高中数学立体几何第一章综合检测题 .
高中数学 第一章 立体几何检测 必修2 试题(共6页)

(2)假设球的体积(tǐjī)与其外表积的2倍的数值相等,那么球的半径为_______ .
8.以下命题中:
①过直线外一点可作无数条直线与己知直线成异面直线;
②假如一条直线不在平面内,那么这条直线与这个平面平行;
③过直线外一点有无数个平面与这条直线平行;
第一章立体几何(lìtǐjǐhé)体初步
1.直线a , b和平面α,下面命题中正确的选项是()
A.假设a//α, b α,那么a//b
B.假设a//α, b//α,那么a//b
C.假设a//b , b α,那么a//α
D.假设a//b , a//α,那么b//α,或者b α
2.如下图,点P是平面ABC外一点,且满足PA、PB、PC两两垂直, PE⊥BC ,那么该图中两两垂直的平面一共有( )
④假设α⊥γ,β⊥γ,那么α//β;
⑤假设α⊥β,β⊥γ,那么α⊥γ.
说法正确的选项是.
9.如图,在四棱锥P-ABCD中, M、N是AB、PC的中点,假设ABCD是平行四边形,求证: MN//平面PAD .
10.在四棱锥P-ABCD中,假设PA⊥平面ABCD,且ABCD是正方形.
(1)求证:平面PAC⊥平面PBD ;
选修检测
13.以下四个命题:
(1)圆上三点可确定一个平面;
(2)圆心和圆上两点可确定一个平面;
(3)四条平行线确定六个平面;
(4)不一共线的五点可确定一个平面,那么必有三点
一共线..
其中正确的选项是〔 〕
A.(1)B.(1)(3)
C.(1)(4) D.(1)(2)(4)
14.正三棱锥S-ABC的侧棱与底面边长相等,假如E,F分别是SC,AB的中点,那么异面直线EF与SA所成的角等于( )
高一数学第一章空间几何体综合试题及答案

人教A 必修2第一章空间几何体综合试题一、选择题(每道题5分)1.有一个几何体的三视图如下图所示;这个几何体可能是一个( ).主视图 左视图 俯视图(第1题)A .棱台B .棱锥C .棱柱D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°;腰和上底均为1的等腰梯形;那么原平面图形的面积是( ).A .2+2B .221+C .22+2D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3;4;5;且它的8个顶点都在同一球面上;则这个球的表面积是( ).A .25πB .50πC .125πD .都不对5.正方体的棱长和外接球的半径之比为( ).A .3∶1B .3∶2C .2∶3D .3∶36.在△ABC 中;AB =2;BC =1.5;∠ABC =120°;若使△ABC 绕直线BC 旋转一周;则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π 7.若底面是菱形的棱柱其侧棱垂直于底面;且侧棱长为5;它的对角线的长分别是9和15;则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.半径为R 的半圆卷成一个圆锥;则它的体积为( )A .324RB .38RC .324RD .38R9.下列关于用斜二测画法画直观图的说法中;错误..的是( ).A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图;则此物体的直观图是( ).(第10题)二、填空题(每道题5分)11.一个棱柱至少有______个面;面数最少的一个棱锥有________个顶点;顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3;则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中;O是上底面ABCD的中心;若正方体的棱长为a;则三棱锥O-AB1D1的体积为_____________.14.如图;E;F分别为正方体的面ADD1A1、面BCC1B1的中心;则四边形BFD1E在该正方体的面上的射影可能是___________(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6;则这个长方体的对角线长是___________;它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球;球全部没入水中后;水面升高9厘米则此球的半径为_________厘米.三、解答题(17题;18;19各15分;20题25分)17.有一个正四棱台形状的油槽;可以装油190 L;假如它的两底面边长分别等于60 cm 和40 cm;求它的深度.18.如图;在四边形ABCD中;∠DAB=90°;∠ADC=135°;AB=5;CD=22;AD=2;求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第18题)19.已知圆台的上下底面半径分别是2,5;且侧面面积等于两底面面积之和;求该圆台的母线长.20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用);已建的仓库的底面直径为12 m;高4 m;养路处拟建一个更大的圆锥形仓库;以存放更多食盐;现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案一、选择题1.A解析:从俯视图来看;上、下底面都是正方形;但是大小不一样;可以判断可能是棱台.2.A解析:原图形为一直角梯形;其面积S =21(1+2+1)×2=2+2. 3.A解析:因为四个面是全等的正三角形;则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径; l =2225+4+3=52;2R =52;R =225;S =4πR 2=50π. 5.C 解析:正方体的对角线是外接球的直径.6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π. 7.D解析:设底面边长是a ;底面的两条对角线分别为l 1;l 2;而21l =152-52;22l =92-52; 而21l +22l =4a 2;即152-52+92-52=4a 2;a =8;S 侧面=4×8×5=160.8.A 2312,,,22324R r R r h V r h R πππ===== 9.B 解析:斜二测画法的规则中;已知图形中平行于 x 轴的线段;在直观图中保持原长度不变;平行于 y 轴的线段;长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆;且为组合体;所以选D.二、填空题11.参考答案:5;4;3.解析:符合条件的几何体分别是:三棱柱;三棱锥;三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3;31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a . 解析:画出正方体;平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点; 三棱锥O -AB 1D 1的高h =33a ;V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1;它的高为AO ;等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6;6.解析:设ab =2;bc =3;ac =6;则V = abc =6;c =3;a =2;b =1; l =1+2+3=6.16.参考答案:12.解析:V =Sh =πr 2h =34πR 3;R =32764×=12. 三、解答题17.参考答案:V =31(S +S S ′+S )h ;h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22=(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π. 19.解2229(25)(25),7l l ππ+=+=20. 解:(1) 参考答案:如果按方案一;仓库的底面直径变成16 m ;则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3). 如果按方案二;仓库的高变成8 m ;则仓库的体积V 2=31Sh =31×π×(212)2×8=3288π(m 3). (2) 参考答案:如果按方案一;仓库的底面直径变成16 m ;半径为8 m . 棱锥的母线长为l =224+8=45;仓库的表面积S 1=π×8×45=325π(m 2).如果按方案二;仓库的高变成8 m .棱锥的母线长为l =226+8=10;仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1;S 2<S 1;∴方案二比方案一更加经济些.。
高中数学 第一章 立体几何初步章末综合测评(含解析)新人教B版必修2

(一) 立体几何初步(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b是异面直线,直线c∥a,则c与b的位置关系是( )A.相交B.异面C.平行D.异面或相交【解析】根据空间两条直线的位置关系和公理4可知c与b异面或相交,但不可能平行.【答案】 D2.下列说法不正确的是( )A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直【解析】A、B、C显然正确.易知当直线与平面垂直时,过这条直线有无数个平面与已知平面垂直.选D.【答案】 D3.已知平面α与平面β相交,直线m⊥α,则( )A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直【解析】作两个相交平面,交线为n,使得直线m⊥α,假设β内一定存在直线a 与m平行,因为m⊥α,而a∥m,所以直线a⊥α,而a⊂β,所以α⊥β,这与平面α与平面β相交不一定垂直矛盾,所以β内不一定存在直线a与m平行,因为直线m⊥α,n⊂α,又n⊂β,所以m⊥n,所以在β内不一定存在直线与m平行,但必存在直线与m 垂直,故选C.【答案】 C4.设a、b为两条直线,α、β为两个平面,则正确的命题是( )A.若a⊂α,b⊂β,α∥β,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b【解析】A中,a、b可以平行或异面;B中,a、b可以平行或异面;C中,α、β可以平行或相交.【答案】 D5.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n【解析】利用线面垂直的性质进行分析.∵α∩β=l,∴l⊂β.∵n⊥β,∴n⊥l.【答案】 C6.设l为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β【解析】选项A,平行于同一条直线的两个平面也可能相交,故选项A错误;选项B,垂直于同一直线的两个平面互相平行,选项B正确;选项C,由条件应得α⊥β,故选项C 错误;选项D,l与β的位置不确定,故选项D错误.故选B.【答案】 B7.如图1所示,△ADB和△ADC都是以D为直角顶点的等腰直角三角形,且∠BAC=60°,下列说法中错误的是( )图1A.AD⊥平面BDCB.BD⊥平面ADCC.DC⊥平面ABDD.BC ⊥平面ABD【解析】 由题可知,AD ⊥BD ,AD ⊥DC ,所以AD ⊥平面BDC ,又△ABD 与△ADC 均为以D 为直角顶点的等腰直角三角形,所以AB =AC ,BD =DC =22AB . 又∠BAC =60°,所以△ABC 为等边三角形,故BC =AB =2BD , 所以∠BDC =90°,即BD ⊥DC .所以BD ⊥平面ADC ,同理DC ⊥平面ABD . 所以A 、B 、C 项均正确.选D. 【答案】 D8.如图2所示,在三棱锥V -ABC 中,∠VAB =∠VAC =∠ABC =90°,下列结论不正确...的是( )图2A.平面VAC ⊥平面ABCB.平面VAB ⊥平面ABCC.平面VAC ⊥平面VBCD.平面VAB ⊥平面VBC【解析】 AV ⊥BA ,VA ⊥AC ,BA ∩AC =A ,∴VA ⊥平面ABC ,易知A 、B 正确,∵BC ⊥AB ,平面VAB ∩平面ABC =AB ,∴BC ⊥平面VAB ,易知D 正确,故选C.【答案】 C9.将正方形ABCD 沿BD 折起,使平面ABD ⊥平面BCD ,M 为CD 的中点,则∠AMD 的大小是( )A.45°B.30°C.60°D.90°【解析】 如图,设正方形边长为a ,作AO ⊥BD ,则AM =AO 2+OM2=⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫12a 2=32a ,又AD =a ,DM =a 2,∴AD 2=DM 2+AM 2,∴∠AMD =90°.【答案】 D10.在矩形ABCD 中,若AB =3,BC =4,PA ⊥平面AC ,且PA =1,则点P 到对角线BD 的距离为( )A.292 B.135 C.175D.1195【解析】 如图,过点A 作AE ⊥BD 于点E ,连接PE .∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD ,∴BD ⊥平面PAE , ∴BD ⊥PE . ∵AE =AB ·AD BD =125,PA =1, ∴PE =1+⎝ ⎛⎭⎪⎫1252=135. 【答案】 B11.如图3所示,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图3A.17πB.18πC.20πD.28π【解析】 由三视图还原为直观图后计算求解.由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.【答案】 A12.正方体ABCD A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( )A.点H 是△A 1BD 的垂心B.AH ⊥平面CB 1D 1C.AH 的延长线经过点C 1【解析】 因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH .又BD ⊥AA 1,且AH ∩AA 1=A . 所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H . 所以A 1H ⊥BD , 同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,A 正确. 因为平面A 1BD ∥平面CB 1D 1, 所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,AA 1与AH 显然不垂直,∴AH 与BB 1也不垂直,故D 错误. 【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.设平面α∥平面β,A 、C ∈α,B 、D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =________.【解析】 由面面平行的性质得AC ∥BD ,AS BS =CSSD,解得SD =9. 【答案】 914.如图4所示,四棱锥S ABCD 中,底面ABCD 为平行四边形,E 是SA 上一点,当点E 满足条件:________时,SC ∥平面EBD .图4【解析】 当E 是SA 的中点时, 连接EB ,ED ,AC .设AC 与BD 的交点为O ,连接EO . ∵四边形ABCD 是平行四边形, ∴点O 是AC 的中点. 又E 是SA 的中点, ∴OE 是△SAC 的中位线.∵SC ⊄平面EBD ,OE ⊂平面EBD , ∴SC ∥平面EBD . 【答案】 E 是SA 的中点15.如图5所示,在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.【导学号:45722065】图5【解析】 ∵B 1C 1⊥平面A 1ABB 1,MN ⊂平面A 1ABB 1,∴B 1C 1⊥MN ,又∠B 1MN 为直角, ∴B 1M ⊥MN ,而B 1M ∩B 1C 1=B 1.∴MN ⊥平面MB 1C 1,又MC 1⊂平面MB 1C 1, ∴MN ⊥MC 1,∴∠C 1MN =90°. 【答案】 90°16.已知四棱锥P ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号) 【解析】 (图略)由条件可得AB ⊥平面PAD , ∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而PA ∥PB ,这是不可能的,故②错;S △PCD =12CD ·PD ,S △PAB =12AB ·PA ,由AB =CD ,PD >PA 知③正确; 由E 、F 分别是棱PC 、PD 的中点,可得EF∥CD,又AB∥CD,∴EF∥AB,故AE与BF共面,④错.【答案】①③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)如图6所示,已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC,求证:AD⊥平面SBC.图6【证明】∵∠ACB=90°,∴BC⊥AC.又∵SA⊥平面ABC,∴SA⊥BC,∵SA∩AC=A,∴BC⊥平面SAC,∴BC⊥AD.又∵SC⊥AD,SC∩BC=C,∴AD⊥平面SBC.18.(本小题满分12分)如图7所示,三棱柱ABCA1B1C1的侧棱与底面垂直,AC=9,BC =12,AB=15,AA1=12,点D是AB的中点.图7(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.【证明】(1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于O点,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)某几何体的三视图如图8所示,P是正方形ABCD对角线的交点,G是PB的中点.(1)根据三视图,画出该几何体的直观图;(2)在直观图中,①证明:PD∥面AGC;②证明:面PBD⊥面AGC.图8【解】(1)该几何体的直观图如图所示:(2)证明:①连接AC,BD交于点O,连接OG,因为G为PB的中点,O为BD的中点,所以OG∥PD.②连接PO,由三视图知,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,所以AO⊥平面PBD.因为AO⊂平面AGC,所以平面PBD⊥平面AGC.20.(本小题满分12分)如图9所示,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF=1.图9(1)求证:AF ∥平面BDE ; (2)求证:CF ⊥平面BDE .【证明】 (1)如图,设AC 与BD 交于点G .因为EF ∥AG ,且EF =1,AG =12AC =1,所以四边形AGEF 为平行四边形. 所以AF ∥EG .因为EG ⊂平面BDE ,AF ⊄平面BDE , 所以AF ∥平面BDE . (2)连接FG ,∵EF ∥CG ,EF =CG =1, ∴四边形CEFG 为平行四边形, 又∵CE =EF =1,∴▱CEFG 为菱形, ∴EG ⊥CF .在正方形ABCD 中,AC ⊥BD .∵正方形ABCD 和四边形ACEF 所在的平面互相垂直, ∴BD ⊥平面CEFG .∴BD ⊥CF . 又∵EG ∩BD =G ,∴CF ⊥平面BDE .21.(本小题满分12分)如图10所示,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,底面边长为a ,E 是PC 的中点.图10(1)求证:PA ∥平面BDE ;(2)平面PAC ⊥平面BDE . 【解】 (1)证明:连接OE,如图所示.∵O、E分别为AC、PC的中点,∴OE∥PA.∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.(2)∵PO⊥平面ABCD,∴PO⊥BD.在正方形ABCD中,BD⊥AC,又∵PO∩AC=O,∴BD⊥平面PAC.又∵BD⊂平面BDE,∴平面PAC⊥平面BDE.22.(本小题满分12分)如图11所示,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点.图11(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.【解】(1)证法一:连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEFABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则M为CD的中点.又H为BC的中点,所以MH∥BD.又MH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEFABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形.所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.11。
《第一章 空间向量与立体几何》单元检测试卷与答案解析(共三套)

《第一章 空间向量与立体几何》单元检测试卷(一)第I 卷(选择题)一、单选题(每题只有一个正确的选项,5分/题,共40分)1.在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC ⋅的值为( )A .1-B .1CD .732.已知PA =(2,1,﹣3),PB =(﹣1,2,3),PC =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A .9B .﹣9C .﹣3D .33.下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等4.若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( ) A .l α⊂B .//l αC .l α⊥D .l 与α相交5.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-6.已知正四棱柱1111ABCD A B C D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .3C .3D .137.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB .2C D 8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫ ⎪⎝⎭B .133,,224⎛⎫ ⎪⎝⎭C .448,,333⎛⎫ ⎪⎝⎭D .447,,333⎛⎫ ⎪⎝⎭二、多选题(每题不止一个正确的选项,5分/题,共20分)9.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥ B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π 10.正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π 11.设a ,b ,c 是空间一个基底,则( ) A .若a ⊥b ,b ⊥c ,则a ⊥cB .则a ,b ,c 两两共面,但a ,b ,c 不可能共面C .对空间任一向量p ,总存在有序实数组(x ,y ,z),使p xa yb zc =++D .则a +b ,b +c ,c +a 一定能构成空间的一个基底12.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90时,PC =D .存在某个位置,使得B 到平面PDC第II 卷(非选择题)三、填空题(每题5分,共20分)13.若(2, 3, 1)a =-,(2, 0, 3)b =,(3, 4, 2)c =,则()a b c +=___________.14.已知平面α的一个法向量10,,2n ⎛=- ⎝,A α∈,P α∉,且122PA ⎛=- ⎝,则直线PA 与平面α所成的角为______.15.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =________.16.如图,棱长为3的正方体的顶点A 在平面α上,三条棱,,AB AC AD 都在平面α的同侧,若顶点,B C 到平面α,则顶点D 到平面α的距离是_____.四、解答题(17题10分,其余题目12分每题,共70分)17.如图,2BC =,原点O 是BC 的中点,点A 的坐标为(2,12,0),点D 在平面yOz 上,且90BDC ∠=︒,30DCB ∠=︒.(1)求向量CD 的坐标.(2)求AD 与BC 的夹角的余弦值.18.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ︒∠=∠=.(1)设1AA a =,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; (2)求异面直线1AB 与1BC 所成角的余弦值.19.如图所示,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点.(1)求证:NM ∥平面11A ADD ; (2)求证:NM ⊥平面11A B M .20.如图,在直棱柱1111ABCD A B C D -中,//AD BC ,90BAD ∠=︒,AC BD ⊥,1BC =,14A D A A ==.(1)证明:面1ACD ⊥面1BB D ; (2)求二面角11B AC D --的余弦值.21.如图,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB DC ,E 为线段PD 的中点,已知2PA AB AD CD ====,120PAD ∠=︒.(1)证明:直线//PB 平面ACE ;(2)求直线PB 与平面PCD 所成角的正弦值.22.如图,已知梯形ABCD 中,//AD BC ,90DAB ∠=︒,22AB BC AD ===,四边形EDCF 为矩形,2DE =,平面EDCF ⊥平面ABCD . (1)求证://DF 平面ABE ;(2)求平面ABE 与平面BEF 所成二面角的正弦值;(3)若点P 在线段EF 上,且直线AP 与平面BEF ,求线段AP 的长.答案解析第I 卷(选择题)一、单选题(每题只有一个正确的选项,5分/题,共40分)1.在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC ⋅的值为( )A .1-B .1CD .73【答案】A 【解析】如图所示由正四面体的性质可得:PA BC ⊥ 可得:0PA BC ⋅=E 是棱AB 中点12PEPA PB 111122cos12012222PE BC PA PB BCPA BC PB BC 故选:A【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.2.已知PA =(2,1,﹣3),PB =(﹣1,2,3),PC =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A .9 B .﹣9C .﹣3D .3【答案】B【解析】由P ,A ,B ,C 四点共面,可得,,PA PB PC 共面,(2,2,33)(7,6,)xPA yPB x y x y C y P x λ∴=+=-+-+=,272633x y x y x y λ-=⎧⎪+=⎨⎪-+=⎩,解得419x y λ=⎧⎪=⎨⎪=-⎩. 故选:B.3.下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等 【答案】C【解析】A 项中应是不共面的三个向量构成空间向量的基底, 所以A 错.B 项,空间基底有无数个, 所以B 错.D 项中因为基底不唯一,所以D 错.故选C .4.若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( ) A .l α⊂ B .//l αC .l α⊥D .l 与α相交【答案】C【解析】∵直线l 的方向向量为()1,2,3a =-, 平面α的法向量为()3,6,9n =--,∴13a n =-,∴a n , ∴l α⊥. 故选C .5.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( ) A .16B .14C .16-D .14-【答案】A【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系. 设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,, ∴()()11,1,2,1,2,1MN OD =-=--. 则1111cos ,66MN OD MN OD MN OD ⋅===. ∴异面直线MN 与1OD 所成角的余弦值为16,故选A .6.已知正四棱柱1111ABCD A B C D -中,12AAAB =,则CD 与平面1BDC 所成角的正弦值等于() A .23B C.3D .13【答案】A【解析】设1AB =11BD BCDC ∴===,1BDC ∆面积为3211C BDC C BCD V V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴== 7.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB.2CD【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1), 1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=||2||5EM n n ⋅==,N 为EM 中点,所以N到该面的故选:D .8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫⎪⎝⎭C .448,,333⎛⎫⎪⎝⎭D .447,,333⎛⎫⎪⎝⎭【答案】C【解析】设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=, 即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q . 故选:C.二、多选题(每题不止一个正确的选项,5分/题,共20分)9.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则 由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.10.正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC ⊥ B .平面AEF 平面111AAD D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4π 【答案】BC【解析】由题可知,1B G 在底面上的射影为BG ,而BC 不垂直BG , 则1B G 不垂直于BC ,则选项A 不正确;连接1AD 和1BC ,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点, 可知11////EF BC AD ,所以AEF ∆⊂平面1AD EF , 则平面AEF平面111AA D D AD =,所以选项B 正确;由题知,可设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴, 则各点坐标如下:()()()()()()12,0,0,0,2,0,0,2,1,2,0,2,2,2,1,1,2,0A C E A H F ()()()()110,2,1,1,2,0,1,0,1,0,0,2A H AF EF AA =-=-=-=,设平面AEF 的法向量为(),,n x y z =,则00n AF n EF ⎧⋅=⎨⋅=⎩,即20x y x z -+=⎧⎨-=⎩,令1y =,得2,2x z ==,得平面AEF 的法向量为()2,1,2n =,所以10A H n ⋅=,所以1//A H 平面AEF ,则C 选项正确; 由图可知,1AA ⊥平面AFC ,所以1AA 是平面AFC 的法向量, 则1112cos ,3AA n AA n AA n⋅<>===⋅. 