2015年中考总复习数学(河北)练习 专题2 图表信息问题

合集下载

2015年河北省石家庄市中考数学二模试卷解析资料

2015年河北省石家庄市中考数学二模试卷解析资料

2015年河北省石家庄市中考数学二模试卷一、选择题(共16小题,1-6小题,每小题2分;7-16小题,每小题2分,共42分)1.(﹣2)3的值为()A.﹣8 B.﹣6 C.6 D.82.如图,在△ABC中,AB=AC,∠B=30°,则∠C的大小为()A.15° B.25° C.30° D.60°3.下列计算正确的是()A.x4÷x=x3 B.x3•x5=x15 C.3x2•4x2=12x2 D.(x5)2=x74.如图,已知直线AB∥CD,∠C=105°,∠A=45°,那么∠E的值为()A.50° B.60° C.70° D.80°5.在函数中的y=,自变量x的取值范围是()A.x>1 B.x≠2 C.x>1且x≠2 D.x≥1且x≠26.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.4 B.﹣4 C.1 D.﹣17.已知a,b,c均为实数,且a>b,c≠0,则下列结论不一定正确的是()A.a+c>b+c B.﹣a<﹣b C.a2>b2 D.>8.若(x﹣1)3=a3x3+a2x2+a1x+a0,那么a3+a2+a1=()A.1 B. 2 C. 3 D. 49.在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF10.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,错误的是()A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多11.“五一节”期间,小华一家自驾游去了离家170千米的某地,如图是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.下列结论:①1.5小时前,汽车行驶速度为每小时60千米;②汽车共行驶了2.5小时;③1.5小时到2.5小时之间汽车行驶速度为每小时80千米;④当他们离目的地还有20千米时,共行驶了2.25小时.其中正确的结论有()A.①② B.③④ C.①②③ D.①②③④12.如图是由5个形状、大小完全相同的正六边形组成的图案,我们把正六边形的顶点称为格点.若Rt△ABC的顶点都在格点上,且AB为Rt△ABC的斜边,则Rt△ABC的个数有()A.2个B.4个C.6个D.8个13.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .点P 关于x 轴的对称点P ′的坐标为(a ,b ),则a 与b 的数量关系为( )A . a+b=0B . a+b >0C . a ﹣b=0D . a ﹣b >014.某学习小组,在探究1+的性质时,得到了如下数据:x 1 10 100 1000 10000 …1+ 3 1.2 1.02 1.002 1.0002 …根据表格中的数据,做出了四个推测:①1+(x >0)的值随着x 的增大而减小;②1+(x >0)的值有可能等于1;③1+(x >0)的值随着x 的增大越来越接近于1;④1+(x >0)的值最大值是3.则推测正确的有( )A . 1个B . 2个C . 3个D . 4个15.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点.若PB 切⊙O 于点B ,则PB 的最小值是( )A .B .C . 3D . 216.已知二次函数y=x 2﹣2mx+m 2+3(m 为常数),下列结论正确的是( )A . 当m=0时,二次函数图象的顶点坐标为(0,0)B . 当m <0时,二次函数图象的对称轴在y 轴右侧C.设二次函数的图象与y轴交点为A,过A作x轴的平行线,交图象于另一点B,抛物线的顶点为C,则△ABC的面积为m3D.该函数图象沿y轴向下平移6个单位后,图象与y轴两交点之间的距离为2二、填空题(共4小题,每小题3分,满分12分)17.将平面直角坐标系中的点A(﹣1,2)向右平移3个单位,得到点A1,则点A1的坐标为.18.小明在解关于x,y的二元一次方程组时,得到的结果是,那么A+B=.19.如图,四边形ABCD为菱形,点D、C落在以B为圆心的弧EF上,则∠A的度数为.20.在数轴上点A、B、C、D分别对应数﹣3、7、13、21,把数轴两次弯折后使点D与点A重合,围成三角形ABC(如图所示),则sin∠ABC的值为.三、解答题(共6小题,满分66分)21.(1)小华用22元钱买了4个练习册,x支铅笔,已知一本练习册4元,一支铅笔2元,求x的值.求(x﹣)÷的值,其中x是问题(1)中的解.22.2015年3月3日到3月15日,两会在京矩形,雾霾防治问题受到国民的普遍关注,某报社决定以“对于雾霾,你最关注的话题是什么”为主题,通过街头随访和网络调查两种方式进行调查,根据调查所得数据绘制了表格.最关注的话题街头随访/人网络调查/人合计/人雾霾是什么120 200雾霾治理40%a 60%a a雾霾中自我防护策略600其他话题60(1)参加本次街头随访和网络调查的总人数是人,a的值为;请你将以上表格中空白处补充完整;(3)若在接受街头随访的人员中随机抽出一人,则抽到最关注“雾霾中自我防护策略”人员的概率是;(4)通过这次调查,你有什么想法?23.已知:如图所示,四边形ABCD是矩形,分别以BC、CD为一边作等边△EBC和等边△FCD,点E在矩形上方,点F在矩形内部,连接AE、EF.(1)求∠ECF的度数;求证:AE=FE.24.如图,将平面直角坐标系的纵轴绕原点顺时针旋转30°,得到夹角为60°的平面坐标系xOy,称之为平面60°角坐标系.类比平面直角坐标系中确定点的坐标的方法,设平面60°角坐标系中有任意一点P,过点P作PA∥y轴,交x轴于点A,A点的坐标为(x,0),过点P作PB∥x轴,交y轴于点B,B点的坐标为(0,y),则点P坐标为(x,y).利用以上规定,在平面60°角坐标系中解决下列问题:(1)在图12中,过点A(1,0)、B(0,1)分别作y轴、x轴的平行线,两条直线交于点C,则点C的坐标为(、);若点M在第二象限,且M到x轴、y轴的距离均为,则M点坐标为(、);(3)一次函数的图象在平面60°角坐标系中仍然是一条直线,求直线y=x、直线y=﹣x+及x轴围成的三角形的面积.25.近几年来,石家庄市区的环境越来越美,随处可见的街心花园成为人们休闲的好去处,现二环路办事处又计划将十字路口附近的小块土地进行绿化改造,他们依地势整理出一块矩形区域ABCD,铺成人们可以活动的砖石地面,又分别以AB、BC、CD、DA为斜边向外做等腰直角三角形(如图所示),通过测量,发现四边形MNGH的周长正好是200米,设AB=x米,BC=y米.(1)四边形MNGH的形状为.直接写出y与x之间的函数关系式.(3)如果铺设砖石地面,平均建设费用为每平方米50元,其它区域种花草,平均建设费用为每平方米100元,请求出总建设费用p(元)与x(米)之间的函数关系式.(4)政府最少投入多少钱才能完成此项工程?26.如图1,已知线段a、b,其中a>b.(1)如图2,作AB=a,并以AB为直径作半圆,圆心为O,在AB上截取BM=b,过点M作MN⊥AB,交⊙O于点N,连接BN,求证:BN=.在矩形ABCD中,AB=a,BC=b.①如图3,当1<≤2时,按照图示方法作出的正方形BNPQ,它的面积与矩形ABCD的面积相等,为什么?此时矩形ABCD被分成三块,与正方形BNPQ中对应的部分分别是:四边形BCEN是公共部分:△ADE对应;△ABN对应.②如图4,在>2时,点N在矩形ABCD外部,当AN≤2BN时,有AN2≤4BN2,∴AB2﹣BN2≤4BN2,即AB2≤5BN2∴a2≤5()2,即≤5.∴当2<≤5时,矩形ABCD最少可被分成块拼合成正方形BNPQ.③如图5,当>5且AN≤3BN时,请你在图中画出矩形ABCD剪拼成正方形BNPQ的剪拼线,并求出的最大值.2015年河北省石家庄市中考数学二模试卷参考答案与试题解析一、选择题(共16小题,1-6小题,每小题2分;7-16小题,每小题2分,共42分)1.(﹣2)3的值为()A.﹣8 B.﹣6 C.6 D.8考点:有理数的乘方.分析:根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:(﹣2)3=﹣8.故选:A.点评:本题考查了有理数的乘方法则,解题时牢记法则是关键,此题比较简单,易于掌握.2.如图,在△ABC中,AB=AC,∠B=30°,则∠C的大小为()A.15° B.25° C.30° D.60°考点:等腰三角形的性质.分析:根据等腰三角形的两个底角相等的性质即可求解.解答:解:∵在△ABC中,AB=AC,∠B=30°,∴∠C=∠B=30°.故选:C.点评:此题考查等腰三角形的性质:等腰三角形的两个底角相等;本题比较简单,属于基础题.3.下列计算正确的是()A.x4÷x=x3 B.x3•x5=x15 C.3x2•4x2=12x2 D.(x5)2=x7考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.分析:根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、正确;B、x3•x5=x8,故错误;C、3x2•4x2=12x4,故错误;D、(x5)2=x10,故错误;故选:A.