线性代数模拟试题(4套)
线性代数模拟试题
线性代数模拟试题1. 矩阵A的转置已知矩阵 A = [1 2 3; 4 5 6; 7 8 9],求其转置矩阵 AT。
解答:设矩阵 B 为 A 的转置矩阵,即 B = AT。
则矩阵 B 的第 i 行第 j 列元素等于矩阵 A 的第 j 行第 i 列元素,即 Bij = Aji。
根据以上规律,可以得到矩阵 A 的转置矩阵 B = [1 4 7; 2 5 8; 3 6 9]。
2. 矩阵相乘已知矩阵 A = [1 2; 3 4],矩阵 B = [5 6; 7 8],求矩阵 A 乘以矩阵 B的结果 AB。
解答:设矩阵 C 为 A 乘以 B 的结果,即 C = AB。
矩阵 C 的第 i 行第 j 列元素等于矩阵 A 的第 i 行与矩阵 B 的第 j 列的对应元素相乘再相加,即Cij = ∑(Aik * Bkj) (k=1 to n)。
根据以上规律,可以得到矩阵 A 乘以矩阵 B 的结果 C = [19 22; 43 50]。
3. 矩阵的逆已知矩阵 A = [2 -1; 4 3],求其逆矩阵 A-1。
解答:逆矩阵 A-1 的定义为 A * A-1 = I,其中 I 为单位矩阵。
设矩阵 B 为A 的逆矩阵,即 B = A-1。
可以通过求解线性方程组的方式来求解矩阵A 的逆矩阵。
首先,构造增广矩阵 [A I],其中 I 为 2 阶单位矩阵。
经过初等行变换,将矩阵 A 转化为单位矩阵的形式,此时 [I B] 的形式就是矩阵 A的逆矩阵。
经过计算,可以得到矩阵 A 的逆矩阵 B = [3 1; -4 2]。
4. 矩阵的特征值和特征向量已知矩阵 A = [3 -2; 1 4],求其特征值和对应的特征向量。
解答:特征值λ 是矩阵 A 满足方程 |A - λI| = 0 的根,其中 I 为单位矩阵。
特征向量 v 是非零向量 x 满足方程 (A - λI)x = 0。
首先,计算矩阵 A - λI 的行列式,即 |A - λI|。
线性代数模拟试题(4套)
模拟试题一一、判断题:(正确:√,错误:×)(每小题2分,共10分)1、若B A ,为n 阶方阵,则 B A B A +=+. ……………………( )2、可逆方阵A 的转置矩阵T A 必可逆。
……………………………( )3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…( )4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( )5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合。
…………………………………………………………( ) 二、填空题:(每空2分,共20分)1、,A B 为 3 阶方阵,如果 ||3,||2A B ==,那么 1|2|AB -= 。
2、行列式中元素ij a 的余子式和代数余子式,ij ij M A 的关系是 。
3、在5阶行列式中,项5541243213a a a a a 所带的正负号是 。
4、已知()⎪⎪⎪⎭⎫ ⎝⎛-==256,102B A 则=AB .5、若⎪⎪⎭⎫ ⎝⎛--=1225A ,则=-1A . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛--2100013011080101是4元非齐次线性方程组b Ax =的增广矩阵,则b Ax =的通解为 。
7、()B A R + ()()B R A R +。
8、若*A 是A 的伴随矩阵,则=*AA .9、设=A ⎪⎪⎪⎭⎫ ⎝⎛-500210111t ,则当t 时,A 的行向量组线性无关。
10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每小题8分,共16分)1、已知4阶行列式1611221212112401---=D ,求4131211132A A A A +-+。
2、设矩阵A 和B 满足B AE AB +=+2,其中⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,求矩阵B 。
四、(10分) 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=-++=--+-=++-0242205230204321432143214321x x x x x x x x x x x x x x x x 的基础解系和它的通解.五、(10分) 设三元非齐次线性方程组b Ax =的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011λλλλλλλλλλ, 讨论当λ取何值时,b Ax =无解,有唯一解和有无穷多解,并在无穷多解时求出通解。
线性代数模试题试题库(带)
第一套线性代数模拟试题解答一、填空题 (每题 4 分,共 24 分 )1、 若 a 1i a 23a 35a 5 j a 44 是五阶队列式中带正号的一项,则i1 , j2 。
令 i1, j2 , (12354) (13524) 134 ,取正号。
2、 若将 n 阶队列式 D 的每一个元素添上负号获得新队列式D ,则 D = ( 1)n D。
即队列式 D 的每一行都有一个 (-1)的公因子,因此 D = ( 1)n D。
3、设 A1 1 , 则 A 100 = 1 100 。
0 1 0 1A21 1 1 11 2 , A31 21 11 3 01 0 1 0 1 0 1 010 , L 可得14、设 A 为 5 阶方阵,A5 ,则 5A5n 1。
由矩阵的队列式运算法例可知:5 A 5n A 5n 1 。
5、 A 为 n 阶方阵 , AA TE 且 A 0,则 A E。
由已知条件: AA TEAA T A A T2E1A 1, A1,A而:A E A AA TAE A TA A EA EA E0 。
2 0 06、设三阶方阵 A0 x y 可逆,则 x, y 应知足条件 3x2y 。
0 2 32 0 0可逆,则队列式不等于零:A0 x y 2 (3 x 2 y)3x2 y 。
0 2 3二、单项选择题 (每题4 分,共 24 分)a11a12a 13,则队列式2a 112a 122a 137、设a 21a 22a 23M0 2a 31 2a 322aA。
33a31a32a332a 212a 22 2a 23A . 8MB . 2MC . 2MD . 8M2a 11 2a 12 2a 13a11a12a 13a11a 12a132a31 2a 32 2a 332 3 aa32 a8 ( 1) aaa23 8M3133 21 22因为2a 212a 222a 23a21a22a23a31a32a338、设 n 阶队列式 D n ,则 D n0 的必需条件是D。
[考研类试卷]考研数学一(线性代数)模拟试卷4.doc
(1)是否有AB~BA;
(2)若A有特征值1,2,…,n,证明:AB~BA.