得知二面角E AF C --的大小不是4π,所以D 不正确. 故选:BC.11.设a ,b ,c 是空间一个基底,则( ) A .若a ⊥b ,b ⊥c ,则a ⊥cB .则a ,b ,c 两两共面,但a ,b ,c 不可能共面C .对空间任一向量p ,总存在有序实数组(x ,y ,z),使p xa yb zc =++D .则a +b ,b +c ,c +a 一定能构成空间的一个基底 【答案】BCD【解析】对于A 选项,b 与,a c 都垂直,,a c 夹角不一定是π2,所以A 选项错误. 对于B选项,根据基底的概念可知a ,b ,c 两两共面,但a ,b ,c 不可能共面.对于C 选项,根据空间向量的基本定理可知,C 选项正确.对于D 选项,由于a ,b ,c 是空间一个基底,所以a ,b ,c 不共面.假设a +b ,b +c ,c +a 共面,设()()()1a b x b c x c a +=++-+,化简得()1x a x b c ⋅=-+,即()1c x a x b =⋅+-,所以a ,b ,c 共面,这与已知矛盾,所以a +b ,b +c ,c +a 不共面,可以作为基底.所以D 选项正确. 故选:BCD12.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90时,PC =D .存在某个位置,使得B 到平面PDC 【答案】BC【解析】如图所示:A 项:取BD 的中点O ,连结OP 、OC , 因为四边形ABCD 是菱形,O 是线段BD 的中点, 所以,,OP BD OC BD OPOC O ⊥⊥=,BD ⊥平面POC ,BD ⊂平面BCD ,所以POC ⊥平面BCD ,所以POC 平面BCDOC ,所以PC 在平面BCD 的射影为OC ,PCO ∠即PC 与平面BCD 所成角,PO OC ,三角形POC 是等腰三角形,当60POC ∠=时,PC 与平面BCD 所成角为60,故A 错误; B 项:当PD PC =时,取CD 的中点N ,可得CD PN ⊥,CD BN ⊥,故CD ⊥平面PBN ,PB CD ⊥,故B 正确; C 项:因为四边形ABCD 是菱形,O 是线段BD 的中点, 所以PO BD ⊥,CO BD ⊥,因为BD 是平面PBD 与平面CBD 的交线, 所以POC ∠即平面PBD 与平面CBD 所成角,因为二面角P BD C --的大小为90,所以90POC ∠=,因为PO OC ==PC =C 正确;D 项:因为BN =B 到平面PDC则BN ⊥平面PCD ,2PB =,BN =1PN =,1DN =,则PD =D 错误,故选:BC.第II 卷(非选择题)三、填空题(每题5分,共20分)13.若(2, 3, 1)a =-,(2, 0, 3)b =,(3, 4, 2)c =,则()a b c +=________. 【答案】3.【解析】因为(2, 3, 1)a =-,(2, 0, 3)b =,(3, 4, 2)c =所以()5,4,5b c += 所以()()2534153a b c +=⨯+-⨯+⨯=故答案为:314.已知平面α的一个法向量10,,2n ⎛=- ⎝,A α∈,P α∉,且122PA ⎛=- ⎝,则直线PA 与平面α所成的角为______. 【答案】π3【解析】设直线PA 与平面α所成的角为θ,则s 0in cos n PA n PAθθ===⋅=⋅, ∴直线PA 与平面α所成的角为π3.故答案为:π3.15.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =________. 【答案】60︒【解析】由条件,知0CA AB ⋅=,0AB BD ⋅=,CD CA AB BD =++.2222222CD CA AB BD CAAB AB BD CA BD=+++⋅+⋅+⋅(2222648268cos ,CA BD =+++⨯⨯=.∴1cos ,2CA BD =-,又∵0,180CA BD ︒≤≤︒,∴,120CABD =︒,∴二面角的大小为60︒. 故答案为:60︒.16.如图,棱长为3的正方体的顶点A 在平面α上,三条棱,,AB AC AD 都在平面α的同侧,若顶点,B C 到平面α,则顶点D 到平面α的距离是______.【解析】如图,以O 为坐标原点,建立空间直角坐标系, 则(0,0,0),(3,0,0),(0,3,0),(3,3,0),(3,3,3)O C B A D , 所以(3,0,0),(0,3,0),(0,0,3)BA CA AD ===, 设平面α的一个法向量为(,,)n x y z =, 则点B 到平面α距离为12||||BA n d n x ⋅===点C 到平面α距离为12||||CA n d n x ⋅===由①②可得||||,|||y x zx==, 所以D 到平面α的距离为2|||||AD n n x x ⋅===故答案为四、解答题(17题10分,其余题目12分每题,共70分) 17.如图,2BC =,原点O 是BC的中点,点A 的坐标为(2,12,0),点D 在平面yOz 上,且90BDC ∠=︒,30DCB ∠=︒.(1)求向量CD 的坐标.(2)求AD 与BC 的夹角的余弦值.【答案】(1)3(0,2-;(2).【解析】(1)过D 作DE BC ⊥于E ,则sin302DE CD =⋅︒=,11cos60122OE OB BD =-︒=-=,所以D 的坐标为1(0,2D -,又因为(0,1,0)C ,所以3(0,2CD =-.(2)依题设有A 点坐标为1,0)2A ,所以(2AD =--,(0,2,0)BC =,则AD 与BC 的夹角的余弦值为·cos ,·AD BC AD BC AD BC==-.18.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ︒∠=∠=.(1)设1AA a =,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; (2)求异面直线1AB 与1BC 所成角的余弦值. 【答案】(1)1BC a c b =+-;12BC =(2【解析】(1)1111111111BC BB BC BB AC A B AA AC AB a c b =+=+-=+-=+-, 因为11||||cos 11cos602a b a b BAA ︒⋅=⋅∠=⨯⨯=,同理可得12a cbc ⋅=⋅=,所以22221()2221111BC a c b a c b a c a b c b =+-=+++⋅-⋅-⋅=+++-=.(2)因为1AB a b =+,所以2221()2111AB a b a b a b =+=++⋅=++=因为2211()1111111222)2(AB BC a b a c b a a ca b b a c b b ⋅=+⋅+-=+⋅+-⋅+⋅+⋅=+-+=--,所以111111cos ,62AB BC AB BC AB BC ⋅<>===所以异面直线1AB 与1BC 所成角的余弦值为619.如图所示,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点.(1)求证:NM ∥平面11A ADD ; (2)求证:NM ⊥平面11A B M .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,在长方体1111ABCD A B C D -中,1AD =,12AB AA ==,N 、M 分别是AB 、1C D 的中点,(0M ∴,1,1),(1N ,1,0),(1=MN ,0,1)-,平面11A ADD 的法向量可设为(0n =,1,0),∴0=MN n ,MN ⊂/平面11A ADD ,MN ∴平面11A ADD .(2)1(1A ,0,2),1(1B ,2,2),11(0A B =,2,0),1(1A M =-,1,1)-, 11·0MN AB ∴=,1·0MN AM =, 11MN A B ∴⊥,1MN A M ⊥, 1111A B A M A ⋂=,NM ∴⊥平面11A B M .20.如图,在直棱柱1111ABCD A B C D -中,//AD BC ,90BAD ∠=︒,AC BD ⊥,1BC =,14A D A A ==.(1)证明:面1ACD ⊥面1BB D ; (2)求二面角11B AC D --的余弦值.【答案】(1)证明见解析;(2)63. 【解析】(1)证明:1BB ⊥平面ABCD ,AC ⊂平面ABCD ,∴1AC BB ⊥. 又∵AC BD ⊥,且1BB BD B ⋂=,1,BD BB ⊂平面1BB D , ∴AC ⊥平面1BB D . 又∵AC ⊂平面1ACD , ∴面1ACD ⊥面1BB D .(2)易知AB 、AD 、1AA 两两垂直,以A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 轴、y 轴、z 轴建立如图的空间直角坐标系,设AB t =,则相关各点的坐标为()0,0,0A ,(),0,0B t ,()1,0,4B t ,(),1,0C t , ()1,1,4C t ,()0,4,0D ,()10,4,4D .从而(),1,0AC t =,(),4,0BD t =-. ∵AC BD ⊥,∴2400AC BD t ⋅=-++= 解之得2t =或2t =-(舍去).()10,4,4AD =,()2,1,0AC =设()1,,n x y z =是平面1ACD 的一个法向量, 则11100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即20440x y y z +=⎧⎨+=⎩令1x =,则()11,2,2n =-.同理可求面1ACB 的法向量为()22,4,1n =-.∴12122cos 63||||3n n n n θ⋅-===⋅.又∵二面角11B AC D --是锐二面角, ∴二面角11B AC D --21.如图,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB DC ,E 为线段PD 的中点,已知2PA AB AD CD ====,120PAD ∠=︒.(1)证明:直线//PB 平面ACE ;(2)求直线PB 与平面PCD 所成角的正弦值.【答案】(1)证明见解析;(2【解析】(1)证明:连接BD 交AC 于点H ,连接HE//AB DC ,AB CD =,四边形ABCD 是平行四边形,H ∴是AC 中点,又E 为线段PD 的中点,//B HE P ,又HE ⊂平面ACE ,PB ⊄平面ACE∴ 直线//PB 平面ACE(2)AB ⊥平面PAD ,作Ax AP ⊥,建立如图所示空间直角坐标系A xyz -由已知2PA AB AD CD ====,120PAD ∠=︒ 得(0,0,2)B ,(0,2,0)P,1,0)D -,1,2)C -(0,2,2)PB =-- , (3,3,0)PD =- (0,0,2)CD =-设平面PCD 的法向量(,,)n x y z =·0·0n CD n PD ⎧=⎨=⎩ , 200Z y -=⎧⎪-=,不妨取(1,3,0)n =2cos ,422PB n PBn PB n-∴<>===⨯所以直线PB 与平面PCD 所成角的正弦值为422.如图,已知梯形ABCD 中,//AD BC ,90DAB ∠=︒,22AB BC AD ===,四边形EDCF 为矩形,2DE =,平面EDCF ⊥平面ABCD . (1)求证://DF 平面ABE ;(2)求平面ABE与平面BEF 所成二面角的正弦值;(3)若点P 在线段EF 上,且直线AP 与平面BEF ,求线段AP 的长.【答案】(1)证明见解析;(2;(3)3【解析】(1)证明:四边形EDCF 为矩形,DE CD ∴⊥,又平面EDCF ⊥平面ABCD ,平面EDCF⋂平面ABCD CD =,ED ∴⊥平面ABCD .取D 为原点,DA 所在直线为x 轴,DE 所在直线为z 轴建立空间直角坐标系, 如图,则(1A ,0,0),(1B ,2,0),(1C -,2,0),(0E ,0,2),(1F -,2,2), 设平面ABE 的法向量(,,)m x y z =,(1,2,2)BE =--,(0,2,0)AB =,由·220·20m BE x y z m AB y ⎧=--+=⎨==⎩,取1z =,得(2,0,1)m =,又(1,2,2)DF =-,∴2020DF m =-++=,则DF m ⊥, 又DF ⊂/平面ABE ,//DF ∴平面ABE ;(2)解:设平面BEF 的法向量111(,,)n x y z =,(1,2,2)BE =--,(1,2,0)EF =-,由11111·220·20n BE x y z n EF x y ⎧=--+=⎪⎨=-+=⎪⎩,取11y =,可得(2,1,2)n =,42cos ,||||35m n m n m n +∴<>===,5sin ,5m n ∴<>=, 即平面ABE 与平面BEF ;(3)解:点P 在线段EF 上,设EP EF λ=,[0λ∈,1],∴(1AP AE EF λ=+=-,0,2)(1λ+-,2,0)(1λ=--,2λ,2),又平面BEF 的法向量(2,1,2)n =,设直线AP 与平面BEF 所成角为θ,∴|||2(1sin |cos ,|||||3(AP n AP n AP n θλ-=<>===-,24518110λλ∴+-=,即(31)(1511)0λλ-+=,[0λ∈,1],∴13λ=.∴4(3AP =-,23,2),则||(AP =-,AP ∴.《第一章 空间向量与立体几何》单元检测试卷(二)一、选择题1.在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于( )323向量()()(,1,1,b 1,,1,c 2,4,2a x y ===-且,//c a c b ⊥,则b a +=( )3.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )4.空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( )5.(多选题)在四面体P ABC -中,以上说法正确的有( ).若1233AD AC AB =+,则可知3BC BD = 的重心,则111333PQ PA PB PC =++C .若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=1MN = 6.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45︒B .存在某个位置,使得PB CD ⊥二、填空题7.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,则直线1D E 与1A D 所成角的大小是__________,若1D E EC ⊥,则AE =__________.8.已知四棱柱1111ABCD A B C D -的底面是边长为2的正方形,侧棱与底面垂直.若点C 到9.在正方体1111ABCD A B C D -中,E ,F 分别为线段11A B ,AB 的中点,O 为四棱锥11E C D DC -的外接球的球心,点M ,N 分别是直线1DD ,EF 上的动点,记直线OC 与MN 所成的角为θ,则当θ最小时,tan θ=__________.10.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点.给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定题序号都填上)三、解答题, ,为的中点,为的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题: (1)证明:直线;(2)求异面直线AB 与MD 所成角的大小; (3)求点B 到平面OCD 的距离.为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;答案解析一、选择题1.在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于( )A .1223EF AC AB AD →→→→=+-B .112223EF AC AB AD →→→→=--+OA ABCD ⊥底面2OA =M OA N BC MN OCD平面‖C .112223EF AC AB AD →→→→=-+D .112223EF AC AB AD →→→→=-+-【答案】B【解析】在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,所以EF EB BA AF →→→→=++1223AB AC AB AD →→→→⎛⎫=--+ ⎪⎝⎭112223AC AB AD →→→=--+,即112223EF AC AB AD →→→→=--+.故选:B.2.设,x y R ∈,向量()()(),1,1,b 1,,1,c 2,4,2,a x y ===-且,//c a c b ⊥,则b a +=( )A .BC .3D .4【答案】D 【解析】(),241,2,1,21b c y y b ∴=-⨯∴=-∴=-,,,a b ⊥()214+20,a b x ∴⋅=+⋅-=1x ∴=,()()1,112,1,2a a b ∴=∴+=-,(223a b ∴+=+=,故选C. 3.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A B .2C .3λ D 【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1), 1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则1·20·20n ED x z n EF y ⎧=-+=⎨==⎩,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=255EM nn==,N 为EM 中点,所以N 到该面的距,选D .4.空间线段AC AB ⊥,BD AB ⊥,且::1:3:1AC AB BD =,设CD 与AB 所成的角为α,CD 与面ABC 所成的角为β,二面角C AB D --的平面角为γ,则( ) A .2γβα≤≤B .2γβα≤≤ C .2γαβ≤≤D .2γαβ≤≤【答案】A【解析】因为空间线段AC AB ⊥,BD AB ⊥,所以可将其放在矩形中进行研究,如图,绘出一个矩形,并以A 点为原点构建空间直角坐标系:因为::1:3:1AC AB BD =,所以可设AC x =,3AB x =,BD x =,则()0,0,0A ,0,3,0B x ,0,0,C x ,,3,0D x x ,,3,CD x x x ,0,3,0AB x ,0,3,CBx x ,故CD 与AB 所成的角α的余弦值229311cos α11113CD AB x CD ABx x, 因为根据矩形的性质易知平面ABD ⊥平面ABC ,BD ⊥平面ABC ,所以二面角C ABD --的平面角为γ90,γ452,γ2cos22,所以BCD ∠即CD 与面ABC 所成的角β,故110cos β11CD CB CD CB,因为311211112,所以2γβα≤≤,故选:A.5.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为ABC ∆的重心,则111333PQ PA PB PC =++C .若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若四面体P ABC -各棱长都为2,M ,N 分别为PA ,BC 的中点,则1MN = 【答案】ABC【解析】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- ,2BD DC ∴=,3BD BD DC ∴=+即3BD BC =,故A 正确;对于B ,若Q 为ABC ∆的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=,3PQ PA PB PC ∴=++即111333PQ PA PB PC =++,故B 正确;对于C ,若0PA BC ⋅=,0PC AB ⋅=,则PA BC PC AB ⋅=⋅,0PA BC PC AB ∴⋅+⋅=,()0PA BC PC AC CB ∴⋅+⋅+= 0PA BC PC AC PC CB ∴⋅+⋅+⋅=,0PA BC PC AC PC BC ∴⋅+⋅-⋅=()0PA PC BC PC AC ∴-⋅+⋅=,0CA BC PC AC ∴⋅+⋅=0AC CB PC AC ∴⋅+⋅=,()0AC CB PC ∴⋅+=0AC PB ∴⋅=故C 正确;对于D ,()()111222MN PN PM PB PC PA PB PC PA =-=+-=+-12MN PA PB PC ∴=--,222222PA PB PC PA PB PC PA PB PA PC PB PC --=++-⋅-⋅+⋅===2MN ∴=,故D 错误.故选:ABC6.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45︒B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90︒时,PC =D .存在某个位置,使得B 到平面PDC 【答案】BC 【解析】如图所示:对A ,取BD 的中点O ,连结OP ,OC ,则当60POC ∠=时,PC 与平面BCD 所成的最大角为60︒,故A 错误;对B ,当PD PC =时,取CD 的中点N ,可得,,CD PN CD BN ⊥⊥所以CD ⊥平面PBN ,所以PB CD ⊥,故B 正确;对C ,当二面角P BD C --的大小为90时,所以90∠=POC ,所以PO OC ==所以PC =故C 正确;对D ,因为BN =所以如果B 到平面PDC ,则BN ⊥平面PCD ,则2,1,1PB BN PN DN ====,所以PD =D 错误;故选:BC.二、填空题7.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,则直线1D E 与1A D 所成角的大小是__________,若1D E EC ⊥,则AE =__________.【答案】90; 1【解析】长方体ABCD ﹣A 1B 1C 1D 1中以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,又11AD AA ==,2AB =,点E 在棱AB 上移动则D (0,0,0),D 1(0,0,1),A (1,0,0),A 1(1,0,1),C (0,2,0), 设E (1,m ,0),0≤m≤2,则1D E =(1,m ,﹣1),1A D =(﹣1,0,﹣1), ∴1D E •1A D =﹣1+0+1=0,∴直线D 1E 与A 1D 所成角的大小是90°. ∵1D E =(1,m ,﹣1),EC =(﹣1,2﹣m ,0),D 1E ⊥EC ,∴1D EEC =﹣1+m (2﹣m )+0=0,解得m=1,∴AE=1.故答案为900,1.8.已知四棱柱1111ABCD A B C D -的底面是边长为2的正方形,侧棱与底面垂直.若点C 到平面11AB D,则直线1B D 与平面11AB D 所成角的余弦值为______.【解析】如图,连接11A C 交11B D 于O 点,过点C 作CH AO ⊥于H ,则CH ⊥平面11AB D ,则CH =,设1AA a =,则AO CO ==AC =得1122AOC S AO CH AC ∆=⨯⨯=⨯a =以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -.则(A ,()12,0,0B ,()10,2,0D,(D ,(10,2,AD =-,(12,0,AB =-,(1B D =-,设平面11AB D 的法向量为(),,n x y z =,则1100n AD n AB ⎧⋅=⎪⎨⋅=⎪⎩,即20220y x ⎧-=⎪⎨-=⎪⎩,令x,得()2,2,1n =.11110cos ,10B D n B D n B D n⋅==1B D 与平面1111D C B A所成的角的余弦值为.9.在正方体1111ABCD A B C D -中,E ,F 分别为线段11A B ,AB 的中点,O 为四棱锥11E C D DC -的外接球的球心,点M ,N 分别是直线1DD ,EF 上的动点,记直线OC 与MN 所成的角为θ,则当θ最小时,tan θ=__________. 【答案】42【解析】如图,设,P Q 分别为棱CD 和11C D 的中点,则四棱锥11E C D DC -的外接球即为三棱柱11DFC D EC -的外接球,因为三棱柱11DFC D EC -为直三棱柱,所以其外接球球心O 为上、下底面三角形外心G 和H 连线的中点,由题意,MN 是平面1DD EF 内的一条动直线,所以θ最小是直线OC 与平面1DD EF 所成角,即问题转化为求直线OC 与平面1DD EF 所成角的正切值,不妨设正方体的棱长为2,2EQ =,1ED =,因为11EC D △为等腰三角形,所以11EC D △外接圆的直径为11152sin 2ED GE EC D ===∠,则54GE =,从而53244GQ PH =-==,如图,以D 为原点,以1,,DA DC DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系D xyz -,则()0,0,0D ,()10,0,2D ,()0,2,0C ,()2,1,0F ,3,1,14O ⎛⎫⎪⎝⎭,()10,0,2DD ∴=,()2,1,0DF =,设平面1DD EF 的一个法向量为(),,n x y z =,则12020n DD z n DF x y ⎧⋅==⎨⋅=+=⎩,令1x =,则()1,2,0n =-,因为3,1,14OC ⎛⎫=-- ⎪⎝⎭,所以sin cos ,n OC θ===10.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点.给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为其中正确命题的序号是__________.(将你认为正确的命题序号都填上)【答案】①③④【解析】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则()0,0,1P ,()1,0,0B ,()1,2,0C ,()0,,0E y ,则()1,0,1BP =-,()1,2,0CE y =--,cos ,2BP CE BP CE BP CE⋅==≤⋅2y =时等号成立, 此时,4BP CE π=,故直线PB 与直线CE 所成的角中最小的角为45,①正确;()()1,,01,2,121BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点,1111112323226BCE E BCO OBCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D , 则''CE PE C E PE PC +=+≥=='PEC 共线时等号成立,④正确.故答案为:①③④.三、解答题11.如图,在四棱锥中,底面是边长为1的菱形,,, ,为的中点,为的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题: (1)证明:直线;(2)求异面直线AB 与MD 所成角的大小;O ABCD -ABCD 4ABC π∠=OA ABCD ⊥底面2OA =M OA N BC MN OCD平面‖(3)求点B 到平面OCD 的距离.【解析】作于点P,如图,分别以AB,AP,AO 所在直线为轴建立坐标系, (1)设平面OCD 的法向量为,则即 取解得(2)设与所成的角为, , 与所成角的大小为(3)设点B 到平面OCD 的距离为,则为在向量上的投影的绝对值,AP CD ⊥,,x yz (0,0,0),(1,0,0),(0,((0,0,2),(0,0,1),(122244A B P D O M N -2222(1,,1),(0,,2),(2)44222MN OP OD =--=-=--(,,)n x y z =0,0n OP n OD ==2022022y z x y z -=⎪⎪⎨⎪-+-=⎪⎩z =(0,4,2)n =22(1,,1)(0,4,2)044MN n =--=∵MN OCD ∴平面‖AB MD θ(1,0,0),(1)2AB MD ==--∵1cos ,23AB MDAB MD πθθ===⋅∴∴AB MD 3πd d OB (0,4,2)n =由 , 得.所以点B 到平面OCD 的距离为12.在三棱锥A —BCD 中,已知,BD=2,O 为BD 的中点,AO ⊥平面BCD ,AO=2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF=14BC ,设二面角F —DE —C 的大小为θ,求sinθ的值. 【解析】(1)连,CO BC CD BO OD CO BD ==∴⊥以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -∴(1,0,2),(1,1,1)cos ,15AB DE AB DE ∴=-=∴<>==- 从而直线AB 与DE 所成角的余弦值为15(2)设平面DEC 一个法向量为1(,,),n x y z =(1,0,2)OB =-23OB n d n⋅==2311200(1,2,0),00x y n DC DC x y z n DE ⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩令112,1(2,1,1)y x z n =∴=-=∴=- 设平面DEF 一个法向量为2111(,,),n x y z =11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩令111272,5(2,7,5)yx z n =-∴==∴=-12cos ,n n ∴<>==,因此sin 13θ==.《第一章 空间向量与立体几何》单元检测试卷(三)一、单选题1.空间直角坐标中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB 与CD 的位置关系是( ) A .平行 B .垂直 C .相交但不垂直D .无法确定2.如图,在平行六面体中,为与的交点若,,,则下列向量中与相等的向量是( )111ABCD A B C D -M AC BD 11A B a =11A D b =1A A c =1B MA .B .C .D . 3.已知向量,.若向量与向量平行,则实数的值是( ) A .2B .C .10D .4.如图,已知正方体ABCD ﹣A'B'C'D'中,E 是CC'的中点,,,,x y z ,则( )A .x =1,y =2,z =3B .x ,y =1,z =1C .x =1,y =2,z =2D .x ,y =1,z5.正方体不在同一侧面上的两顶点,,则正方体外接球体积是( ) A .B .C .D .6.已知,若点D 是AC 中点,则( ) A .2B .C .-3D .67.平行六面体中,,则实数x ,y ,z 的值分别为( ) A . B .C .D .8.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为( )1122a b c -++1122a b c ++1122a b c -+1122a b c --+()0,1,1a =()1,2,1b =-a b +()2,,4c m =--m2-10-1'2a AA =12b AB =13c AD =AE =a +b +c 12=12=32=(1,2,1)A--(1,0,1)B323π4π(1,2,3),OA =(2,2,1),OB =-(1,1,2)OC =BC OD ⋅=32-1111ABCD A B C D -12,AM MC =1AM xAB yAD zAA =++1,32,3232,31,3232,32,3132,31,223111ABC A B C -1160BAA CAA ︒∠=∠=1AB 1BCABCD .9.如图,在三棱柱中,底面,,,则与平面所成角的大小为A .B .C .D .10.在一直角坐标系中,已知,现沿轴将坐标平面折成的二面角,则折叠后两点间的距离为( )A .BCD .二、多选题11.已知点P 是平行四边形ABCD 所在的平面外一点,如果,,,下列结论正确的有( )A .B .C .是平面ABCD 的一个法向量D .12.在正方体中,,分别是和的中点,则下列结论正确的是( )6111ABC A B C -1AA ⊥ABC 13AA =2AB AC BC ===1AA 11AB C 3045︒60︒90︒(1,6),(3,8)A B --x 60︒,A B ()2,4,1AB =--()4,2,0AD =()1,2,1AP =--AP AB ⊥⊥AP AD AP //AP BD 1111ABCD A B C D -E F 11A D 11C DA .平面B .平面C .D .点与点到平面的距离相等 13.在正三棱柱中,所有棱长为1,又与交于点,则( )A .=B .C .三棱锥的体积为D .与平面BB′C′C 所成的角为三、填空题14.已知向量2,,x ,,且,则x 的值为______. 15.若向量,,且与的夹角为钝角,则实数的取值范围为________.16.如图所示,在正方体中,M 为棱的中点,则异面线与AM 所成角的余弦值为________.17.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.11//A C CEF 1B D ⊥CEF 112DA DD C DC E =+-D 1B CEF ABC A B C '''-BC 'B C 'O AO 111222AB AC AA '++AO B C '⊥A BB O '-24AO π6(3,a =-5)(1,b =1)-8a b ⋅=(2,1,2)a =-(4,2,)b m =-a b m 1111ABCD A B C D -1CC 1BD ABCD ADPQ ,,M E F ,,PQ AB BC ME ABCD EMAF四、解答题18.如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值; (2)求直线AE 和平面OBC 的所成角.19.如图,在长方体中,,,点、分别为、的中点.(1)证明:平面; (2)求二面角的余弦值.20.如下图所示,在四棱锥中,底面四边形,四边形是直角梯形,且,,点是棱的中点,是上的点,且.O ABC -OA OB OC ,,1OA =2OB OC ==EOC BEAC S OABC -SO ⊥OABC OABC 90COA OAB ∠=∠=︒1,4OA OS AB OC ====M SB N OC :1:3ON NC =(1)求异面直线与所成的角的余弦值; (2)求与平面所成的角的正弦值.21.如图,在正方体中,分别是的中点。
