【数学课件】 第3课时 平方根
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
121
3. 填空
(1)32= 9 ,(-3)2= 9 ;
(2) 32
2
4 9
,
2
2
3
4 9
;
(3)0.82= 0.64 ,(-0.8)2= 0.64 .
思考:反过来,如果已知一个数的平方,怎样求这 个数?
讲授新课
平方根的定义及性质
问题 如果一个数的平方等于9,这个数是多少?
由于 3 2 =9 , 3和-3互为相反数,
2.只有非负数才有平方根和算术平方根.
3. 0的平方根是0,算术平方根也是0.
1.个数不同:一个正数有两个平方根, 但只有一个算术平方根.
区别:
当堂练习
1.下列说法正确的是_①__④__⑤____
① -3是9的平方根; ②25的平方根是5; ③ -36 的平方根是-6; ④平方根等于0的数是0; ⑤64 的算术平方根是8. 2.下列说法不正确的是__B____ A.0的平方根是0
B. 22的平方根是2
C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
3. 判断下列说法是否正确.
(1)75
是
25 49
的一个平方根;
(2)6 是6的算术平方根;
正确. 正确.
(3)16 的值是±4; (4)(-4)2的平方根是-4.
不正确,是 4.
不正确,是 ±4.
因此1.21的平方根是1.1与-1.1.
即± 1.21=± 1.1 .
三、平方根的数学符号表示
一个非负数的平方根的表示方法:
a 表示a的正的平方根(算术平方根)
a 表示a的负的平方根
记作 a
a﹙a≥0﹚的平方根表示为 a
说一说
7
7
7 各表示什么意义?
表示7的正 的平方根 (即算术平 方根)
4. 分别求 64,4891 ,6.25的平方根.
解: 64的平方根是8与-8,4891
的平方根是
7 9
与 -7 ,6.25的平方根是2.5与-2.5.
9
5.求下列各式的值:
(1) 144 (2) 0.81
解:(1) 144 12
(2) 0.81 0.9
(3)
121 11 196 14
(3)
填一填2
写出左圈和右圈中的“?”表示的数:
x
x2
8 -8
?64
3
百度文库
4
-
3 4
11 ?
-11 ?
0.6 ?
-0.6 ?
0
? ?
没有? ?
?9 16
121 0.36
0 -4
一、平方根的概念 根据上述问题,即要找出一个数,使它的平
方等于给定的数.我们抽象出下述概念:
如果有一个数x,使得x2=a,那么我们把x叫作 a的一个平方根,也叫作二次方根.
方法归纳:一个正数有两个平方根,它们互为 相反数.
回顾平方的概念 已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
+2
-2
4
+3
-3
9
二、开平方的概念 反之,已知一个数的平方,求这个数的运算是什么?
?运算
+1
-1
1
+2
-2
4
+3
-3
9
求一个数的平方根的运算叫作开平方.
典例精析
例2 分别求下列各数的平方根:
例如: (±1)2=1,1的平方根为±1. 平方根的性质: 如果x是正数a的一个平方根,那么a的平方根有
且只有两个:x与-x.即平方根互为相反数.
试一试
1. 144的平方根是什么?
12
2. 0的平方根是什么? 0
4 25
3.
的平方根是什么?
2 5
4. -4有没有平方根?为什么?
没有,因为一个数的平方不可能是负数
做一做 判断下列说法是否正确,并说明理由. (1)49的平方根是7; (2)2是4的平方根; (3)-5是25的平方根; (4)64的平方根是±8; (5)-16的平方根是-4.
典例精析 例1 一个正数的两个平方根分别是2a+1和a-4, 求这个数. 解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0, 解得a=1. 所以这个数为(2a+1)2=(2+1)2=9.
121 196
课堂小结
平方根的概念 平方根 平方根的性质
开平方及相关运算
所以这个数是3或-3. 会不会是巧合呢?
想一想:3和-3有什么特征?