24设α为n维非零列向量, (1)证明:A可逆并求A-1;(2)证明:α为矩阵A的特征向量.
25
26设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
(D)存在可逆矩阵P,Q,使得.PAQ=B
2 n阶实对称矩阵A正定的充分必要条件是( ).
(A)A无负特征值
(B)A是满秩矩阵
(C)A的每个特征值都是单值
(D)A*是正定矩阵
3下列说法正确的是( ).
(A)任一个二次型的标准形是唯一的
(B)若两个二次型的标准形相同,则两个二次型对应的矩阵的特征值相同
[考研类试卷]考研数学一(线性代数)模拟试卷4
一、选择题
下列每题给出的四个选项中,只有一个选项符合题目要求。
1设A,B为n阶可逆矩阵,则( ).
(A)存在可逆矩阵P1,P2,使得P1-1AP1,P2-1BP2为对角矩阵
(B)存在正交矩阵Q1,Q1,使得Q1TAQ1,Q2TBQ2为对角矩阵
(C)存在可逆矩阵P,使得p-1(A+B)P为对角矩阵
43设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
44设A为n阶实对称可逆矩阵, (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
(A)可逆矩阵
(B)实对称矩阵(C)正定矩阵Fra bibliotek(D)正交矩阵
线性代数习题及模拟题
习题选作Ch1 行列式一、填空题1.____________)4637251(=τ。
2设行列式1112131112132122233132333132332122233333333333a a a a a a a a a a a a a a a a a a = ,则 等于 。
3.四阶行列式00000000000dc b a = 。
4.行列式222333ab ca b c a b c =___。
5.行列式3214214314324321中第1行第4列元素的代数余子式的值等于 。
6.三阶行列式 D =333222111435214352143521a a k a a a k a a a k a +++++++++ = 。
7.若01400200345678910=x ,则=x 。
8. 如果行列式D=12334152--a中第二行第一列的代数余子式A 12=5,则a= 。
9.线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλλ 有非零解,则λ=10.4阶行列式xd d d x c c c x b b b x a a a D 3213213213214=中第一列各元素的代数余子式之和=+++41312111A A A A 。
0二.判断题1.任意一个n 级排列都可以经过一系列的对换变成排列1 2 3 …n 。
( ) 2.每作一次对换改变排列的奇偶性。
( )3.如果n (n>1)阶行列式的值等于零,则行列式中必有两行成比例。
( ) 4.如果n (n>1)阶行列式的值等于零,则行列式中必有一行全为零。
( )5.设D=|a ij |是n 阶行列式,如果D 的元素中0的个数多于 n(n-1), 则D 的值为零。
( ).6.交换一个行列式的两行(或两列),则行列式值改变符号( ).7.333332222211111e d c b a e d c b a e d c b a ++++++=333222111d b a d b a d b a +333222111e c a e c a e c a 。
线性代数期末模拟测试试卷(含答案)
线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t 2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-AC.n A r =)(D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则 111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11 。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 的线性关系是 。
线性代数模试题试题库(带答案)
,
A= 2−1
1 1
−2 −1
1
=
13
−1
3
2 3
1
3
解:
= A−1
= A01−1 A02−1
1
−2
0
0
−2 5 0 0
0 0 13 −1 3
0
0
2 3
1 3
四、证明题(每小题 5 分,共 10 分)
19、设 n 阶方阵 A 满足 ( A + E )3 = 0 ,证明矩阵 A 可逆,并写出 A 逆矩阵的表达式。
即行列式 D 的每一行都有一个(-1)的公因子,所以 D = (−1)n D 。
3、设
A
=
1 0
1 1 ,
则
A100
=
1 0
100
1
。
= A2
1 0
= 11 10 11
= 10 12 , A3
1 0
= 12 10 11
因为: A∗ =A A−1 =−2A−1 ⇒ 4A−1 + A∗ =4A−1 − 2A−1 =2A−1 =8 A−1 =−4 。
1 0 2 2、 A 为 5×3 矩阵,秩( A )=3, B = 0 2 0 ,则秩( AB )= 3 。
0 0 3 因为 B 可逆, AB 相当于对 A 作列初等变换,不改变 A 的秩。
C.5
D.6
1 2 1 0 1 2 1 0
通过初等变换,由秩为 2 可得: 3
−1 0
2
0
−7
−3
线性代数模试题试题库(带答案)
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、若12335544ija aa a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********AA ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555nn A A +==。
5、A 为n 阶方阵,TAAE =且=+<E A A 则,0 0 。
由已知条件:211,1T T T AA E AA A A A E A A =⇒====⇒=±⇒=-,而 :0TT A E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y应满足条件32x y ≠。
可逆,则行列式不等于零:20002(32)032023A xy x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分) 7、设0333231232221131211≠=M a a a a a a a a a ,则行列式=---------232221333231131211222222222a a a a a a a a aA 。
A .M 8B .M 2C .M 2-D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M aa a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
线性代数模拟试题及答案
3、
1 1 =__________。 2 2 é 2 3ù é - 1ù ú ê ú =__________。 ë - 1 0û ë 3 û
4、矩阵 ê
5、若 A,B 为 n 阶矩阵,则 ( A + B )( A - B ) =__________。 6.设 A, B 为 3 阶方阵,且 A = 4, B = 2 ,则 2( B* A-1 ) = 7、若 A 是可逆矩阵,则 ( A¢ ) -1 =__________。 .