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.如图,已知直线AB∥CD,∠C=105°,∠A=45°,那么∠E的值为()A.50° B.60° C.70° D.80°考点:平行线的性质.分析:设AB与CE相交于点F,先根据平行线的性质得出∠BFE的度数,再由三角形外角的性质即可得出结论.解答:解:设AB与CE相交于点F,∵直线AB∥CD,∠C=105°,∴∠BFE=∠C=105°.∵∠A=45°,∴∠E=∠BFE﹣∠A=105°﹣45°=60°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.在函数中的y=,自变量x的取值范围是()A.x>1 B.x≠2 C.x>1且x≠2 D.x≥1且x≠2考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故选:D.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.4 B.﹣4 C.1 D.﹣1考点:根的判别式.专题:计算题.分析:根据根的判别式的意义得到△=22﹣4•(﹣a)=0,然后解方程即可.解答:解:根据题意得△=22﹣4•(﹣a)=0,解得a=﹣1.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知a,b,c均为实数,且a>b,c≠0,则下列结论不一定正确的是()A.a+c>b+c B.﹣a<﹣b C.a2>b2 D.>考点:不等式的性质.分析:根据不等式的性质1,不等式两边同时加上或减去同一个数,不等号的方向不变;根据不等式的性质2,不等式两边同时乘以或除以同一个正数,不等号的方向不变;根据不等式的性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变;利用不等式的3个性质进行分析.解答:解:A、根据不等式的性质一,不等式两边同时加上c,不等号的方向不变,故此选项正确,不合题意;B、∵a>b,∴﹣a<﹣b,故此选项正确,不合题意;C、a2>b2不一定正确,例如:0>﹣3,而02<(﹣3)2,符合题意;D、∵c≠0,∴c2>0,∵a>b.∴,故此选项正确,不合题意;故选:C.点评:本题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.若(x﹣1)3=a3x3+a2x2+a1x+a0,那么a3+a2+a1=()A.1 B. 2 C. 3 D. 4考点:代数式求值.分析:首先将x=1代入得:a3+a2+a1+a0=0①,然后将x=0代入得:a0=﹣1②,①﹣②即可求得a3+a2+a1的值.解答:解:将x=1代入得:a3+a2+a1+a0=0①,将x=0代入得:a0=﹣1②,①﹣②得:a3+a2+a1=1.故选:A.点评:本题主要考查的是求代数式的值,将x=1和x=0代入求得:a3+a2+a1+a0=0,a0=﹣1是解题的关键.9.在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF考点:全等三角形的判定;平行线的判定与性质;三角形中位线定理.分析:根据平行线的性质得到∠BDF=∠EFD,根据D E分别是AB AC的中点,推出DE∥BC,DE=BC,得到∠EDF=∠BFD,根据全等三角形的判定即可判断A;由DE=BC=BF,∠EDF=∠BFD,DF=DF即可得到△BFD≌△EDF;由∠A=∠DFE证不出△BFD≌△EDF;由∠B=∠DEF,∠EDF=∠BFD,DF=DF,得到△BFD≌△EDF.解答:解:A、∵EF∥AB,∴∠BDF=∠EFD,∵D E分别是AB AC的中点,∴DE=BC,DE∥BC(三角形的中位线定理),∴∠EDF=∠BFD(平行线的性质),∵DF=DF,∴△BFD≌△EDF,故本选项正确;B、∵DE=BC=BF,∠EDF=∠BFD,DF=DF,∴△BFD≌△EDF,故本选项正确;C、由∠A=∠DFE证不出△BFD≌△EDF,故本选项错误;D、∵∠B=∠DEF,∠EDF=∠BFD,DF=DF,∴△BFD≌△EDF(AAS),故本选项正确.故选C.点评:本题主要考查对全等三角形的判定,平行线的性质,三角形的中位线等知识点的理解和掌握,能求出证全等的3个条件是证此题的关键.10.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,错误的是()A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多考点:算术平均数.分析:利用平均数的定义即可判断出:小王的捐款数比他所在学习小组中13人捐款的平均数多2元,小王的捐款数不会是最少的,捐款数可能最多,也可能排在第12位.解答:解:因为小王的捐款数比他所在学习小组中13人捐款的平均数多2元,所以小王的捐款数不会是最少的,捐款数可能最多,也可能排在第12位.故选:D.点评:本题考查平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.11.“五一节”期间,小华一家自驾游去了离家170千米的某地,如图是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.下列结论:①1.5小时前,汽车行驶速度为每小时60千米;②汽车共行驶了2.5小时;③1.5小时到2.5小时之间汽车行驶速度为每小时80千米;④当他们离目的地还有20千米时,共行驶了2.25小时.其中正确的结论有()A.①② B.③④ C.①②③ D.①②③④考点:一次函数的应用.分析:①用路程除以时间即可求得;②根据图象即可得出汽车共行驶的时间;③求出AB段图象的函数解析式即可求得;④先将170﹣20=150代入AB段图象的函数表达式,求出对应的x值,即可求解.解答:解:①出发1.5小时内,汽车的平均行驶速度为90÷1.5=60(km/h);②根据图象得出汽车共行驶的时间为2.5小时;③设AB段图象的函数表达式为y=kx+b.∵A(1.5,90),B在AB上,∴,解得,∴y=80x﹣30,∴1.5小时到2.5小时之间汽车行驶速度为每小时80千米;④170﹣20=150,当y=150时,80x﹣30=150,解得x=2.25.故离目的地还有20千米时,汽车一共行驶的时间是2.25小时.故选D.点评:本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.12.如图是由5个形状、大小完全相同的正六边形组成的图案,我们把正六边形的顶点称为格点.若Rt△ABC的顶点都在格点上,且AB为Rt△ABC的斜边,则Rt△ABC的个数有()A.2个B.4个C.6个D.8个考点:正多边形和圆;勾股定理;勾股定理的逆定理.分析:根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解解答:解:如图,AB是斜边时,点C共有4个位置,即有4个直角三角形,故选:B.点评:本题考查了正多边形和圆,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.13.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A.a+b=0 B.a+b>0 C.a﹣b=0 D.a﹣b>0考点:作图—基本作图;关于x轴、y轴对称的点的坐标.分析:根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号可得答案.解答:解:根据作图方法可得点P在第二象限角平分线上;点P到x轴、y轴的距离相等;∵点P关于x轴的对称点P′的坐标为(a,b),∴P(a,﹣b),故a﹣b=0.故选:C.点评:此题主要考查了角平分线的性质以及坐标与图形的性质,得出P点位置是解题关键.14.某学习小组,在探究1+的性质时,得到了如下数据:x 1 10 100 1000 10000 …1+ 3 1.2 1.02 1.002 1.0002 …根据表格中的数据,做出了四个推测:①1+(x>0)的值随着x的增大而减小;②1+(x>0)的值有可能等于1;③1+(x>0)的值随着x的增大越来越接近于1;④1+(x>0)的值最大值是3.则推测正确的有()A.1个B.2个C.3个D.4个考点:反比例函数的性质.分析:结合着表格中的数据能清晰的得到变化趋势,从而确定正确的结论的个数.解答:解:随着x的增大越来越小,∴1+(x>0)的值随着x的增大越来越小,①正确;1+(x>0)的值随着x的增大越来越接近于1,不可能等于1,所以②错误;③1+,当x取值很大时,此时的值很小,则1+就越接近1;,故③正确;④1+,当x取值很小时,最大值是无穷大,故④错误;故正确的有①、③,共2个.故选:B.点评:本题考查搜集信息的能力(读图、表),分析问题和解决问题的能力.正确解答本题的关键在于准确读图表,弄清题意.15.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点.若PB切⊙O 于点B,则PB的最小值是()A.B.C.3 D.2考点:切线的性质.专题:计算题.分析:连结OB,如图,根据切线的性质得∠PBO=90°,则利用勾股定理有PB==,所以当点P运动到点P′的位置时,OP最小时,则PB最小,此时OP=3,然后计算此时的PB即可.