(好题)高中数学必修二第一章《立体几何初步》检测(包含答案解析)

一、选择题1.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( )A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥2.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π3.在三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ,且12AC BC =,则直线11B C 与平面1ABC 所成的角的大小为( )A .30°B .45°C .60°D .90°4.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π5.如图为某几何体的三视图,正视图、左视图和俯视图均为等腰直角三角形,则该几何体的表面积是( )A .23+B .223+C .63+D .66.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( ) A .77 B .142 C .714 D .147 7.三个平面将空间分成n 个部分,则n 不可能是( )A .5B .6C .7D .88.在长方体1111ABCD A B C D -中,2AB =,1AD =,12AA =,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( ) A .3-B .3-C .3 D .3 9.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( ) A .2B .22C .12D .3210.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263-11.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+ D .8,1625VL ==+12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.14.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.15.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =+m n α,其中m ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.16.已知某空心圆锥的母线长为5cm ,高为4cm ,记该圆锥内半径最大的球为球O ,则球O 与圆锥侧面的交线的长为________cm .17.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;18.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.19.有一个半径为4的球是用橡皮泥制作的,现要将该球所用的橡皮泥重新制作成一个圆柱和一个圆锥,使得圆柱和圆锥有相等的底面半径和相等的高,若它们的高为8,则它们的底面圆的半径是___________.20.已知A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离是球半径的13,且22AB =,AC BC ⊥,则球O 的表面积是______.三、解答题21.如图,在四棱锥P ABCD -中,PAB △是等边三角形,CB ⊥平面,//PAB AD BC 且22PB BC AD F ===,为PC 中点.(1)求证://DF 平面PAB ;(2)求直线AB 与平面PDC 所成角的正弦值.22.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.23.如图,在正三棱柱111ABC A B C -中,若12AB BB =,AD DC =,试证明:(1)1//AB 平面1BC D ; (2)11AB BC ⊥.24.如图,在四棱锥C ﹣ABDE 中,F 为CD 的中点,DB ⊥平面ABC ,BD ∥AE ,BD =2AE .(1)求证:EF ∥平面ABC ;(2)若AB =BC =CA=BD =6,求点A 到平面ECD 的距离 25.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒==∠=,1cos ,3BAP AP BC ∠=-⊥.(1)若23BM MC =,求证:PM BC ⊥; (2)当3AP =,且N 为BC 中点时,求AN 与平面PBC 所成角的正弦值. 26.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//AD BC ,6BC =,2PA AD CD ===,E 是BC 上一点且23BE BC =,PB AE ⊥.(1)求证:AB ⊥平面PAE ; (2)求点C 到平面PDE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC ABAB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 2.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =6,3AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PAB AB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,93ABCS=所以21sin 60932ABCSAB =⨯⨯= 解得6,3AB AQ == 所以3,23,3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AO OQ AQ =+,即()(222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由1 2QAB QAC QBCPAB PAC PBCS S SS S S===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..3.A解析:A【分析】证明CBA∠就是BC与平面1ABC所成的角,求出此角后,利用11//B C BC可得结论,【详解】∵90BAC∠=︒,12AC BC=,∴30CBA∠=︒,∵1BC AC,AB AC⊥,1BC AB B,1,BC AB⊂平面1ABC,∴AC⊥平面1ABC,∴CBA∠就是BC与平面1ABC所成的角,即BC与平面1ABC所成的角是30,∵棱柱中11//B C BC,∴11B C与平面1ABC所成的角的大小为30,故选:A.【点睛】思路点睛:本题考查求直线与平面所成的角,解题方法是定义法,即过直线一点作平面的垂直,得直线在平面上的射影,由直线与其射影的夹角得直线与平面所成的角,然后在直角三角形中求出此角.解题过程涉及三个步骤:一作出图形,二证明所作角是直线与平面所成的角,三是计算.4.C解析:C【分析】分析出当平面P AD'⊥平面ABCD时,四棱锥P ABCD'-的体积取最大值,求出AD、P A'的长,然后将四棱锥P ABCD'-补成长方体P AMD QBNC'-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积.【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =, 矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=. 故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.5.A解析:A 【分析】由三视图可知原几何体是三棱锥,平面ACD ⊥平面ABC ,ACD ACB ≅底面是等腰直角三角形,底为2AC =,高为1BE =,ABD BCD ≅是边长为2的等边三角形,计算四个三角形面积之和即可求解. 【详解】由三视图可知原几何体是三棱锥:底面ACB △是等腰直角三角形,底2AC =,高1BE =,平面ACD ⊥平面ABC ,ACD ACB ≅,由三视图知ACB △中,2AC =,ACB △是等腰直角三角形,所以2AB BC ==ACD △是等腰直角三角形,2AD CD ==,2AC =,222BD BE DE =+=所以等腰直角三角形ACB △的面积为12112⨯⨯=, 等腰直角三角形ACD △的面积为12112⨯⨯=, 等边ABD △的面积为233242=, 等边BCD △2332=, 所以该几何体的表面积是331123++=+, 故选:A.6.A解析:A 【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积. 【详解】设ABC 的外接圆的圆心为D ,半径为r , 在ABC 中,72cos 4214ABC ∠==,14sin 4ABC ∴∠=,由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,11114214273773324O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=. 故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.7.A解析:A 【分析】三个平面不重合,先按其中平行的平面的个数分类:三个平面两两平行,两个平面平行,没有平行的平面(两两相交),对两两相交的情况,再根据三条交线互相平行,重合,交于一点,分别讨论. 【详解】按照三个平面中平行的个数来分类:(1)三个平面两两平行,如图1,可将空间分成4部分;(2)两个平面平行,第三个平面与这两个平行平面相交,如图2,可将空间分成6部分;(3)三个平面中没有平行的平面:(i )三个平面两两相交且交线互相平行,如图3,可将空间分成7部分; (ii )三个平面两两相交且三条交线交于一点,如图4,可将空间分成8部分.(iii )三个平面两两相交且交线重合,如图5,可将空间分成6部分;综上,可以为4,6,7,8部分,不能为5部分, 故选:A.8.C解析:C 【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D ,在长方体1111ABCD A B C D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FGEF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角,因为12AB AA ==,所以14FAG π∠=,因为11A F =,所以12222FG A F ==, 在直角三角形EFG 中,2216122EG EF FG =+=+=, 所以cos FGEGF EG ∠==23262=. 所以二面角11B A B E --的余弦值为33. 故选:C 【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键.9.B解析:B 【分析】 连接11A N B AB =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解. 【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为22111115142MB MC C B =+=+=2215142MA MC CA =+=+=, 所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线, ∴1⊥MN AB 且1MNA B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离, 又因为111121122B N AB ==+=,所以点1B 到截面1A BM 2, 故选:B. 【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据AB n d n⋅=即可求解出点A 到平面α的距离.10.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 21022522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 3310DF r DEF ===∠,则球心到DEF 2223R r -=,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A. 【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.11.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A B C D -中,P ,E 分别为11,B C BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PCPB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.12.C解析:C 【分析】设AH a =,则3BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB , 又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AHa =-=-Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C.【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最 解析:42【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.14.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等 1326π【分析】利用余弦定理求得AC ,利用正弦定理计算出ABC 的外接圆直径2r ,可计算出三棱锥P ABC -的外接球半径R ,然后利用球体体积公式可求得结果.【详解】如下图所示,圆柱12O O 的底面圆直径为2r ,圆柱的母线长为h ,则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 所以,圆柱12O O 的外接球直径为()2222R r h =+.本题中,作出ABC 的外接圆2O ,由于PA ⊥平面ABC ,可将三棱锥P ABC -放在圆柱12O O 中,在ABC 中,22AB =3BC =,4ABC π∠=,由余弦定理可得222cos 5AC AB BC AB BC ABC +-⋅∠=,由正弦定理可知,ABC 的外接圆直径为5210sin 2ACr ABC===∠ 则三棱锥P ABC -的外接球直径为()222226R PA r =+=26R =, 因此,三棱锥P ABC -的外接球的体积为334426132633V R ππ==⨯=⎝⎭. 故答案为:13263. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 15.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a 因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.16.【分析】由题可求出底面半径根据三角形相似关系可求出球半径再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径即可求出交线长【详解】圆锥的轴截图如图所示由题可知圆锥的高母线设的内切圆与圆锥的母线相切 解析:125π 【分析】由题可求出底面半径,根据三角形相似关系可求出球半径,再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径,即可求出交线长.【详解】圆锥的轴截图如图所示,由题可知,圆锥的高4cm AF =,母线5cm AB AC ==,设ABC 的内切圆O 与圆锥的母线相切与点E ,则OE AB ⊥,则该圆锥内半径最大的球即以O 为圆心,OE 为半径的球,在直角三角形ABF 中,2222543cm BF AB AF =--=,由圆的切线性质可得3cm BE BF ==,所以532cm AE AB BE =-=-=,在直角三角形AFB 和直角三角形AEO 中,因为∠∠EAO BAF =,所以△△AFB AEO ~,所以AE OE AF BF =,则可得3cm 2OE =, 过点E 作ED AF ⊥,D 为垂足, 则球O 与圆锥的侧面的交线是以DE 为半径的圆, 354cm 22AO AF OF =-=-=, 因为1122△AEO S AE OE ED AO =⋅=⋅,所以6cm 5ED =, 所以球O 与圆锥的侧面的交线长为6122cm 55ππ⨯=. 故答案为:125π. 【点睛】 本题考查圆锥与球的相切问题,解题的关键是利用轴截面,用平面几何的知识解决. 17.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22. 【分析】 由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =,30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥,所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 18.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 解析:33【分析】连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论.【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AE DE E =,∴BC ⊥平面AED ,ME ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==,112ME BC ==, 又1133233EO DE ==⨯⨯=, 由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥, ∴3cos 3EO MEO ME ∠==. 故答案为:33.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤. 19.【详解】设它们的底面圆的半径为()依题意得化简得所以故答案为: 解析:2【详解】设它们的底面圆的半径为r (0r >).依题意得3443V π=⨯球V V =+圆柱圆锥221(+)83r r ππ=⨯, 化简得28r =,所以22r =故答案为:220.【分析】先在直角三角形中列关系求得再求球的表面积即可【详解】是直角三角形外接圆圆心为的中点因为三点都在球的表面上球心到平面的距离为是球半径的所以中即故解得所以球的表面积故答案为:【点睛】本题考查了球 解析:9π【分析】先在直角三角形中列关系,求得R ,再求球的表面积即可.【详解】 22AB =,AC BC ⊥,ABC ∆是直角三角形,外接圆圆心为AB 的中点M ,因为A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离为OM ,是球半径的13, 所以OMB ∆中()()222OA OM MA =+,即2221132R R AB ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 故222112232R R ⎛⎫⎛⎫=+⨯ ⎪ ⎪⎝⎭⎝⎭,解得29=4R ,所以球O 的表面积29=4494S R πππ=⋅=. 故答案为:9π.【点睛】本题考查了球的表面积,属于中档题. 三、解答题21.(1)证明见解析;(2)24 【分析】(1)取PB 边的中点E ,即可证明四边形AEFD 为平行四边形,再根据线面平行的判定定理即可证明;(2)取BC 边的中点G ,由//DG AB ,即可得到直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角,再由等体积法求得2G PCD d -=,即可求得直线AB 与平面PDC 所成角的正弦值.【详解】解:(1)如图所示:取PB 边的中点E ,连,AE FE ,则三角形中位线可知://EF BC 且12EF BC =, 由题可知://AD BC 且12AD BC =, //AD EF ∴且AD EF =,即四边形AEFD 为平行四边形,//DF AE ∴又DF ⊄平面,PAB AE ⊂平面PAB ,故//DF 平面PAB ;(2)取BC 边的中点G ,则//DG AB ,且2DG AB ==,直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角,又1CDG S =,且易得DC PD =,所以1122CDP S PC DF =⋅=⨯=由等体积法,11133P CDG G PCD G PCD V V d ---==⨯=,得2G PCD d -=,DG ∴与平面PDC 所成角的正弦值为22=故直线AB 与平面PDC . 【点睛】关键点点睛:本题解题的关键是利用等体积法求出G 点到平面PCD 的距离.22.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM ,所以//PB 平面ACM ; (2)由已知12222ACD S=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△, 又M 是PD 中点,所以1223M ACD P ACD V V --==,所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论.23.(1)证明见解析;(2)证明见解析.【分析】(1)连接1B C 交1BC 于点E ,连接DE ,则E 为1B C 的中点,利用中位线的性质可得1//DE AB ,再利用线面平行的判定定理可证得结论成立;(2)取BC 中点F ,连接AF 、1B F ,证明出1BC ⊥平面1AB F ,进而可证得11AB BC ⊥.【详解】(1)连接1B C 交1BC 于点E ,连接DE ,在正三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,且11B CBC E =,则E 为1B C 的中点,又D 为AC 的中点,所以1//AB DE ,又1AB ⊄平面1BC D ,DE ⊂平面1BC D ,所以1//AB 平面1BC D ; (2)取BC 中点F ,连接AF 、1B F ,设11B FBC O =, 在正三棱柱111ABC A B C -中,1BB ⊥平面ABC ,AF ⊂平面ABC ,1AF BB ∴⊥,ABC 为正三角形,且F 为BC 的中点,AF BC ∴⊥,1BB BC B =,AF ∴⊥平面11BB C C ,1BC ⊂平面11BB C C ,1AF BC ∴⊥,在侧面11BCC B 中,12BC BB =,F 是BC 的中点,11112BB BF BB B C ∴==,又11190B BF BB C ∠=∠=,所以,111R t t BB R B C FB △△,111BFB B BC ∴∠=∠,所以,1111190BFB CBC B BC CBC ∠+∠=∠+∠=,90BOF ∴∠=,所以11BC B F ⊥,1AF B F F =,所以,1BC ⊥面1AB F ,因为1AB ⊂平面1AB F ,所以11BC AB ⊥.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.24.(1)证明见解析(2)322 【分析】(1)取CB 的中点M ,连,MF AM ,可证四边形AMFE 为平行四边形,从而可得//EF AM ,再根据直线与平面平行的判定定理可证结论;(2)根据A ECD D ACE B ACE E ACB V V V V ----===可求得结果.【详解】(1)取CB 的中点M ,连,MF AM ,因为F 为CD 的中点,所以//MF BD ,且12MF BD =, 因为//AE BD 且12AE BD =,所以//MF AE 且MF AE =, 所以四边形AMFE 为平行四边形,所以//EF AM ,因为EF ⊄平面ABC ,AM ⊂平面ABC ,所以//EF 平面ABC .(2)因为DB ⊥平面ABC ,BD ∥AE ,所以AE ⊥平面ABC ,所以BD BC ⊥,BD AB ⊥,AE AC ⊥,AE AB ⊥,因为AB =BC =CA=BD =6,BD =2AE .所以3AE =,所以CD ==CE ==DE ==,又F 为CD 的中点,所以EF CD ⊥,所以EF ==所以1122ECD S CD EF =⋅⋅=⨯=△因为2113633E ACB ABC V AE S -=⋅=⨯=△因为//AE BD ,所以A ECD D ACE B ACE E ACB V V V V ----====设点A 到平面ECD 的距离为h ,则1133A ECD ECD V hS h -==⨯=△,所以=h =所以点A 到平面ECD 的距离为2. 【点睛】关键点点睛:利用等体积法求点面距是解题关键.25.(1)证明见解析;(2)7 【分析】(1)利用正余弦定理解三角形,求出222AM BM AB +=得AM BC ⊥,即可结合⊥AP BC 得出BC ⊥平面AMP ,证出PM BC ⊥;(2)过A 作AG PM ⊥,ANG ∠即AN 与平面PBC 所成角,利用余弦定理求出各边长度,即可求出.【详解】(1)1,135AB AC BAC ︒==∠=,由余弦定理可得22212152BC ⎛=+-⨯-= ⎝⎭,BC ∴=由正弦定理sin sin BC AC BAC ABC =∠∠,则可得5sin 5ABC ∠=,即25cos 5ABC ∠=, 23BM MC =,则可得2535,55BM MC ==, 在ABM 中,利用余弦定理可得22225252511215555AM ⎛⎫=+-⨯⨯⨯= ⎪ ⎪⎝⎭,即5AM =, 则满足222AM BM AB +=,AM BC ∴⊥,AP BC ⊥,AP AM A ⋂=, BC ∴⊥平面AMP ,PM ⊂平面AMP ,PM BC ∴⊥;(2)过A 作AG PM ⊥,由(1)BC ⊥平面AMP 可得平面AMP ⊥平面PBC ,且平面AMP 平面PBC PM =,AG ∴⊥平面PBC ,则ANG ∠即AN 与平面PBC 所成角,1,3,cos 13AB A A P P B ∠==-=, 则由余弦定理可得222113213123PB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,即3PB = BC PM ⊥,22270PM PB BM ∴=-=, 则2225cos 2PA AM PM PAM PA PM +-∠==⋅,即2sin 3PAM ∠=, 15sin 2PAM S PA AM PAM ∴=⋅⋅∠=,则152PM AG ⨯⨯=, 1414AG ∴=,222512cos 1214254AN AB BN AB BN ABC =+-⨯⨯⨯∠=+-⨯⨯=, 12AN ∴=,sin 7AG ANG AN ∴∠==. 【点睛】关键点睛:本题考查利用线面垂直证明线线垂直,考查线面角的求解,解题的关键是正确求出图中各线段长度,会应用余弦定理求解,考查计算能力.26.(1)证明见解析;(2)7. 【分析】(1)先证明AE ⊥平面PAB ,从而得出AE AB ⊥,PA AB ⊥,最后由线面垂直的判定定理证明即可;(2)分别以点P 、C 为三棱锥C PDE -的顶点,利用等体积法求出点C 到平面PDE 的距离.【详解】解:(1)证明:∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA AE ⊥又∵PB AE ⊥,PBPA P =,PB 、PA ⊂平面PAB ,∴AE ⊥平面PAB 又AB平面PAB ,∴AE AB ⊥ 又∵PA ⊥平面ABCD ,AB平面ABCD ,∴PA AB ⊥ 又PA AE A =,PA 、AE ⊂平面PAE∴AB ⊥平面PAE (2)解:由123EC BC AD ===,且ABCD 为梯形,//AD EC ,且2AD DC == 则ADCE 为菱形,所以2AE =由(1)得,AB AE ⊥,又4BE =,所以30ABE ∠=︒,则120AEC ∠=︒ 从而有CDE △是边长为2的等边三角形.在PDE △中:PE PD ==2DE =设C 到平面PDE 的距离为h由P ECD C PDE V V --=得1133ECD PDE S PA S h ⋅=⋅△△11112223232h ⨯⨯=⨯⨯解得h =,即C 到平面PDE . 【点睛】关键点睛:在证明点C 到平面PDE 的距离时,关键是采用等体积法求高,从而得出点C 到平面PDE 的距离.。
高中数学 单元综合测试(一)(第一章 立体几何初步综合测试)课件高一数学课件

R,所以,r= 23R,圆锥的高为 h=
2r2-r2=
3r=
3×
3 2R
=32R,所以,圆锥的体积为13πr2h=13π× 23R2×32R=3π8R3,因 3πR3
此,圆锥的体积与球的体积之比为4π8R3=38×34=392. 3
12/13/2021
第十七页,共四十六页。
10.如图,三棱锥 S-ABC 中,∠SBA=∠SCA=90°,△ABC 是斜边 AB=a 的等腰直角三角形,则以下结论中:
高 32-12=2 2,所以圆锥的体积13π×12×2 2=232π.故答案
为:2
2 3 π.
12/13/2021
第二十一页,共四十六页。
12.如图,正方形 DABC 的边长为 2,它是水平放置的一个
平面图形的直观图,则原图形的面积为 8 2 .