æ- 2 0 0 ö æ1 0 0 ö ÷ ç ç ÷ A - 3E = ç - 2 2 - 2 ÷ ~ ç 0 1 - 1÷ ç - 2 4 - 4÷ ç0 0 0 ÷ ø è è ø æ0ö ç ÷ ì x 2 - x3 = 0 从而解得基础解系 p1 = ç 1 ÷ 得对应的方程组为 í î x1 = 0 ç1÷ è ø
.
A+ B = A + B
A. 若矩阵 A, B 满足 AB = O ,则有 A = O 或 B = O B. 若矩阵 A, B 满足 AB = E ,则矩阵 A, B 都可逆。 C. 若 A* 是 n 阶矩阵 A 的伴随矩阵,则 A* = A D. 若 A ¹ O ,则 A ¹ 0
7.下列说法不正确的是( ) 。
æ1 ç 0 8.设矩阵 A = ç ç0 ç ç0 è
2 0 0ö ÷ 1 0 0÷ -1 ,则 A = ÷ 0 3 3 ÷ 0 2 1÷ ø
.
9 、 在 线性方程组 AX = O 中,若 末知 量的个数 n=5 , r ( A) = 3 ,则方程组的一 般 解中 自由末知 量的个数为 _________。 10. 设向量组 a1 , a 2 , a3 线性无关,则向量组 a1 , a1 + a 2 , a1 + a2 + a3 (填线性相关,线性无关) 。
线性代数模拟试题及答案
可以由向量唯一的线性表示。
《线性代数期末模拟试题一》1•设det (a j )为四阶行列式 若M 23表示元素a 23的余子式,A 23表示元素a 23的代数余子式,则M 23 + A 23 =(填成立或不成立)。
厂2,〉3均为3维列向量,记矩阵A =(:1,:2,:3),记矩阵3•设〉1 (填行或列)初等变换而得到。
6•设向量组 0102,4304,若 只(01,。
203)=2只(。
2巴3,。
4)=3,贝U 。
1 一定、填空(本题20分每小题2分)2•三阶行列式a 110 0 a 22 a 31 0 a i3 0 a 33 三阶行列式的所有项中有中只有位于两条对角线上的元素均不为零, 则该项不为零,这一结论对n 阶行列式 ‘2 1、 4.设矩阵A =0 3B = <_1 2」 7 -2 5 4丿且矩阵C 二AB ,所以矩阵 C 一定可以由矩阵B 经过1,一2, 5 •设矩阵A 可逆,1 4 27 2 0 -1 3 1B =(〉1 -2〉2, >2 • >3, >1 一 >37 •非齐次线性方程组Ax = b有唯一的解是对应的齐次方程组Ax = O只有零解的充分但不必要条件。
8•设3阶矩阵A的行列式A =0,贝U矩阵A一定有一个特征值9. n阶矩阵A有n个特征值1, 2,…,n , n阶矩阵B与A相似,则B -10.向量组: P:;1,山2];1,(填是或不是)向量空间R2一个规范正交基、单项选择(本题10分,每小题2分)注意:请务必将你的选择题的答案按要求填入下表,否则答案无效!1.设矩阵A为n阶方阵,则关于非齐次线性方程组Ax二b的解下列说法() 不正确(A)若方程组有解,则系数行列式A=0;(B)若方程组无解,则系数行列式 A =0;(C)若方程组有解,则或者有唯一解或者有无穷多解。
线性代数模拟测试题(3)
《线性代数》模拟试题一、填空题(30分)1.设A 是n 阶方阵(2n ≥),且||1A = 则|2|A =2.1301n⎛⎫= ⎪⎝⎭3.10m n 齐次线性方程组A 有非零解的充要条件是⨯⨯=n X4.线性表示式为,由),(则)(),(212134,1,1,12ααβααTT T =-==5.线性),,(),,(),,(向量组TT T 242,020,101321===ααα 6.的矩阵表示是)(二次型23312121321242,,x x x x x x x x x f +-+= 7.若向量组12,,s ααα可由向量组12,,t βββ线性表示, 则有1212(,,,,,)s t r αααβββ 12(,,)t r βββ8.实对称矩阵A 的不同特征值对应的特征向量一定9.三阶行矩阵的三个特征值分别为1, 2,3,则1-A =______ 10.若n 阶矩阵A 与B 相似,且A 2=A, 则B 2=二、单项选择题(10分)11.A B C ,,为同阶矩阵,若ABC E =,则下列各式成立的是 ( ).A.1A BC -=B.111C A B ---=C. 111A B C E ---=D.1B AC -= 12.设1234(1,0,0),(0,1,0),(2,2,0),(1,1,1)αααα====则对向量组1234,,,αααα说法正确的是( )A. 相关B. 无关C. 秩为4D.相互正交 13.n 阶矩阵A 经过若干次初等变换后化为A 为B ,则( )A.||||A B =B.()()r A r B =C.,A B 相似D.,A B 合同 14.n 阶矩阵A 与对角矩阵相似的充要条件是( )A.有n 个线性无关的特征向量.B.A 有n 个不同的特征值.C.A 的n 个列向量线性无关.D.A 有n 个非零的特征值.15. 二次型3222212132142),,(x x x x x x x x x f +++=的秩等于 ( ) A. 0 B. 1 C.2 D. 3三、计算题(54分)16.计算n 阶行列式0321021301321 ------n n n17.已知2111011,,001A A AB E B -⎛⎫ ⎪=-= ⎪ ⎪⎝⎭求.18.设有线性方程组123123123(1)0(1)3(1)x x x x x x x x x λλλλ+++=⎧⎪+++=⎨⎪+++=⎩ 问λ取何值时此方程组(1)有唯一解(2)无解(3)有无穷多解?并在有无穷多解时求其通解. 19.给定向量组123(1,1,1,1),(3,1,1,3),(1,1,0,2)ααα=--==;12(2,0,1,1),(3,1,2,0)ββ==- 请求出123,,ααα和12,ββ的秩,并用123,,ααα表示12,ββ。