解答:解:连结OB,作OP′⊥l于P′如图,OP′=3,∵PB切⊙O于点B,∴OB⊥PB,∴∠PBO=90°,∴PB==,当点P运动到点P′的位置时,OP最小时,则PB最小,此时OP=3,∴PB的最小值为=.故选B.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂线段最短.16.已知二次函数y=x2﹣2mx+m2+3(m为常数),下列结论正确的是()A.当m=0时,二次函数图象的顶点坐标为(0,0)B.当m<0时,二次函数图象的对称轴在y轴右侧C.设二次函数的图象与y轴交点为A,过A作x轴的平行线,交图象于另一点B,抛物线的顶点为C,则△ABC的面积为m3D.该函数图象沿y轴向下平移6个单位后,图象与y轴两交点之间的距离为2考点:二次函数的性质.分析:根据m=0可得出二次函数图象的顶点坐标为(0,3);根据对称轴公式x=﹣,抛物线的对称性以及抛物线的平移可得出结论.解答:解:A、当m=0时,二次函数解析式为y=x2+3,则二次函数图象的顶点坐标为(0,3),故A错误;B、抛物线对称轴为x=﹣=m,当m<0时,二次函数图象的对称轴在y轴左侧,故B错误;D、该函数图象沿y轴向下平移6个单位后,解析式为y=x2﹣2mx+m2+3﹣6,即y=x2﹣2mx+m2﹣3,与y轴的两个交点为(0,m2+3),(0,m2﹣3),两交点之间的距离为6,故D错误;故选C.点评:本题考查了二次函数的性质,涉及到二次函数的解析式,顶点,对称轴以及与坐标轴的交点,难度中等,要熟练掌握.二、填空题(共4小题,每小题3分,满分12分)17.将平面直角坐标系中的点A(﹣1,2)向右平移3个单位,得到点A1,则点A1的坐标为.考点:坐标与图形变化-平移.分析:让点A的纵坐标不变,横坐标加3即可得到A1的坐标.解答:解:将点A向右平移3个单位,点A1的横坐标为﹣1+3=2,纵坐标为2,则A1的坐标是.故答案为:.点评:此题主要考查了点的平移规律,关键是掌握平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.小明在解关于x,y的二元一次方程组时,得到的结果是,那么A+B=4.考点:二元一次方程组的解.分析:将x=B,y=1代入方程x+Ay=4即可求得答案.解答:解:将将x=B,y=1代入方程x+Ay=4得:B+A=4,∴A+B=4.故答案为:4.点评:本题主要考查得是二元一次方程组的解的定义,将方程组的解代入方程(或方程组)是解答此类问题的常见方法.19.如图,四边形ABCD为菱形,点D、C落在以B为圆心的弧EF上,则∠A的度数为60°.考点:菱形的性质;等边三角形的判定与性质.分析:因为D,C两点恰好落在弧EF的上,即D、C在同一个圆上,连接BD,易证△ABD是等边三角形,即可求得∠A的度数.解答:解:连接BD,∵菱形ABCD中,AB=AD=BC,又∵点D、C落在以B为圆心的弧EF上,∴AB=BC=BD=AD,即△ABD是等边三角形.∴∠A=60°.故答案为:60°.点评:此题考查菱形的性质,圆的性质以及等边三角形的判定与性质,掌握等边三角形的判定与性质是解决问题的关键.20.在数轴上点A、B、C、D分别对应数﹣3、7、13、21,把数轴两次弯折后使点D与点A重合,围成三角形ABC(如图所示),则sin∠ABC的值为.考点:解直角三角形的应用.分析:根据题意求得AB=10,BC=6,AC=8,根据勾股定理的逆定理证得△ABC为直角三角形,∠C=90°,在RT△ABC中,根据正弦的定义即可求得.解答:解:根据题意:AB=10,BC=6,AC=8,∵BC2+AC2=36+64=100=102=AB2,∴△ABC为直角三角形,∠C=90°,∴sin∠ABC===.故答案为.点评:本题考查的是解直角三角形的应用,证得三角形ABC的直角三角形是解题的关键.三、解答题(共6小题,满分66分)21.(1)小华用22元钱买了4个练习册,x支铅笔,已知一本练习册4元,一支铅笔2元,求x的值.求(x﹣)÷的值,其中x是问题(1)中的解.考点:一元一次方程的应用;分式的化简求值.分析:(1)利用22元钱买了4个练习册,x支铅笔,结合练习本和铅笔的单价得出等式求出即可;首先将括号里面通分,进而化简求出即可.解答:解:(1)由题意,得4×4+2x=22,解这个方程,得:x=3,答:x的值为3;(x﹣)÷=[﹣]×,=×,=x﹣2.当x=3时,原式=3﹣2=1.点评:此题主要考查了一元一次方程的应用以及分式的化简求值,根据题意得出正确等量关系是解题关键.22.2015年3月3日到3月15日,两会在京矩形,雾霾防治问题受到国民的普遍关注,某报社决定以“对于雾霾,你最关注的话题是什么”为主题,通过街头随访和网络调查两种方式进行调查,根据调查所得数据绘制了表格.最关注的话题街头随访/人网络调查/人合计/人雾霾是什么80120 200雾霾治理40%a 60%a a雾霾中自我防护策略800600 1400其他话题4060 100(1)参加本次街头随访和网络调查的总人数是2000人,a的值为300;请你将以上表格中空白处补充完整;(3)若在接受街头随访的人员中随机抽出一人,则抽到最关注“雾霾中自我防护策略”人员的概率是;(4)通过这次调查,你有什么想法?考点:扇形统计图;统计表;概率公式.分析:(1)根据关注雾霾是什么的人数除以关注雾霾是什么所占的比例,可得调查总人数,根据调查总人数乘以雾霾治理所占的百分比,可得答案;根据调查总人数乘以雾霾自我防护策略所占的百分比,可得相应的人数,根据有理数的减法,可得其他话题人数,可得答案;(3)根据街头随访中“雾霾自我防护策略的人数”除以街头随访的人数,可得答案;(4)根据整理信息,可发现对雾霾的关注程度.解答:解:(1)参加本次街头随访和网络调查的总人数是2000人,a的值为300;请你将以上表格中空白处补充完整;街头随访/人网络调查/人合计/人雾霾是什么80 120 200雾霾治理40%a 60%a a雾霾中自我防护策略800 600 1400其他话题40 60 100(3)若在接受街头随访的人员中随机抽出一人,则抽到最关注“雾霾中自我防护策略”人员的概率是;(4)通过这次调查,发现自我防护策略所占的比例大,加强雾霾治理是解决问题的关键.点评:点评:本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.统计表能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.已知:如图所示,四边形ABCD是矩形,分别以BC、CD为一边作等边△EBC和等边△FCD,点E在矩形上方,点F在矩形内部,连接AE、EF.(1)求∠ECF的度数;求证:AE=FE.考点:矩形的性质;全等三角形的判定与性质;等边三角形的性质.分析:(1)由矩形的性质得出∠BCD=90°,由等边三角形的性质得出∠ECD=30°,得出∠ECF=30°;由SAS证明△EBA≌△ECF,得出对应边相等即可.解答:(1)解:∵四边形ABCD是矩形,∴∠BCD=∠ABC=90°,AB=CD,∵三角形△EBC是等边三角形,∴∠ECB=∠EBC=60°,EC=EB,∴∠ECD=∠BCD﹣∠ECB=90°﹣60°=30°,∠EBA=90°﹣60°=30°,∵△FCD是等边三角形,∴∠FCD=60°,CF=CD,∴∠ECF=∠FCD﹣∠ECD=30°;证明:∵AB=CD,CF=CD,∴AB=CF,在△EBA和△ECF中,,∴△EBA≌△ECF(SAS),∴AE=FE.点评:本题考查了矩形的性质、等边三角形的性质、全等三角形的判定与性质;熟练掌握矩形和等边三角形的性质,并能进行推理论证与计算是解决问题的关键.24.如图,将平面直角坐标系的纵轴绕原点顺时针旋转30°,得到夹角为60°的平面坐标系xOy,称之为平面60°角坐标系.类比平面直角坐标系中确定点的坐标的方法,设平面60°角坐标系中有任意一点P,过点P作PA∥y轴,交x轴于点A,A点的坐标为(x,0),过点P作PB∥x轴,交y轴于点B,B点的坐标为(0,y),则点P坐标为(x,y).利用以上规定,在平面60°角坐标系中解决下列问题:(1)在图12中,过点A(1,0)、B(0,1)分别作y轴、x轴的平行线,两条直线交于点C,则点C的坐标为(1、1);若点M在第二象限,且M到x轴、y轴的距离均为,则M点坐标为(﹣2、2);(3)一次函数的图象在平面60°角坐标系中仍然是一条直线,求直线y=x、直线y=﹣x+及x轴围成的三角形的面积.考点:一次函数综合题.专题:综合题.分析:(1)根据平面60°角坐标系坐标确定方法易得C点坐标;如图1,证明△OAM是等边三角形,四边形OAMB是菱形,由ME=MF=,∠MOE=60°,得到OA=OB=2,进而求出M的坐标;(3)如图2,求出点E、F的坐标,过点E作EG∥y轴交x轴于点G,过点E作EH⊥x轴,垂足为H,求出EH,即可计算直线y=x、直线y=﹣x+及x轴围成的三角形为△OEF的面积.解答:解:(1)∵过点A(1,0)、B(0,1)分别作y轴、x轴的平行线,两条直线交于点C,∴C(1,1);故答案为:1,1;如图1,∵点M在第二象限,且M到x轴、y轴的距离均为,∴OM平分第二象限夹角,∵ME=MF=,∠MOE=60°,∴OM=2,∵∠AOB=120°,四边形OAMB是平行四边形,∴∠A=60°,∴△OAM是等边三角形,四边形OAMB是菱形,∴OA=OB=2,∴M(﹣2,2);故答案为:﹣2,2;(3)设直线y=x、直线y=﹣x+交于点E,如图2,。

