组,为进一步研究数学奠定扎实的基础。

希望本教材能对广大中学生的研究起到积极的促进作用。

---以上是《二元一次方程组》培优教材附答案的简要内容介绍。

这本教材将通过系统的讲解和丰富的习题,帮助学生有效掌握和应用二元一次方程组的解法。

希望学生们通过学习本教材能够提高解题能力,培养数学思维,为未来的学习和生活打下坚实的基础。

七年级数学人教版下册 第8章 二元一次方程组 培优训练(含答案)

七年级数学人教版下册 第8章 二元一次方程组 培优训练(含答案)

15.
(2020·北京)方程组
x y 1 3x y 7
,
的解为
.
16. 有下列三对数:①


其中
是方程 3x+y=8 的
解,
是方程 2x-y=7 的解,
是方程组
的解.(填序号)
17. (2019·上海)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛, 大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5 大桶加 1 小桶共 盛 3 斛米,1 大桶加 5 小桶共盛 2 斛米,依据该条件,1 大桶加 1 小桶共盛 斛 米.(注:斛是古代一种容量单位).
13. (2020·泰安)方程组x5+x+y﹦3y1﹦6,72的解是___________.
14. 某宾馆有单人间和双人间两种房间,入住 3 个单人间和 6 个双人间共需 1 020 元,入住 1 个单人间和 5 个双人间共需 700 元,则入住单人间和双人间各 5 个共 需____________元.
19. 【答案】1050 [解析] 设该药店购进甲、乙两种体温计分别为 x 支,y 支.依题 意,得
解得 则 750+300=1050(支),故甲、乙两种体温计共购进 1050 支.
20. 【答案】4【解析】设李红出门没有买到口罩的次数是 x,买到口罩的次数是 y,
由题意得:
,整理得:
,解得:
,因此本题答案为
10. 【答案】 B 【解析】 设可以购买 x 支康乃馨,y 支百合,根据总价=单价×数量,即可得出 关于 x,y 的二元一次方程,结合 x,y 均为正整数即可得出小明有 4 种购买方案. 设可以购买 x 支康乃馨,y 支百合,依题意,得:2x+3y=30,∴y=10﹣23x. ∵x,y 均为正整数,∴xy==38,yx==66,xy==94,xy==122,∴小明有 4 种购买方案. 故选:B.

培优9----二元一次方程组

培优9----二元一次方程组

培优学案9---方程组中的整体思想例(1)阅读以下内容: 已知实数x ,y 满足x+y=2,且{3272236x y k x y +=-+=求k 的值.三位同学分别提出了以下三种不同的解题思路: 甲同学:先解关于x ,y 的方程组{3272236x y k x y +=-+= ,再求k 的值.乙同学:先将方程组中的两个方程相加,再求k 的值. 丙同学:先解方程组{2236x y x y +=+=,再求k 的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你 选择的思路进行简要评价.2.阅读材料:善于思考的小军在解方程组{2534115x y x y +=+=时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y )+y=5③把方程①带入③得:2×3+y=5,∴y=-1 把y=-1代入①得x=4,∴方程组的解为{41x y ==-.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组{3259419x y x y +=-=练习、.(1) 已知x ,y 满足方程组{2524x y x y +=+=,则x-y 的值是 .(2).关于x y 、的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是 .例2解下列方程组: ⑴()()9185232032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩ ⑵7231x y x y ⎧+=⎪⎨-=-⎪⎩例3、先阅读,再做题1.一元一次方程ax b =的解由a b 、的值决定:⑴若0a ≠,则方程ax b =有唯一解bx a=;⑵若0a b ==,方程变形为00x ⋅=,则方程ax b =有无数多个解; ⑶若0,0a b =≠,方程变为0x b ⋅=,则方程无解. 2.关于x y 、的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的讨论可以按以下规律进行:⑴若1122a b a b ≠,则方程组有唯一解; ⑵若111222a b ca b c ==,则方程组有无数多个解;⑶ 若111222a b ca b c ≠=,则方程组无解.1. 不解方程组,判定下列方程组解的情况:① ⎩⎨⎧=-=-96332y x y x ②⎩⎨⎧=-=-32432y x y x ③⎩⎨⎧=-=+153153y x y x2.小明在解下面的二元一次方程组时,碰到了一个非常“严重”的问题,发现“10=8”,他知道这是不可能的,但是又找不到错误的原因,请你解释一下:解方程组 {25428x y x y +=+=解:由①得y=5-2x ,代入②得4x+2(5-2x )=8,得10=8.请指出出现这种错误的原因.。

2022-2023学年人教新版数学七年级下册第8章+二元一次方程组(培优题)

2022-2023学年人教新版数学七年级下册第8章+二元一次方程组(培优题)