线性代数模拟试卷及答案4套
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
线性代数模拟题及答案
模拟试题一一. 填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1.n 阶行列式D 的值为c, 若将D 的所有元素改变符号, 得到的行列式值为 .2.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛101020101 ,矩阵X 满足 E AX + = X A +2 ,则X = ⎪⎪⎪⎭⎫ ⎝⎛2010301023.设n 阶矩阵A 满足 E A A 552+- = 0 ,其中E 为n 阶单位阵,则 1)2(--E A =4.设A ,B 均为3阶方阵,A 的特征值为 1,2,3,则EA +*= .5.当 λ 满足条件 时线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=-++-=-++-=+--00004321432143214321x x x x x x x x x x x x x x x x λλλλ 只有零解.二、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。
每小题2分,共20分)1.131211232221333231333231232221131211222333 d a a a a a a a a a a a a a a a a a a ---=则=( ).① 6d ② ―6d ③ 4d ④ ―4d 2. 向量组 s ααα,,,21 的秩为s 的充要条件是( )。
① 向量组不含零向量② 向量组没有两个向量的对应分量成比例 ③ 向量组有一个向量不能由其余向量线性表示 ④向量组线性无关3. 当t =( )时,向量组 ),4,5( , )5,2,3( , )0,1,2(321t ===ααα线性相关。
① 5 ② 10③ 15 ④ 204.已知向量组α1,α2,α3线性无关,则向量组( )线性无关。
① α1+2α2+α3, 2α1+4α2+α3, 3α1+6α2 ② α1, α1+α2, α1+α2+α3 ③ α1+α2, α2+α3, α1+2α2+α3 ④ α1-α2, α2-α3, α3-α15. 已知⎪⎪⎪⎭⎫ ⎝⎛---=63322211t A , B 为三阶非零矩阵且AB = 0, 则( ). ① 当t = 4时,B 的秩必为1 ② 当t = 4时,B 的秩必为2 ③ 当t ≠ 4时,B 的秩必为1 ④ 当t ≠ 4时,B 的秩必为26.设非齐次线性方程组A X = b 中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 .① r = m 时,方程组A X = b 有解 ② r = n 时,方程组A X = b 有唯一解 ③ m = n 时,方程组A X = b 有唯一解 ④ r < n 时,方程组A X = b 有无穷多解7. 设矩阵A 和B 等价,A 有一个k 阶子式不等于零,则B 的秩( )k.① < ② = ③ ≥ ④ ≤8. 一个向量组的极大线性无关组( ). ① 个数唯一 ② 个数不唯一③ 所含向量个数唯一 ④ 所含向量个数不唯一9. 下列关于同阶不可逆矩阵及可逆矩阵的命题正确的是( ). ① 两个不可逆矩阵之和仍是不可逆矩阵 ② 两个可逆矩阵之和仍是可逆矩阵 ③ 两个不可逆矩阵之积仍是不可逆矩阵 ④ 一个不可逆矩阵与一个可逆矩阵之积必是可逆矩阵10.已知任一n 维向量均可由n ααα,,,21 线性表示,则n ααα,,,21( )。
线性代数模拟题
线性代数模拟题一一填空题(每空3分,共30分)1、设 1231231232D a a ab b bc c c== 则213121321336322a a ab b bD c c c==2、设A 是3阶矩阵,且3,A =-则3A -=3、已知⎪⎪⎪⎭⎫ ⎝⎛-=-3211254321A ,则=--1)2(A4、设A 是45⨯矩阵,()2R A =.则线性方程组0AX =的基础解系含有 个解向量5、设1,2,3ηηη是非齐次线性方程组AX b =的解,若1122313ηληληη=++也是AX b =的解,则12λλ+=6、设),,(a 21=α,),,(01b =β,若α与β正交,则a 、b 所满足的关系为7、二次型()2221231231223,,246fx x x x x xx x x x =+---的矩阵A =8、设4阶方阵A 的特征值分别为1,2,3,2.-则A A +2的特征值为9、设157222203D = , 则313233A A A ++= 10、设()()1,2,1,1,3,2,1,1,22,αβγαβ=-=-+= 则γ=二 、计算行列式11111000000002211n n a a a a a a ---(10分) 三 、设301110,2014A AB A B ⎛⎫ ⎪==+ ⎪ ⎪⎝⎭. 求矩阵B .