2015年河北省中考数学试卷(含详细答案)

2015年河北省中考数学试卷(含详细答案)
AB
CD

数学试卷第1页(共26页)
数学试卷第2页(共26页)
10.一台印刷机每年印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当
x2时,y20,则y与x的函数图象大致是()
16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原
来面积相等的正方形,则()
8.如图,AB∥EF,CDEF,BAC50,则ACD()
A.120B.130
C.140D.150
9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东
30和南偏西45方向上.符合条件的示意图是()

ABCD

--------------------)11
2
C.(2a)22a2D.a3a2a5
-------------

5.右图中的三视图所对应的几何体是()

--------------------
河北省2015年初中毕业生升学文化课考试
数学
_
__
__
__
考__2.下列说法正确的是()
__
__A.1的相反数是1B.1的倒数是1
__
__
__图案是()
__Байду номын сангаас
__
名__
姓_
_
_
__
__
_题



--------------------
--------------------
图1图2图3
AB
CD
6.如图,AC,BE是O的直径,弦AD与BE交于点F,下列三角形
中,外心不是点O的是()

2015年河北中考数学真题卷含答案解析

2015年河北中考数学真题卷含答案解析

2015年河北省初中毕业生升学文化课考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共42分)一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:3-2×(-1)=( )A.5B.1C.-1D.62.下列说法正确的是( ) A.1的相反数是-1 B.1的倒数是-1 C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是( )4.下列运算正确的是( ) A.(12)-1=-12B.6×107=6 000 000 C.(2a)2=2a 2D.a 3·a 2=a 55.图中的三视图所对应的几何体是( )点O的是( ) 6.如图,AC,BE是☉O的直径,弦AD与BE交于点F,下列三角形中,外心不是··A.△ABEB.△ACFC.△ABDD.△ADE7.在数轴上标注了四段范围,如图,则表示√8的点落在( )A.段①B.段②C.段③D.段④8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120°B.130°C.140°D.150°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上.符合条件的示意图是( )10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y 与x 的函数图象大致是( )11.利用加减消元法解方程组{2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×2 12.若关于x 的方程x 2+2x+a=0不存在...实数根,则a 的取值范围是( ) A.a<1 B.a>1 C.a ≤1 D.a ≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.12B.13C.15D.1614.如图,直线l:y=-23x-3与直线y=a(a 为常数)的交点在第四象限,则a 可能在( )A.1<a<2B.-2<a<0C.-3≤a ≤-2D.-10<a<-415.如图,点A,B 为定点,定直线l ∥AB,P 是l 上一动点,点M,N 分别为PA,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长; ③△PMN 的面积;④直线MN,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( ) A.②③B.②⑤C.①③④D.④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以第Ⅱ卷(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若|a|=2 0150,则a= . 18.若a=2b ≠0,则a 2-b 2a 2-ab 的值为 .19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2= °.20.如图,∠BOC=9°,点A 在OB 上,且OA=1.按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下: -3x=x2-5x+1.(1)求所捂的二次三项式;(2)若x=√6+1,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;证明:(3)用文字叙述所证命题的逆命题为.23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小.①求y与x小的函数关系式(不必写出x小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产A,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B 产品单价变化统计表第一次 第二次 第三次 A 产品单价(元/件) 6 5.2 6.5 B 产品单价(元/件)3.543并求得了A 产品三次单价的平均数和方差:x A =5.9;s A 2=13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150. (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m>0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.25.(本小题满分11分)如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y C,求y C的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分...,且这两部分的比是1∶4时,求h的值.26.(本小题满分14分)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).图1发现(1)当α=0°,即初始位置时,点P 直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B;(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小,并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求α及S阴影.图2拓展如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.图3探究当半圆K与矩形ABCD的边相切时,求sinα的值.备用图答案全解全析:一、选择题1.A 原式=3-(-2)=3+2=5,故选A.2.A 根据在一个数的前面加上负号就是这个数的相反数,知1的相反数是-1,故选A.3.C 可以动手操作,也可根据对折的顺序及菱形的对称性来判断.选C.4.DA.(12)-1=2,本选项错误; B.6×107=60 000 000,本选项错误; C.(2a)2=4a 2,本选项错误;D.a 3·a 2=a 3+2=a 5,本选项正确,故选D. 5.B 根据主视图排除选项A,C,D,故选B.6.B 外心即为三角形外接圆的圆心,∵△ACF 的顶点F 不在圆O 上,∴圆O 不是△ACF 的外接圆,∴点O 不是△ACF 的外心,故选B.7.C ∵2.82=7.84,2.92=8.41,∴√2.82<√8<√2.92,故选C. 8.C 延长AC 交直线EF 于点G,∵AB ∥EF,∴∠BAC=∠CGD=50°,∵∠ACD 是△CDG 的外角,∴∠ACD=∠CGD+∠CDG=50°+90°=140°,故选C.9.D 本题考查方向角的简单识别,选D.10.C 由题意设y=k x (k>0,x>0),因为当x=2时,y=20,所以k=40,故选C.11.D 解二元一次方程组时,在消去一个未知数之前应先计算方程组的各个方程中这个未知数的系数的最小公倍数,然后进行消元,选项D 正确.12.B 由题意知Δ=4-4a<0,∴a>1,故选B.13.B ∵任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数有6种情况,与点数3相差2的点数为1或5,∴任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数与点数3相差2的概率为26=13.故选B.14.D 直线y=-23x-3与y 轴的交点坐标为(0,-3),若直线y=a 与直线y=-23x-3的交点在第四象限,则a<-3,故选D.15.B ∵点M,N 分别为PA,PB 的中点,∴无论点P 怎样移动,总有MN=12AB,直线l 与直线MN 的距离及直线MN,AB 之间的距离不变,所以选项①③④中的值不变.随着点P 的移动,点P 与点A,B 的距离及∠APB 的大小发生变化,故选B.16.A 将甲纸片拼成如图1所示的正方形,其面积与原来矩形的面积相等,将乙纸片拼成如图2所示的正方形,其面积与原来矩形的面积相等,故选A.图1 图2二、填空题17.答案 ±1解析 ∵|a|=2 0150=1,∴a=±1. 18.答案 32解析 ∵a=2b ≠0,∴原式=(a+b)(a -b)a(a -b)=a+b a =2b+b 2b =32. 19.答案 24解析 正三角形、正方形、正五边形、正六边形的每个内角的度数分别为60°、90°、108°、120°,由题图可知∠3=90°-60°=30°,∠1=120°-108°=12°,∠2=108°-90°=18°,所以∠3+∠1-∠2=30°+12°-18°=24°.20.答案 9解析 由题意可知:AO=A 1A,A 1A=A 2A 1,……,则∠AOA 1=∠OA 1A,∠A 1AA 2=∠A 1A 2A,……,∵∠BOC=9°,∴∠A 1AB=2×9°=18°,∠A 2A 1C=27°,∠A 3A 2B=36°,∠A 4A 3C=45°,……, ∴9°(n+1)=90°,解得n=9. 三、解答题21.解析 (1)设所捂的二次三项式为A,则A=x 2-5x+1+3x(2分)=x 2-2x+1.(4分)(2)若x=√6+1,则A=(x-1)2(6分)=(√6+1-1)2(7分)=6.(10分)22.解析 (1)CD.(1分)平行.(2分)(2)证明:连结BD.(3分)在△ABD和△CDB中,∵AB=CD,AD=CB,BD=DB,∴△ABD≌△CDB.(5分)∴∠1=∠2,∠3=∠4,∴AB∥CD,AD∥CB.(7分)∴四边形ABCD是平行四边形.(8分)(3)平行四边形的对边相等.(10分)23.解析(1)y=4x大+210.(3分)(2)①当x大=6时,y=4×6+210=234.∴y=3x小+234;(7分)②依题意,得3x小+234≤260,解得x小≤82,(9分)3∵x小为自然数,∴x小最大为8,即最多能放入8个小球.(10分)评析一次函数的应用问题大多数以生活情境为背景命题,解答此类试题,应在弄懂题意的前提下,建立函数模型,然后结合函数性质以及方程(组),不等式知识作答.24.解析(1)如图所示.(2分)25.(4分)(2)x B=1(3.5+4+3)=3.5,s B 2=(3.5-3.5)2+(4-3.5)2+(3-3.5)2 =16.(7分)∵16<43150,∴B 产品的单价波动小.(8分)(3)第四次调价后,对于A 产品,这四次单价的中位数为6+6.52=254;(9分)对于B 产品,∵m>0,∴第四次单价大于3.又∵3.5+42×2-1=132>254, ∴第四次单价小于4.∴3(1+m%)+3.52×2-1=254,(10分)∴m=25.(11分)25.解析 (1)把x=2,y=1代入y=-(x-h)2+1,得h=2.∴解析式为y=-(x-2)2+1(或y=-x 2+4x-3).(2分)对称轴为直线x=2,顶点为B(2,1).(4分)(2)点C 的横坐标为0,则y C =-h 2+1,∴当h=0时,y C 有最大值,为1.(5分)此时,l 为y=-x 2+1,对称轴为y 轴,当x ≥0时,y 随着x 的增大而减小, ∴x 1>x 2≥0时,y 1<y 2.(7分)(3)把线段OA 分成1∶4两部分的点为(-1,0)或(-4,0).把x=-1,y=0代入y=-(x-h)2+1,得h=0或h=-2. 但h=-2时,线段OA 被分为三部分,不合题意,舍去.同样,把x=-4,y=0代入y=-(x-h)2+1,得h=-5或h=-3(舍去). ∴h 的值为0或-5.(11分)26.解析 发现 (1)在.(1分)当OQ 过点B 时,在Rt △OAB 中,AO=AB,得∠DOQ=∠ABO=45°,∴α=60°-45°=15°.(3分)(2)如图1,连结AP,有OA+AP ≥OP,当OP 过点A,即α=60°时等号成立.∴AP ≥OP-OA=2-1=1.∴当α=60°时,P,A 间的距离最小.(5分)PA 的最小值为1.(6分)图1(3)如图1,设半圆K 与PC 交点为R,连结RK,过点P 作PH ⊥AD 于点H,过点R 作RE ⊥KQ 于点E.在Rt △OPH 中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°-30°=30°.(7分)由AD ∥BC 知,∠RPQ=∠POH=30°.∴∠RKQ=2×30°=60°.∴S 扇形RKQ =60π(12)2360=π24.在Rt △RKE 中,RE=RK ·sin 60°=√34, ∴S △RKP =12PK ·RE=√316.∴S 阴影=π24+√316.(8分)拓展 如图3,∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON ∽△BMN,∴AN BN =AO BM ,即1-BN BN =1x, ∴BN=x x+1.(10分)如图2,当点Q 落在BC 上时,x 取最大值,作QF ⊥AD 于点F.图2BQ=AF=√OQ 2-QF 2-AO=√32-12-1=2√2-1.∴x 的取值范围是0<x ≤2√2-1.(11分)[注:如果考生答“x ≤2√2-1或x<2√2-1”均不扣分]探究 半圆与矩形相切,分三种情况:①如图3,半圆K 与BC 切于点T,设直线KT 与AD 和OQ 的初始位置所在直线分别交于点S,O',则∠KSO=∠KTB=90°,作KG ⊥OO'于点G.图3Rt △OSK 中,OS=√OK 2-SK 2=√(5)2-(3)2=2. Rt △OSO'中,SO'=OS ·tan 60°=2√3,KO'=2√3-32.Rt △KGO'中,∠O'=30°,∴KG=12KO'=√3-34.∴Rt △OGK 中,sin α=KG =√3-3452=4√3-3.②半圆K 与AD 切于点T,如图4,图4同理可得sin α=KG OK =12O'K 52=12(O'T -KT)52=√(52)2-(12)2×√3-125=6√2-110.③当半圆K 与CD 相切时,点Q 与点D 重合,且为切点. ∴α=60°,∴sin α=sin 60°=√32.综上所述,sin α的值为4√3-310或6√2-110或√32.(14分)。