第8章二元一次方程组(培优题)-2022年人教新版数学七年级下册一.选择题1.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于()A.80cm B.75cm C.70cm D.65cm2.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是()A.2018B.2019C.2020D.20213.如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按左图方式放置,再按右图方式放置,测量的数据如图,则长方体物品的高度是()A.73cm B.74cm C.75cm D.76cm4.小明步行速度为5千米/时,骑车速度为15千米/时.如果小明先骑车2小时,然后步行3小时,那么他的平均速度是()A.5千米/时B.9千米/时C.10千米/时D.15千米/时5.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.6.一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有()A.2个B.3个C.4个D.5个7.在某学校举行的课间“桌面操”比赛中,为奖励表现突出的班级,学校计划用260元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品只能购买3个或4个且钱全部用完的情况下(注:每种方案中都有三种奖品),共有多少种购买方案()A.12种B.13种C.14种D.15种8.方程2x﹣y=5的解是()A.B.C.D.9.爸爸骑摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻9:0010:0011:30里程碑上的数是一个两位数,它的两个数字之和是6是一个两位数,它的十位与个位数字与9:00所看到的正好互换了是一个三位数,它比9:00时看到的两位数中间多了个0则10:00时看到里程碑上的数是()A.15B.24C.42D.5110.如图,8块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的周长为()A.2cm B.6cm C.12cm D.16cm二.填空题11.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,5克巴旦木仁,5克黑加仑;乙种每袋装有5克核桃仁,10克巴旦木仁,10克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.05元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%.若公司销售这种混合装的坚果总利润率为25%,则该公司销售甲、乙两种袋装坚果的数量之比是.12.山间白云缭绕,似雾非雾,似烟非烟,磅礴郁积,气象万千,古人称“赤多白少”为“缙”,故名缙云山.正是这特殊的地理环境,独特的气候,赋予了缙云山甜茶汤色碧绿清爽,气味芳鲜醇和.甜茶还富含人体所需的8种氨基酸,大量维生素及微量元素,健康养生,独具风味.故来此游玩的人们,临走时都会带一些回家送亲朋好友.商家为了促销,采取以套盒包装的方式进行销售,套盒A:买三大袋和一中袋送一中袋;套盒B:买两大袋和两中袋送一小袋.套盒A和套盒B的售价之比为37:34.小华计划购买一定数量的套盒A与套盒B.由于资金不够,他思考了一下,决定将原本计划买套盒A和套盒B的数量进行调换,同时商店老板决定将套盒A打8折卖给他,套盒B价格不变,这样原计划所用花费与实际所用花费之差恰好可以购买7袋中袋的甜茶,则小华一共购买了个套盒.13.在长方形ABCD中,放入六个形状、大小相同的小长方形,所标尺寸如图所示.试求图中阴影部分的总面积为平方厘米.14.每年7月上中旬是早稻的成熟季节,粮食批发商都会大量采购A、B、C三种水稻,为了获得最大利润,批发商需要统计数据,更好地货.7月份某粮食批发商统计销量后发现,A、B、C三种水稻销量之比为3:4:5,随着市场的扩大,预计8月份粮食总销量将在7月份基础上有所增加,其中C种水稻增加的销量占总增加的销量的,则C种水稻销量将达到8月份总销量的,为使A、B两种水稻8月份的销量相等,则8月份B种水稻还需要增加的销量与8月份总销量之比为.15.对于实数a,b,定义运算“◆”:a◆b=,例如3◆2,因为3>2,所以3◆2==,若x,y满足方程组,则(x◆y)◆x=.三.解答题16.[阅读感悟]一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数x,y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题的常规思路是将①②两式联立组成方程组,解得x,y的值再代入欲求值的式子得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.[解决问题](1)已知二元一次方程组,则x﹣y=,x+y=.(2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元?(3)对于实数x,y,定义新运算:x※y=ax+by+c,其中a,b,c是常数,等式右边是通常的加法和乘法运算.已知1※4=16,1※5=21,求1※1的值.17.为了响应“足球进校园”的号召,某校计划为学校足球队购买一批足球,已知在某商店购买4个A品牌的足球和2个B品牌的足球共需680元,购买2个A品牌的足球和3个B品牌的足球共需540元.(1)求A,B两种品牌的足球的单价;(2)“五一”期间,该商店对足球进行打折促销,其中A品牌打八折,B品牌打九折,学校打算购买15个A品牌的足球和4个B品牌的足球,问学校购买这批打折后的足球所花的费用比打折前节省了多少钱?18.(1)计算:;(2)解方程组:.19.据国际田联《田径场地设施标准手册》,400米标准跑道由两个平行的直道和两个半径相等的弯道组成,有8条跑道,每条跑道宽1.2米,直道长87米;跑道的弯道是半圆形,环形跑道第一圈(最内圈)弯道半径为35.00米到38.00米之间.某校据国际田联标准和学校场地实际,建成第一圈弯道半径为36米的标准跑道.小王同学计算了各圈的长:第一圈长:87×2+2π(36+1.2×0)≈400(米);第二圈长:87×2+2π(36+1.2×1)≈408(米);第三圈长:87×2+2π(36+1.2×2)≈415(米);……请问:(1)第三圈半圆形弯道长比第一圈半圆形弯道长多多少米?小王计算的第八圈长是多少?(2)小王紧靠第一圈边线逆时针跑步、邓教练紧靠第三圈边线顺时针骑自行车(均以所靠边线长计路程),在如图的起跑线同时出发,经过20秒两人在直道第一次相遇.若邓教练平均速度是小王平均速度的2倍,求他们的平均速度各是多少?(注:在同侧直道,过两人所在点的直线与跑道边线垂直时,称两人直道相遇)20.如图,四条街围成边长为1000m的正方形ABCD,显然家住在东西方向DA街道的点P 处,他的学校在东西方向CB街道的点Q处.已知显然爷爷骑电动车在东西方向的街道的速度是400m/min,在南北方向的街道的速度是500m/min.已知爷爷骑电动车沿P﹣A﹣B﹣Q 送显然上学花了5min,沿Q﹣B﹣C﹣D﹣P(在B处遇堵车立即掉头)回家花了6min.(1)爷爷骑电动车跑一圈需要多少min?(2)求P A,QB的长度;(3)如果爷爷和显然同时出发,爷爷骑电动车沿P﹣A﹣B﹣Q骑行,显然沿Q﹣B步行,且在BQ上互相看见,求显然步行的速度的取值范围.。