12/13/2021
第二十二页,共四十六页。
解析:根据题意,画出图形,如图所示:
又∵腰长为 12,∴高 AM= 122-5-22=3 15, ∴设截得此圆台的圆锥的母线长为 x, 则由△SAO1∽△SBO 可得 25=x-x12,解得 x=20. 所以截得此圆台的圆锥的母线长为 20;
12/13/2021
第三十四页,共四十六页。
(2)大圆锥的底面周长为 2×5π=10π,小圆锥的底面周长为
1+1+1= 3,∴外接球的表面积是 4×π×( 23)2=3π,故选 B.
12/13/2021
第十三页,共四十六页。
8.如图,已知圆柱体底面圆的半径为2πcm,高为 2cm,AB, CD 分别是两底面的直径,AD,BC 是母线.若一只小虫从 A 点
出发,从侧面爬行到 C 点,则小虫爬行的最短路线的长度是( C )
(典型题)高中数学必修二第一章《立体几何初步》检测题(答案解析)

一、选择题1.如下图所示,在正方体1111ABCD A B C D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面 2.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( )A .5B .25C .5D .25 3.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<< 4.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( )A 13B 3C 33D 115.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π2 6.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .127.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .7 8.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π 9.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .//MN 平面ABEB .//MN 平面ADEC .//MN 平面BDHD .//MN 平面CDE10.如图是某个四面体的三视图,则下列结论正确的是( )A.该四面体外接球的体积为48πB.该四面体内切球的体积为2 3πC.该四面体外接球的表面积为323πD.该四面体内切球的表面积为2π11.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A.8,14253V L==+B.8,1425V L==+C.8,16253V L==+D.8,1625V L==+12.某三棱锥的三视图如图所示,则该三棱锥的体积为()A .16B .13C .23D .2二、填空题13.在边长为3的菱形ABCD 中,对角线3AC =,将三角形ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.14.已知三棱锥P ABC -的外接球O 的表面积为12π,PA ⊥平面ABC ,BA AC ⊥,2PA =,则ABC 面积的最大值为__________.15.已知四棱锥P ABCD -的底面ABCD 为矩形,且所有顶点都在球O 的表面上,侧面PAB ⊥底面ABCD ,23PA PB ==,120APB ∠=︒,4=AD ,则球O 的表面积为_______.16.在如图棱长为2的正方体中,点M 、N 在棱AB 、BC 上,且1AM BN ==,P 在棱1AA 上,α为过M 、N 、P 三点的平面,则下列说法正确的是__________.①存在无数个点P ,使面α与正方体的截面为五边形;②当11A P =时,面α与正方体的截面面积为33③只有一个点P ,使面α与正方体的截面为四边形;④当面α交棱1CC 于点H ,则PM 、HN 、1BB 三条直线交于一点.17.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.18.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.若M 为线段1A C 的中点,则在ADE 翻折过程中,下面四个选项中正确的是______(填写所有的正确选项)(1)BM 是定值(2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥(4)存在某个位置,使//MB 平面1A DE19.如图,在长方体1111ABCDA B C D ﹣中,O 是11B D 的中点,P 是线段AC 上一点,且直线1PA 交平面11AB D 于点M .给出下列结论:①A ,M ,O 三点共线;②A ,M ,O ,1A 不共面;③A ,M ,C ,O 共面;④B ,1B ,O ,M 共面.其中正确结论的序号为______.20.如图,已知正四面体P ABC -的棱长为2,动点M 在四面体侧面PAC 上运动,并且总保持MB PA ⊥,则动点M 的轨迹的长度为__________.三、解答题21.如图,三棱柱111ABC A B C -中,122AB BC AC BB ===,1B 在底面ABC 上的射影恰好是点A ,E 是11A C 的中点.(1)证明:1//A B 平面1B CE ;(2)求1A B 与平面11BCC B 所成角的正弦值.22.如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(1)证明://OF 平面ABE ;(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值. 23.如图所示,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 是AB 的中点.(1)证明:1//BD 平面1A DE ;(2)证明:11D E A D ⊥;(3)求二面角1D EC D --的正切值.24.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为23的正三角形,43PB =﹐60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.25.在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,M 为AD 的中点,24PA AB ==.(1)取PC 中点F ,证明:PC ⊥平面AEF ;(2)求点D 到平面ACE 的距离.26.如图,ABC 中,2AC BC AB ==,ABED 是边长为1的正方形,平面ABED ⊥平面ABC ,若G 、F 分别是EC 、BD 的中点.(1)求证://GF 平面ABC ;(2)求证:AC ⊥平面EBC .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设正方体1111ABCD A B C D -的棱长为2,利用正方体性质可求得2MN =,3EF =知12MN EF ≠,再利用三角形中位线性质知1//MN B C ,从而//MN ED ,又EF 与ED 相交,可知MN 与EF 异面,即可选出答案.【详解】设正方体1111ABCD A B C D -的棱长为2,则22112MN MC C N =+=作E 点在平面ABCD 的投影点G ,即EG ⊥平面ABCD ,连接,EG GF ,在直角EGF △中,1EG =,222GF AG AF =+=2222123EF EG GF =+=+=以12MN EF ≠,故排除A 、C 连接DE ,由E 是平面11ADD A 的中心,得112DE A D = 又M N 、分别是11B C 、1CC 的中点,所以1//MN B C又11//A D B C ,所以//MN ED ,又EF ED E ⋂=,所以MN 与EF 异面故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.2.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C ,又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =,又正方体中1111//,AC AC AC AC =,所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG =10GF =22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 2253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.3.A解析:A 【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果. 【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=, 易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin POPC β=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>, 因为sin PO PE γ=,sin POPCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A 【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.4.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,32DE DF ==, ∴在等腰三角形DEF 中,11324cos 63EFFED DE ∠===.所以异面直线AB 与DE 所成角的余弦值为36. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1ACCC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.6.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解.【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.7.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解. 【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.8.C解析:C 【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为33半径为高的三分之一,即3r =234<,所以该棱柱内部可放置球的半径的最大3343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33定球的最大半径.9.C解析:C 【分析】根据题意,得到正方体的直观图及其各点的标记字母,取FH 的中点O ,连接ON ,BO ,可以证明MN ‖BO ,利用BO 与平面ABE 的关系可以判定MN 与平面ABE 的关系,进而对选择支A作出判定;根据MN 与平面BCF 的关系,利用面面平行的性质可以判定MN 与平面ADE 的关系,进而对选择支B 作出判定;利用线面平行的判定定理可以证明MN 与平面BDE 的平行关系,进而判定C ;利用M ,N 在平面CDEF 的两侧,可以判定MN 与平面CDE 的关系,进而对D 作出判定. 【详解】根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH 的中点O ,连接ON ,BO ,易知ON 与BM 平行且相等,∴四边形ONMB 为平行四边形,∴MN ‖BO , ∵BO 与平面ABE (即平面ABFE )相交,故MN 与平面ABE 相交,故A 错误; ∵平面ADE ‖平面BCF ,MN ∩平面BCF =M ,∴MN 与平面ADE 相交,故B 错误; ∵BO ⊂平面BDHF ,即BO ‖平面BDH ,MN ‖BO ,MN ⊄平面BDHF ,∴MN ‖平面BDH ,故C 正确; 显然M ,N 在平面CDEF 的两侧,所以MN 与平面CDEF 相交,故D 错误. 故选:C.【点睛】本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN 的平行线BO .10.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,42AB =2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得1222OE BF AB ===,所以222(22)2,23R R =+∴=, 所以外接球的体积为34(23)3233ππ⨯=,所以选项A 错误; 所以外接球的表面积为24(23)48ππ⨯=,所以选项C 错误; 由题得22(42)(22)210AC AD ==+=, 所以△ACD △的高为24026-=, 设内切球的半径为r ,则1111111(422242222446)24423222232r ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯⨯⨯ 所以22r, 所以内切球的体积为3422)323ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()22ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .11.A解析:A【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A B C D -中,P ,E 分别为11,B C BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PCPB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.12.C解析:C 【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果. 【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.二、填空题13.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因解析:56π;【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积.【详解】根据题意,画出图形,3的菱形ABCD 中,对角线3AC = 所以ABC 和DBC △都是正三角形, 又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径2252R GD OG =+=, 所以其体积为3344555(33V R ππ==⋅=, 55π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下: (1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置; (3)利用勾股定理求得半径; (4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.14.2【分析】由球的表面积可求出半径取的中点可得设由基本不等式可得即可求出面积的最大值【详解】因为球的表面积为所以球的半径取的中点则为的外接圆圆心平面设由得因为所以当且仅当时取等因为的面积为所以面积的最解析:2 【分析】由球的表面积可求出半径3R =,取BC 的中点D ,可得1OD =,设AB x =,AC y =,由基本不等式可得4xy ≤,即可求出ABC 面积的最大值.【详解】因为球O 的表面积为12π,所以球O 的半径3R =. 取BC 的中点D ,则D 为ABC 的外接圆圆心,PA ⊥平面ABC ,112OD PA ∴==, 设AB x =,AC y =,由2222134+==+=+=x y R OC CD OD ,得228x y +=. 因为222x y xy +≥,所以4xy ≤,当且仅当2x y ==时取等.因为ABC 的面积为1122⋅=AB AC xy ,所以ABC 面积的最大值为2. 故答案为:2.【点睛】本题考查几何体的外接球问题,解题的关键是是建立勾股关系,利用基本不等式求出4xy ≤.15.【分析】首先利用垂直关系和底面和侧面外接圆的圆心作出四棱锥外接球的球心再计算外接球的半径以及球的表面积【详解】连结交于点取中点连结并延长于点点是外接圆的圆心侧面底面侧面底面平面过点作平面侧面所以点是 解析:64π【分析】首先利用垂直关系和底面ABCD 和侧面ABCD 外接圆的圆心,作出四棱锥P ABCD -外接球的球心,再计算外接球的半径,以及球O 的表面积. 【详解】连结,AC BD ,交于点M ,取AB 中点N 连结AN ,MN ,并延长于点E ,点E 是PAB △外接圆的圆心,侧面PAB ⊥底面ABCD ,侧面PAB 底面ABCD AB =,MN AB ⊥ MN ∴⊥平面PAB ,过点M 作MO ⊥平面ABCD ,//EO MN ,EO ∴⊥侧面PAB ,所以点O 是四棱锥P ABCD -外接球的球心, 可知四边形MNEO 是矩形,右图,23PA PB ==,120APB ∠=,2cos306AB PB ∴==, 点E 是PAB △外接圆的圆心,sin 303PN PB ∴==,PBE △是等边三角形,23PE =, 2333NE ∴=-=,3MO ∴=,2211641322MC AC ==+=, 223134R OC MO MC ∴==+=+=,∴球O 的表面积2464S R ππ==故答案为:64π 【点睛】本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,需要过两个平面外接圆的圆心作面的垂线,垂线的交点就是球心.16.①②④【分析】让从开始逐渐向运动变化观察所得的截面从而可得正确的选项【详解】由题设可得为所在棱的中点当时如图(1)直线分别交与连接并延长于连接交于则与正方体的截面为五边形故①正确当如图(2)此时与正解析:①②④ 【分析】让P 从A 开始逐渐向1A 运动变化,观察所得的截面,从而可得正确的选项. 【详解】由题设可得,M N 为所在棱的中点. 当203AP <<时,如图(1),直线MN 分别交,AD DC 与,T S ,连接TP 并延长1DD 于G , 连接GS 交1CC 于H ,则α与正方体的截面为五边形,故①正确.当11A P =,如图(2),此时α2, 其面积为2362=33B 正确.当,A P 重合或1,A P 重合时,如图(3),α与正方体的截面均为四边形,故③错误.如图(4),在平面α内,设PM HN S ⋂=,则S PM ∈,而PM ⊂平面11A B BA , 故S ∈平面11A B BA ,同理S ∈平面11C B BC ,故S ∈平面11A B BA ⋂平面111C B BC BB =即PM 、HN 、1BB 三条直线交于一点. 故答案为:①②④. 【点睛】思路点睛:平面的性质有3个公理及其推理,注意各个公理的作用,其中公理2可用来证明三点共线或三线共点,公理3及其推理可用来证明点共面或线共面,作截面图时用利用公理2来处理.17.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 11171827477tan tan()7117O HN O HO NHO ----∠=∠-∠====++ 11171827477tan tan()7117O HM O HO OHM ++++∠=∠+∠====- 所以tan θ的取值范围是4747,33⎡+⎢⎣⎦, 故答案为:4747-+⎣⎦.【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.18.(1)(2)(4)【分析】首先取中点连结先判断(4)是否正确再根据平行关系以及等角定理和余弦定理判断(1)再判断(2)假设成立根据直线与平面垂直的性质及判定可得矛盾来判断(3)【详解】取中点连结则平解析:(1)(2)(4) 【分析】首先取CD 中点Q ,连结MQ ,BQ ,先判断(4)是否正确,再根据平行关系,以及等角定理和余弦定理判断(1),再判断(2),假设1DE A C ⊥成立,根据直线与平面垂直的性质及判定,可得11DA A E ⊥矛盾来判断(3). 【详解】取CD 中点Q ,连结MQ ,BQ ,则1//MQ DA ,//BQ DE ,∴平面//MBQ 平面1A DE ,又MB ⊂平面MBQ ,//MB ∴平面1A DE ,故(4)正确;由1A DE MQB ∠=∠,112MQ A D ==定值,QB DE ==定值, 由余弦定理可得2222cos MB MQ QB MQ QB MQB =+-⋅⋅∠ 所以MB 是定值,故(1)正确;B 是定点,M ∴是在以B 为球心,MB 为半径的球面上,故(2)正确;145A DE ADE ∠=∠=,45CDE ∠=,且设1AD =,2AB =,则2DE CE ==若存在某个位置,使1DE A C ⊥,则因为222DE CE CD +=,即CE DE ⊥,因为1AC CE C =,则DE ⊥平面1A CE ,所以1DE A E ⊥,与11DA A E ⊥矛盾,故(3)不正确.故答案为:(1)(2)(4) 【点睛】关键点点睛:本题考查线线,线面位置关系时,首先判断(4)是否正确,其他选项就迎刃而解,而判断线面平行时,可根据面面平行证明线面平行.19.①③【分析】由公理1判断①正确;由公理2判断②错误③正确用反证法可得④错误【详解】∵连接∵是的中点∴平面与平面有公共点与则平面平面对于①平面则平面又平面则即三点共线故①正确;对于②在平面内由①知∴平解析:①③ 【分析】由公理1判断①正确;由公理2判断②错误③正确,用反证法可得④错误. 【详解】∵连接11A C ,∵O 是11B D 的中点,∴11O A C ∈. 平面11AB D 与平面11AAC C 有公共点A 与O , 则平面11AAC C平面11AB D AO =.对于①,1M PA ∈,1PA ⊂平面11AAC C ,则M ∈平面11AAC C , 又M ∈平面11AB D ,则M AO ∈,即A ,M ,O 三点共线,故①正确; 对于②,A ,O ,1A 在平面11AAC C 内,由①知M AO ∈,∴O ∈平面11AAC C , 即A ,M ,O ,1A 共面,故②错误;对于③,A ,O ,C 在平面11AAC C 内,由①知M AO ∈,∴O ∈平面11AA C CA , 则A ,M ,C ,O 共面11AAC C ,故③正确;对于④,连接BD ,则B ,1B ,O 都在平面11BB D D 上,若M ∈平面11BB D D ,则直线OM ⊂平面11BB D D ,∴A ∈面11BB D D ,显然A ∉面11BB D D 的,故④错误. ∴正确命题的序号是①③. 故答案为:①③.【点睛】本题考查命题的真假判断与应用,考查空间中的直线与平面、平面与平面的位置关系,考查空间想象能力与思维能力,是中档题.20.【分析】取PA 的中点E 连接EBEC 推出PA ⊥平面BCE 故点M 的轨迹为线段CE 解出即可【详解】取PA 的中点E 连接EBEC 因为几何体是正四面体P ﹣ABC 所以BE ⊥PAEC ⊥PAEB∩EC =E ∴PA ⊥平面 解析:3【分析】取PA 的中点E ,连接EB ,EC ,推出PA ⊥平面BCE ,故点M 的轨迹为线段CE ,解出即可. 【详解】取PA 的中点E ,连接EB ,EC ,因为几何体是正四面体P ﹣ABC ,所以BE ⊥PA ,EC ⊥PA ,EB ∩EC =E ,∴PA ⊥平面BCE ,且动点M 在正四面体侧面PAC 上运动,总保持MB PA ⊥,∴点M 的轨迹为线段CE ,正四面体P ﹣ABC 的棱长为2,在等边三角形PAC 中求得CE =3232⨯=. 故答案为:3【点睛】本题考查了正四面体的性质和线面垂直与线线垂直的判定,判断轨迹是解题的关键,属于中档题.三、解答题21.(1)证明见解析;(2105. 【分析】(1)连接1BC 与1B C 相交于M ,连接EM ,证明1//EM A B ,再由线面平行的判定定理证明即可;(2)证明平面1AB F ⊥平面11BCC B ,得出NO ⊥平面11BCC B ,结合线面角的定义得出OBN ∠即为1A B 与平面11BCC B 所成角,再由相似三角形、勾股定理、直角三角形边角关系得出1A B 与平面11BCC B 所成角的正弦值. 【详解】(1)连接1BC 与1B C 相交于M ,连接EM由于E ,M 分别是11A C ,1BC 的中点,则1//EM A B因为EM ⊂平面1B CE ,1A B ⊄平面1B CE ,所以1//A B 平面1B CE .(2)取BC 中点F ,连接AF ,1B F ,则AF BC ⊥ 因为1B A ⊥平面ABC ,所以1B A BC ⊥又1,AF B A ⊂平面1AB F ,1AF B A A ⋂=,所以BC ⊥平面1AB F又BC ⊂平面11BCC B ,所以平面1AB F ⊥平面11BCC B ,过N 作1NO B F ⊥于O 因为NO ⊂平面1AB F ,平面1AB F ⋂平面111BCC B B F =所以NO ⊥平面11BCC B ,连接OB ,则OBN ∠即为1A B 与平面11BCC B 所成角 设12BB =,易知2211022BN AN AB =+=+=,6AF =,1142B F = 由11ONB AFB △△,114214B N ON AF B F =⋅= 所以105sin 35ON OBN BN ∠==. 【点睛】关键点睛:解决第一问的关键在于由中位线定理证明线线平行,再由线面平行的判定定理证明线面平行;解决第二问的关键在于由线面垂直找出线面角,再由直角三角形边角关系求出正弦值.22.(1)证明见解析;(23【分析】(1)取AB 中点G ,连结OG 、EG ,可证明四边形OGEF 为平行四边形,则 OF EG ∥,由线面平行的判定定理即可求证;(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,在EGC 中即可求EGC ∠的余弦值. 【详解】(1)取AB 中点G ,连结OG 、EG ,在直三棱柱111ABC A B C -中,1OG BB ∥,则OG EF ∥, 又112EF CC =,则OG EF =, 所以四边形OGEF 为平行四边形,则 OF EG ∥, 又EG ⊂平面ABE ,OF ⊄平面ABE , 故//OF 平面ABE .(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,连接CG ,由直三棱柱111ABC A B C -可得EC ⊥平面ABC , 则EGC ∠即为直线EG 与平面ABC 所成的角, 设2AB =,则114AA CC ==, 又1CE C F =,则1CE =,3CG =2EG =,所以,直线EG 与平面ABC 所成角的余弦值为32, 故直线OF 与平面ABC 3 【点睛】方法点睛:证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明;(2)判定定理:在利用判断定理时,关键找到平面内与已知直线平行的直线,常考虑利用三角形中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明; (3)利用面面平行的性质定理:直线在一平面内,由两平面平行,推得线面平行;直线在两平行平面外,且与其中一平面平行,这这条直线与另一个平行.。
2022-2023学年人教版高二数学复习精练第一章 空间向量与立体几何-综合检测(培优版)(解析版)

第一章 空间向量与立体几何本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.下列四个结论正确的是 ( )A .任意向量,a b ,若0a b ⋅=,则0a =或0b =B .若空间中点O ,A ,B ,C 满足1233OC OA OB =+,则A ,B ,C 三点共线C .空间中任意向量,,a b c 都满足()()a b c a b c ⋅⋅=⋅⋅ D .已知向量()()1,1,,2,,4a x b x ==-,若25x <,则,a b 为钝角 【答案】B【解析】0a b ⋅=则0a =或0b =或0,0a b ≠≠,a b ⊥,故A 错误; 若空间中点O ,A ,B ,C 满足1233OC OA OB =+,即()()1233OC OA OB OC -=-, 所以1233AC CB =,化简得:2AC CB =,则A ,B ,C 三点共线,B 正确;设()()()1,1,1,2,2,1a b c ===。
