A全等三角形之手拉手模型、倍长中线-截长补短法汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手拉手模型
要点一:手拉手模型
特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点
结论:(1)△ABD ≌△A EC (2)∠α+∠BOC=180° (3)OA 平分∠B OC 变形:
例1.如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明 (1)DBC ABE ∆≅∆ (2)DC AE =
(3)AE 与DC 之间的夹角为︒60 (4)DFB AGB ∆≅∆ (5)CFB EGB ∆≅∆ (6)BH 平分AHC ∠ (7)AC GF //
变式精练1:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与
CD ,
证明(1)DBC ABE ∆≅∆ (2)DC AE =
(3)AE 与DC 之间的夹角为︒60
(4)AE 与DC 的交点设为H ,BH 平分AHC ∠
变式精练2:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD , 证明(1)DBC ABE ∆≅∆ (2)DC AE =
(3)AE 与DC 之间的夹角为︒60
(4)AE 与DC 的交点设为H ,BH 平分AHC ∠
例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H
(2)AG 是否与CE 相等?
(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?
例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H 问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?
(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?
例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD ,
(2)AE是否与CD相等?
(3)AE与CD之间的夹角为多少度?
∠?
(4)HB是否平分AHC
例5:如图,点A.B. C在同一条直线上,分别以AB、BC为边在直线AC的同侧作等边三角形△ABD、△BCE.连接AE、DC,AE与DC所在直线相交于F,连接FB.判断线段FB、FE与FC之间的数量关系,并证明你的结论。
【练1】如图,三角形ABC和三角形CDE都是等边三角形,点A,E,D,同在一条直线上,且角EBD=62°,求角AEB的度数
倍长与中点有关的线段
倍长中线类
☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的:将题中已知和未知条件集中在一对三角形中、构造全等三角形、平移线段。
【方法精讲】常用辅助线添加方法——倍长中线
△ABC 中
方式1: 延长A D到
E , AD 是BC 边中线
使DE=A D,
连接BE
方式2:间接倍长
作CF ⊥AD 于F, 延长MD 到N , 作BE ⊥AD 的延长线于 使DN=MD,
连接BE 连接CD
【例1】 已知:ABC ∆中,AM 是中线.求证:1
()2
AM AB AC <+.
M
C
B
A
【练1】在△ABC 中,59AB AC ==,
,则BC 边上的中线AD 的长的取值范围是什么?
【练2】如图所示,在ABC ∆的AB 边上取两点E 、F ,使AE BF =,连接CE 、CF ,求证:AC BC +>EC FC +.
F E C
B
A
【练3】如图,在等腰三角形AB C中,AB=A C,D 是AB上一点,F 是AC 延长线上的一点,且B D=CF,连结D F交BC 于E.求证:DE=EF(倍长中线、截长补短)
【例2】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求
证:AC BE =.
F
E
D
C B
A
【练1】如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,
求证:AF EF =
F
E
D
C
B
A
【练2】如图,在△ABC 中,AB>AC ,E 为BC 边的中点,AD 为∠B AC 的平分线,过E作A D的平行线,交AB 于F ,交CA 的延长线于G. 求证:B F=C G.
【练3】如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.
G
F
E
D
C
B
A
【练4】如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.
求证:EF ∥AB
F
A C
D E B
【例3】已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.
F
E
M
C
B
A
【练1】在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,
则线段DE 的长度为_________.