二元一次方程组》 培优训练(含答案)

二元一次方程组》 培优训练(含答案)

二元一次方程组》培优训练(含答案) 期末复:二元一次方程组培优训练一、选择题1.方程组的解是()。

A。

(1.2) B。

(2.1) C。

(2.2) D。

(1.1)2.若二元一次方程组3a + b = 7a + 2b = 4的解为 (a。

b) = (-1.5),则 a + b 的值为()。

A。

2 B。

3 C。

4 D。

54.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种。

A。

3 B。

6 C。

9 D。

125.我们知道方程组:3x + 2y = 74x + 5y = 11的解是 (x。

y) = (-3.4),则方程组2x + y = 1x + 3y = k的解是()。

A。

(-2.3) B。

(-1.2) C。

(0.1) D。

(1.0)6.为了丰富学生课外小组活动,培养学生动手操作能力,XXX让学生把7m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()。

A。

1 B。

2 C。

3 D。

47.如果关于 x,y 的二元一次方程组2x + 3y = 54x + ky = 10的解为 (x。

y) = (2.-1),则 k 的值为()。

A。

-2 B。

-1 C。

0 D。

18.关于 x,y 的方程组x + 2y = 32x - y = 1的解满足 x = -1,则 k 的值是()。

A。

-1 B。

0 C。

1 D。

2二、填空题11.若 a + 2b = 8,3a + 4b = 18,则 a + b 的值为 ____。

12.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了 ____ 道题。

13.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共 ____ 块。

二元一次方程组与一次函数(培优版),附练习题

二元一次方程组与一次函数(培优版),附练习题

八年级二元一次方程组(培优版)1. 解方程组:(1);(2). (3)23133420x y x y +=⎧⎨+=⎩.➢ 练习1. 小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”; 小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少”. 请你帮助小明解决他的问题.2. 某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1 510元.则两种客房各租住了多少间?3. 某服装厂要生产一批同样型号的运动服,已知每3米长的某种布料可做2件上衣或3条裤子.现有此种布料600米,请你帮助设计一下,如何分配布料,才能使运动服成套且不致于浪费,此时能生产多少套运动服?4. 小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341.原来两个加数分别是多少?54247x y x y ⎧-=⎪⎨-=⎪⎩2343620x y x y +=⎧⎨-=⎩函数应用1.如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2相交于点C.(1)求点D的坐标;(2)求直线l2的表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P 的坐标.2.一辆快车和一辆慢车分别从A,B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.如图表示的是两车之间的距离y(千米)与行驶时间x(小时)之间的函数图象.请结合图象信息,解答下列问题:(1)直接写出快车、慢车的速度及A,B两站间的距离;(2)求快车从B站返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.3.甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同,甲、乙两船在静水中的速度相同,甲、乙两船到A港的距离y1,y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)乙船在逆流中行驶的速度为_____________;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)救生圈落入水中时,甲船到A港的距离是多少?4.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为______km;图中点C表示的实际意义是___________________________________________;慢车的速度为___________,快车的速度为__________.(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围.(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km.5. 原题:如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,∠EAF =45°,连接EF ,易证EF =BE +DF .(1)类比引申:如图2,在四边形ABCD 中,AB =AD ,∠BAD =90°,∠B +∠D =180°,点E ,F 分别在边BC ,CD 上,∠EAF =45°,连接EF ,则原题中的结论是否仍然成立?请说明理由.(2)联想拓展:如图3,在△ABD 中,∠BAD =90°,AB =AD ,点E ,F 均在边BD 上,且∠EAF =45°.猜想EF ,BE ,DF 之间满足的数量关系,并写出推理过程.图1B CDEFAAF E DCB 图2图3B DEF A图3B DEF A。