则不满足()()a b c a b c ⋅⋅=⋅⋅,C 错误;()()1,1,,2,,4a x b x ==-,则()()1,1,2,,42452a b x x x x x ⋅=⋅-=-++=-,令520x -<得:25x <,当1124xx ==-时,2x =-,此时,a b 反向, 要想,a b 为钝角,则25x <且2x ≠-,故D 错误. 故选:B2.直角梯形ABCD 中,,4,2,,AB DC AB CD AD BC AB E ===⊥∥是边AB 的中点,将三角形ADE 沿DE 折叠到1A DE 位置,使得二面角1A DE B --的大小为120,则异面直线1A D 与CE 所成角的余弦值为( )A .14B C D .34【答案】D建如图所示空间直角坐标系,得)11,0A -,()()()0,0,2,0,0,0,0,2,2D E C ,所以()()13,1,2,0,2,2A D EC =-=,所以11123cos ,48A D EC A D EC A D EC⋅+===. 故选:D3.如图,空间四边形OABC 中,OA a =,OB b =,OC c =,点M 在OA 上,且满足2OM MA =,点N 为BC 的中点,则MN =( )A .121232a b c -+B .211322a b c -++C .111222a b c +-D .221332a b c +-【答案】B【解析】1121132322MN MA AB BN OA OB OA BC OA OB OC OB =++=+-+=-++-211322OA OB OC =-++,又OA a =,OB b =,OC c =,∴211322MN a b c =-++,故选:B .4.以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1B .()3,0,0、()1,1,2、()2,2,4C .()1,2,3、()1,3,2、()2,3,1D .()1,0,0、()0,0,2、()0,3,0【答案】B对于A 选项,设()()()1,1,00,1,11,0,1m n =+,所以,110n m m n =⎧⎪=⎨⎪+=⎩,无解;对于B 选项,因为()()()2,2,403,0,021,1,2=⋅+,故B 选项中的三个向量共面; 对于C 选项,设()()()1,2,31,3,22,3,1x y =+,所以,2133223x y x y x y +=⎧⎪+=⎨⎪+=⎩,无解;对于D 选项,设()()()1,0,00,0,20,3,0a b =+,所以,013020b a =⎧⎪=⎨⎪=⎩,矛盾.故选:B.5.如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++【答案】B【解析】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++故选:B6.设P ABC -是正三棱锥,G 是ABC 的重心,D 是PG 上的一点,且PD DG =,若PD x yPB z PA PC =++,则(),,x y z 为( )A .512,,633⎛⎫ ⎪⎝⎭B .111,,666⎛⎫ ⎪⎝⎭C .111,,633⎛⎫ ⎪⎝⎭D .111,,363⎛⎫ ⎪⎝⎭【答案】B【解析】因为三棱锥P ABC -是正三棱锥,G 是ABC 的重心, 所以1111112()()3333333AG AB AC PB PA PC PA PB PC PA =+=-+-=+-, 因为D 是PG 上的一点,且PD DG =, 所以12PD PG =, 因为PG PA AG =+, 所以111222PD PG PA AG ==+ 1111222333PA PB PC PA ⎛⎫=++- ⎪⎝⎭11112663PA PB PC PA =++-111666PA PB PC =++, 因为PD x yPB z PA PC =++,所以16x y z ===,所以(),,x y z 为111,,666⎛⎫ ⎪⎝⎭,故选:B7.已知正方形ABCD 的边长为2,E ,F 分别为CD ,CB 的中点,分别沿AE ,AF 将三角形ADE ,ABF 折起,使得点B ,D 恰好重合,记为点P ,则AC 与平面PCE 所成角等于( )A .6πB .4π C .3πD .512π 【答案】A【解析】由题意得,PA PF PA PE ⊥⊥,因为正方形ABCD 的边长为2,E ,F 分别为CD ,CB 的中点, 所以1PE PF CE CF ====,所以222222EF CE CF PE PF =+==+, 所以PE PF ⊥所以P A ,PE ,PF 三线互相垂直,故以PE ,PF ,P A 分别为x ,y ,z 轴建立空间直角坐标系,则()0,0,0P ,()1,0,0E ,()0,0,2A ,()0,1,0F ,设(),,C x y z ,则(,,2),(1,,),(,1,)AC x y z EC x y z FC x y z =-=-=-由AC =1EC =,1FC =,得222222222(2)8,(1)1,(1)1x y z x y z x y z ++-=-++=+-+=,解得222,,333C ⎛⎫- ⎪⎝⎭,则222,,,(1,0,0)333PC PE ⎛⎫=-= ⎪⎝⎭设平面PCE 的法向量为(,,)n x y z =,则22203330n PC x y z n PE x ⎧⋅=+-=⎪⎨⎪⋅==⎩,令1z =,则()0,1,1n =, 因为228,,333AC ⎛⎫=- ⎪⎝⎭,所以AC 与平面PCE 所成角的正弦值1cos ,22n AC n AC n AC⋅===,因为AC 与平面PCE 所成角为锐角, 所以AC 与平面PCE 所成角为6π, 故选:A8.在中国古代数学著作《九章算术》中记载了一种称为“曲池”的几何体,该几何体的上、下底面平行,且均为扇环形(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,它的高为2,1AA ,1BB ,1CC ,1DD 均与曲池的底面垂直,底面扇环对应的两个圆的半径分别为1和2,对应的圆心角为90°,则图中异面直线1AB 与1CD 所成角的余弦值为( )A .45B .35C .34D .23【答案】A【解析】设上底面圆心为1O ,下底面圆心为O ,连接1,,OO OC OB 以O 为原点,分别以1,,OC OB OO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系 则11(1,0,0),(0,2,0),(0,1,2),(2,0,2),C A B D 则11(1,0,2),(0,1,2)CD AB ==- 1111114cos ,55CD AB CD AB CD AB ⋅===⋅又异面直线所成角的范围为π(0,2⎤⎥⎦故异面直线1AB 与1CD 所成角的余弦值为45故选:A一、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,动点P 在体对角线1BD 上(含端点),则下列结论正确的有( )A .当P 为1BD中点时,APC ∠为锐角B .存在点P ,使得1BD ⊥平面APCC .AP PC +的最小值D .顶点B 到平面APC 【答案】ABD【解析】:如图,以点D 为原点建立空间直角坐标系, 设()101BP BD λλ=≤≤,则()()()()11,0,0,1,1,0,0,1,0,0,0,2A B C D , 则()11,1,2BD =--,故()1,,2BP BD λλλλ==--, 则()()()0,1,0,,2,1,2AP AB BP λλλλλλ=+=+--=--,()()()1,0,0,,21,,2CP CB BP λλλλλλ=+=+--=--,对于A ,当P 为1BD 中点时,则11,,122AP ⎛⎫=- ⎪⎝⎭,11,,122CP ⎛⎫=- ⎪⎝⎭,则11,,122PA ⎛⎫=-- ⎪⎝⎭,11,,122PC ⎛⎫=-- ⎪⎝⎭,所以1cos 03PA PC APC PA PC⋅∠==>⋅, 所以APC ∠为锐角,故A 正确; 当1BD ⊥平面APC ,因为,AP CP ⊂平面APC ,所以11,BD AP BD CP ⊥⊥, 则11140140BD AP BD CP λλλλλλ⎧⋅=+-+=⎪⎨⋅=-++=⎪⎩,解得16λ=,故存在点P ,使得1BD ⊥平面APC ,故B 正确;对于C ,当11,BD AP BD CP ⊥⊥时,AP PC +取得最小值, 由B 得,此时16λ=, 则151,,663AP ⎛⎫=- ⎪⎝⎭,511,,663CP ⎛⎫=- ⎪⎝⎭,所以306AP CP ==即AP PC +C 错误; 对于D ,()()0,1,0,1,1,0AB AC =-, 设平面APC 的法向量(),,n x y z =, 则有()0120n AC x y n AP x z λλλ⎧⋅=-+=⎪⎨⋅=-+-+=⎪⎩,可取()2,2,21n λλλ-,则点B 到平面APC 的距离为cos ,12AB n AB AB n nλ⋅⋅==当0λ=时,点B 到平面APC 的距离为0,当01λ<≤时,==≤,当且仅当12λ=时,取等号,所以点B 到平面APC,故D 正确. 故选:ABD.10.如图,已知正方体1111ABCD A B C D -中,E ,F ,M ,N 分别是CD ,11A B ,1DD ,BC 的中点,则下列说法正确的有( )A .E ,F ,M ,N 四点共面B .BD 与EF 所成的角为3πC .在线段BD 上存在点P ,使1PC ⊥平面EFMD .在线段1A B 上任取点Q ,三棱锥Q EFM -的体积不变 【答案】ABD【解析】以D 为原点,以DA ,DC ,1DD 所在直线分别为x 轴、 y 轴、z 轴,建立如图所示的空间直角坐标系.设2AB =,则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()12,0,2A ,()10,2,2C ,()0,1,0E ,()2,1,2F ,()0,0,1M ,()1,2,0N ,设DE xDF yDM zDN =++,则()()()()0,1,02,1,20,0,11,2,0x y z =++,所以20,21,20,x z x z x y +=⎧⎪+=⎨⎪+=⎩,解得1,32,32,3x y z ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩故1x y z ++=,即E ,F ,M ,N 四点共面,选项A 正确;因为()2,2,0DB =.()2,0,2EF =,所以1cos ,28DB EF DB EF DB EF⋅===⋅, 所以BD 与EF 所成的角为3π,选项B 正确; 假设在线段BD 上存在点P ,符合题意.设()01DP DB λλ=≤≤,则()1112,22,2PC DC DP DC DB λλλ=-=-=--,若1PC ⊥平面EFM ,则10PC ME ⋅=,10PC MF ⋅=.因为()0,1,1ME =-,()2,1,1MF =,所以2220,42220,λλλ--=⎧⎨-+-+=⎩,此方程组无解,所以在线段BD 上不存在点P ,使1PC ⊥平面EFM ,选项C 错误; 因为()10,2,22A B ME =-=,所以1A B ME ∥,又1A B ⊄平面EFM ,ME ⊂平面EFM ,所以1A B ∥平面EFM ,故1A B 上的所有点到平面EFM 的距离均相等,即在线段1A B 上任取点Q , 三棱锥Q EFM -的体积不变,选项D 正确. 故选:ABD11.关于空间向量,下列说法正确的是( )A .直线l 的方向向量为()1,1,2a =-,直线m 的方向向量12,1,2b ⎛⎫=- ⎪⎝⎭,则l m ⊥B .直线l 的方向向量为()0,1,1a =--,平面α的法向量为()0,1,1b =,则l α∥C .平面α,β的法向量分别为()1,1,2a =-,11,0,2b ⎛⎫= ⎪⎝⎭,则αβ∥D .若对空间内任意一点O ,都有111236OP OA OB OC =++,则P ,A ,B ,C 四点共面【答案】AD【解析】对于A ,直线l 的方向向量为()1,1,2a =-,直线m 的方向向量12,1,2b ⎛⎫=- ⎪⎝⎭,由2110a b ⋅=--=,则l m ⊥,故正确对于B ,直线l 的方向向量为()0,1,1a =--,平面α的法向量为()0,1,1b =, 所以a b =-,则l α⊥,故错误;对于C ,平面α,β的法向量分别为()1,1,2a =-,11,0,2b ⎛⎫= ⎪⎝⎭,所以()11,0,1,1,21102⎛⎫⋅=⨯-=-+= ⎪⎝⎭a b ,a b ⊥,则αβ⊥,故错误;对于D ,111236OP OA OB OC =++,得1111236++=,则P ,A ,B ,C 四点共面,故正确.故选:AD.12.已知点P 为正方体1111ABCD A B C D -内及表面一点,若AP BD ⊥,则( ) A .若//DP 平面1AB C 时,则点P 位于正方体的表面 B .若点P 位于正方体的表面,则三棱锥C APD -的体积不变 C .存在点P ,使得BP ⊥平面11B CDD .AP ,CD 的夹角π3π,24⎡⎤∈⎢⎥⎣⎦【答案】AD【解析】:在正方体1111ABCD A B C D -中,AC BD ⊥,1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA BD ⊥,又1AC AA A =∩,1,AC AA ⊂平面11ACC A , 所以BD ⊥平面11ACC A ,又AP BD ⊥,所以点P 在平面11ACC A 上(包括边界),又11//DA CB ,1DA ⊄平面1AB C ,1CB ⊂平面1AB C ,所以1//DA 平面1AB C , 同理可得11//A C 平面1AB C ,1111AC A D A ⋂=,111,A C A D ⊂平面11AC D , 所以平面11//AC D 平面1AB C ,因为//DP 平面1AB C ,D ∈平面11AC D ,所以DP ⊂平面11AC D ,又平面11AC D ⋂平面1111ACC A C A =,所以11P C A ∈,即P 位于正方体的表面,故A 正确; 对于B ,设P 到平面ADC 的距离为h ,则13C APD P ACD ADCV V Sh --==⋅显然当11P C A ∈和1P AA ∈(不包括1A 点)时h 不一样,则三棱锥C APD -的体积不一样,故B 错误;如图建立空间直角坐标系,令正方体的棱长为1,则()1,0,0A ,()0,1,0C ,()10,0,1D ,()11,1,1B ,()10,1,1C ,所以()11,1,1AC =-,()10,1,1CD =-,()11,0,1CB =,所以110AC CD ⋅=,110AC CB ⋅=,即11AC CD ⊥,11AC CB ⊥, 11CD CB C ⋂=,11,CD CB ⊂平面11B CD ,所以1AC ⊥平面11B CD ,若BP ⊥平面11B CD ,则1//BP AC ,显然在平面11ACC A 上(包括边界)不存在点P ,使得1//BP AC ,故C 错误;因为设(),,P x y z ,()1,,AP x y z =-,()1,1,0DB =,所以10AP DB x y ⋅=-+=,即1y x =-, 又()0,1,0CD =-,所以AP CD y ⋅=-,1CD =,(AP x =,设所以AP,CD的夹角为θ,则cos θ==当0y =时cos 0θ=,2πθ=,当0y ≠时cos θ=222z y⎛⎫+≥ ⎪⎝⎭≥ 所以0<≤,所以cos 0θ≤<,因为[]0,θπ∈,所以3,24ππθ⎛⎤∈ ⎥⎝⎦,综上可得3,24ππθ⎡⎤∈⎢⎥⎣⎦,故D 正确;故选:AD三 填空题:本题共4小题,每小题5分,共20分.13.已知梯形ABCD 和矩形CDEF .在平面图形中,112AB AD DE CD ====,CD AE ⊥.现将矩形CDEF 沿CD 进行如图所示的翻折,满足面ABCD 垂直于面CDEF .设2EN NC =,EP PB μ=,若AP ∥面DBN ,则实数μ的值为______.【答案】3【解析】易得,CD DE CD DA ⊥⊥,又面ABCD ⊥面CDEF ,面ABCD面CDEF EF =,又AD ⊂面ABCD ,则AD ⊥面CDEF ,又DE ⊂面CDEF ,则AD DE ⊥,以D 为原点建立如图所示空间直角坐标系,则()()()()()0,0,0,1,1,0,1,0,0,0,0,10,2,0D B A E C ,又()2212410,,333333DN DE EN DE EC DE DC DE DE DC ⎛⎫=+=+=+-=+= ⎪⎝⎭,同理可得11,,111111DP DE EP DE EB DE DB μμμμμμμμμμ⎛⎫=+=+=+= ⎪++++++⎝⎭,设面DBN 的法向量为(),,n x y z =,则041033n DB x y n DN y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1y =,则()1,1,4n =--,又11,,111AP AD DP μμμμ⎛⎫=+=- ⎪+++⎝⎭, 又AP ∥面DBN ,则140111AP n μμμμ⋅=+-=+++,解得3μ=. 故答案为:3.14.正四棱柱1111ABCD A B C D -中,14AA =,AB =N 为侧面11BCC B 上一动点(不含边界),且满足1D N CN ⊥.记直线1D N 与平面11BCC B 所成的角为θ,则tan θ的取值范围为_________.【答案】13,22⎫⎛⎫+∞⎪ ⎪⎪ ⎪⎝⎭⎝⎭【解析:建立如图所示空间直角坐标系:则()()10,0,4,0,3,0D C ,设(),3,N x z ,所以()()1,3,4,,0,D N x z CN x z =-=,因为1D N CN ⊥,所以22140D N CN x z z ⋅=+-=, 则224x z z =-+,因为0x <2043z z <-+<, 解得01z <<或34z <<,易知平面11BCC B 的一个法向量为()0,1,0n =, 所以11sin D N n D N nx θ⋅===⋅则cos ,tan θθ==所以tan θ=∈13,22⎫⎛⎫+∞⎪ ⎪⎪ ⎪⎝⎭⎝⎭,故答案为:13,22⎫⎛⎫+∞⎪ ⎪⎪ ⎪⎝⎭⎝⎭.15.如图,锐二面角l αβ--的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC BD ==,CD =则锐二面角l αβ--的平面角的余弦值是___________.【答案】23【解析】设锐二面角l αβ--的平面角为θ,AC CD B A BD =-++,则2222222=36+16+3672cos =40AC AB BD AC AB AC BD A C B D D B θ=++-⋅-⋅+⋅-,则2cos 3θ=.故答案为:2316.如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点(不含端点),有下列结论:∴平面A 1D 1P ∴平面A 1AP ;∴多面体1D CDP -的体积为定值; ∴直线D 1P 与BC 所成的角可能为3π; ∴APD 1能是钝角三角形.其中结论正确的序号是___________(填上所有序号). 【答案】∴∴∴【解析】对于∴,正方体1111ABCD A B C D -中,111A D AA ⊥,11A D AB ⊥,1AA AB A =,11A D ∴⊥平面1A AP ,11A D ⊥平面11D A P ,∴平面11D A P ⊥平面1A AP ,故∴正确;对于∴,1111122CDD S=⨯⨯=,P 到平面1CDD 的距离1BC =, ∴三棱锥1D CDP -的体积:111111326D CDP P CDD V V --==⨯⨯=,为定值,故∴正确;对于∴,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,1(0D ,0,1),(1,1,0)B ,(0C ,1,0),设(1P ,a ,)b ,(01,01)a b <<<<,1(1D P =,a ,1)b -,(1,0,0)BC =-,1cos D P <,110||||1D P BC BC D P BC >==<,12=-,所以22(1)3a b +-=, 01a <<,01b <<,所以22(1)3a b +-<,所以假设不成立,故∴错误;对于∴,见上图,由题得1(1,0,0),(0,0,1)A D ,设(1,,1),(01)P y y y -<<, 所以1(0,,1),(1,,)PA y y PD y y =--+=--,所以21112(21)cos ,||||||||y y y yPA PD PA PD PA PD --<>==,当102y <<时,1cos ,0PA PD <><,即1APD ∠是钝角.此时APD 1是钝角三角形. 故∴正确. 故答案为:∴∴∴四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)如图,在圆锥PO 中,已知2,PO O =的直径2AB =,点C 是AB 的中点,点D 为AC 中点.(1)证明:AC ⊥平面POD ;(2)求二面角A PC B --的正弦值. 【答案】(1)证明见解析【解析】(1)连接OC ,如图所示:因为,OA OC D =为AC 的中点,所以AC OD ⊥. 又PO ⊥底面,O AC ⊂底面O ,所以AC PO ⊥.因为,OD PO 是平面POD 内的两条相交直线,所以AC ⊥平面POD (2)以O 为坐标原点,,,OB OC OP 所在的直线分别为x 轴,y 轴,z 轴, 建立空间直角坐标系,如图所示:则()()()()1,0,0,1,0,0,0,1,0,0,0,2A B C P -.()()()1,0,2,0,1,2,1,1,0AP CP BC ==-=-设平面APC 的一个法向量为()1111,,x n y z =,则有1100n AP n CP ⎧⋅=⎪⎨⋅=⎪⎩,即11112020x z y z +=⎧⎨-+=⎩, 令11z =,则112,2x y =-=,所以()12,2,1n =-设平面BPC 的一个法向量为()2222,,n x y z =,则有2200n BC n CP ⎧⋅=⎪⎨⋅=⎪⎩,即2222020x y y z -+=⎧⎨-+=⎩,令22y =,则222,1x z ==,所以()22,2,1n = 所以1212121cos ,94n n n nn n ⋅===.所以12sin ,1n n =故二面角A PC B -- 18(12分)如图所示,1111ABCD A B C D -是棱长为1的正方体.(1)设11BAC △的重心为O ,求证:直线OD ⊥平面11BA C ;(2)设E 、F 分别是棱AD 、11D C 上的点,且1DED F a ==,M 为棱AB 的中点,若异面直线DM 与EF a 的值. 【答案】(1)证明见解析;. 【解析】【分析】 (1)设1111AC B D N =,连接1DB ,首先1DD ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111DD AC ⊥, 又1111B D A C ⊥,1111DD B D D =,111,DD B D ⊂平面11BDD B ,所以11A C ⊥平面11BDD B ,而1B D ⊂平面11BDD B ,所以111AC B D ⊥, 同理11A B B D ⊥,1111A C A B A =,111,A C A B ⊂平面11A BC ,所以1B D ⊥平面11A BC , 连接BN 交1B D 于O ,因为11DA DB DC ==,所以O 是等边11A BC 的中心也是重心, 所以DO ⊥平面11A BC ,(2)如图,以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则(,0,0)E a ,1(1,,0)2M ,(0,,1)F a ,1(1,,0)2DM =,(,,1)EF a a =-,由题意cos ,1DM EF DM EF DM EF⋅<>===解得:a =. 19(12分)如图,在四棱锥P −ABCD 中,平面P AD ∴平面ABCD ,点E 为PC 的中点,AB ∴CD ,CD ∴AD ,CD =2AB =2,P A =AD =1,P A ∴AD .(1)证明:BE ∴平面PCD ;(2)求二面角P −BD −E 的余弦值. 【答案】(1)证明见解析(2)13【解析】(1)证明:取PD 的中点F ,连接AF ,EF ,则//EF CD ,12EF CD =.又//AB CD ,12AB CD =,所以//EF AB ,EF AB =,所以四边形ABEF 为平行四边形,所以//AF BE . 因为1PA AD ==,PF FD =,所以AF PD ⊥. 所以BE PD ⊥......因为平面P AD ∴平面ABCD ,PA AD ⊥, 所以P A ∴平面ABCD ,所以PA AB ⊥,......所以PB BC ==又点E 为PC 的中点,所以BE PC ⊥..... 又PC PD D ⋂=,所以BE ∴平面PCD . (2)以A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,1),B (1,0,0),D (0,1,0),C (2,1,0),E (1,12,12). ..... 于是()()111,0,1,1,1,0,0,,22PB BD BE ⎛⎫=-=-= ⎪⎝⎭设平面PBD 的法向量为()1111,,n x y z =,则110n PB n BD ⎧⋅=⎪⎨⋅=⎪⎩ 得11110x z x y -=⎧⎨-+=⎩.取11x =.得()11,1,1n =…………设平面EBD 的法向量为()2222,n x y z =,则2200n BE n BD ⎧⋅=⎪⎨⋅=⎪⎩,得2222110220y z x y ⎧+=⎪⎨⎪-+=⎩取21x =.得()21,1,1n =-.…………所以1212121cos ,3n n n n n n ⋅〈==〉, 所以二面角P −BD −E 的余弦值为13.20(12分)如图(1),在直角梯形ABCD 中,//AB CD ,AB BC⊥,且122BC CD AB ===,取AB 的中点O ,连结OD ,并将AOD △沿着OD 翻折,翻折后AC =,M N 分别是线段,ADAB 的中点,如图(2).(1)求证:AC OM ⊥;(2)求平面OMN 与平面OBCD 夹角的余弦值. 【答案】(1)证明见解析【解析】(1)连接OC ,//ABCD ,AB BC ⊥,122BC CD AB ===,O 为AB 中点, ∴四边形ODCB 为正方形,OC ∴=,翻折后,AC =((2222222OA OC AC ∴+=+==,OA OC ∴⊥;又OA OD ⊥,OC OD O =,,OC OD ⊂平面OCD ,OA ∴⊥平面OCD ,CD ⊂平面OCD ,OA CD ∴⊥,又CD OD ⊥,OA OD O =,,OA OD ⊂平面OAD ,CD平面OAD ,OM ⊂平面OAD ,CD OM ∴⊥;OA OD =,M 为AD 中点,OM AD ∴⊥,又CDAD D =,,CD AD ⊂平面ACD ,OM ∴⊥平面ACD ,AC ⊂平面ACD ,AC OM ∴⊥. (2)以O 为坐标原点,,,OD OB OA 正方向为,,x y z 轴,可建立如图所示空间直角坐标系,则()0,0,0O ,()1,0,1M ,()0,1,1N ,()1,0,1OM ∴=,()0,1,1ON =;z 轴⊥平面OBCD ,∴平面OBCD 的一个法向量()0,0,1m =; 设平面OMN 的法向量(),,n x y z =,则00OM n x z ON n y z ⎧⋅=+=⎨⋅=+=⎩,令1x =,解得:1y =,1z =-,()1,1,1n ∴=-;1cos ,3m n m n m n⋅∴<>==⋅即平面OMN 与平面OBCD 21(12分)在四棱锥P ABCD -中,已知侧面PCD 为正三角形,底面ABCD 为直角梯形,AB CD ,90ADC ∠=︒,3AB AD ==,4CD =,点M ,N 分别在线段AB 和PD 上,且2AM DNMB NP==. (1)求证://PM 平面ACN ;(2)设二面角P CD A --大小为θ,若cos 3θ=,求直线AC 和平面PAB 所成角的正弦值.【答案】(1)证明见解析(2)5 【解析】(1)连接MD ,交AC 于点E ,连接NE ;2AM MB =,223AM AB ∴==,//AB CD ,12AM ME CD DE ∴==, 又2DN NP =,ME PN DE DN ∴=,//NE PM ∴, 又NE ⊂平面ACN ,PM ⊄平面ACN ,//PM ∴平面ACN .(2)取CD 中点F ,连接,PF MF ;作PO MF ⊥,垂足为O ;PCD 为正三角形,PF CD ∴⊥;2AM DF ==,//AM DF ,∴四边形AMFD 为平行四边形,//AD FM ∴, 又90ADC ∠=,CD FM ∴⊥,又PF FM F =,,PF FM ⊂平面PFM , CD 平面PFM ;PO ⊂平面PFM ,CD PO ∴⊥,又PO FM ⊥,CD FM F =,,CD FM ⊂平面ABCD ,PO ∴⊥平面ABCD ; 作//OG CD ,交BC 于点G ,则OG FM ⊥,以O 为坐标原点,,,OM OG OP 正方向为,,x y z 轴,可建立如下图所示空间直角坐标系,PF CD ⊥,MF CD ⊥,PFO ∴∠即为二面角P CD A --的平面角,又PF =cos PFO ∠=cos 2OF PF PFO ∴=∠=,OP ∴=则(P ,()2,2,0C -,()1,2,0A -,()1,1,0B ,()3,4,0AC ∴=-,(AP =-,(1,BP =--, 设平面PAB 的法向量(),,n x y z =,则200AP n x y BP n x y ⎧⋅=-++=⎪⎨⋅=--+=⎪⎩,令1z =,解得:x =0y =,()22,0,1n ∴=;设直线AC 和平面PAB 所成角为θ,62sin cos ,535AC n AC n AC n θ⋅∴=<>===⨯⋅,故直线AC 和平面PAB 22.(12分) 如图,四棱锥P ABCD -中,四边形ABCD 是矩形,DA ⊥平面PAB ,E 是DA 的中点.(1)若PB 的中点是M ,求证://EM 平面PCD ;(2)若,2,⊥===PA PB PA AD AB PCE 与平面PAB 所成二面角的正弦值.【答案】(1)证明见解析【解析】(1)如图所示: 取PC 的中点F ,连接EM ,DF ,FM ,因为四边形ABCD 为矩形,E 是AD 的中点,所以1,//2DE BC DE BC =,1,//2=FM BC FM BC ,所以,//DE FM DE FM =, 所以四边形DEMF 是平行四边形,所以//EM DF ,又EM ⊄平面PCD ,DF ⊂平面PCD ,所以//EM 平面PCD .(2)由AD ⊥平面PAB ,PA PB ⊥,建立如图所示空间直角坐标系,则()()()0,0,0,0,2,1,2,0,2P E C ,所以 ()()0,2,1,2,0,2PE PC ==,设平面PCE 的一个法向量为 (),,n x y z =, 则00⎧⋅=⎪⎨⋅=⎪⎩P P n n E C ,即 20220y z x z +=⎧⎨+=⎩, 令 1z =,得11,,12n ⎫⎛=-- ⎪⎝⎭, 易知平面P AB 的一个法向量为 ()0,0,1m =, 则 12cos ,31⋅==⋅+n mn m n m ,设平面PCE 与平面PAB 所成二面角为()0,πθθ⎡⎤∈⎣⎦, 所以5sin ,3n m θ==.。
高中数学立体几何初步综合检测题