2015年河北省中考数学试卷和解析答案

2015年河北省中考数学试卷和解析答案

2015年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题地四个选项中只有一个是正确地)1.(3分)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.62.(3分)下列说法正确地是()A.1地相反数是﹣1 B.1地倒数是﹣1C.1地立方根是±1 D.﹣1是无理数3.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后地图案是()A.B.C.D.4.(3分)下列运算正确地是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a55.(3分)如图所示地三视图所对应地几何体是()A.B.C.D.6.(3分)如图,AC,BE是⊙O地直径,弦AD与BE交于点F,下列三角形中,外心不是点O地是()A.△ABE B.△ACF C.△ABD D.△ADE7.(3分)在数轴上标注了四段范围,如图,则表示地点落在()A.段①B.段②C.段③D.段④8.(3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°9.(3分)已知:岛P位于岛Q地正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件地示意图是()A.B.C.D.10.(3分)一台印刷机每年可印刷地书本数量y(万册)与它地使用时间x(年)成反比例关系,当x=2时,y=20.则y与x地函数图象大致是()A.B.C.D.11.(2分)利用加减消元法解方程组,下列做法正确地是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2 12.(2分)若关于x地方程x2+2x+a=0不存在实数根,则a地取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥113.(2分)将一质地均匀地正方体骰子掷一次,观察向上一面地点数,与点数3相差2地概率是()A.B.C.D.14.(2分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣415.(2分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB地中点,对下列各值:①线段MN地长;②△PAB地周长;③△PMN地面积;④直线MN,AB之间地距离;⑤∠APB地大小.其中会随点P地移动而变化地是()A.②③B.②⑤C.①③④D.④⑤16.(2分)如图是甲、乙两张不同地矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等地正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以二.填空题(4个小题,每小题3分,共12分)17.(3分)若|a|=20150,则a=.18.(3分)若a=2b≠0,则地值为.19.(3分)平面上,将边长相等地正三角形、正方形、正五边形、正六边形地一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.20.(3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求地线段了,则n=.三.解答题(共6个小题,共66分)21.(10分)老师在黑板上书写了一个正确地演算过程,随后用手掌捂住了如图所示地一个二次三项式,形式如图:(1)求所捂地二次三项式;(2)若x=+1,求所捂二次三项式地值.22.(10分)嘉淇同学要证明命题“两组对边分别相等地四边形是平行四边形”是正确地,她先用尺规作出了如图1地四边形ABCD,并写出了如下不完整地已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)填空,补全已知和求证;(2)按嘉淇地想法写出证明;(3)用文字叙述所证命题地逆命题为.23.(10分)水平放置地容器内原有210毫米高地水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中地所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大地函数关系式(不必写出x大地范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小地函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(11分)某厂生产A ,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化地情况,绘制了如表统计表及不完整地折线图. A ,B 产品单价变化统计表并求得了A 产品三次单价地平均数和方差:=5.9,s A 2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B 产品单价变化地折线图.B 产品第三次地单价比上一次地单价降低了 %(2)求B 产品三次单价地方差,并比较哪种产品地单价波动小;(3)该厂决定第四次调价,A 产品地单价仍为6.5元/件,B 产品地单价比3元/件上调m%(m >0),使得A 产品这四次单价地中位数是B 产品四次单价中位数地2倍少1,求m 地值.25.(11分)如图,已知点O (0,0),A (﹣5,0),B (2,1),抛物线l :y=﹣(x ﹣h )2+1(h 为常数)与y 轴地交点为C .(1)l 经过点B ,求它地解析式,并写出此时l 地对称轴及顶点坐标;(2)设点C 地纵坐标为y c ,求y c 地最大值,此时l 上有两点(x 1,y 1),(x 2,y 2),其中x1>x2≥0,比较y1与y2地大小;(3)当线段OA被l只分为两部分,且这两部分地比是1:4时,求h地值.26.(14分)平面上,矩形ABCD与直径为QP地半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间地距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x地代数式表示BN地长,并求x地取值范围.探究:当半圆K与矩形ABCD地边相切时,求sinα地值.2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题地四个选项中只有一个是正确地)1.(3分)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.6【分析】先算乘法,再算减法,由此顺序计算即可.【解答】解:原式=3﹣(﹣2)=3+2=5.故选:A.2.(3分)下列说法正确地是()A.1地相反数是﹣1 B.1地倒数是﹣1C.1地立方根是±1 D.﹣1是无理数【分析】根据相反数、倒数、立方根,即可解答.【解答】解:A、1地相反数是﹣1,正确;B、1地倒数是1,故错误;C、1地立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.3.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后地图案是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中地顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选:C.4.(3分)下列运算正确地是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a5【分析】A:根据负整数指数幂地运算方法判断即可.B:科学记数法a×10n表示地数“还原”成通常表示地数,就是把a地小数点向右移动n位所得到地数,据此判断即可.C:根据积地乘方地运算方法判断即可.D:根据同底数幂地乘法法则判断即可.【解答】解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.5.(3分)如图所示地三视图所对应地几何体是()A.B.C.D.【分析】对所给四个几何体,分别从主视图和俯视图进行判断.【解答】解:从主视图可判断A,C、D错误.故选:B.6.(3分)如图,AC,BE是⊙O地直径,弦AD与BE交于点F,下列三角形中,外心不是点O地是()A.△ABE B.△ACF C.△ABD D.△ADE【分析】利用外心地定义,外心:三角形外接圆地圆心是三角形三条边垂直平分线地交点,叫做三角形地外心,进而判断得出即可.【解答】解:如图所示:只有△ACF地三个顶点不都在圆上,故外心不是点O地是△ACF.故选:B.7.(3分)在数轴上标注了四段范围,如图,则表示地点落在()A.段①B.段②C.段③D.段④【分析】根据数地平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴地点落在段③,故选:C.8.(3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°【分析】如图,作辅助线;首先运用平行线地性质求出∠DGC地度数,借助三角形外角地性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选:C.9.(3分)已知:岛P位于岛Q地正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件地示意图是()A.B.C.D.【分析】根据方向角地定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.10.(3分)一台印刷机每年可印刷地书本数量y(万册)与它地使用时间x(年)成反比例关系,当x=2时,y=20.则y与x地函数图象大致是()A.B.C.D.【分析】设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x地函数图象.【解答】解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x地函数图象大致是C,故选:C.11.(2分)利用加减消元法解方程组,下列做法正确地是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2【分析】方程组利用加减消元法求出解即可.【解答】解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选:D.12.(2分)若关于x地方程x2+2x+a=0不存在实数根,则a地取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1【分析】根据根地判别式得出b2﹣4ac<0,代入求出不等式地解集即可得到答案.【解答】解:∵关于x地方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选:B.13.(2分)将一质地均匀地正方体骰子掷一次,观察向上一面地点数,与点数3相差2地概率是()A.B.C.D.【分析】由一枚质地均匀地正方体骰子地六个面上分别刻有1到6地点数,掷一次这枚骰子,向上地一面地点数为与点数3相差2地有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀地正方体骰子地六个面上分别刻有1到6地点数,掷一次这枚骰子,向上地一面地点数为点数3相差2地有2种情况,∴掷一次这枚骰子,向上地一面地点数为点数3相差2地概率是:=.故选:B.14.(2分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【分析】先求出直线y=﹣x﹣3与y轴地交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.【解答】解:∵直线y=﹣x﹣3与y轴地交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,∴a<﹣3.故选:D.15.(2分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB地中点,对下列各值:①线段MN地长;②△PAB地周长;③△PMN地面积;④直线MN,AB之间地距离;⑤∠APB地大小.其中会随点P地移动而变化地是()A.②③B.②⑤C.①③④D.④⑤【分析】根据三角形地中位线平行于第三边并且等于第三边地一半可得MN=AB,从而判断出①不变;再根据三角形地周长地定义判断出②是变化地;确定出点P到MN地距离不变,然后根据等底等高地三角形地面积相等确定出③不变;根据平行线间地距离相等判断出④不变;根据角地定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB地中点,∴MN是△PAB地中位线,∴MN=AB,即线段MN地长度不变,故①错误;PA、PB地长度随点P地移动而变化,所以,△PAB地周长会随点P地移动而变化,故②正确;∵MN地长度不变,点P到MN地距离等于l与AB地距离地一半,∴△PMN地面积不变,故③错误;直线MN,AB之间地距离不随点P地移动而变化,故④错误;∠APB地大小点P地移动而变化,故⑤正确.综上所述,会随点P地移动而变化地是②⑤.故选:B.16.(2分)如图是甲、乙两张不同地矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等地正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以【分析】根据图形可得甲可以拼一个边长为地正方形,图乙可以拼一个边长为地正方形.【解答】解:所作图形如图所示,甲乙都可以拼一个与原来面积相等地正方形.故选:A.二.填空题(4个小题,每小题3分,共12分)17.(3分)若|a|=20150,则a=±1.【分析】先根据0次幂,得到|a|=1,再根据互为相反数地绝对值相等,即可解答.【解答】解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.18.(3分)若a=2b≠0,则地值为.【分析】把a=2b代入原式计算,约分即可得到结果.【解答】解:∵a=2b,∴原式==,故答案为:19.(3分)平面上,将边长相等地正三角形、正方形、正五边形、正六边形地一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形地每个内角地度数是多少,然后分别求出∠3、∠1、∠2地度数是多少,进而求出∠3+∠1﹣∠2地度数即可.【解答】解:正三角形地每个内角是:180°÷3=60°,正方形地每个内角是:360°÷4=90°,正五边形地每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形地每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.20.(3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求地线段了,则n= 9.【分析】根据等腰三角形地性质和三角形外角地性质依次可得∠A1AB地度数,∠A2A1C地度数,∠A3A2B地度数,∠A4A3C地度数,…,依此得到规律,再根据三角形外角小于90°即可求解.【解答】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°地度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.三.解答题(共6个小题,共66分)21.(10分)老师在黑板上书写了一个正确地演算过程,随后用手掌捂住了如图所示地一个二次三项式,形式如图:(1)求所捂地二次三项式;(2)若x=+1,求所捂二次三项式地值.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x地值代入计算即可求出值.【解答】解:(1)设所捂地二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.22.(10分)嘉淇同学要证明命题“两组对边分别相等地四边形是平行四边形”是正确地,她先用尺规作出了如图1地四边形ABCD,并写出了如下不完整地已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)填空,补全已知和求证;(2)按嘉淇地想法写出证明;(3)用文字叙述所证命题地逆命题为平行四边形两组对边分别相等.【分析】(1)命题地题设为“两组对边分别相等地四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD 是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行地四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等地四边形是平行四边形”地题设和结论对换可得平行四边形两组对边分别相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字叙述所证命题地逆命题为:平行四边形两组对边分别相等.23.(10分)水平放置地容器内原有210毫米高地水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中地所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大地函数关系式(不必写出x大地范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小地函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?【分析】(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面地高度+放入小球上面地高度,即可解答;②根据题意列出不等式,即可解答.【解答】解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.24.(11分)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化地情况,绘制了如表统计表及不完整地折线图.A,B产品单价变化统计表并求得了A产品三次单价地平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化地折线图.B产品第三次地单价比上一次地单价降低了25%(2)求B产品三次单价地方差,并比较哪种产品地单价波动小;(3)该厂决定第四次调价,A产品地单价仍为6.5元/件,B产品地单价比3元/件上调m%(m>0),使得A产品这四次单价地中位数是B产品四次单价中位数地2倍少1,求m地值.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价地中位数,然后确定第四次调价地范围,根据“A产品这四次单价地中位数是B产品四次单价中位数地2倍少1”列式求m即可.【解答】解:(1)如图2所示:B产品第三次地单价比上一次地单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品地方差小,∴B产品地单价波动小;(3)第四次调价后,对于A产品,这四次单价地中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.25.(11分)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴地交点为C.(1)l经过点B,求它地解析式,并写出此时l地对称轴及顶点坐标;(2)设点C地纵坐标为y c,求y c地最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2地大小;(3)当线段OA被l只分为两部分,且这两部分地比是1:4时,求h地值.【分析】(1)把点B地坐标代入函数解析式,列出关于h地方程,借助于方程可以求得h地值;利用抛物线函数解析式得到该图象地对称轴和顶点坐标;(2)把点C地坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数地最值地求法易得y c地最大值,并可以求得此时抛物线地解析式,根据抛物线地增减性来求y1与y2地大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分地比是1:4”可以推知把线段OA被l只分为两部分地点地坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点地坐标特征可以求得h地值.【解答】解:(1)把点B地坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l地对称轴为x=2,顶点坐标是(2,1);(2)点C地横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x地增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分地比是1:4,且O(0,0),A (﹣5,0),∴把线段OA被l只分为两部分地点地坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h地值是0或﹣5.26.(14分)平面上,矩形ABCD与直径为QP地半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间地距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x地代数式表示BN地长,并求x地取值范围.探究:当半圆K与矩形ABCD地边相切时,求sinα地值.【分析】(1)在,当OQ过点B时,在R t△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图2,连接AP,由OA+AP≥OP,当OP过点A,即α=60°时,等号成立,于是有AP≥OP﹣OA=2﹣1=1,当α=60°时,P、A之间地距离最小,即可求得结果(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到结果;拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,求出x地取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD地边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ地初始位置所在地直线分别交于点S,O′,于是得到∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,求出OS==2,在R t△OSO′中,SO′=OS•tan60°=2,KO′=2﹣在R t△KGO′中,∠O′=30°,求得KG=KO′=﹣,在R t△OGK中,求得结果;②当半圆K与AD相切于T,如图6,同理可得sinα地值③当半圆K与CD切线时,点Q与点D重合,且为切点,得到α=60°于是结论可求.【解答】解:发现:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,∴∠DOQ=∠ABO=45°,∴α=60°﹣45°=15°;(2)如图2,连接AP,∵OA+AP≥OP,当OP过点A,即α=60°时,等号成立,∴AP≥OP﹣OA=2﹣1=1,∴当α=60°时,P、A之间地距离最小,∴PA地最小值=1;(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在Rt△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,==,∴S扇形KRQ在Rt△RKE中,RE=RK•sin60°=,∴S=•RE=,∴S阴影=+;△PRK拓展:如图5,∵∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON∽△BMN,∴,即,∴BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,∴x地取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD地边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ地初始位置所在地直线分别交于点S,O′,则∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,OS==2,在Rt△OSO′中,SO′=OS•tan60°=2,KO′=2﹣,在Rt△KGO′中,∠O′=30°,∴KG=KO′=﹣,∴在Rt△OGK中,sinα===,②当半圆K与AD相切于T,如图6,同理可得sinα====;③当半圆K与CD切线时,点Q与点D重合,且为切点,∴α=60°,∴sinα=sin60,综上所述sinα地值为:或或.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2015河北中考数学试题及答案word