专题 二元一次方程组培优

专题 二元一次方程组培优

第12讲 二元一次方程组专题一.二元一次方程(组)的有关概念1.若已知方程()()()221153a x a x a y a -+++-=+,则当a = 时,方程为一元一次方程; 当a = 时,方程为二元一次方程.二. 二元一次方程(组)整数解及特殊解问题 2.阅读如下两则材料:材料一:一元一次方程ax b =的解由a b 、的值决定:(1)若0a ≠,则方程ax b =有唯一解bx a=; (2)若0a b ==,方程变形为00x ⋅=,则方程ax b =有无数多个解; (3)若0,0a b =≠,方程变为0x b ⋅=,则方程无解.材料二:关于x y 、的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的讨论可以按以下规律进行:(1)若1122a b a b ≠,方程组有唯一解; (2)若111222a b c a b c ==,则方程组有无数多个解; (3)若111222a b c a b c =≠,则方程组无解. 根据上述材料,请解答:已知关于x y 、的方程组()312k x y bkx y -+=⎧⎪⎨+=⎪⎩ 分别求出a b 、为何值时, 方程组的解为:(1)有唯一解;(2)有无数多个解;(3)无解?3.求二元一次方程3220x y +=的:(1)所有正整数解;(2)一组分数解4.已知关于x y 、的方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x y 、都是整数,m 是正整数,求m 的值.三.特殊二元一次方程组的解法5.解方程组(1)32:4:3x y x y -=⎧⎨=⎩ (2)()()x yx yx y x y +--=+=-⎧⎨⎪⎩⎪23634(3)7231x y x y ⎧+=⎪⎨-=-⎪⎩ (4)199519975989199719955987x y x y +=⎧⎨+=⎩(5)23427x y y z z xx y z +++⎧==⎪⎨⎪++=⎩四.利用二元一次方程组解决综合问题 6.(1)450x y -=且0y ≠,求yx yx 512512+-的值(2)若()4360,2700,x y z x y z xyz --=+-=≠求代数式222222522310x y z x y z+---的值7. 若1235x y z ++=,3217x y z++=,则111x y z ++=___________8.如果方程组()43713x y kx k y +=⎧⎪⎨+-=⎪⎩的解x y 、的值相等,求k 的值9.不论a 为何值,关于x y 、的二元一次方程()()ax a y a -+++-=12520必有一组解的值不变,试说明这个结论,并求出这个解五.二元一次方程组创新题10.已知11x y =⎧⎨=-⎩ , 10x y =-⎧⎨=⎩是某二元一次方程的解,求此二元一次方程11.如果关于,x y 的二元一次方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,那么关于,x y 的二元一次方程组的3()()162()()15x y a x y x y b x y +--=⎧⎨++-=⎩的解是多少?12.有甲乙丙三种货物,若购甲7件,乙3件,丙1件,共需要316元;若购甲10件,乙4件,丙1件,共需要420元,现在购买甲、乙、丙各一件共需要多少元?13.已知方程组233411x y kx y k +=⎧⎨-=+⎩的解,x y 满足方程53x y -=,求k 的值14.已知对于任意的x ,都有41(2)(5)x m x n x +=-+-,则m 、n 的值是( )A.41m n =-⎧⎨=-⎩B.41m n =⎧⎨=⎩C.73m n =⎧⎨=-⎩D.71m n =-⎧⎨=-⎩15.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( )A.6B.-6C.9D.-916.若54321,,,,x x x x x ,满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++++=++++=++++=++++=++++962482242122625432154321543215432154321x x x x x xx x x x x x x x x x x x x x x x x x x ,试确定5423x x +的值。