(12分)四、设向量组 ),,,,(432111-=α, ),,,,(1398732-=α, ),,,,(330313----=α, ),,,,(636914-=α ,求此向量组的秩及一个极大无关组,并将其余向量用该极大无关组线性表示.(14分)五、求下列非齐次线性方程组的一般解(12分)1234123412342132344352x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+-+=-⎩ 六、已知实对称矩阵⎪⎪⎪⎭⎫⎝⎛----=020212022A , 1.求A 的特征值与特征向量. 2.求一正交矩阵T ,使得1T AT -为对角阵.(16分) 七、设21λλ≠,且21λλ,为A 的特征值,21αα,为它们对应的特征向量,证明21αα,线性无关.(6分)线性代数模拟题二一. 填空题(每题3分,共30分)1. 设A 是3阶矩阵,且3,A =-则3A -=2. 设1,2,3ηηη是非齐次线性方程组A X b =的解,若1122313ηληληη=++也是A X b =的解,则12λλ+=3. 211132xx D x x=中x 的系数为 4. 设四元线性方程组AX b =的系数矩阵的秩为2,已知AX b =有解1,2,3,ηηη则AX b =的一般解为5. 设(1,1,0,2),(,1,1,1),k αβα=-=-与β正交,则k =6. 设二元方阵,A B 的逆分别是11532,,1414A B --⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭则1()AB -= 7. 设3阶方阵A 的特征值为2,-1,3,则2A =8. 设A 为4⨯5矩阵,若A 的每个行向量都不能用其余的行向量来线性表示,则A 的秩为9. 设134213,473ij A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭为A 中第I 行第j 列的元素的代数余子式,则21222334A A A ++=10. 二次型2221,23123121323(,)246f x x x x x x x x x x x x =++--+所对应的矩阵为二. 计算行列式 (10分)1234234134124123D =三.已知132301111A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,且2A AB E -=,求B (10分)四.求解方程组1234123412342132344352x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+-+=-⎩(12分)五.设向量组12345,,,,ααααα中12345(1,3,1,1),(1,7,3,9),(2,8,0,6),(3,9,3,3),(4,13,3,6)ααααα=-=----==-=-(1)求向量组的秩.(2)求向量组的一个极大无关组.(3)将其余向量用极大无关组线性表示 (14分)六.设A =124242421--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭.(1)求A 的特征值.(2)求A 的特征向量(3)求正交矩阵T ,使得1T AT -为对角阵.(16分)七.证明:若非零向量β可由向量组12,,,m ααα 线性表示,且表达唯一,则12,,,m ααα 线性无关. (8分)线性代数模拟题三一、 判断题:(10分)1、两个n 维向量组等价当且仅当两个向量组的秩相等; ................. ( )2、两两正交的非零向量组一定是线性无关的向量组; ................... ( )3、矩阵A 、B 分别为线性方程组相应的系数矩阵和增广矩阵,则线性方程组有唯一解当且仅当R (A )=R (B ); .......................... ( )4、n 阶方阵A 的n 个特征值互不相等,则A 与对角阵相似; ............ ( )5、n 阶方阵A 与B 的特征值相同的充分必要条件是A 与B 相似。
线性代数模拟试题及答案
...《 线性代数期末模拟试题一 》一、填空(本题20分每小题2分) 1.设)det(ij a 为四阶行列式,若23M 表示元素23a 的余子式,23A 表示元素23a 的代数余子式,则23M +23A = 。
2.三阶行列式3331221311000a a a a a 中只有位于两条对角线上的元素均不为零, 则该三阶行列式的所有项中有 项不为零,这一结论对n 阶行列式(填成立或不成立)。
3.设321,,ααα均为3维列向量,记矩阵),,,(321ααα=A 记矩阵),,2(313221αααααα-+-=B ,若6=B ,则=A 。
4.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=458271,131027241,213012C B A ,则=-C B A T2。
5.设矩阵A 可逆,且矩阵AB C =,所以矩阵C 一定可以由矩阵B 经过(填行或列)初等变换而得到。
6.设向量组43,21,,,αααα,若,3),,(,2),,(432321==ααααααR R 则1α一定可以由向量唯一的线性表示。
得分阅卷人...7.非齐次线性方程组b Ax =有 唯一的解是对应的齐次方程组0=Ax 只有零解的充分但不必要条件。
8.设3阶矩阵A 的行列式0=A ,则矩阵A 一定有一个特征值。
9.n 阶矩阵A 有n 个特征值1,2,, n ,n 阶矩阵B 与A 相似,则=B 。