2015河北中考数学试题及答案word

2015河北中考数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 2x - 3 = 5x + 1C. 2x + 3 = 5x + 1D. 2x - 3 = 5x - 1答案:D2. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个数的平方是36,那么这个数是多少?A. ±6B. 6C. -6D. 36答案:A4. 一个等腰三角形的底边长为6厘米,高为4厘米,那么它的周长是多少?A. 16厘米B. 18厘米C. 20厘米D. 22厘米答案:B5. 一个数列的前三项分别是2,4,8,那么第四项是多少?A. 16B. 32C. 64D. 128答案:A6. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = 3xD. y = 1/x答案:C7. 下列哪个选项是正确的?A. 3x^2 - 6x = 3x(x - 2)B. 3x^2 - 6x = 6x(x - 1)C. 3x^2 - 6x = 3x^2 - 2xD. 3x^2 - 6x = 6x^2 - 3x答案:A8. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,那么它的体积是多少立方厘米?A. 24B. 36C. 48D. 72答案:A9. 下列哪个选项是正确的?A. √16 = ±4B. √16 = 4C. √16 = -4D. √16 = 16答案:B10. 如果一个角的补角是120°,那么这个角是多少度?A. 60°B. 30°C. 90°D. 120°答案:B二、填空题(每题3分,共30分)1. 一个数的相反数是-5,那么这个数是____。

答案:52. 如果一个角的余角是45°,那么这个角是____。

(完整word版)2015年河北省中考数学试题及答案,推荐文档

(完整word版)2015年河北省中考数学试题及答案,推荐文档

2015年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:=-⨯-)1(23 ( )A. 5B.1C.-1D.62.下列说法正确的是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展开铺平后的图案( )4.下列运算正确的是( )A.21211-=⎪⎭⎫⎝⎛- B.60000001067=⨯ C.()2222aa= D.523aaa=⋅5.图2中的三视图所对应的几何体是( )A B图1—1 图1—3图1—2DC6.如图3,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是..点O 的是( ) A.△ABE B.△ACF C.△ABD D.△ADE7.在数轴上标注了四段范围,如图4,则表示8的点落在( )A.段①B.段 ②C.段③D.段④8.如图5,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A.120°B.130°C.140°D.150°9.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )10.一台印刷机每年印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y 与x 的函数图像大致是( )图4图3图511.利用加减消元法解方程组⎩⎨⎧=--=+②①635 1052y x y x ,下列做法正确的是( )A.要消去y ,可以将25⨯+⨯②①B.要消去x ,可以将)5(3-⨯+⨯②①C.要消去y ,可以将35⨯+⨯②①D.要消去x ,可以将2)5(⨯+-⨯②① 12.若关于x 的方程022=++a x x 不存在...实数根,则a 的取值范围是( ) A.a<1 B.a>1 C.a ≤1 D.a ≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A.21B.31C.51D.6114.如图6,直线332:--=x y l 与直线a y =(a 为常数)的交点在第四象限,则a 可能在( )A.21<<aB.02<<-aC.23-≤≤-aD.410-<<-a15.如图7,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对于下列各值: ①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( ) A.②③ B.②⑤ C.①③④ D.④⑤16.图8是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)图6图7图817.若02015=a ,则=a18.若02≠=b a ,则aba b a --222的值为 19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图9,则∠3+∠1-∠2= °20.如图10,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2; 再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=三、解答题(本大题共6个小题,共66分。

河北省中考数学试题及解析(2015)

河北省中考数学试题及解析(2015)

河北省中考数学试卷(2015)一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)3.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()C D)5.如图所示的三视图所对应的几何体是()C D6.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O 的是()7.在数轴上标注了四段范围,如图,则表示的点落在()8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()9.已知:岛P位于岛Q的正西方,由岛P,Q 分别测得船R位于南偏东30°和南偏西45°C .D .10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,B C.D11.利用加减消元法解方程组,下列做法正确的是()213.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是C D14.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()二.填空题(4个小题,每小题3分,共12分)17.若|a|=20150,则a=.18.若a=2b≠0,则的值为.19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.20.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.三.解答题(共6个小题,共66分)21.老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.22.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.23.水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.并求得了A产品三次单价的平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)3.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()C D)解:∵5.如图所示的三视图所对应的几何体是()C D6.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O 的是()7.在数轴上标注了四段范围,如图,则表示的点落在()的点落在段8.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )9.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°C .D .10.一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系, B C . D (,11.利用加减消元法解方程组,下列做法正确的是()利用加减消元法解方程组213.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是C D=.14.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()xx15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()MN=AB16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()二.填空题(4个小题,每小题3分,共12分)18.若a=2b≠0,则的值为.=,故答案为:19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.20.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.三.解答题(共6个小题,共66分)21.老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.+1﹣﹣22.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.23.水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?解得:24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.产品第三次的单价比上一次的单价降低了=25%)(=,产品,这四次单价的中位数为=;﹣,×1=25.如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.=,=•RE=,∴=+,即BN=BQ=AF=AO=2≤OS==2﹣,KG=﹣,==sin60的值为:.。

2015年河北中考数学试题及答案word版

2015年河北中考数学试题及答案word版

2015年河北中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2是最小的质数B. 0是最小的自然数C. 1是最小的正整数D. 0是最小的有理数答案:A2. 以下哪个数是无理数?A. 0.33333B. πC. 0.5D. √4答案:B3. 已知a=2,b=3,下列哪个表达式的结果最大?A. a+bB. a-bC. abD. a/b答案:C4. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 21C. 26D. 31答案:B5. 下列哪个函数是一次函数?A. y=x^2B. y=3x+1C. y=1/xD. y=x^3答案:B6. 一个圆的半径为3,那么这个圆的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C7. 已知一个角的补角是120°,那么这个角的度数是多少?A. 30°B. 60°C. 90°D. 120°答案:A8. 一个长方体的长、宽、高分别为4、3、2,那么这个长方体的体积是多少?A. 24B. 36C. 48D. 60答案:A9. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A10. 一个数的绝对值是7,那么这个数可能是?A. 7B. -7C. 7或-7D. 0答案:C二、填空题(每题3分,共15分)11. 一个数的平方是36,那么这个数可能是______或______。

答案:6或-612. 一个三角形的内角和是______度。

答案:18013. 一个数的立方是-8,那么这个数是______。

答案:-214. 如果一个数的绝对值是它本身,那么这个数是非负数,即它可能是______或______。

答案:正数或015. 一个圆的直径是10,那么这个圆的周长是______π。

答案:10三、解答题(共55分)16. 已知一个直角三角形的两条直角边长分别为3和4,求这个直角三角形的斜边长。

2015年河北省中考数学试题及答案(word版),推荐文档

2015年河北省中考数学试题及答案(word版),推荐文档

4.下列运算正确的是()2015年河北省初中毕业生升学文化课考试数学试卷、选择题(本大题共16个小题, 1 —10小题,每小题3分;11 —16小题,每小题2分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:3 2(1)()A. 5B.1C.2.下列说法正确的是()A.1的相反数是一1B.1—1 D.6的倒数是—1 C.1 的立方根是土 1 D. —1是无理数3. 一张菱形纸片按图1—1、图1—2依次对折后,再按图1—3打出一个圆形小孔,则展开铺平后的图案()图1 —3A B C DA. 2B. 6 107 6000000C. 2a2a2D. a3 a2 a5主视图左视图E26.如图3,ACBE 是。

0的直径,弦AD 与BE 交于点F,下列三角形中,外心不是点0的是() C ⑶2.62.82.9B()\c)EFDooP RQRBQc*RD)y 万册A B图5图4图34伊向上,符合条件的示意图是()10. 一台印刷机每年印刷的书本数量 y (万册)与它的使用时间x (年)成反比例关系,当x=2时,A. △ ABEB. △ ACF△ ABD D. △ ADE9.已知:岛P 位于岛Q 的正西方,由岛 Q 分别测得船R 位于南偏东30°和南偏西45°方 y=20,则y 与x 的函数图像大致是( 7.在数轴上标注了四段范围,如图 A.段① B.段②C.段③4,则表示,8的点落在D.段④8.如图 5, AB// EF ,CDL EF,/BAC=50,则/ACD=( A.120 °B.130C.140 °D.15017.若 a 2015°,贝U aA.a<1B.a>1C.a < 1D.a > 113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数 15.如图7,点A ,B 为定点,定直线I // AB P 是I 上一动点,点 M N 分别为PA PB 的中点,对于下列各值:① 线段MN 勺长;②厶PAB 的周长;③厶PMN 勺面积;④直线MN AB 之间的距离; ⑤/ APB 的大小.其中会随点P 的移动而变化的是() A.②③ B.②⑤ C.①③④ D.④⑤16.图8是甲、乙两张不同的矩形纸片,将它们分别沿着虚 线剪开后,各自要拼一个与原来面积相等的正方形,则 ()A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D. 甲可以,乙不可以、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横5x DA.要消去y ,可以将①5 5y 3y10①,下列做法正确的是()B. 要消去x ,可以将①3②( 5)C.要消去y ,可以将①5 12.若关于x 的方程x 2 2xD. 要消去x ,可以将①(5)a 0不存在实数根,则a 的取值范围是( 相差2的概率是( )A. 1B. 1C. 1 D123 5 614. 如图 6, 直线i:y f x3与直线y 限, 则a 可i 能在( )A. 1 . a 2 1B.2 a 0C.3 a 2 D. 10 a 4a ( a 为常数)的交点在第四象 J L'1图6、T-z _甲线上)2 218. 若a 2b 0,则a2b的值为 a ab19. 平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图9,则/ 3+Z 1-Z 2= __________ °20. 如图10,/ BOC=9,点A在OB上,且OA=1按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A,得第1条线段AA;再以A为圆心,1为半径向右画弧交OB于点A,得第2条线段AA;再以A为圆心,1为半径向右画弧交OC于点A,得第3条线段AA;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=三、解答题(本大题共6个小题,共66分。