二元一次方程培优50题含答案

二元一次方程培优50题含答案

二元一次方程培优50题含答案一.选择题(共20小题)1.若关于x,y的二元一次方程组的解为,则a+4b的值为()A.B.C.1D.32.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.323.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15B.﹣15C.16D.﹣164.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.345.已知是二元一次方程y=﹣x+5的解,又是下列哪个方程的解?()A.y=x+1B.y=x﹣1C.y=﹣x+1D.y=﹣x﹣16.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.28.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()第1页(共40页)A .16cm 2B .21cm 2C .24cm 2D .32 cm 2 9.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有( )A .6种B .7种C .8种D .9种10.某商店将巧克力包装成方形、圆形礼盒出售,.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?( )A .360B .480C .600D .72011.二元一次方程x +3y =10的非负整数解共有( )对.A .1B .2C .3D .412.若2x +5y +4z =0,3x +y ﹣7z =0,则x +y ﹣z 的值等于( )A .0B .1C .2D .不能求出13.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是( )A .8张和16张B .8张和15张C .9张和16张D .9张和15张14.若2x +5y +4z =0,4x +y +2z =0,则x +y +z 的值等于( )A .0B .1C .2D .不能求出15.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是( )A .150米B .200米C .300米D .400米16.已知m 为正整数,且关于x ,y 的二元一次方程组有整数解,则m 2的值为( )A .4B .1,4C .1,4,49D .无法确定17.已知甲校原有1016人,乙校原有1028人,人,寒假期间甲、乙两校人数变动的原因只有转寒假期间甲、乙两校人数变动的原因只有转出与转入两种,出与转入两种,且转出的人数比为且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?( )A .6B .9C .12D .1818.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种19.若(a ﹣2)x|a |﹣1+3y =1是关于x ,y 的二元一次方程,则a =( ) A .2 B .﹣2 C .2或﹣2 D .020.若关于x ,y 的方程组有非负整数解,则正整数m 为( ) A .0,1 B .1,3,7C .0,1,3D .1,3 二.填空题(共21小题)21.“驴友”小明分三次从M 地出发沿着不同的线路(A 线,B 线,C 线)去N 地.在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走4小时的路程与攀登6小时的路程相等.B 线、C 线路程相等,都比A 线路程多32%,A 线总时间等于C 线总时间的,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A 线,在B 线中穿越丛林、涉水行走和攀登所用时间分别比A 线上升了20%,50%,50%,若他用了x 小时穿越丛林、y 小时涉水行走和z 小时攀登走完C 线,且x ,y ,z 都为正整数,则= .22.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x 名(其中x >5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,名机器人,且将机器人每天工作时间延长至且将机器人每天工作时间延长至12小时,小时,并对每名机器人并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x 个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工 个包裹.23.定义一种新的运算“※”,规定:x ※y =mx +ny 2,其中m 、n 为常数,已知2※3=﹣1,328m n24.已知方程组,当m时,x+y>0.25.方程组:的解是.26.已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.27.解方程组时,甲同学正确解得,乙同学因把c写错而得到,则a=,b=,c=.28.对任意两个正整数x、y,定义一个运算“★”为x★y=(x+2xy+y),若正整数a、b满足a★b=1154,则有序正整数对(a,b)共有对.29.有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管段,39mm的小铜管段.30.三轮摩托车的轮胎安装在前轮上行驶12000公里后报废,安装在左后轮和右后轮则分别只能行驶7500公里和5000公里.为使该车行驶尽可能多的路程,采用行驶一定路程后将2个轮胎对换的方法,但最多可对换2次,那么安装在三轮摩托车上的3条轮胎最多可行驶公里.31.五羊公园门票规定为:每人20元;30人以上的团体购票,每人18元,每30人优惠1人免票(不足30人的余数不优惠).今有花城旅行社、穗城旅行社、羊城旅行社的三支旅游团前来参观:如果花城团、穗城团合起来作为一个团体购票,应购门票3834元;如果穗城团、羊城团合起来购票,应购门票4770元;如果羊城团、花城团合起来购票,应购门票5220元,那么三个团共有人.32.在一条街AB 上,甲由A 向B 步行,乙骑车由B 向A 行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A 开出向B 行进,且每隔x 分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,分有一辆公共汽车追上他,而乙感到每隔而乙感到每隔5分就碰到一辆公共汽车,分就碰到一辆公共汽车,那么在那么在始发站公共汽车发车的间隔时间x = 分钟.33.某校运动会在400米环形跑道上进行10000米比赛,米比赛,甲、甲、甲、乙两运动员同时起跑后,乙两运动员同时起跑后,乙两运动员同时起跑后,乙速乙速超过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时间是 分钟.34.某旅游团一行50人到某旅社住宿,该旅社有三人间、双人间和单人间三种客房,其中三人间每人每晚20元,双人间每人每晚30元,单人间每晚50元.已知该旅行团住满了20间客房,且使总的住宿费用最省.那么这笔最省的住宿费用是 元,所住的三人间、双人间、单人间的间数依次是 .35.“雪龙”号科学考察船到南极锦绣科学考察活动,从上海出发以最快速度19节(1节=1海里/小时)航行抵达南极需要30多天时间.该船以16节的速度从上海出发,若干天后,顺利抵达目的地.在极地工作了若干天,以12节的速度返回,从上海出发后第83天由于天气原因航行速度为2节,2天后以14节的速度继续航行4天返回上海.那么,“雪龙”号在南极工作了 天.36.怡荣号渡轮时速40千米,单数日由A 地顺流航行到B 地,双数日由B 地逆流航行到A地.(水速为每小时24千米)有一单数日渡轮航行到途中的C 地时,失去动力,只能任船漂流到B 地,船长计得该日所用的时间为原单数日的倍.