高中数学立体几何初步综合检测题第一章立体几何初步(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2019东莞高一检测)如图1为某几何体的三视图,根据三视图可以判断这个几何体为()图1A.圆锥 B.三棱锥C.三棱柱 D.三棱台【解析】由三视图易知其图形为所以为三棱柱.【答案】 C2.过平面外两点与这个平面平行的平面()A.只有一个 B.至少有一个C.可能没有 D.有无数个【解析】过这两点的直线若与已知平面平行,则有且只有一个,若与已知平面相交,则不存在.故选C.【答案】 C3.已知水平放置的△ABC是按“斜二测画法”得到如图2所示的直观图,其中BO=CO=1,AO=32,那么原△ABC的面积是()图2A.3 B.22C.32 D.34【解析】由题图可知原△ABC的高为AO=3,S△ABC=12BCOA=1223=3,故选A.【答案】 A4.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1l2,l2l3l1∥l3B.l1l2,l2∥l3l1l3C.l1∥l2∥l3l1,l2,l3共面D.l1,l2,l3共点l1,l2,l3共面【解析】当l1l2,l2l3时,l1也可能与l3相交或异面,故A不正确;l1l2,l2∥l3l1l3,B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确.故选B.【答案】 B5.如图3,在正方体ABCDA1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()图3A.AC B.BDC.A1D D.A1D1【解析】∵BDAC,BDAA1,BD平面AA1C1C又CE?平面AA1C1C,CEBD.【答案】 B6.一个几何体的三视图如图4,该几何体的表面积为()图4A.280 B.292C.360 D.372【解析】由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体.下面长方体的表面积为8102+282+1022=232,上面长方体的表面积为862+622+822=152,又由于两个长方体的表面积重叠一部分,所以该几何体的表面积为232+152-262=360,应选C.【答案】 C7.(2019哈师大附中检测)如图5是底面积为3,体积为3的正三棱锥的主视图(等腰三角形)和左视图(等边三角形),此正三棱锥的侧视图的面积为()图5A.332 B.3C.3 D.32【解析】由题意知左视图是一个三角形,其底边长就是正三棱锥的底面正三角形的高,高就是正三棱锥的高.根据已知条件可得正三棱锥的底面边长是2,高为3,故侧视图的面积是1233=332.【答案】 A8.(2019吉林高一检测)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为() A.316 B.916C.38 D.932【解析】如图所示,设球的半径为R,由题意知OO=R2,OF=R,r=32R.S截面=r2=(32R)2=34R2.又S球=4R2,S截面S球=3R2=316.【答案】 A9.如图6是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆a千克,则共需油漆的质量为()图6A.(48+36)a千克 B.(39+24)a千克C.(36+36)a千克 D.(36+30)a千克【解析】此建筑物是直四棱柱与圆锥的组合体,其外壁的面积S=32-33+35+344=39+24(平方米),因此共需油漆的质量为(39+24)a千克.【答案】 B10.如图7(1)所示,已知正方体面对角线长为a,沿阴影面将它切割成两块,拼成如图7(2)所示的几何体,那么此几何体的表面积为()图7A.(1+22)a2 B.(2+2)a2C.(3-22)a2 D.(4+2)a2【解析】由题意知新的几何体为平行六面体且共顶点的三条棱长分别为22a,22a和a,表面积为2(22a)2+2(22a)2+222aa=(2+2)a2.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)11.如图8是一个四边形的直观图,则原图的面积为______.图8【解析】由四边形的直观图可知,原四边形是一个直角梯形,其上、下底边长分别为2、3,高为6,面积为2+326=15.【答案】1512.(2019常熟高一检测)若圆锥的母线长为2 cm,底面圆的周长为2 cm,则圆锥的表面积为________.【解析】设圆锥的底面半径为r,则2r=2,r=1,圆锥的表面积S=122+r2=3.【答案】 313.如图9,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是______cm.图9【解析】侧面展开,可得最短路程为2+22+12=17. 【答案】1714.在直四棱柱ABCDA1B1C1D1中,当底面四边形A1B1C1D1满足条件________时,有A1CB1D1(注:填上你认为正确的一种情况即可)【解析】由直四棱柱可知CC1面A1B1C1D1,所以CC1B1D1,要使B1D1A1C,只要B1D1平面A1CC1,所以只要B1D1A1C1,还可以填写四边形A1B1C1D1是菱形,正方形等条件.【答案】B1D1A1C1(答案不唯一)三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤)15.(本小题12分)如图10是一个几何体的主视图和俯视图,(1)试判断这个几何体是什么几何体;图10(2)请画出它的左视图,并求该左视图的面积.【解】(1)由题图中的主视图和俯视图知该几何体是正六棱锥.(2)该几何体的左视图如图所示.其中两腰为斜高,底边长为3a,三角形的高即为正六棱锥的高,且长为3a,所以该左视图的面积为123a3a=32a2.16.(本小题12分)如图11,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF=1.求证:图11(1)AF∥平面BDE;(2)CF平面BDE.【证明】(1)设AC与BD交于点G. w因为EF∥AG,且EF=1,AG=12AC=1.所以四边形AGEF为平行四边形.所以AF∥EG.因为EG?平面BDE.AF 平面BDE,所以AF∥平面BDE.(2)连接FG,EG.因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CFEG.因为四边形ABCD为正方形,所以BDAC.又因为平面ACEF平面ABCD,且平面ACEF平面ABCD=AC.所以BD平面ACEF.所以CFBD.又BDEG=G,所以CF平面BDE.17.(本小题12分)如图12所示是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.图12【解】此几何体是一个组合体(如图),下半部分是直四棱柱,上半部分是半圆柱,其轴截面的大小与四棱柱的上底面大小一致.表面积S=862+642+84+22+28=176+20(cm2)则体积V=864+12228=192+16(cm3).所以几何体的表面积为(176+20)cm2,体积为(192+16)cm3.18.(本小题14分)如图13,四棱锥SABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SABD.图13(1)求证:SO平面ABCD;(2)设BAD=60,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥APCD的体积.【解】(1)证明:∵底面ABCD是菱形,ACBD. 又∵BDSA,SAAC=A,BD平面SAC.又∵SO?平面SAC.BDSO.∵SA=SC,AO=OC,SOAC.又∵ACBD=O,SO平面ABCD.(2)连接OP,∵SB∥平面APC,SB?平面SBD,平面SBD平面APC=OP,SB∥OP.又∵O是BD的中点,P是SD的中点.由题意知△ABD为正三角形.OD=1.由(1)知SO平面ABCD,SOOD.又∵SD=2,在Rt△SOD中,SO=3.P到面ABCD的距离为32,VAPCD=VPACD=13(1222sin 120)32=12.。
新教材高中数学第一章空间向量与立体几何综合训练含解析新人教A版选择性必修第一册

第一章综合训练(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知平面α和平面β的法向量分别为m =(3,1,-5),n =(-6,-2,10),则( )A.α⊥βB.α∥βC.α与β相交但不垂直D.以上都不对n =(-6,-2,10),m =(3,1,-5),∴n =-2m .∴m ∥n .∴α与β平行.2.(2020黑龙江哈尔滨六中高二检测)已知O 为坐标原点,向量a =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).若点E 在直线AB 上,且OE ⃗⃗⃗⃗⃗ ⊥a ,则点E 的坐标为( ) A.-65,-145,25B.65,145,-25C.65,-145,25D.-65,145,-25解析因为E 在直线AB 上,故存在实数t 使得OE⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t AB ⃗⃗⃗⃗⃗ =(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ).若OE ⃗⃗⃗⃗⃗ ⊥a ,则OE ⃗⃗⃗⃗⃗ ·a =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t=95.因此点E 的坐标为-65,-145,25.故选A .3.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ 的值为( ) A.a 2 B.14a 2C.12a 2D.√34a 2ABCD 中,E ,F 分别是BC ,AD 的中点,∴AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ . 则AE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ )·12AD ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ +12BE ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ .因为是正四面体,所以BE ⊥AD ,∠BAD=π3,即BE ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =|AB||AD|cos π3=a22,所以AE⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =a 24,故选B.4.(2020福建莆田高二检测)如图,在正方体ABCD-A 1B 1C 1D 1中,以D 为坐标原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量能作为平面AEF 的法向量的是( )A.(1,-2,4)B.(-4,1,-2)C.(2,-2,1)D.(1,2,-2)2,则A (2,0,0),E (2,2,1),F (1,0,2),所以AE ⃗⃗⃗⃗⃗ =(0,2,1),AF ⃗⃗⃗⃗⃗ =(-1,0,2).设向量n =(x ,y ,z )是平面AEF 的法向量,则{n ·AE⃗⃗⃗⃗⃗ =2y +z =0,n ·AF ⃗⃗⃗⃗⃗ =-x +2z =0,取y=1,得x=-4,z=-2,则n =(-4,1,-2)是平面AEF 的一个法向量.结合其他选项,检验可知只有B 选项是平面AEF 的法向量.5.若正三棱柱ABC-A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 所成角的正弦值为( ) A.45B.35C.34D.√55AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系Oxyz.设三棱柱的棱长为2,则A (0,-1,0),D (0,0,2),C (0,1,0),B 1(√3,0,2), ∴AD ⃗⃗⃗⃗⃗ =(0,1,2).设n =(x ,y ,z )为平面B 1CD 的法向量,由{n ·CD⃗⃗⃗⃗⃗ =0,n ·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,得{-y +2z =0,√3x -y +2z =0,故{x =0,y =2z ,令z=1,得n =(0,2,1).设直线AD 与平面B 1DC 所成角为α,则sin α=|cos <AD ⃗⃗⃗⃗⃗ ,n >|=|AD ⃗⃗⃗⃗⃗⃗·n ||AD ⃗⃗⃗⃗⃗⃗ ||n |=√5×√5=45,所以直线AD 与平面B 1DC 所成角的正弦值为45.故选A.6.如图,棱长为6的正方体ABCD-A 1B 1C 1D 1,E ,F 分别是棱AB ,BC 上的动点,且AE=BF.当A 1,E ,F ,C 1四点共面时,平面A 1DE 与平面C 1DF 所成二面角的余弦值为( )A.√32B.12C.15D.2√65D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(图略),则A 1(6,0,6),E (6,3,0),F (3,6,0).设平面A 1DE 的法向量为n 1=(a ,b ,c ),依题意得{n 1·DE⃗⃗⃗⃗⃗ =6a +3b =0,n 1·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =6a +6c =0,令a=-1,则c=1,b=2,所以n 1=(-1,2,1).同理得平面C 1DF 的一个法向量为n 2=(2,-1,1),由题图知,平面A 1DE 与平面C 1DF 所成二面角的余弦值为|n 1·n 2||n 1||n 2|=12.7.(2020江西九江一中检测)如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A.12B.√22C.1D.16,以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则D 1(0,0,1),E (1,1,0),A (1,0,0),C (0,2,0).连接D 1E ,所以D 1E ⃗⃗⃗⃗⃗⃗⃗ =(1,1,-1),AC ⃗⃗⃗⃗⃗ =(-1,2,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1).设平面ACD 1的法向量为n =(a ,b ,c ),则{n ·AC ⃗⃗⃗⃗⃗ =0,n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,即{-a +2b =0,-a +c =0,令a=2,得b=1,c=2,则n =(2,1,2).所以点E 到平面ACD 1的距离为h=|D 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ·n ||n |=2+1-23=13.故选C .8.在三棱锥P-ABC 中,PC ⊥底面ABC ,∠BAC=90°,AB=AC=4,∠PBC=60°,则点C 到平面PAB 的距离是( ) A.3√427B.4√427 C.5√427D.6√427在三棱锥P-ABC 中,PC ⊥底面ABC ,∠BAC=90°,AB=AC=4,∠PBC=60°,∴以A 为坐标原点,AB 为x 轴,AC 为y 轴,过A 作平面ABC 的垂线为z 轴,建立空间直角坐标系, 则C (0,4,0),P (0,4,4√6),A (0,0,0),B (4,0,0),AC ⃗⃗⃗⃗⃗ =(0,4,0),AB ⃗⃗⃗⃗⃗ =(4,0,0),AP ⃗⃗⃗⃗⃗ =(0,4,4√6), 设平面PAB 的法向量n =(x ,y ,z ),则{n ·AP ⃗⃗⃗⃗⃗ =4y +4√6z =0,n ·AB ⃗⃗⃗⃗⃗ =4x =0,取z=1,得n =(0,-√6,1),∴点C 到平面PAB 的距离d=|AC ⃗⃗⃗⃗⃗ ·n ||n |=√6√7=4√427.故选B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.空间四个点O ,A ,B ,C ,OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 为空间的一个基底,则下列说法正确的是( ) A.O ,A ,B ,C 四点不共线 B.O ,A ,B ,C 四点共面,但不共线 C.O ,A ,B ,C 四点中任意三点不共线 D.O ,A ,B ,C 四点不共面O ,A ,B ,C 四点共面,则OA⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 共面,则OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 不可能为空间的一个基底.故AD 正确,B 不正确;若O ,A ,B ,C 中有三点共线,则四点一定共面,故C 也正确.10.(2020山东淄博高二期末)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=√3AD=√3AA 1=√3,P 为线段A 1C 上的动点,则下列结论正确的是( )A.当A 1C ⃗⃗⃗⃗⃗⃗⃗ =2A 1P ⃗⃗⃗⃗⃗⃗⃗ 时,B 1,P ,D 三点共线B.当AP ⃗⃗⃗⃗⃗ ⊥A 1C ⃗⃗⃗⃗⃗⃗⃗ 时,AP ⃗⃗⃗⃗⃗ ⊥D 1P ⃗⃗⃗⃗⃗⃗⃗C.当A 1C ⃗⃗⃗⃗⃗⃗⃗ =3A 1P ⃗⃗⃗⃗⃗⃗⃗ 时,D 1P ∥平面BDC 1D.当A 1C ⃗⃗⃗⃗⃗⃗⃗ =5A 1P ⃗⃗⃗⃗⃗⃗⃗ 时,A 1C ⊥平面D 1APABCD-A 1B 1C 1D 1中,以D 为坐标原点,建立如图所示的空间直角坐标系.因为AB=√3AD=√3AA 1=√3,所以AD=AA 1=1,则A (1,0,0),A 1(1,0,1),C (0,√3,0),D 1(0,0,1),C 1(0,√3,1),D (0,0,0),B (1,√3,0),则A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,-1),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1).对于A,当A 1C ⃗⃗⃗⃗⃗⃗⃗ =2A 1P ⃗⃗⃗⃗⃗⃗⃗ 时,P 为线段A 1C 的中点,根据长方体结构特征,P 为体对角线的中点,因此P 也为B 1D 中点,所以B 1,P ,D 三点共线,故A 正确; 对于B,当AP ⃗⃗⃗⃗⃗ ⊥A 1C ⃗⃗⃗⃗⃗⃗⃗ 时,AP ⊥A 1C ,由题意可得,A 1C=√1+1+3=√5,AC=√1+3=2,由S△A 1AC=12AA 1·AC=12A 1C ·AP ,解得AP=25√5,所以A 1P=√55,即P 为线段A 1C 上靠近点A 1的五等分点,所以P45,√35,45,则D 1P ⃗⃗⃗⃗⃗⃗⃗ =45,√35,-15,AP⃗⃗⃗⃗⃗ =-15,√35,45,所以D 1P ⃗⃗⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =-425+325−425=-15≠0,所以AP ⃗⃗⃗⃗⃗ 与D 1P ⃗⃗⃗⃗⃗⃗⃗ 不垂直,故B 错误;对于C,当A 1C ⃗⃗⃗⃗⃗⃗⃗ =3A 1P ⃗⃗⃗⃗⃗⃗⃗ 时,A 1P ⃗⃗⃗⃗⃗⃗⃗ =13A 1C ⃗⃗⃗⃗⃗⃗⃗ =-13,√33,-13,设平面BDC 1的法向量为n =(x ,y ,z ),则{n ·DC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·DB⃗⃗⃗⃗⃗⃗ =0,即{√3y +z =0,x +√3y =0,令y=1,可得n =(-√3,1,-√3).又D 1P ⃗⃗⃗⃗⃗⃗⃗ =A 1P ⃗⃗⃗⃗⃗⃗⃗ −A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23,√33,-13,所以D 1P ⃗⃗⃗⃗⃗⃗⃗ ·n =0,因此D 1P ⃗⃗⃗⃗⃗⃗⃗ ⊥n ,又点D 1不在平面BDC 1内,所以D 1P ∥平面BDC 1,故C 正确; 对于D,当A 1C ⃗⃗⃗⃗⃗⃗⃗ =5A 1P ⃗⃗⃗⃗⃗⃗⃗ 时,A 1P ⃗⃗⃗⃗⃗⃗⃗ =15A 1C ⃗⃗⃗⃗⃗⃗⃗ =-15,√35,-15,所以D 1P ⃗⃗⃗⃗⃗⃗⃗ =A 1P ⃗⃗⃗⃗⃗⃗⃗ −A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =45,√35,-15,所以A 1C ⃗⃗⃗⃗⃗⃗⃗ ·D 1P ⃗⃗⃗⃗⃗⃗⃗ =0,A 1C ⃗⃗⃗⃗⃗⃗⃗ ·D 1A ⃗⃗⃗⃗⃗⃗⃗ =0,因此A 1C ⊥D 1P ,A 1C ⊥D 1A ,又D 1P ∩D 1A=D 1,则A 1C ⊥平面D 1AP ,故D 正确.故选ACD .11.在四面体P-ABC 中,下列说法正确的有( ) A.若AD ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ ,则可知BC ⃗⃗⃗⃗⃗ =3BD ⃗⃗⃗⃗⃗⃗ B.若Q 为△ABC 的重心,则PQ ⃗⃗⃗⃗⃗ =13PA ⃗⃗⃗⃗⃗ +13PB ⃗⃗⃗⃗⃗ +13PC ⃗⃗⃗⃗⃗ C.若PA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,PC⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,则PB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0 D.若四面体P-ABC 各棱长都为2,M ,N 分别为PA ,BC 的中点,则|MN⃗⃗⃗⃗⃗⃗⃗ |=1A,∵AD ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ ,∴3AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +2AB ⃗⃗⃗⃗⃗ ,∴2AD ⃗⃗⃗⃗⃗ -2AB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ ,∴2BD ⃗⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ , ∴3BD ⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DC⃗⃗⃗⃗⃗ ,即3BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ ,故A 正确; 对于B,若Q 为△ABC 的重心,则QA ⃗⃗⃗⃗⃗ +QB ⃗⃗⃗⃗⃗ +QC ⃗⃗⃗⃗⃗ =0, ∴3PQ ⃗⃗⃗⃗⃗ +QA ⃗⃗⃗⃗⃗ +QB ⃗⃗⃗⃗⃗ +QC ⃗⃗⃗⃗⃗ =3PQ ⃗⃗⃗⃗⃗ ,∴3PQ ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ , 即PQ ⃗⃗⃗⃗⃗ =13PA ⃗⃗⃗⃗⃗ +13PB ⃗⃗⃗⃗⃗ +13PC ⃗⃗⃗⃗⃗ ,故B 正确; 对于C,若PA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,PC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0, 则PA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,∴PA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )=0, ∴PA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =0, ∴(PA ⃗⃗⃗⃗⃗ −PC ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0, ∴CA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0,∴AC ⃗⃗⃗⃗⃗ ·(CB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=0, ∴AC⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =0,故C 正确; 对于D,∵MN⃗⃗⃗⃗⃗⃗⃗ =PN ⃗⃗⃗⃗⃗⃗ −PM ⃗⃗⃗⃗⃗⃗ =12(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )-12PA ⃗⃗⃗⃗⃗ =12(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ −PA ⃗⃗⃗⃗⃗ ), ∴|MN ⃗⃗⃗⃗⃗⃗⃗ |=12|PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ −PC ⃗⃗⃗⃗⃗ |, ∵|PA⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ −PC ⃗⃗⃗⃗⃗ |= √PA ⃗⃗⃗⃗⃗ 2+PB ⃗⃗⃗⃗⃗ 2+PC ⃗⃗⃗⃗⃗ 2-2PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ -2PA ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ +2PB ⃗⃗⃗⃗⃗ ·PC⃗⃗⃗⃗⃗=√22+22+22-2×2×2×12-2×2×2×12+2×2×2×12 =2√2,∴|MN ⃗⃗⃗⃗⃗⃗⃗ |=√2.故D 错误.12.(2020山东烟台高三期末)如图,在正方体ABCD-A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A.直线BD 1⊥平面A 1C 1DB.三棱锥P-A 1C 1D 的体积为定值C.异面直线AP 与A 1D 所成角的取值范围是〖45°,90°〗D.直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为√63A,连接B 1D 1,由正方体可得A 1C 1⊥B 1D 1,且BB 1⊥平面A 1B 1C 1D 1,则BB 1⊥A 1C 1,所以A 1C 1⊥平面BD 1B 1,故A 1C 1⊥BD 1;同理,连接AD 1,易证得A 1D ⊥BD 1,则BD 1⊥平面A 1C 1D ,故A 正确;对于选项B,V P -A 1C 1D =V C 1-A 1PD ,因为点P 在线段B 1C 上运动,所以S △A 1DP =12A 1D ·AB ,面积为定值,且C 1到平面A 1PD 1的距离即为C 1到平面A 1B 1CD 的距离,也为定值,故体积为定值,故B 正确;对于选项C,当点P 与线段B 1C 的端点重合时,AP 与A 1D 所成角取得最小值为60°,故C 错误; 对于选项D,因为直线BD 1⊥平面A 1C 1D ,所以若直线C 1P 与平面A 1C 1D 所成角的正弦值最大,则直线C 1P 与直线BD 1所成角的余弦值最大,则P 运动到B 1C 中点处,即所成角为∠C 1BD 1,设棱长为1,在Rt △D 1C 1B 中,cos ∠C 1BD 1=C 1B BD 1=√2√3=√63,故D 正确.三、填空题:本题共4小题,每小题5分,共20分.13.已知AB⃗⃗⃗⃗⃗ =(2,2,1),AC ⃗⃗⃗⃗⃗ =(4,5,3),则平面ABC 的单位法向量是 .ABC 的法向量n =(x ,y ,z ),则{AB ⃗⃗⃗⃗⃗ ·n =0,AC⃗⃗⃗⃗⃗ ·n =0,即{2x +2y +z =0,4x +5y +3z =0.令z=1,得{x =12,y =-1,所以n =(12,-1,1),故平面ABC 的单位法向量为±n |n |=±(13,-23,23).(13,-23,23)14.已知正四棱台ABCD-A 1B 1C 1D 1中,上底面A 1B 1C 1D 1边长为1,下底面ABCD 边长为2,侧棱与底面所成的角为60°,则异面直线AD 1与B 1C 所成角的余弦值为 .O 1,O ,则OO 1⊥平面ABCD ,以O 为原点,直线BD ,AC ,OO 1分别为x 轴,y 轴,z 轴建立空间直角坐标系.因为AB=2,A 1B 1=1,所以AC=BD=2√2,A 1C 1=B 1D 1=√2.因为平面BDD 1B 1⊥平面ABCD ,所以∠B 1BO 为侧棱与底面所成的角,故∠B 1BO=60°. 设棱台高为h ,则tan60°=√2-√22,h=√62, 所以A (0,-√2,0),D 1(-√22,0,√62),B 1(√22,0,√62),C (0,√2,0),所以AD 1⃗⃗⃗⃗⃗⃗⃗ =(-√22,√2,√62), B 1C ⃗⃗⃗⃗⃗⃗⃗ =(-√22,√2,-√62),故cos <AD 1⃗⃗⃗⃗⃗⃗⃗ ,B 1C ⃗⃗⃗⃗⃗⃗⃗ >=AD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·B 1C ⃗⃗⃗⃗⃗⃗⃗⃗ |AD 1⃗⃗⃗⃗⃗⃗⃗⃗ ||B 1C ⃗⃗⃗⃗⃗⃗⃗⃗ |=14, 故异面直线AD 1与B 1C 所成角的余弦值为14.15.(2020浙江宁波九校高二期末联考)在正四面体ABCD 中,M ,N 分别为棱BC ,AB 的中点,设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,AD ⃗⃗⃗⃗⃗ =c ,用a ,b ,c 表示向量DM ⃗⃗⃗⃗⃗⃗ = ,异面直线DM 与CN 所成角的余弦值为 .,画出对应的正四面体如图所示,设棱长为1,则DM⃗⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =-c +12(a +b )=12(a +b -2c ).又CN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =12a -b =12(a -2b ),易知a ·b =a ·c =b ·c =12.