10.向量组:[][]1,121,1,12121-==p p(填是或不是)向量空间2R 一个规范正交基。
二、单项选择(本题10分,每小题2分)注意:请务必将你的选择题的答案按要求填入下表,否则答案无效!1.设矩阵A 为n 阶方阵,则关于非齐次线性方程组b Ax =的解下列说法( )不正确(A ) 若方程组有解,则系数行列式0≠A ; (B ) 若方程组无解,则系数行列式0=A ;(C ) 若方程组有解,则或者有唯一解或者有无穷多解;...(D ) 系数行列式0≠A 是方程组有唯一解的充分必要条件. 2. 设A 为n 阶可逆矩阵,下列正确的是( ) (A ) (2)2T T A A =; (B) 11(2)2A A --=; (C) 111[()][()]T T A A ---=;(D) 111[()][()]T T T A A ---=。
全国高等教育自学考试模拟试题《线性代数》(共五套)
全国高等教育自学考试模拟试题《线性代数》(共五套)全国高等教育自学考试线性代数试题课程代码:02198说明:本卷中,A T 表示矩阵A 转置,det(A )表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,(α,β)表示向量α,β的内积,E 表示单位矩阵.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 是4阶方阵,且det(A )=4,则det(4A )=( ) A .44 B .45 C .46D .472.已知A 2+A +E =0,则矩阵A -1=( ) A .A +E B .A -E C .-A -ED .-A +E 3.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A .A -1CB -1 B .CA -1B -1 C .B -1A -1CD .CB -1A -14.设A 是s×n 矩阵(s ≠n),则以下关于矩阵A 的叙述正确的是( ) A .A T A 是s×s 对称矩阵 B .A T A =AA TC .(A T A )T =AA TD .AA T 是s×s 对称矩阵5.设α1,α2,α3,α4,α5是四维向量,则( ) A .αl ,α2,α3,α4,α5一定线性无关 B .αl ,α2,α3,α4,α5一定线性相关C .α5一定可以由α1,α2,α3,α4线性表出D .α1一定可以由α2,α3,α4,α5线性表出6.设A 是n 阶方阵,若对任意的n 维向量X 均满足AX =0,则( ) A .A =0 B .A =E C .秩(A )=nD .0<秩(A )<n< p="">7.设矩阵A 与B 相似,则以下结论不正确...的是( ) A .秩(A )=秩(B )B .A 与B 等价C .A 与B 有相同的特征值D .A 与B 的特征向量一定相同8.设1λ,2λ,3λ为矩阵A=200540093的三个特征值,则1λ2λ3λ=( )A .10B .20C .24D .309.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( )A .1B .2C .3D .410.设A ,B 是正定矩阵,则( ) A .AB 一定是正定矩阵 B .A +B 一定是正定矩阵 C .(AB )T 一定是正定矩阵D .A -B 一定是负定矩阵二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。
线性代数模拟题
矩阵A的特征值为 4、设3×3矩阵 的特征值为 × 矩阵 的特征值为2,3,1,则|A|= 6 . |A-1|= . , 阶方阵, 的伴随矩阵, 5、设A是n阶方阵,且|A|=a,而A*是A的伴随矩阵,则 是 阶方阵 而 的伴随矩阵 | A* |= an-1 . 练习题: 阶方阵, 练习题:设A为n阶方阵,且detA=2,则 为 阶方阵 则
x 4 0 2 0
练习题: 练习题:设有线性方程组 λ x1 + x2 + x3 =1 x1 +λ x2 + x3 =λ x1 + x2 +λ x3 =λ 2
问λ取何值时,此方程组 取何值时 此方程组 (1)有惟一解; 有惟一解; 有惟一解 (2)无解; 无解; 无解 (3)有无限多解?并在有无限多解时求其通解 有无限多解? 有无限多解 并在有无限多解时求其通解.
三、计算下列各题
1 + a1 1 L 1 1 1 + a2 L 1 1、(8)计算 阶行列式 计算n阶行列式 、 计算 , 其其a1a2 Lan ≠ 0 M M M 也可用加边法 1 1 L 1 + an
(1 + a1 + a1 a +L+ 1 )a2a3 Lan a2 an
练习题: 练习题:
x a a L a a x a L a a a x L a M M M M a a a a x
1 −1 0 3.(8分)设A = 0 1 − 1 , AX = 2 X + A,求X . −1 0 1 0 1 − 1 矩阵方程 −1
2 0 0 1 − 1 1 3.′求解矩阵方程 X 0 2 5 = 2 − 3 1 0 3 8 3 − 4 1 λ2 λ3 λ4
线代模拟测试4-答案
上式左乘 An1 ,得 k1An x = k1 0. 同理,得 k2 k3 kn 0 ,由定义知,向量组 x, Ax, A2 x, , An x 线性无关. 又 x, Ax, A2 x, , An x 为 n 1个 n 维向量,故必线性相关,矛盾,假设不成立. 因 此 An x ,故(II)的解必是(I)的解.