另一双数日渡轮航行到途中的C 地时,又失去动力,船在漂流过程中,维修人员全力抢修了1小时后船以2倍时速前进到A 地,地,结果船长发现该日所用的时间与原双数日所用时间一秒不差.请问结果船长发现该日所用的时间与原双数日所用时间一秒不差.请问A 、B 两地的距离为多少千米?37.一个工厂得到任务,需要加工A 零件6000个和B 零件2000个,该厂共有工人214名,每个人加工A 零件5个的时间可以加工B 零件3个.现将工人分成两组,分别加工一种零件,同时开始,应怎样分组才能使任务最快完成 .38.若是方程组的解,则a +b = .39.设甲数为x ,乙数为y ,则甲数增加10%与乙数增加到原来的3倍后的和比甲、乙两数的和多8,则方程为 .40.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔分钟从起点开出一辆.41.某车间每天能生产甲种零件300个,或者乙种零件500个,或者丙种零件600个,甲、乙、丙三种零件各一个配一套.现在要用63天使产品成套,那么生产甲种零件应当用天,生产乙种零件应当用天,生产丙种零件应当用天.三.解答题(共9小题)42.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.43.若方程组和方程组有相同的解,求a,b的值.44.已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.45.阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.46.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.47.某水果店购进苹果与橙子共50kg,这两种水果的进价、标价如下表所示,店主将这些水果按8折全部售出后,其获利258元,那么该水果点购进苹果和橙子分别多少kg?进价(元/kg)标价(元/kg)苹果615橙子51248.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?49.某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?50.对有理数x、y规定运算⊕:x⊕y=ax﹣by.已知1⊕7=9,3⊕8=14,求2a+5b的值.二元一次方程培优50题含答案参考答案与试题解析一.选择题(共20小题)1.若关于x,y的二元一次方程组的解为,则a+4b的值为()A.B.C.1D.3【分析】方程组利用代入消元法求出解,然后把a、b的值代入即可求解.【解答】解:,由①得,y=1﹣2x③,把③代入②得,﹣x+3(1﹣2x)=2,解得,把代入③得,,∴,∴a+4b=.故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.32【分析】根据题意可以设出二元一次方程组,然后变形即可解答本题.【解答】解:设方形巧克力每块x元,圆形巧克力每块y元,小明带了a元钱,,①+②,得8x+8y=2a,∴x+y=a,∵5x+3y=a﹣8,∴2x+(3x+3y)=a﹣8,∴2x+3×a=a﹣8,∴2x=,∴8x=a﹣32,即他只购买8块方形巧克力,则他会剩下32元,故选:D.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,利用方程的知识解答.3.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15B.﹣15C.16D.﹣16【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a﹣b)的值.【解答】解:∵是关于x、y的方程组的解,∴,解得,∴(a+b)(a﹣b)=(﹣1+4)×(﹣1﹣4)=﹣15.故选:B.【点评】本题主要考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题的关键.4.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.34【分析】首先假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本8本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【解答】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+2y=6 ④由②+①得17x+12y+2z=46 ⑤由⑤﹣④×2﹣③得0=46﹣12﹣a∴a=34故选:D.【点评】此题主要考查了方程组的应用,解答此题的关键是列出方程组,用加减消元法求出方程组的解.5.已知是二元一次方程y=﹣x+5的解,又是下列哪个方程的解?()A.y=x+1B.y=x﹣1C.y=﹣x+1D.y=﹣x﹣1【分析】把x、y的值代入方程,看看方程两边是否相等即可.【解答】解:A、把代入方程y=x+1,左边≠右边,所以不是方程y=x+1的解,故本选项不符合题意;B、把代入方程y=x﹣1,左边=右边,所以是方程y=x﹣1的解,故本选项符合题意;C、把代入方程y=﹣x+1,左边≠右边,所以不是方程y=﹣x+1的解,故本选项不符合题意;D、把代入方程y=﹣x﹣1,左边=右边,所以不是方程y=﹣x﹣1的解,故本选项不符合题意.故选:B.【点评】本题考查了二元一次方程的解,能理解二元一次方程的解的意义是解此题的关键.6.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种【分析】设甲种笔记本购买了x本,乙种笔记本y本,就可以得出15x+5y=90,根据解不定方程的方法求出其解即可.【解答】解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得15x+5y=90整理,得3x+y=18因为y是x的整数倍,所以当x=1时,y=15.当x=2时,y=12.当x=3时,y=9.综上所述,共有3种购买方案.故选:B.【点评】本题考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立不等式是关键,合理运用分类是难点.7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.2【分析】先解关于x,y二元一次方程组,求出x,y的值后,再代入x﹣y=m﹣1,建立关于m的方程,解方程求出m的值即可.【解答】解:方法1:,解得,∵满足x﹣y=m﹣1,∴﹣﹣=m﹣1,解得m=﹣1;方法2:方程两边分别相减就可以得到36x﹣36y=﹣72则x﹣y=﹣2所以m﹣1=﹣2所以m=﹣1.故选:A.【点评】考查了解二元一次方程组,解关于x,y二元一次方程组,求出x,y的值后,再求解关于m的方程,解方程组关键是消元.8.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为()A.16cm2B.21cm2C.24cm2D.32 cm2【分析】设长方形的长和宽为未数,根据图示可得两个量关系:①小长方形的1个长+3个宽=16cm,②小长方形的1个长﹣1个宽=4cm,进而可得到关于x、y的两个方程,可求得解,从而可得到小长方形的面积.【解答】解:设小长方形的长为x,宽为y,如图可知,,解得:.所以小长方形的面积=3×7=21(cm 2).故选:B.【点评】本题考查了二元一次方程的应用,以及学生对图表的阅读理解能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()A.6种B.7种C.8种D.9种【分析】本题可设大绳买了x条,小绳买了y条,毽子买了z个.根据这三种体育用品的总价为30元,列出关于x、y、z的三元一次方程,根据x≤2,且x、y、z都是正整数,可求出x、y、z的取值,根据自变量的取值,可求出买法有多少种.【解答】解:设大绳买了x条,小绳买了y条,毽子买了z个.则有:10x+3y+z=30,根据已知,得x=1或2,当x=1时,有z=20﹣3y,此时有:y值可取1,2,3,4,5,6;共六种;当x=2时,有z=10﹣3y,此时有:y值可取1,2,3;共三种.