设异面直线DM 与CN 所成角为θ, 则cos θ=|2DM⃗⃗⃗⃗⃗⃗⃗ ·2CN ⃗⃗⃗⃗⃗⃗ ||2DM⃗⃗⃗⃗⃗⃗⃗ ||2CN ⃗⃗⃗⃗⃗⃗ | =√3·√3=|a 2-2a ·b+a ·b -2b 2-2a ·c+4b ·c |3=|1-1+12-2-1+2|3=16.a +b -2c ) 1616.在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 为CC 1的中点,P ,Q 是平面A 1B 1C 1D 1内相异两点,满足BP ⊥A 1E ,BQ ⊥A 1E.(1)PQ 与BD 的位置关系是 ; (2)|A 1P|的最小值为 .以D 为空间直角坐标系的原点,以DA ,DC ,DD 1所在的直线为x ,y ,z 轴,建立空间直角坐标系,如图所示:A 1(1,0,1),E (0,1,12),B (1,1,0),A 1E ⃗⃗⃗⃗⃗⃗⃗ =(-1,1,-12),因为P ,Q 均在平面A 1B 1C 1D 1内,所以设P (a ,b ,1),Q (m ,n ,1),所以BP⃗⃗⃗⃗⃗ =(a-1,b-1,1),BQ ⃗⃗⃗⃗⃗ =(m-1,n-1,1), 因为BP ⊥A 1E ,BQ ⊥A 1E ,所以{BP ⃗⃗⃗⃗⃗ ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =-(a -1)+(b -1)-12=0,BQ ⃗⃗⃗⃗⃗ ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =-(m -1)+(n -1)-12=0,解得{b -a =12,n -m =12,PQ ⃗⃗⃗⃗⃗ =(n-b ,n-b ,0),BD ⃗⃗⃗⃗⃗⃗ =(1,1,0),所以PQ 与BD 的位置关系是平行.(2)由(1)可知b-a=12,|A 1P|=√(a -1)2+b 2=√(a -1)2+(a +12)2=√2a 2-a +54 =√2(a -14)2+98.当a=14时,|A 1P|有最小值,最小值为3√24.平行 (2)3√24四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2). (1)求|2a+b |.(2)在直线AB 上,是否存在一点E ,使得OE ⃗⃗⃗⃗⃗ ⊥b (O 为原点)?若存在,求出点E 的坐标;若不存在,请说明理由.a+b=(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a+b|=√02+(-5)2+52=5√2. (2)存在.OE ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AE⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +t AB ⃗⃗⃗⃗⃗ =(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ), 若OE ⃗⃗⃗⃗⃗ ⊥b ,则OE ⃗⃗⃗⃗⃗ ·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t=95,因此存在点E ,使得OE ⃗⃗⃗⃗⃗ ⊥b ,此时点E的坐标为E (-65,-145,25).18.(12分)如图,在直三棱柱ABC-A 1B 1C 1中,∠ABC=π2,D 是棱AC 的中点,且AB=BC=BB 1=2.(1)求证:AB 1∥平面BC 1D ;(2)求异面直线AB 1与BC 1所成的角.,连接B 1C 交BC 1于点O ,连接OD.因为O 为B 1C 的中点,D 为AC 的中点, 所以OD ∥AB 1.因为AB 1⊄平面BC 1D ,OD ⊂平面BC 1D ,所以AB 1∥平面BC 1D.Bxyz ,则B (0,0,0),A (0,2,0),C 1(2,0,2),B 1(0,0,2),因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,-2,2),BC 1⃗⃗⃗⃗⃗⃗⃗ =(2,0,2).所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=AB 1⃗⃗⃗⃗⃗⃗⃗⃗ ·BC1⃗⃗⃗⃗⃗⃗⃗⃗ |AB 1⃗⃗⃗⃗⃗⃗⃗⃗ ||BC 1⃗⃗⃗⃗⃗⃗⃗⃗|=2√2×2√2=12,设异面直线AB 1与BC 1所成的角为θ,则cos θ=12,由于θ∈(0,π2),故θ=π3.19.(12分)如图,已知菱形ABCD 和矩形ACEF 所在的平面互相垂直,AB=AF=2,∠ADC=60°. (1)求直线BF 与平面ABCD 的夹角; (2)求点A 到平面FBD 的距离.AC ∩BD=O ,因为菱形ABCD 和矩形ACEF 所在的平面互相垂直,所以易得AF ⊥平面ABCD.以O 点为坐标原点,以OD 为x 轴,OA 为y 轴,过O 点且平行于AF 的直线为z 轴,建立空间直角坐标系,(1)由已知得A (0,1,0),B (-√3,0,0),C (0,-1,0),D (√3,0,0),F (0,1,2),因为z 轴垂直于平面ABCD ,因此可令平面ABCD 的一个法向量为m =(0,0,1), 又BF ⃗⃗⃗⃗⃗ =(√3,1,2),设直线BF 与平面ABCD 的夹角为θ,则有sin θ=|cos <m ,BF ⃗⃗⃗⃗⃗ >|=|m ·BF ⃗⃗⃗⃗⃗||m ||BF⃗⃗⃗⃗⃗ |=1×2√2=√22,即θ=π4,所以直线BF 与平面ABCD 的夹角为π4.(2)因为BD ⃗⃗⃗⃗⃗⃗ =(2√3,0,0),BF ⃗⃗⃗⃗⃗ =(√3,1,2), 设平面FBD 的法向量为n =(x ,y ,z ),{BD⃗⃗⃗⃗⃗⃗ ·n =0,BF ⃗⃗⃗⃗⃗ ·n =0⇒{2√3x =0,√3x +y +2z =0, 令z=1得n =(0,-2,1),又因为AF ⃗⃗⃗⃗⃗ =(0,0,2), 所以点A 到平面FBD 的距离d=|AF ⃗⃗⃗⃗⃗ ·n ||n |=√5=2√55.20.(12分)如图,在三棱柱ABC-A 1B 1C 1中,四边形A 1C 1CA 为菱形,∠B 1A 1A=∠C 1A 1A=60°,AC=4,AB=2,平面ACC 1A 1⊥平面ABB 1A 1,点Q 在线段AC 上移动,P 为棱AA 1的中点.(1)若Q 为线段AC 的中点,H 为线段BQ 的中点,延长AH 交BC 于点D ,求证:AD ∥平面B 1PQ ; (2)若二面角B 1-PQ-C 1的平面角的余弦值为√1313,求点P 到平面BQB 1的距离.,取BB 1的中点E ,连接AE ,EH.因为H 为BQ 中点,所以EH ∥B 1Q.在▱AA 1B 1B 中,P ,E 分别为AA 1,BB 1的中点,所以AE ∥PB 1. 又EH ∩AE=E ,PB 1∩B 1Q=B 1, 所以平面EHA ∥平面B 1QP.因为AD ⊂平面EHA ,所以AD ∥平面B 1PQ.,连接PC 1,AC 1,因为四边形A 1C 1CA 为菱形,∠C 1A 1A=60°,所以AA 1=AC 1=A 1C 1=4,即△AC 1A 1为等边三角形.因为P 为AA 1的中点,所以PC 1⊥AA 1.因为平面ACC 1A 1⊥平面ABB 1A 1,平面ACC 1A 1∩平面ABB 1A 1=AA 1,PC 1⊂平面ACC 1A 1,所以PC 1⊥平面ABB 1A 1.在平面ABB 1A 1内过点P 作PR ⊥AA 1交BB 1于点R.以PR ,PA 1,PC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Pxyz ,则P (0,0,0),A 1(0,2,0),A (0,-2,0),C 1(0,0,2√3),C (0,-4,2√3).设AQ ⃗⃗⃗⃗⃗ =λAC⃗⃗⃗⃗⃗ =λ(0,-2,2√3),λ∈〖0,1〗, 所以Q (0,-2(λ+1),2√3λ), 所以PQ⃗⃗⃗⃗⃗ =(0,-2(λ+1),2√3λ). 因为A 1B 1=AB=2,∠B 1A 1A=60°, 所以B 1(√3,1,0),所以PB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,0). 设平面PQB 1的法向量为m =(x ,y ,z ), 则{m ·PQ⃗⃗⃗⃗⃗ =0,m ·PB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{-2(λ+1)y +2√3λz =0,√3x +y =0, 令x=1,则y=-√3,z=-λ+1λ,所以平面PQB 1的一个法向量为m =1,-√3,-λ+1λ.平面AA 1C 1C 的一个法向量为n =(1,0,0). 设二面角B 1-PQ-C 1的平面角为θ, 则cos θ=|m ·n ||m ||n |=√1+3+(-λ+1λ) 2=√1313. 所以λ=12或λ=-14(舍),所以AQ ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ , 所以Q (0,-3,√3).又B (√3,-3,0),所以QB⃗⃗⃗⃗⃗ =(√3,0,-√3), 所以|QB⃗⃗⃗⃗⃗ |=√3+3=√6. 又|B 1Q ⃗⃗⃗⃗⃗⃗⃗ |=√22,所以BQ 2+B B 12=B 1Q 2,所以∠QBB 1=90°.设点P 到平面BQB 1的距离为h ,则13×12×4×√3×√3=13×12×4×√6×h , 所以h=√62,即点P 到平面BQB 1的距离为√62.21.(12分)如图所示,已知四棱锥P-ABCD ,侧面PAD 是边长为2的正三角形,且平面PAD ⊥平面ABCD ,底面ABCD 是菱形,且∠ABC=60°,M 为棱PC 上的动点,且PMPC =λ,λ∈〖0,1〗. (1)求证:BC ⊥PC ;(2)试确定λ的值,使得平面PAD 与平面ADM 夹角的余弦值为√1010.AD 的中点O ,连接OP ,OC ,AC ,由题意可得△PAD ,△ACD 均为正三角形, 所以OC ⊥AD ,OP ⊥AD.又OC ∩OP=O ,所以AD ⊥平面POC. 又PC ⊂平面POC ,所以AD ⊥PC. 因为BC ∥AD ,所以BC ⊥PC.(1)可知PO ⊥AD ,又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,PO ⊂平面PAD ,所以PO ⊥平面ABCD.故可得OP ,OC ,OD 两两垂直,以O 为原点,建立如图所示的空间直角坐标系Oxyz , 则P (0,0,√3),A (0,-1,0),D (0,1,0),C (√3,0,0),所以PC⃗⃗⃗⃗⃗ =(√3,0,-√3). 由PM⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ =λ(√3,0,-√3)(λ∈〖0,1〗),可得点M 的坐标为(√3λ,0,√3−√3λ), 所以AM ⃗⃗⃗⃗⃗⃗ =(√3λ,1,√3−√3λ),DM ⃗⃗⃗⃗⃗⃗ =(√3λ,-1,√3−√3λ).设平面MAD 的法向量为n =(x ,y ,z ), 由{n ·AM ⃗⃗⃗⃗⃗⃗ =√3λx +y +(√3-√3λ)z =0,n ·DM ⃗⃗⃗⃗⃗⃗ =√3λx -y +(√3-√3λ)z =0,可得{x =λ-1λz ,y =0,令z=λ,则n =(λ-1,0,λ).又平面PAD 的一个法向量为OC ⃗⃗⃗⃗⃗ =(√3,0,0), 设平面PAD 与平面ADM 的夹角为θ, 则cos θ=|cos <n ,OC⃗⃗⃗⃗⃗ >|=|n ·OC ⃗⃗⃗⃗⃗ ||n ||OC⃗⃗⃗⃗⃗ |=√3(√λ2+(λ-1)·√3=√1010,解得λ=34或λ=32(舍去).所以当λ=34时,平面PAD与平面ADM 夹角的余弦值为√1010.22.(12分)如图所示,等腰梯形ABCD 中,AB ∥CD ,AD=AB=BC=2,CD=4,E 为CD 中点,AE 与BD 交于点O ,将△ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE.(2)若PB=√6,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为√155,若存在,求出PQ OB的值;若不存在,说明理由.ABCD 中,连接BE ,在等腰梯形ABCD 中,AD=AB=BC=2,CD=4,E 为中点,∴四边形ABED 为菱形,∴BD ⊥AE ,∴OB ⊥AE ,OD ⊥AE ,即OB ⊥AE ,OP ⊥AE ,且OB ∩OP=O ,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB.又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE..由(1)可知四边形ABED 为菱形,∴AD=DE=2, 在等腰梯形ABCD 中,AE=BC=2,∴△PAE 为正三角形,∴OP=√3,同理OB=√3,∵PB=√6,∴OP 2+OB 2=PB 2,∴OP ⊥OB.由(1)可知OP ⊥AE ,OB ⊥AE , 以O 为原点,OE ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz , 由题意得,各点坐标为P (0,0,√3),A (-1,0,0),B (0,√3,0),C (2,√3,0),E (1,0,0), ∴PB ⃗⃗⃗⃗⃗ =(0,√3,-√3),PC ⃗⃗⃗⃗⃗ =(2,√3,-√3),AE ⃗⃗⃗⃗⃗ =(2,0,0), 设PQ⃗⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ (0<λ<1),AQ ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ +λPB ⃗⃗⃗⃗⃗ =(1,√3λ,√3−√3λ), 设平面AEQ 的一个法向量为n =(x ,y ,z ), 则{n ·AE ⃗⃗⃗⃗⃗ =0,n ·AQ ⃗⃗⃗⃗⃗ =0,即{2x =0,x +√3λy +(√3-√3λ)z =0,取x=0,y=1,得z=λλ-1,∴n =(0,1,λλ-1),设直线PC 与平面AEQ 所成角为θ,θ∈[0,π2],则sin θ=|cos <PC ⃗⃗⃗⃗⃗ ,n >|=|PC ⃗⃗⃗⃗⃗ ·n ||PC ⃗⃗⃗⃗⃗ ||n |=√155, 即|√3+√3λ1-λ|√10√1+(λλ-1)2=√155, 化简得4λ2-4λ+1=0,解得λ=12,∴存在点Q为PB的中点时,使直线PC与平面AEQ所成角的正弦值为√15.5。
高中数学立体几何第一章综合检测题

第一章立体几何综合检测题一、选择题1.如下图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )A.12倍 B .2倍 C.24倍 D.22倍 3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )4.已知某几何体的三视图如图所示,那么这个几何体是( )A .长方体B .圆柱C .四棱锥D .四棱台5.正方体的体积是64,则其表面积是( )A .64B .16C .96D .无法确定6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A .缩小到原来的一半B .扩大到原来的2倍C .不变D .缩小到原来的167.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍 C.95倍 D.74倍 8.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm 2B .15πcm 2C .24πcm 2D .36πcm 29.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7 学B .6C .5D .310.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( ) A.32,1 B.23,1 C.32,32 D.23,3211.某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )A .24B .80C .64D .24012.如果用表示1个立方体,用表示两个立方体叠加,用表示3个立方体叠加,那么图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是( )13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________.14.一个几何体的三视图如图所示,则这个几何体的体积为___________________.15.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为________.16.一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________.17.画出如图所示几何体的三视图.19.如下图所示是一个空间几何体的三视图,试用斜二测画法画出它的直观图(尺寸不限).等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?21.如下图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.22.(本题满分12分)如图所示(单位:cm),四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积.出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
立体几何1 单元测试

立体几何一一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)题号1 2 3 4 5 6 7 8 答案1. (A)3(B)5(C) 26 (D)292.在空间,下列命题中正确的个数为①平行于同一直线的两条直线平行;②垂直于同一直线的两条直线平行; ③平行于同一平面的两条直线平行;④垂直于同一平面的两条直线平行; (A )0 (B )1 (C )2 (D )3 3.棱长为a 的正方体外接球的表面积为22224.3.2..a D a C a B a A ππππ4. 在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...是 A .BC//平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PAE ⊥平面ABC5.已知直线m 、n 、l 与平面βα,,给出下列六个命题:①若;,,//m n n m ⊥⊥则αα②若.,//,βαβα⊥⊥则m m ③若m l m l //,//,//,//则βαβα④若不共面与则点m l m A A l m ,,,∉=⋂⊂αα ⑤若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ⑥.//,//,//,,,βαββαα则点m l A m l m l =⊂⊂ 其中假命题有A.0 B .1 C .2 D .3 6.设γβα、、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是 A . l m l ⊥=⋂⊥,,βαβα B . γβγαγα⊥⊥=⋂,,m C . αγβγα⊥⊥⊥m ,,D . αβα⊥⊥⊥m n n ,,7.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为 A .16VB .14VC .13VD .12V8.对于不重合的两个平面α与β,给定下列条件中,可以判定α与β平行的条件有①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使得α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l//α,l//β,m//α,m//β,A .1个B .2个C .3个D .4个二、填空题:9.三条直线经过同一点,过每两条作一个平面,则可以作______个不同的平面. 10.已知AB ∥PQ ,BC ∥QR ,∠ABC=30O ,则∠PQR 等于_______.11.已知过球面上A,B,C 三点的截面和球心的距离等于球半径的一半,且AB= BC= CA= 2 , 则球面的面积是12.四面体各棱长是 1 或 2 ,且该四面体不是正四面体,则其体积的值是_________.(只需写出一个可能值)三、解答题:13.如图在正方体ABCD-1111D C B A 中,AC 交BD 于点O ,证明:(1)11BC C A ⊥;(2)MBD O A M CC 平面,使得上是否存在一点棱⊥1114.如图四棱锥P -ABCD 的底面是正方形,PB ⊥面ABCD.证明:无论四棱锥的高PB 怎样变化,面 PAD 与面PCD 不可能垂直。
(好题)高中数学必修二第一章《立体几何初步》检测题(有答案解析)

一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π2.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //3.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A .3B .6C .23D .264.在空间四边形ABCD 中,AB BC =,AD DC =,则对角线AC 与BD 所成角的大小是( ) A .90︒B .60︒C .45︒D .305.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( ) A .728B .728-C .37D .3714-6.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π27.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( ) A .6π B .4π C .3π D .2π 8.已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为22,求这个球的表面积( )A .4πB .8πC .12πD .24π9.如图,在正方体1111ABCD A B C D -中,点F 是线段1BC 上的动点,则下列说法错误的是( )A .无论点F 在上1BC 怎么移动,都有11A FB D ⊥B .当点F 移动至1BC 中点时,才有1A F 与1BD 相交于一点,记为点E ,且12A EEF= C .当点F 移动至1BC 中点时,直线1A F 与平面1BDC 所成角最大且为60° D .无论点F 在1BC 上怎么移动,异面直线1A F 与CD 所成角都不可能是30°10.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A 43B 23C .83D .4311.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥12.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C .322D .34二、填空题13.在边长为3的菱形ABCD 中,对角线3AC =,将三角形ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.14.已知某空心圆锥的母线长为5cm ,高为4cm ,记该圆锥内半径最大的球为球O ,则球O 与圆锥侧面的交线的长为________cm .15.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36按35计算,则棱长为6的正二十面体的外接球半径等于___________.16.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PD ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若2PD =,3APD BAD π∠=∠=,则三棱锥P AOD -的外接球表面积为_________.17.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.18.一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计一个各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形(如图所示),高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为_________元.19.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________. 20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,三棱柱111ABC A B C -中,1CC ⊥平面ABC ,5AB =,3AC =,14BC CC ==,M 是1CC 的中点.(Ⅰ)求证:BC AM ⊥;(Ⅱ)若N 是AB 上的点,且//CN 平面1AB M ,求BN 的长.22.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.23.如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.24.在三棱柱111ABC A B C -中,侧面11BCC B 为矩形,AC ⊥平面11BCC B ,D ,E 分别是棱1AA ,1BB 的中点.(1)求证://AE 平面11B C D ; (2)求证:1CC ⊥平面ABC ;(3)若12AC BC AA ===,求直线AB 与平面11B C D 所成角的正弦值. 25.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,M 是棱PD 的中点.(1)求证://PB 平面AMC ;(2)若PD ⊥平面ABCD ,2AD PD ==,3BAD π∠=,求点B 到平面AMC 的距离.26.如图,四边形ABCD 为矩形,且4=AD ,22AB =PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+, 解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.3.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据1M B =即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值, 因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.4.A解析:A 【分析】取AC 中点O ,根据条件分析AC 与平面BOD 的位置关系,由此得到异面直线AC 与BD 所成角的大小. 【详解】取AC 中点O ,连接,,BO DO BD ,如图所示:因为AB BC =,AD DC =,所以,BO AC DO AC ⊥⊥,且BO DO O =,所以AC ⊥平面BOD ,又BD ⊂平面BOD ,所以AC BD ⊥, 所以AC 与BD 所成角为90︒, 故选:A.【点睛】关键点点睛:解答问题的关键是通过找AC 中点证明线面垂直,从而确定出线线垂直关系,和常规的求解异面直线所成角的方法不同.5.C解析:C 【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案. 【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==,所以2211111122B D D C B C =+=213110B E =+=222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得,从而22211111111137cos24214B D D E B EB D EB D D E+-∠===⨯⨯.故选:C【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.6.D解析:D【分析】取AC中点E,连接1,A E BE,先通过BE⊥平面11ACC A可得BE AM⊥,再由1ACM A AE≅可得1AM A E⊥,即可得出AM⊥平面1A BE,即1AM A B⊥.【详解】取AC中点E,连接1,A E BE,ABC为正三角形,BE AC∴⊥,正三棱柱111ABC A B C-中,1CC⊥平面ABC,BE⊂平面ABC,1CC BE∴⊥,1AC CC C=,BE∴⊥平面11ACC A,AM⊂平面11ACC A,BE AM∴⊥,在直角三角形ACM和直角三角形1A AE中,1,AC A A CM AE==,1ACM A AE∴≅,1CAM AA E∴∠=∠,12CAM A EAπ∴∴∠+∠=,则1AM A E⊥,1BE A E E⋂=,AM∴⊥平面1A BE,1A B⊂平面1A BE,1AM A B∴⊥,故异面直线AM与1A B所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM⊥平面1A BE判断出1AM A B⊥.7.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.C解析:C 【分析】将正三棱锥补成一个正方体,计算出正方体的棱长,可得出正方体的体对角线长,即为外接球的直径,进而可求得这个球的表面积. 【详解】设该正三棱锥为A BCD -,将三棱锥A BCD -补成正方体AEBF GCHD -,如下图所示:则正方体AEBF GCHD -的棱长为22222⨯=,该正方体的体对角线长为23 所以,正三棱锥A BCD -的外接球直径为23R =3R =, 该球的表面积为2412S R ππ==. 故选:C. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.9.C解析:C 【分析】A.通过证明线面垂直,证得线线垂直;B.利用相似三角形,求1A EEF的值;C.