填一填1
(1) 4的平方等于16,那么16的算术平方根就是__4___
(2)
2 5
的平方等于
4 25
,那么
4 25
2
的算术平方根就是_5___
(3) 展厅地面为正方形,其面积是49 m2,则其边长为_7__m.
问题:平方等于16,245 ,49的数还有吗?
想一想 通过这些题目的解答,你能发现什么?
问题:(1)正数有几个平方根? (2)0有几个平方根? (3)负数呢? 有没有一个数的 平方是负数?
因为任何实数的平方都为非负数,所以 负数没有平方根,也没有算术平方根.
要点归纳
平方根的性质: 1.正数有两个平方根,两个平方根
互为相反数. 2.0的平方根还是0. 3.负数没有平方根.
表示7的负 的平方根
表示7的 平方根
典例精析 例3 求下列各式的值:
(1) 36 ; (2) 0.81; (3)
49 . 9
解:(1) 36 6 ;
(2) 0.81 0.9 ;
(3) 49 7 . 93
归纳总结 平方根与算术平方根的联系与区别:
联系:
1.包含关系:平方根包含算术平方根,算术 平方根是平方根的一种.
36,295 ,1.21.
(1)36 36有是两正个数 平方根
解 由于62=36, 因此36的平方根是6与-6. 即 ± 36 =± 6 .
(2) 25 9
有两个平方根
解:
由于 =
5
2
3
25 9
,
因此
25 9
的平方根是
53与-
5 3
.
即±
25 9
=±
5 3
.
(3)1.21
有两个平方根
解: 由于1.12=1.21,
第六章 实 数
6.1 平方根
第3课时 平方根
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.了解平方根的概念,并理解平方与开平方的关系; 2.会求非负数的平方根.(重点、难点)
导入新课
回顾与思考 1.什么叫做算术平方根?
2.判断下列各数有没有算术平方根,如果有, 请求出它们的算术平方根. 100;1; 36 ; 0; -0.0025; (-3)2 ; -25;
3. 填空
(1)32= 9 ,(-3)2= 9 ;
(2) 32
2
4 9
,
2
2
3
4 9
;
(3)0.82= 0.64 ,(-0.8)2= 0.64 .
思考:反过来,如果已知一个数的平方,怎样求这 个数?
讲授新课
平方根的定义及性质
问题 如果一个数的平方等于9,这个数是多少?
由于 3 2 =9 , 3和-3互为相反数,
2.只有非负数才有平方根和算术平方根.
3. 0的平方根是0,算术平方根也是0.
1.个数不同:一个正数有两个平方根, 但只有一个算术平方根.
区别:
当堂练习
1.下列说法正确的是_①__④__⑤____
① -3是9的平方根; ②25的平方根是5; ③ -36 的平方根是-6; ④平方根等于0的数是0; ⑤64 的算术平方根是8. 2.下列说法不正确的是__B____ A.0的平方根是0
B. 22的平方根是2
C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
3. 判断下列说法是否正确.
(1)75
是
25 49
的一个平方根;
(2)6 是6的算术平方根;
正确. 正确.
(3)16 的值是±4; (4)(-4)2的平方根是-4.
不正确,是 4.
不正确,是 ±4.
因此1.21的平方根是1.1与-1.1.
即± 1.21=± 1.1 .
三、平方根的数学符号表示
一个非负数的平方根的表示方法:
a 表示a的正的平方根(算术平方根)
a 表示a的负的平方根
记作 a
a﹙a≥0﹚的平方根表示为 a
说一说
7
7
7 各表示什么意义?
表示7的正 的平方根 (即算术平 方根)
4. 分别求 64,4891 ,6.25的平方根.
解: 64的平方根是8与-8,4891
的平方根是
7 9
与 -7 ,6.25的平方根是2.5与-2.5.