因为 AA* A E 0, 故 A* 的列向量均为 Ax 0 的解,又 A11 0 ,故可取 A* 的
第一列 A11, A12 , , A1n T 为基础解系,从而 Ax 0 的通解为 k A11, A12 , , A1n T , k 为任意常数.
三、解答题
(10)【解析】(Ⅰ)因为 AB O ,又 B O, 故 Ax 0 有非零解,则
2020 班模考试卷解析
线性代数模拟测试题(4)
参考答案与解析
一、选择题
(1)【答案】(A).
【解析】方程组 Ax b 无解 r( A) r( A,b), 又
1 2 1 1 1 2 1 1
(
A,b )
2
3
a2
3
0
1
a
1
1 a 2 0 0 a 2 3 1
1 2
1
1
0
1
a
1 .
12 1
A 1 a 2 a 1 a a 2 0 a 0或2.
1 a 2 2a 3
1 2 1 1 2 1
2
(Ⅱ)当 a
0
时,A
1
2
1
0
0
1
,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟试题一一、判断题:(正确:√,错误:×)(每小题2分,共10分)1、若B A ,为n 阶方阵,则 B A B A +=+. ……………………( )2、可逆方阵A 的转置矩阵T A 必可逆. ……………………………( )3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…( )4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( )5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合. …………………………………………………………( ) 二、填空题:(每空2分,共20分)1、,A B 为 3 阶方阵,如果 ||3,||2A B ==,那么 1|2|AB -= .2、行列式中元素ij a 的余子式和代数余子式,ij ij M A 的关系是 .3、在5阶行列式中,项5541243213a a a a a 所带的正负号是 .4、已知()⎪⎪⎪⎭⎫ ⎝⎛-==256,102B A 则=AB .5、若⎪⎪⎭⎫ ⎝⎛--=1225A ,则=-1A . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛--2100013011080101是4元非齐次线性方程组b Ax =的增广矩阵,则b Ax =的通解为 .7、()B A R + ()()B R A R +.8、若*A 是A 的伴随矩阵,则=*AA .9、设=A ⎪⎪⎪⎭⎫ ⎝⎛-500210111t ,则当t 时,A 的行向量组线性无关.10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每小题8分,共16分)1、已知4阶行列式1611221212112401---=D ,求4131211132A A A A +-+.2、设矩阵A 和B 满足B A E AB +=+2,其中⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,求矩阵B .四、(10分) 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=-++=--+-=++-0242205230204321432143214321x x x x x x x x x x x x x x x x 的基础解系和它的通解.五、(10分) 设三元非齐次线性方程组b Ax =的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011λλλλλλλλλλ, 讨论当λ取何值时,b Ax =无解,有唯一解和有无穷多解,并在无穷多解时求出通解.六、(10分) 判断向量组⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1622,4647,3221,1123:4321a a a a A 的线性相关性,如果线性相关,求一个最大无关组,并用它表示其余向量. 七、综合计算:(本题14分)已知二次型31232221321422),,(x x x x x x x x f --+= (1)求二次型所对应的矩阵A ,并写出二次型的矩阵表示; (2)求A 的特征值与全部特征向量;(3)求正交变换PY X =化二次型为标准形, 并写出标准形; (4)判断该二次型的正定性。
八、证明题:(每小题5分,共10分)1、已知向量321,,a a a 线性无关,证明 1333222115,4,32a a b a a b a a b +=+=+=线性无关.2、某矿产公司所属的三个采矿厂321,,a a a ,在2011年所生产的四种矿石54321,,,,b b b b b 的数量(单位:吨)及各种矿石的单位价格(万元/吨)如下表:(1)做矩阵53⨯A 表示2011年工厂i a 产矿石j b 的数量)5,4,3,2,1;3,2,1(==j i ; (2)通过矩阵运算计算三个工厂在2011年的生产总值.模拟试题二一、 判断题(正确的打√,不正确的打⨯)(每小题2分,共10分) ( ) 1、设,A B 为n 阶方阵,则A B A B +=+; ( ) 2、可逆矩阵A 总可以只经若干次初等行变换化为单位矩阵E ; ( ) 3、设矩阵A 的秩为r ,则A 中所有1-r 阶子式必不是零;( ) 4、 若12,x x ξξ==是非齐次线性方程组Ax b =的解,则12x ξξ=+ 也是该方程组的解.( ) 5、n 阶对称矩阵一定有n 个线性无关的特征向量。
二、 填空题(每小题2分,共16分)1、排列7623451的逆序数是 ;2、设四阶行列式32142143143243214=D ,则=+++44342414432A A A A ,其中ij A 为元素ij a 的代数余子式;3、设A 、B 均为5阶矩阵,2,21==B A ,则=--1BA ; 4、)(5)(2)(3321α+α=α+α+α-α,其中T )3,1,5,2(1=α,T )10,5,1,10(2=αT )1,1,1,4(3-=α,则=α ;5、已知向量组:A ⎪⎪⎭⎫ ⎝⎛-=α⎪⎪⎭⎫ ⎝⎛=α12,221k ,向量⎪⎪⎭⎫ ⎝⎛=11b ,当k 时,b 可由A 线性表示,且表示法唯一;6、设齐次线性方程组0=AX 的系数矩阵通过初等行变换化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000020103211,则此线性方程组的基础解系所含解向量的个数为 ; 7、设向量(1,2,1)T α=--,β=()T2,,2λ-正交,则λ= ;8、设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征 值为 。