所以共有9种买法.故选:D.【点评】此题主要考查了二元一次方程的应用,解决本题的关键能够根据题意列出三元一次方程,根据未知数应是正整数和x小于等于2这些条件,进行分析求解.10.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360B.480C.600D.720【分析】设每盒方形礼盒x元,每盒圆形礼盒y元,根据阿郁身上的钱数不变得出方程3x+7y﹣240=7x+3y+240,化简整理得y﹣x=120.那么阿郁最后购买10盒方形礼盒后他身上的钱会剩下(7x+3y+240)﹣10x,化简得3(y﹣x)+240,将y﹣x=120计算即可.【解答】解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的钱有(3x+7y﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).C【点评】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每盒方形礼盒与每盒圆形礼盒的钱数之间的关系是解决问题的关键.11.二元一次方程x+3y=10的非负整数解共有()对.A.1B.2C.3D.4【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是非负整数,那么把最小的非负整数y=0代入,算出对应的x的值,再把y=1代入,再算出对应的x的值,依此可以求出结果.【解答】解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.【点评】由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的非负整数解,即此方程中两个未知数的值都是非负整数,这是解答本题的关键.注意:最小的非负整数是0.12.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0B.1C.2D.不能求出【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选:A.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.13.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物券各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是()A.8张和16张B.8张和15张C.9张和16张D.9张和15张【分析】仔细读题,发现题中有一个等量关系:2×2元人民币的张数+5×5元人民币的张数=33,如果设2元和5元的人民币分别有x张和y张,则根据等量关系可得一个二元一次方程,此方程有无穷多组解,再根据x,y是正整数,则可以得出符合条件的有限几组解.【解答】解:设2元和5元的人民币分别有x张和y张,根据题意,得2x+5y=33,则x=,即x=16﹣2y+,又x,y是正整数,则有或或三种.因为14+1=15,9+3=12,4+5=9,15>12>9,所以最少和张数之和最多的方式分别是9和15.故选:D.【点评】考查了二元一次方程的应用,注意:根据未知数应是正整数进行讨论.14.若2x+5y+4z=0,4x+y+2z=0,则x+y+z的值等于()A.0B.1C.2D.不能求出【分析】由2x+5y+4z=0 ①,4x+y+2z=0 ②,利用整体的思想①+②即可解决问题.【解答】解:2x+5y+4z=0 ①,4x+y+2z=0 ②,①+②得到:6x+6y+6z=0,∴x+y+z=0,故选:A.【点评】本题考查三元一次方程组,解题的关键是学会利用整体的思想思考问题,属于中考常考题型.15.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是()A.150米B.200米C.300米D.400米【分析】首先设每一块小矩形牧场的长为x米,宽为y米,根据题意可得等量关系:小矩形的1个长=2个宽,3个长+1个宽=700÷2,根据等量关系列出方程组,再解即可.【解答】解:设每一块小矩形牧场的长为x米,宽为y米,,解得,每一块小矩形牧场的周长是:100+100+50+50=300(米),故选:C.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程组.16.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4B.1,4C.1,4,49D.无法确定【分析】首先解方程组求得方程组的解是:,则3+m是10和15的公约数,且是正整数,据此即可求得m的值,求得代数式的值.【解答】解:两式相加得:(3+m)x=10,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是10和15的公约数.∴3+m=±1或±5.即m=﹣2或﹣4或2或﹣8.又∵m是正整数,∴m =2,则m 2=4.故选:A .【点评】本题考查了方程组的解,正确理解3+m 是10和15的公约数是关键. 17.已知甲校原有1016人,乙校原有1028人,人,寒假期间甲、乙两校人数变动的原因只有转寒假期间甲、乙两校人数变动的原因只有转出与转入两种,出与转入两种,且转出的人数比为且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?( )A .6B .9C .12D .18 【分析】分别设设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,根据寒假结束开学时甲、根据寒假结束开学时甲、乙两校人数相同,乙两校人数相同,可得方程1016﹣x +y =1028﹣3x +3y ,整理得:x ﹣y =6,所以开学时乙校的人数为:1028﹣3x +3y =1028﹣3(x ﹣y )=1028﹣18=1010(人),即可解答.【解答】解:设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,∵寒假结束开学时甲、乙两校人数相同,∴1016﹣x +y =1028﹣3x +3y ,整理得:x ﹣y =6,开学时乙校的人数为:1028﹣3x +3y =1028﹣3(x ﹣y )=1028﹣18=1010(人), ∴乙校开学时的人数与原有的人数相差;1028﹣1010=18(人),故选:D .【点评】本题考查了二元一次方程的应用,解决本题的关键是关键题意列出方程. 18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【解答】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组培优讲义
类型一:二元一次方程的概念及求解
例(1).已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a ______,b _____.
如果25mx y x -=+是关于x 、y 的二元一次方程,则m _____.
(2).二元一次方程3x +2y =15的正整数解为_______________.
类型二:二元一次方程组的求解
例(3).若|2a +3b -7|与(2a +5b -1)2
互为相反数,则a =______,b =______.
(4).2x -3y =4x -y =5的解为_______________. 类型三:已知方程组的解,而求待定系数
例(5).已知⎩⎨⎧==1
2y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.
(6).若满足方程组⎩⎨⎧=-+=-6
)12(423y k kx y x 的x 、y 的值相等,则k =_______. 练习:若方程组⎩
⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。