9
5.求下列各式的值:
(1) 144 (2) 0.81
解:(1) 144 12
(2) 0.81 0.9
(3)
121 11 196 14
(3)
填一填2
写出左圈和右圈中的“?”表示的数:
x
x2
8 -8
?64
3
百度文库
4
-
3 4
11 ?
-11 ?
0.6 ?
-0.6 ?
0
? ?
没有? ?
?9 16
121 0.36
0 -4
一、平方根的概念 根据上述问题,即要找出一个数,使它的平
方等于给定的数.我们抽象出下述概念:
如果有一个数x,使得x2=a,那么我们把x叫作 a的一个平方根,也叫作二次方根.
方法归纳:一个正数有两个平方根,它们互为 相反数.
回顾平方的概念 已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
+2
-2
4
+3
-3
9
二、开平方的概念 反之,已知一个数的平方,求这个数的运算是什么?
?运算
+1
-1
1
+2
-2
4
+3
-3
9
求一个数的平方根的运算叫作开平方.
典例精析
例2 分别求下列各数的平方根:
例如: (±1)2=1,1的平方根为±1. 平方根的性质: 如果x是正数a的一个平方根,那么a的平方根有
且只有两个:x与-x.即平方根互为相反数.
试一试
1. 144的平方根是什么?
12
2. 0的平方根是什么? 0
4 25
3.
的平方根是什么?
2 5
4. -4有没有平方根?为什么?
没有,因为一个数的平方不可能是负数
做一做 判断下列说法是否正确,并说明理由. (1)49的平方根是7; (2)2是4的平方根; (3)-5是25的平方根; (4)64的平方根是±8; (5)-16的平方根是-4.
典例精析 例1 一个正数的两个平方根分别是2a+1和a-4, 求这个数. 解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0, 解得a=1. 所以这个数为(2a+1)2=(2+1)2=9.
121 196
课堂小结
平方根的概念 平方根 平方根的性质
开平方及相关运算
所以这个数是3或-3. 会不会是巧合呢?
想一想:3和-3有什么特征?
填一填1
(1) 4的平方等于16,那么16的算术平方根就是__4___
(2)
2 5
的平方等于
4 25
,那么
4 25
2
的算术平方根就是_5___
(3) 展厅地面为正方形,其面积是49 m2,则其边长为_7__m.
问题:平方等于16,245 ,49的数还有吗?
想一想 通过这些题目的解答,你能发现什么?
问题:(1)正数有几个平方根? (2)0有几个平方根? (3)负数呢? 有没有一个数的 平方是负数?
因为任何实数的平方都为非负数,所以 负数没有平方根,也没有算术平方根.
要点归纳
平方根的性质: 1.正数有两个平方根,两个平方根
互为相反数. 2.0的平方根还是0. 3.负数没有平方根.
表示7的负 的平方根
表示7的 平方根
典例精析 例3 求下列各式的值:
(1) 36 ; (2) 0.81; (3)
49 . 9
解:(1) 36 6 ;
(2) 0.81 0.9 ;
(3) 49 7 . 93
归纳总结 平方根与算术平方根的联系与区别:
联系:
1.包含关系:平方根包含算术平方根,算术 平方根是平方根的一种.
36,295 ,1.21.
(1)36 36有是两正个数 平方根
解 由于62=36, 因此36的平方根是6与-6. 即 ± 36 =± 6 .
(2) 25 9
有两个平方根
解:
由于 =
5
2
3
25 9
,
因此
25 9
的平方根是
53与-
5 3
.
即±
25 9
=±
5 3
.
(3)1.21
有两个平方根
解: 由于1.12=1.21,
第六章 实 数
6.1 平方根
第3课时 平方根
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.了解平方根的概念,并理解平方与开平方的关系; 2.会求非负数的平方根.(重点、难点)
导入新课
回顾与思考 1.什么叫做算术平方根?
2.判断下列各数有没有算术平方根,如果有, 请求出它们的算术平方根. 100;1; 36 ; 0; -0.0025; (-3)2 ; -25;