三、计算题(每小题8分,共16分)1、设矩阵⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--=1201,1141B A ,求矩阵AB 和BA 。
2、已知矩阵111211111A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,236B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,660C ⎛⎫⎪= ⎪ ⎪⎝⎭求矩阵方程AX B C -=。
四、 计算题(每小题8分,共16分)1、已知向量组123120,2,2012k k k k ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,(1)k 取何值时,该向量组线性相关;(2) k 取何值时,该向量组线性无关, 说明理由。
2、已知二次型323121232221321844552),,(x x x x x x x x x x x x f --+++=, (1) 写出此二次型对应的矩阵A ;(2) 判断该二次型是否正定二次型,说明理由。
五、 计算题(每小题10分,共20分)1、设矩阵A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-----43333320126624220121.求:(1)矩阵A 秩;(2)矩阵A 的列向量组的一个最大线性无关组。
.2、求非齐次线性方程组⎪⎩⎪⎨⎧=++=+++=+++522132243143214321x x x x x x x x x x x 所对应的齐次线性方程组的基础解系和此方程组的通解。
六、(12分)设矩阵131011002A ⎛⎫⎪=- ⎪ ⎪⎝⎭(1) 求矩阵A 的特征值和全部的特征向量;(2) 求可逆矩阵P ,使得1P AP -=Λ(其中Λ是对角矩阵),并写出对角矩阵Λ。
七、(5分)证明题设方阵A 满足2A A E O +-=,证明:A 可逆并求它的逆矩阵。
八、(5分)应用题假设我们已知下列涉及不同商店水果的价格,不同人员需要水果的数量以及不同城镇不同人员的数目的矩阵:21商店商店 梨橘子苹果 21人员人员梨橘子苹果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10.020.015.010.015.010.0 21人员人员⎥⎦⎤⎢⎣⎡5351045 21城镇城镇⎥⎦⎤⎢⎣⎡100050020001000 设第一个矩阵为A ,第二个矩阵为B ,而第 三个矩阵为C 。
(1)求出一个矩阵,它能给出在每个商店每个人购买水果的费用是多少? (2)求出一个矩阵,它能确定在每个城镇每种水果的购买量是多少?模拟试题三一、判断题:(正确:√,错误:×)(每小题2分,共10分)1、B A ,为n 阶方阵则 BA AB = ( )2、设A 为)n m (n m <⨯矩阵,则b Ax =有无穷多解。
( )3、向量组1A 是向量组A 的一部分,向量组1A 线性无关,则向量组A 一定线性相关; ( )4、设21,λλ是方阵A 的特征值,则21λλ+也是方阵A 的特征值。
( ) 5、4个3维向量一定线性相关。
( ) 二、填空题:(每空2分,共20分)1、已知A 为3阶方阵,且2A =-,则2A -= ;2、六阶行列式中某项645342362115a a a a a a 带有的符号为 ;3、设A 为n 阶方阵,满足2A A E -=,则1A -= ;4、设12,ξξ是n 元非齐次线性方程组Ax b =的两个解,且A 的秩()R A 1=-n ,则Ax b =的通解x = ;5、设非齐次线性方程组的增广矩阵为B =2102-1101-3000001-)1k k k ⎛⎫ ⎪ ⎪ ⎪-⎝⎭(,则k = 时方程组无解, 当k = 时方程组有无穷解,此时该方程组对应的齐次线性方程组的基 础解系中有 个向量。
6、二次型xz z y xy x f 44642222+--+-=的秩为 ,正定性为 (请选正定、负定、不定之一)。
7、方阵A 的特征值为λ,方阵E A A B 322-+=,则B 的特征值为 。
三、计算:(每小题8分,共16分)1、已知4阶行列式1111201212112101---=D ,求4131211122A A A A +++2、已知111121113A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试判断A 是否可逆。
若可逆,求1-A ,若不可逆,求A 的伴随矩阵A *四、计算:(每小题10分,共20分)1、求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++-=--+-=++-034220222402024321432143214321x x x x x x x x x x x x x x x x 的基础解系和它的通解。
2、已知线性方程组 ⎪⎩⎪⎨⎧=++=---=++a z y x z y x z y x 223320有解,求a ,并求全部解;五、 (10分)判断向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1210,1012,0212,11014321αααα 的线性相关性,并求它的一个最大无关组,并用最大无关组表示该组中其它向量。
六、综合计算:(本题14分)二次型212322213212),,(x x x x x x x x f +++=(1)求二次型所对应的矩阵A ,并写出二次型的矩阵表示 (2)求A 的特征值与全部特征向量;(3)求正交矩阵P ,使AP P 1-为对角形矩阵。