2015年河北中考数学总复习(小开)

2015年河北中考数学总复习(小开)

观察运算种类,确定运算顺序,把握每步的运算法则和符号,灵活运用运算律. 实数的大小比较 1 【例 2】(1)若 0<x<1,则 x, ,x2 的大小关系是( C ) x 1 1 A. <x<x2 B.x< <x2 x x 1 1 2 2 C.x <x< D. <x <x x x (2)(2014· 南京)下列无理数中,在-2 与 1 之间的是( B ) A.- 5 B.- 3 C. 3 D. 5
实数的大 5 估算无理数的大小 选择题 2
实数的运算 1.在实数范围内,加、减、乘、除(除数不为 0)、乘方都可以进行,但开方运算不一定 能进行,正实数和 0 总能进行开方运算,而负实数只能开立方,不能________. 2.有理数的一切运算性质和运算律都适用于实数运算. 3.实数的运算顺序:先算________、开方,再算乘除,最后算________,有括号要先算 括号内的,若没有括号,在同一级运算中,要从________至________依次进行运算. 4.实数的混合运算经常把零指数幂、负整数指数幂、绝对值、根式、三角函数等知识结 合起来,解 - 这类问题时,应明确各种运算的含义,如:a0=________(a≠0),a p=________(a≠0,p 是正整数). 实数的大小比较 1.数轴比较:将两个实数分别表示在数轴上,右边的数总比________大. 2.差值比较:若 a,b 是任意两个实数,则 a-b>0⇔a______b,a-b<0⇔a______b,a -b=0⇔a______b. 3.绝对值比较:若 a,b 是两个负数,则|a|>|b|⇔a______b,|a|<|b|⇔a______b. 4.除此之外,还有商值比较法、平方法、倒数法 等. 实数的运算 1- 【例 1】(2014· 泸州)计算: 12-4sin60°+(π+2)0+( ) 2. 2 3 解:原式=2 3-4³ +1+4=5 2

2015年河北省中考数学试题及答案word版

2015年河北省中考数学试题及答案word版

2015年河北省中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 22/7答案:B2. 一个等腰三角形的底边长为6cm,腰长为8cm,其周长是多少?A. 22cmB. 26cmC. 30cmD. 40cm答案:B3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个数的平方是25,这个数是多少?A. 5B. -5C. 5或-5D. 以上都不对答案:C5. 下列哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 菱形答案:D6. 下列哪个选项是方程2x-3=7的解?A. x=-1B. x=5C. x=3D. x=10答案:B7. 一个圆的直径是10cm,其半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A8. 一个扇形的圆心角是60°,半径是5cm,其面积是多少?A. 5π cm²B. 10π cm²C. 15π cm²D. 25π cm²答案:B9. 一个长方体的长、宽、高分别是2cm、3cm、4cm,其体积是多少?A. 24cm³B. 26cm³C. 28cm³D. 30cm³答案:A10. 一个正数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 9答案:A二、填空题(每题3分,共15分)11. 一个数的立方是8,这个数是______。

答案:212. 一个数的绝对值是5,这个数可能是______或______。

答案:5或-513. 一个数的相反数是-7,这个数是______。

答案:714. 一个数除以-2等于3,这个数是______。

答案:-615. 一个数的平方根是4,这个数是______。

2015年河北省中考数学试卷及解析

2015年河北省中考数学试卷及解析

2015年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=()A .5 B.1 C.﹣1 D.62.(3分)(2015•河北)下列说法正确的是()A .1的相反数是﹣1 B.1的倒数是﹣1C .1的立方根是±1 D.﹣1是无理数3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A .B.C.D.4.(3分)(2015•河北)下列运算正确的是()A .()﹣1=﹣B.6×107=6000000C .(2a)2=2a2D.a3•a2=a55.(3分)(2015•河北)如图所示的三视图所对应的几何体是()A .B.C.D.6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A .△ABE B.△ACF C.△ABD D.△ADE7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A .段①B.段②C.段③D.段④8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A .120°B.130°C.140°D.150°9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A .B.C.D.10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A .B.C.D.11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A .要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C要消去y,可以将①×5+②×3 D要消去x,可以将①×(﹣5)+②×2..12.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A .a<1 B.a>1 C.a≤1 D.a≥113.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A .B.C.D.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a 可能在()A .1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣415.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A .②③B.②⑤C.①③④D.④⑤16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A .甲、乙都可以B.甲、乙都不可以C .甲不可以、乙可以D.甲可以、乙不可以二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a= .18.(3分)(2015•河北)若a=2b≠0,则的值为.19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= .20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了% (2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P 直线AB上.(填“在”或“不在”)求当α是多少时,OQ 经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=()A .5 B.1 C.﹣1 D.6考点:有理数的混合运算.分析:先算乘法,再算减法,由此顺序计算即可.解答:解:原式=3﹣(﹣2)=3+2=5.故选:A.点评:此题考查有理数的混合运算,掌握运算顺序与符号的判定是解决问题的关键.2.(3分)(2015•河北)下列说法正确的是()A .1的相反数是﹣1 B.1的倒数是﹣1C .1的立方根是±1 D.﹣1是无理数考点:立方根;相反数;倒数;无理数.分析:根据相反数、倒数、立方根,即可解答.解答:解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.点评:本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A .B.C.D.考剪纸问题.点:分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.点评:此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.4.(3分)(2015•河北)下列运算正确的是()A .()﹣1=﹣B.6×107=6000000C .(2a)2=2a2D.a3•a2=a5考点:幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.分析:A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n 位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.5.(3分)(2015•河北)如图所示的三视图所对应的几何体是()A .B.C.D.考点:由三视图判断几何体.分析:对所给四个几何体,分别从主视图和俯视图进行判断.解答:解:从主视图可判断A错误;从俯视图可判断C、D错误.故选B.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A .△ABE B.△ACF C.△ABD D.△ADE考点:三角形的外接圆与外心.分析:利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.解答:解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.点评:此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键.7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A .段①B.段②C.段③D.段④考点:估算无理数的大小;实数与数轴.分析:根据数的平方,即可解答.解答:解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.点评:本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A .120°B.130°C.140°D.150°考点:平行线的性质;垂线.分析:如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.解答:解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.点评:该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A .B.C.D.考点:方向角.分析:根据方向角的定义,即可解答.解答:解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.点评:本题考查了方向角,解决本题的关键是熟记方向角的定义.10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A .B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x的函数图象.解答:解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C.点评:此题考查了反比例函数的应用,关键是根据题意设出解析式,根据函数的解析式得出函数的图象.11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A .要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C .要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2考点:解二元一次方程组.专计算题.题:分析:方程组利用加减消元法求出解即可.解答:解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选D点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A .a<1 B.a>1 C.a≤1 D.a≥1考点:根的判别式.分析:根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.解答:解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.点评:此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A .B.C.D.考点:概率公式.分析:由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差2的有2种情况,直接利用概率公式求解即可求得答案.解答:解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差2的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差2的概率是:=.故选B.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a 可能在()A .1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4考点:两条直线相交或平行问题.专题:计算题.分析:先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x ﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.解答:解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.点评:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A .②③B.②⑤C.①③④D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A .甲、乙都可以B.甲、乙都不可以C .甲不可以、乙可以D.甲可以、乙不可以考点:图形的剪拼.分析:根据图形可得甲可以拼一个边长为的正方形,图乙可以拼一个边长为的正方形.解答:解:所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选A.点评:本题考查了图形的简拼,解答本题的关键是根据题意作出图形.二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a= ±1 .考点:绝对值;零指数幂.分析:先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答.解解:∵|a|=20150,答:∴|a|=1,∴a=±1,故答案为:±1.点评:本题考查了绝对值,解决本题的关键是熟记互为相反数的两个数绝对值相等.18.(3分)(2015•河北)若a=2b≠0,则的值为.考点:分式的化简求值.专题:计算题.分析:把a=2b代入原式计算,约分即可得到结果.解答:解:∵a=2b,∴原式==,故答案为:点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= 24°.考点:多边形内角与外角.分析:首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.解答:解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.点评:此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= 9 .考点:等腰三角形的性质.分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.解答:解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45,…,∴9°n<90°,解得n<10.故答案为:9.点评:考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.考点:整式的混合运算—化简求值.专题:计算题.分析:(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.解解:(1)设所捂的二次三项式为A,答:根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB= CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.考点:平行四边形的判定;命题与定理.分析:(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.解答:解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(2)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.点此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行评:四边形.23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?考点:一次函数的应用.分析:(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面的高度+放入小球上面的高度,即可解答;②根据题意列出不等式,即可解答.解答:解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式、一元一次不等式.24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25 % (2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.考点:方差;统计表;折线统计图;算术平均数;中位数.分析:(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.解答:解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m<0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.点评:本题考查了方差、条形统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大.25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.考点:二次函数综合题.分析:(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h 的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数的最值的求法易得y c的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点的坐标特征可以求得h的值.解答:解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A(﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.点评:本题考查了二次函数综合题.该题涉及到了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数最值的求法以及点的坐标与图形的性质等知识。