若方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与⎪⎩⎪⎨⎧=-=-5
243y x by x a 有相同的解,则a = ,b= 。

类型四:涉及三个未知数的方程,求出相关量。

设“比例系数”是解有关数量比的问题的常用方法.
例(7).已知2a =3b =4c ,且a +b -c =12
1,则a =_______,b =_______,c =_______. (8).解方程组⎪⎩
⎪⎨⎧=+=+=+63432
3x z z y y x ,得x =______,y =______,z =______.
练习:若450x y -=,那么125125x y x y
-+=_________. 由方程组⎩
⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是( ) A 、1∶2∶1 B 、1∶(-2)∶(-1) C 、1∶(-2)∶1 D 、1∶2∶(-1) 说明:解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.
当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组。

类型五:列方程组求待定字母系数是常用的解题方法.
例(9).若⎩⎨⎧-==20y x ,⎪⎩
⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为
(10).关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩
⎨⎧==12y x ,则这个二元一次方程是 练习:如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+1
0cy bx by ax 的解,那么,下列各式中成立的是 ( )
A 、a +4c =2
B 、4a +c =2
C 、a +4c +2=0
D 、4a +c +2=0 类型六:方程组有解的情况。

(方程组有唯一解、无解或无数解的情况)
方程组⎩⎨⎧=+=+2
22111c y b x a c y b x a 满足 条件时,有唯一解;
满足 条件时,有无数解;
满足 条件时,有无解。

例(11).关于x 、y 的二元一次方程组⎩
⎨⎧=+=-2312y mx y x 没有解时,m (12)二元一次方程组23
x y m x ny -=⎧⎨+=-⎩ 有无数解,则m= ,n= 。

类型七:解方程组
例(13).⎪⎪⎩⎪⎪⎨⎧=+=-+.022
325232y x y y x (14).⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x
(15).⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x (16).⎪⎩
⎪⎨⎧=---=+-=+-.441454y x z x z y z y x
类型八:解答题
例(17).已知⎩⎨⎧=+-=-+0
254034z y x z y x ,xyz ≠0,求222
223y x z xy x +++的值.
(18).甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩
⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨
⎧-=-=2
1y x ,求a 、b 的值.
练习:甲、乙两人共同解方程组⎩
⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为 ⎩⎨⎧-=-=13y x ;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==4
5y x ,求原方程组的正确解。

(19).已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.
(20).当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:
(1)a 、b 、c 的值; (2)当x =-2时,ax 2+bx +c 的值.
(21).对于X,Y 定义一种新运算“*”:*X Y aX bY =+,已知3*5=15 , 4*7=28 ,求2*3的值。

相关文档
最新文档