2015年河北省中考数学试卷解析

2015年河北省中考数学试卷解析

2015年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题2分,共42分,每小题的四个选项中只有一个是正确的)1.计算:3﹣2×(﹣1)=()A.5 B. 1 C.﹣1 D.6解析:原式=3﹣(﹣2)=3+2=5.故选:A.2.下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数解析:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.3.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.解析:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.4.下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a5解析:∵=2,∴选项A不正确;∵科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,即6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学计数法﹣原数,要熟练掌握,要明确:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.5.如图所示的三视图所对应的几何体是()A.B.C.D.解析:从主视图可判断A错误;从俯视图可判断C、D错误.故选B.6.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O 的是()A.△ABE B.△ACF C.△ABD D.△ADE解析:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.7.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④解析:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°解析:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.解析:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.解析:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C.11.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2解析:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选D12.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1解析:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.点评:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A.B.C.D.解析:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差2的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差2的概率是:=.故选B.14.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4解析:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解析:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以分析:根据图形可得甲可以拼一个边长为的正方形,图乙可以拼一个边长为的正方形.解析:所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选A.二.填空题(4个小题,每小题3分,共12分)17.若|a|=20150,则a=.分析:先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答.解析:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.18.若a=2b≠0,则的值为.分析:把a=2b代入原式计算,约分即可得到结果.解析:∵a=2b,∴原式==,故答案为:点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.分析:首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.解析:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.点评:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数);(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.分析:根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.解析:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1OA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45,…,∴9°n<90°,解得n<10.故答案为:9.三.解答题(共6个小题,共66分)21.(10分)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.分析:(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.22.(10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为分析:(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.23.(10分)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?分析:(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面的高度+放入小球上面的高度,即可解答;②根据题意列出不等式,即可解答.解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.24.(11分)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件)6 5.2 6.5B产品单价(元/件)3.5 4 3并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.分析:(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m<0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.25.(11分)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.分析:(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h 的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数的最值的求法易得y c 的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点的坐标特征可以求得h的值.解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A(﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.26.(14分)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP 交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x 的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.分析:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图2,连接AP,由OA+AP≥OP,当OP过点A,即α=60°时,等号成立,于是有AP≥OP﹣OA=2﹣1=1,当α=60°时,P、A之间的距离最小,即可求得结果(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到结果;拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,求出x的取值范围是0<x≤﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,于是得到∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,求出OS= =2,在R t△OSO′中,SO′=OS•tan60°=2,KO′=2﹣在R t△KGO′中,∠O′=30°,求得KG=KO′=﹣,在R t△OGK中,求得结果;②当半圆K与AD相切于T,如图6,同理可得sinα的值③当半圆K与CD切线时,点Q与点D重合,且为切点,得到α=60°于是结论可求.解:发现:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,∴∠DOQ=∠ABO=45°,∴α=60°﹣45°=15°;(2)如下图,在图2上连接AP,∵OA+AP≥OP,当OP过点A,即α=60°时,等号成立,∴AP≥OP﹣OA=2﹣1=1,∴当α=60°时,P、A之间的距离最小,∴PA的最小值=1;(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,∴S扇形KRQ==,在R t△RKE中,RE=RK•sin60°=,∴S△PRK=•RE=,∴S阴影=+;拓展:如图5,∵∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON∽△BMN,∴,即,∴BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,∴x的取值范围是0<x≤﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,则∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,OS==2,在R t△OSO′中,SO′=OS•tan60°=2,KO′=2﹣,在R t△KGO′中,∠O′=30°,∴KG=KO′=﹣,∴在R t△OGK中,sinα===,②当半圆K与AD相切于T,如图6,同理可得sinα====;③当半圆K与CD切线时,点Q与点D重合,且为切点,∴α=60°,∴sinα=sin60,综上所述sinα的值为:或或.感谢您的阅读,祝您生活愉快。

2015年河北省中考数学试卷与答案解析

2015年河北省中考数学试卷与答案解析

2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()B=25.(3分)(2015•河北)如图所示的三视图所对应的几何体是()B6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年). B . C . D (y=,11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是,213.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点B的概率是:=14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()﹣﹣﹣x15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()MN=ABMN=16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()的正方形,图乙可以拼一个边长为二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a=±1.18.(3分)(2015•河北)若a=2b≠0,则的值为.==故答案为:19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.﹣﹣22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.,23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?,24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.产品第三次的单价比上一次的单价降低了=(=产品,这四次单价的中位数为;,×1=25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.,如图﹣﹣﹣OS==2=2﹣KO,在=,•RE=+,即,BQ=AF=AO=2﹣OS=,﹣,KO﹣====sin60的值为:或。

(河北)中考数学总复习【专题2】图表信息问题ppt课件

(河北)中考数学总复习【专题2】图表信息问题ppt课件
专题二 图表信息问题
数学
命题解读
图表信息题关键是“识图”和“用图”,主要是通过图形 及表格信息,考查学生收集信息和处理信息的能力.解题时 ,要充分审视图形、表格,全面掌握其提供的信息,理解其 实质,把握其方法规律,从而解决问题,培养学生运用数学 知识,合理建构,以及迁移新知识,解决实际问题的能力.
情景语言类信息问题,以图形加文字说明的 形式出现,图文并茂,将已知条件自然地融入于图形情景 之中,题型新颖,设计独特.此类问题的解决需全方位审视 情景和语言,掌握其蕴含的信息,并加以分析、提炼、选择 和构建合理的数学模型. 表格类信息问题是指将已知条件或结论呈现在表格中,通 过阅读表格,捕捉解题信息,解题的关键是仔细观察表格, 根据数据特征找出数量关系,推理计算使问题得以解
(2)表二是该地A,B,C三位居民2013年治病所花费的医疗费和个人 实际承担的医疗费用,根据表中的数据,求出n,k的值.
居民
ABC
某次治病所花费 的治疗费用x(元)
400
80 0
1500
个人实际承担的 医疗费用y(元)
70
19 0
470
2020/7/21
6
解:(2)由表二易知:n≥400,且 x=800 时,y=190,x=1500 时,
2020/7/21
2
情景语言类信息问题
【例1】星期天,小明、小亮等同学随家长一同到某公园游玩,下面 是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答 下列问题:
(1)小明他们一共去了几个成人、几个学生? (2)请你帮助小明算一算,用哪种方式购票更省钱?请说明理由.
2020/7/21
根据题意确定等量关系、不等关系、函数关系―→ 列方程组、不等式组、函数关系式―→解决问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二图表信息问题
强化突破
1.(2014·随州)某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通
话时间多100分钟.其中正确的是( C )
A.只有①②B.只有③④
C.只有①②③D.①②③④
2.(2013·台湾)以下表示小勋到商店购买2个单价相同的布丁和10根单价相同的棒棒糖
的经过.
小勋:“我要2个布丁和10根棒棒糖.”
老板:“谢谢!这是您要的2个布丁和10根棒棒糖,总共200元!”
老板:“小朋友,我钱算错了,我多算2根棒棒糖的钱,我退还你20元.”
根据上文,判断布丁和棒棒糖的单价相差多少元?( B )
A.20元B.30元C.40元D.50元
3.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.求被移动石头的质量为多少克?( A )
A.5克
B.10克
C.15克
D.20克
4.(2013·鄂州)下列几个命题中正确的个数为__1__个.
①“掷一枚均匀骰子,朝上点数为负”为必然事件;(骰子上各面点数依次为1,2,3,4,5,6)
②5名同学的语文成绩为90,92,92,98,103,则他们平均分为95,众数为92;
③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中乙较甲更稳定;
④某部门15名员工个人年创利润统计表如下,其中有一栏被污渍弄脏看不清楚数据,所以对于“该部门员工个人年创利润的中位数为5万元”的说法无法判断对错.
5.在学校组织的游艺晚会上,掷飞镖游艺区游戏规则如下:如图,掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:
(1)求掷中A区、B区一次各得多少分?
(2)依此方法计算小明的得分为多少分?
解:(1)设掷中A 区一次x 分,B 区一次y 分,依题意得⎩⎪⎨⎪⎧5x +3y =77,3x +5y =75,
解得⎩⎪⎨⎪⎧x =10
y =9 (2)4x
+4y =76(分)
6.根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高__2__cm ,放入一个大球水面升高__3__cm ; (2)如果要使水面上升到50cm ,应放入大球、小球各多少个?
解:设应放入大球m 个,小球n 个,由题意得⎩⎪⎨⎪⎧m +n =10,3m +2n =50-26,解得⎩⎪⎨⎪⎧m =4,
n =6,
∴如果
要使水面上升到50 cm ,应放入大球4个,小球6个
7.(2014·衢州)为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
(1)求m 的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少
种购买方案?并求出每月最多处理污水量的吨数.
解:(1)由题意得90m =75
m -3,解得m =18 (2)设购A 型号设备x 台,则18x +15(10-x)
≤165,∴x ≤5,∵x 为自然数,∴共有6种方案.设处理污水量为w 吨,w =220x +180(10-x)=40x +1800,∴当x =5时,w 最大=2000吨
8.中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:
一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额; …


(1)若甲每月工资收入额为6000元,请求出甲每月应缴纳的个人所得税;
(2)若乙每月工资收入额不超过12000元,他每月应缴纳的个人所得税能超过月工资的7.5%吗?若能,请求出乙的月工资范围;若不能,请说明理由.
解:(1)甲每月应缴纳的个人所得税为1500×3%+(6000-3500-1500)×10%=145(元) (2)设乙的月工资为x 元,当3500<x ≤5000时,显然纳税金额达不到月工资的7.5%;当5000<x ≤8000时,由1500×3%+(x -5000)×10%>7.5%x ,得x >18200,不满足条件;当8000<x ≤12000时,由1500×3%+3000×10%+(x -8000)×20%>7.5%x ,得x >10040,故10040<x ≤12000,则乙的工资大于10040元且不超过12000元时,纳税金额能超过月工资的7.5%
9.(2014·舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y =-200x 2+400x 刻画;1.5时后
(包括1.5时)y与x的关系可近似地用反比例函数y=k
x(k>0)刻画(如图所示).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
解:(1)①y=-200x2+400x=-200(x-1)2+200,∴喝酒后1小时,酒精含量达到最大值
200毫克/百毫升②当x=5,y=45时,由y=k
x得k=225(2)当y=20时,y=
225
x得x
=11.25,喝完酒经过11.25时为第二天早上7:15,∴第二天早上7:15以后才可以驾车,7:00时不能去上班。

相关文档
最新文档