首先构造直线1A F 与平面1BDC 所成角,再通过数形结合分析最大角,以及最大角的余弦值,判选项;D.将异面直线所成角转化为相交直线所成角,求解判断. 【详解】A.AC BD ⊥,1AC BB ⊥,AC ∴⊥平面1BB D ,1AC B D ∴⊥,11//AC AC ,111B D AC ∴⊥,同理11B D BC ⊥,1111A C BC C ,1B D ∴⊥平面11A BC ,1A F ⊂平面11A BC ,11B D A F ∴⊥,故A 正确;B.连结1A D ,1B C 交1BC 于点F ,11//A B DC ,且11A B DC =,∴四边形11A DCB 是平行四边形,所以11//A D B C ,∴11A DEFB E,得1112A E A DEFB F==,故B 正确;C.1A O ⊥平面1BDC ,1111A B AC A D ==,∴点O1BDC 是等边三角形的中心,11A BC 是等边三角形,111A BC BDC ≅ 当点F 是1BC 的中点时,11A F BC ⊥,此时1A F 是点1A 和1BC 上的点连线的最短距离,设直线1A F 与平面1BDC 所成角为θ,此时11sin A O A F θ=最大,所以此时θ最大,所以111cos 32OF A F θ==<,最大角大于60,故C 不正确;D.11//A B CD ,CD ∴与1A F 所成的角,转化为11B A F ∠的大小,11B A F ∠的最小角是11B A 与平面11A BC 所成的角,即11B A F ∠,此时1111123tan 23FB B A F A B ∠==>,所以11B A F ∠的最小角大于30,故D 正确.【点睛】关键点点睛:本题考查利用几何的综合应用,包含线线,线面角,垂直关系,首先会作图,关键选项是C 和D ,C 选项的关键是1A O ⊥平面1BDC ,点O1BDC 是等边三角形的中心,D 选项的关键是知道先与平面中线所成角中,其中线面角是其中的最小角.10.D解析:D 【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得3BCDS≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立,1116sin120223BCDSBC BD =⋅≤⨯= 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==所以114333A BCD BCDV S h -=⋅≤=, 所以四面体ABCD 体积的最大值是43, 故选:D 【点睛】关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值.11.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误.对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确; 对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.A解析:A 【分析】作出原平面图形,然后求出面积即可. 【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形,∴2A B OB '''==,又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=, 在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB = ∴其面积为1(21)22322S =+⨯= 故选:A方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则2S S '=. 二、填空题13.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因解析:55π; 【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积. 【详解】根据题意,画出图形,3的菱形ABCD 中,对角线3AC = 所以ABC 和DBC △都是正三角形, 又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径2252R GD OG =+=,所以其体积为3344555()3326V R πππ==⋅=, 故答案为:556π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下: (1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置; (3)利用勾股定理求得半径; (4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.14.【分析】由题可求出底面半径根据三角形相似关系可求出球半径再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径即可求出交线长【详解】圆锥的轴截图如图所示由题可知圆锥的高母线设的内切圆与圆锥的母线相切 解析:125π【分析】由题可求出底面半径,根据三角形相似关系可求出球半径,再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径,即可求出交线长. 【详解】圆锥的轴截图如图所示,由题可知,圆锥的高4cm AF =,母线5cm AB AC ==, 设ABC 的内切圆O 与圆锥的母线相切与点E ,则OE AB ⊥, 则该圆锥内半径最大的球即以O 为圆心,OE 为半径的球, 在直角三角形ABF 中,2222543cm BF AB AF =--=,由圆的切线性质可得3cm BE BF ==, 所以532cm AE AB BE =-=-=, 在直角三角形AFB 和直角三角形AEO 中, 因为∠∠EAO BAF =,所以△△AFB AEO ~,所以AE OE AF BF =,则可得3cm 2OE =, 过点E 作ED AF ⊥,D 为垂足,则球O 与圆锥的侧面的交线是以DE 为半径的圆,354cm 22AO AF OF =-=-=, 因为1122△AEO S AE OE ED AO =⋅=⋅,所以6cm 5ED =, 所以球O 与圆锥的侧面的交线长为6122cm 55ππ⨯=. 故答案为:125π. 【点睛】本题考查圆锥与球的相切问题,解题的关键是利用轴截面,用平面几何的知识解决.15.【分析】由已知得出正二十面体的外接球即为上方正五棱锥的外接球设正五边形的外接圆半径为由平面几何知识可求得外接球的半径【详解】由图正二十面体的外接球即为上方正五棱锥的外接球设其半径为正五边形的外接圆半【分析】由已知得出正二十面体的外接球即为上方正五棱锥的外接球,设正五边形的外接圆半径为r ,由平面几何知识可求得外接球的半径.【详解】由图,正二十面体的外接球即为上方正五棱锥的外接球, 设其半径为R ,正五边形的外接圆半径为r ,则33sin 365r ==,得=5r ,所以正五棱=,所以(2225R R =+,解得R =.【点睛】关键点点睛:本题考查几何体的外接球的问题,关键在于确定外接球的球心和半径.16.【分析】根据棱锥的性质证明的中点就是三棱锥的外接球球心得出半径后可求表面积【详解】取中点中点连接则因为底面所以平面是菱形则所以是的外心又底面平面所以所以到四点距离相等即为三棱锥的外接球球心又所以所以解析:16π. 【分析】根据棱锥的性质,证明PA 的中点就是三棱锥P AOD -的外接球球心,得出半径后可求表面积. 【详解】取PA 中点M ,DA 中点E ,连接,ME EO ,则//ME PD ,因为PD ⊥底面ABCD ,所以ME ⊥平面ABCD ,ABCD 是菱形,则AO OD ⊥,所以E 是AOD △的外心,又PD ⊥底面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥,所以M 到,,,P A D O 四点距离相等,即为三棱锥P AOD -的外接球球心. 又2PD =,3APDπ∠=,所以24cos3PA π==,所以2MA MP ==,所以三棱锥P AOD -的外接球表面积为24216S ππ=⨯=. 故答案为:16π.【点睛】结论点睛:本题考查求三棱锥外接球表面积,解题关键是求出外接球球心.三棱锥的外接球球心一定在过各面外心且与此面垂直的直线上.17.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==ABCD 中,3AC =1263DM ⨯==, 63D M DM '==, 则222222666612cos 22333332DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.18.4000【分析】根据题意先求出正四棱柱的底面边长和高由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积进而求出所需的费用【详解】由题意可知文物底部是直径为09m 的圆形文物底部与玻璃罩底边至解析:4000 【分析】根据题意,先求出正四棱柱的底面边长和高,由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积,进而求出所需的费用. 【详解】由题意可知,文物底部是直径为0.9 m 的圆形,文物底部与玻璃罩底边至少间隔0.3 m , 所以由正方形与圆的位置关系可知:底面正方形的边长为0.9+2×0.3=1.5m , 由文物高1.8m ,文物顶部与玻璃置上底面至少间隔0.2m ,所以正四棱柱的高为1.8+0.2=2m .,则正四棱柱的体积为V =1.52×2=4.5m 3因为文物体积为0.5m 3,所以置内空气的体积为4.5-0.5 = 4 m 3, 气体每立方米1000元,所以共需费用为4×1000=4000(元) 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型.19.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角MBC A--的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHNPGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值. 【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥;又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角MBC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MNMHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MNPGO MHNOG HN∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHNPGO MHN PGO MHN MHNα∠-∠∠=∠-∠==+∠⋅∠+∠,令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】 关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,AD =2AB =,PA PD =,则//OE AB ,112OE AB ==,132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)52. 【分析】(Ⅰ)可证BC ⊥平面11AAC C ,从而可得BC AM ⊥. (Ⅱ)可证N 为AB 的中点,从而可得BN 的长. 【详解】(Ⅰ)证明:1CC ⊥平面ABC ,BC ⊂平面平面ABC ,∴1CC BC ⊥.又5AB =,3AC =,4BC =,∴222AC BC AB +=,即BC AC ⊥. 又1ACCC C =,∴BC ⊥平面11AAC C ,又AM ⊂平面11AAC C ,∴BC AM ⊥.(Ⅱ)过点N 作1//NE BB 交1AB 于点E ,连ME ,由三棱柱111ABC A B C -可得11//BB CC ,∴1//NE CC 即四边形NEMC 为平面图形. 又//CN 平面1AB M ,CN ⊂平面NEMC ,且平面NEMC平面1AB M ME =,∴//CN ME ,∴四边形NEMC 为平行四边形, ∴NE CM =,且//NE CM ,又点M 为1CC 中点,∴112CM BB =,且1//CM BB ,∴112NE BB =,且1//NE BB , ∴1522BN AB ==. 【点睛】思路点睛:线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.由线面平行得到线线平行时,注意构造过线的平面.22.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 23.(1)见详解;(2)见详解;(3)107 【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP ⊥平面PBC ,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC . (3)等积转换,由D BCM M DBC V V --=,可求得体积. 【详解】证明:因为M 为AB 的中点,D 为PB 的中点,所以MD 是ABP △的中位线,MD AP .又MD 平面APC ,AP ⊂平面APC , 所以MD 平面APC .(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥.又MDAP ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P =,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以⊥AP BC . 又因为BC AC ⊥,AC AP A ⋂=, 所以BC ⊥平面APC . (3)因为AP ⊥平面PBC ,MDAP ,所以MD ⊥平面PBC ,即MD 是三棱锥M DBC -的高.。
(好题)高中数学必修二第一章《立体几何初步》检测卷(有答案解析)

一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知三棱锥P ABC -的三条侧棱两两垂直,且,,PA PB PC 的长分别为,,a b c ,又2()2a b c +=,侧面PAB 与底面ABC 成45︒角,当三棱锥体积最大时,其外接球的表面积为( ) A .10πB .40πC .20πD .18π3.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A 13B .36C 33D .1164.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( ) A .6π B .4π C .3π D .2π 5.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25 )A.4πB.5πC.6πD.8π6.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为()A.64 B.48 C.32 D.167.如图为某几何体的三视图,正视图、左视图和俯视图均为等腰直角三角形,则该几何体的表面积是()A.23+B.223+C.63D.68.已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为2,求这个球的表面积()A .4πB .8πC .12πD .24π9.在正方体1111ABCD A B C D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为5 B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于105D .直线1AC 与平面BDM 相交10.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( ) A .2B .22C .12D .3 11.一个几何体的三视图如图所示,则该几何体的体积为( )A .4B .8C .12D .1412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.14.已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在同一球面上),圆锥的高是底面半径的3倍,圆锥的侧面积为910π,则球O 的表面积为________.15.如图,在正方体1111ABCD A B C D -中,E ,F ,G 分别是棱11A B ,1BB ,11B C 的中点,则下列结论中:①FG BD ⊥; ②1B D ⊥面EFG ;③面//EFG 面11ACC A ; ④//EF 面11CDD C . 正确结论的序号是________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -的体积为73,则此三棱锥的外接球的表面积为______18.在正方体1111ABCD A B C D -中,P 为线段1AB 上的任意一点,有下面三个命题:①//PB 平面11CC D D ;②1BD AC ⊥;③1BD PC ⊥.上述命题中正确命题的序号为__________(写出所有正确命题的序号).19.棱长为a 的正四面体的外接球的表面积为______.20.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .三、解答题21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为平行四边形,1,2AB BC ==,45ABC ∠=︒,AE PC ⊥垂足为E .(Ⅰ)求证:平面AEB ⊥平面PCD ;(Ⅱ)若二面角B AE D --的大小为150︒,求侧棱PA 的长.22.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 23.如图,在四棱锥C ﹣ABDE 中,F 为CD 的中点,DB ⊥平面ABC ,BD ∥AE ,BD =2AE .(1)求证:EF ∥平面ABC ;(2)若AB =BC =CA=BD =6,求点A 到平面ECD 的距离 24.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒==∠=,1cos ,3BAP AP BC ∠=-⊥.(1)若23BM MC =,求证:PM BC ⊥; (2)当3AP =,且N 为BC 中点时,求AN 与平面PBC 所成角的正弦值. 25.如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,133,5,cos ,,5AD AB BAD BD DD E ==∠==是1CC 的中点.(Ⅰ)求证:平面DBE ⊥平面1ADD ; (Ⅱ)求点1C 到平面BDE 的距离.26.如图,在三棱锥P ABC -中,⊥PA AB ,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:平面BDE ⊥平面PAC ;(2)当//PA 面BDE 时,求三棱锥E BCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.A解析:A 【分析】将三棱锥体积用公式表示出来,结合均值不等式和2()a b c +=a b =,进而得到2c a =,带入体积公式求得2,a b c ===24S R π=求出外接球的表面积. 【详解】解:211166()643V abc ab ab a b ab ==⋅⋅=+,当且仅当a b =时取等号, 因为侧面PAB 与底面ABC 成45︒角,则2PC a c ==,216V a ∴==2,a b c ∴===所以2222410R a b c =++=, 故外接球的表面积为10π. 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角),设1AB =,则12EF =,2DE DF ==,∴在等腰三角形DEF中,113 24cos63EFFEDDE∠===.所以异面直线AB与DE所成角的余弦值为3.故选:B.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.4.B解析:B【分析】由M也是1A B的中点,P也是1AD中点,得平行线,从而找到异面直线MN与PQ所成角,在三角形中可得其大小.【详解】如图,连接1AD,1AB,显然M也是1A B的中点,P也是1AD中点,又N是1B D中点,Q是1CD中点,所以//MN AD,//PQ AC,所以CAD∠是异面直线MN与PQ所成角(或补角),大小为4π.故选:B.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 5.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =计算底面圆半径即可求解.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.6.C解析:C【分析】在长方体中还原三视图后,利用体积公式求体积.【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P -ABCD (补形法) 且该长方体的长、宽、高分别为6、4、4,故该四棱锥的体积为1(64)4323V =⨯⨯⨯=. 故选C .【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 7.A解析:A【分析】由三视图可知原几何体是三棱锥,平面ACD ⊥平面ABC ,ACD ACB ≅底面是等腰直角三角形,底为2AC =,高为1BE =,ABD BCD ≅是边长为2的等边三角形,计算四个三角形面积之和即可求解.【详解】由三视图可知原几何体是三棱锥:底面ACB △是等腰直角三角形,底2AC =,高1BE =,平面ACD ⊥平面ABC ,ACD ACB ≅,由三视图知ACB △中,2AC =,ACB △是等腰直角三角形,所以2AB BC == ACD △是等腰直角三角形,2AD CD ==,2AC =,222BD BE DE =+=所以等腰直角三角形ACB △的面积为12112⨯⨯=, 等腰直角三角形ACD △的面积为12112⨯⨯=, 等边ABD △2332=, 等边BCD △2332=, 所以该几何体的表面积是33112322+++=+, 故选:A. 8.C解析:C【分析】将正三棱锥补成一个正方体,计算出正方体的棱长,可得出正方体的体对角线长,即为外接球的直径,进而可求得这个球的表面积.【详解】设该正三棱锥为A BCD -,将三棱锥A BCD -补成正方体AEBF GCHD -,如下图所示:则正方体AEBF GCHD -的棱长为22222⨯=,该正方体的体对角线长为23 所以,正三棱锥A BCD -的外接球直径为23R =3R =,该球的表面积为2412S R ππ==.故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 9.C解析:C【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可.B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行.【详解】设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan 2AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =,不满足勾股定理,不是直角三角形C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ 210sin 55d BM θ=== 直线BM 与平面11BDD B 所成角的正弦值等于105 D.如图AC BD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键. 10.B解析:B【分析】连接11A N B A B =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解.【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为2211111514MB MC C B =+=+=221514MA MC CA =+=+= 所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线,∴1⊥MN AB 且1MN A B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离, 又因为1111211222B N AB ==+=,所以点1B 到截面1A BM 的距离为22, 故选:B.【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据AB nd n ⋅=即可求解出点A 到平面α的距离.11.C解析:C【分析】根据三视图还原得其几何体为四棱锥,根据题意代入锥体体积公式计算即可.【详解】解:根据三视图还原得其几何体为四棱锥,图像如下:根据图形可得ABCD 是直角梯形,PA ⊥平面ABCD ,2,4,2,6AB CD PA AD ==== 所以11246212332P ABCD ABCD V S PA -+=⋅=⨯⨯⨯= 故选:C【点睛】识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图; (3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π 【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积.【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()144r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】 关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.14.【分析】设圆锥的底面半径为球的半径为根据勾股定理可得根据圆锥的侧面积公式可得再根据球的表面积公式可得结果【详解】设圆锥的底面半径为球的半径为则圆锥的高为则球心到圆锥的底面的距离为根据勾股定理可得化简 解析:100π【分析】设圆锥的底面半径为r ,球O 的半径为R ,根据勾股定理可得53R r =,根据圆锥的侧面积公式可得3,5r R ==,再根据球的表面积公式可得结果.【详解】设圆锥的底面半径为r ,球O 的半径为R ,则圆锥的高为3r ,则球心O 到圆锥的底面的距离为3r R -,根据勾股定理可得()2223R r r R =+-,化简得53R r =,因为圆锥的高为3r =,所以圆锥的侧面积为2r r π=,2r =,解得r =3,所以5353R =⨯=, 所以球O 的表面积为24425100R πππ=⨯=.故答案为:100π【点睛】关键点点睛:利用圆锥的侧面积公式和球的表面积公式求解是解题关键. 15.②④【分析】由是正三角形可判断①;判断出平面平面平面可判断②;假设面面则可以推出可判断③;由平面平面平面可判断④【详解】连接分别是的中点对于①因方是正三角形所以与不垂直;对于②连接因为且所以平面平面解析:②④.【分析】由1//FG BC ,1BDC 是正三角形,可判断①;判断出1DB ⊥平面11A C B ,平面11//AC B 平面EFG ,可判断②;假设面//EFG 面11ACC A ,则可以推出1//AA EF 可判断③;由平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,可判断④.【详解】连接11A C ,1A B ,1BC ,BD ,1B D ,E ,F ,G 分别是1A B ,1BB ,11B C 的中点. 对于①,因方1//FG BC ,1BDC 是正三角形,所以FG 与BD 不垂直;对于②,连接11D B ,因为1111111AC B D ,AC BB ⊥⊥,且1111B D BB B ⋂=,所以11A C ⊥平面11BDD B ,1DB ⊂平面11BDD B ,所以111AC DB ⊥,同理11BC DB ⊥,且1111A C BC C ,所以1DB ⊥平面11A C B ,因为1//A B EF ,11//AC EG ,且111A B AC A ⋂=,EF EG E =,所以平面11//AC B 平面EFG ,所以1B D ⊥平面EFG .正确;对于③,如果面//EFG 面11ACC A ,由平面EFG 平面11ABB A EF =,平面11CC A A平面111BB A A A A =,则1//AA EF ,显然不正确;对于④,因为平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,所以//EF 平面11CDD C ,正确故选:②④. 【点睛】方法点睛:本题主要考查了正方体中垂直与平行关系,考查了线线垂直、线面垂直的判定、线面平行的判断、面面平行的判断与性质,对于证明线线关系、线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明, 属于中档题.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 82π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形,所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC 中,由正弦定理得172sin 223BC r BAC ==∠,解得334r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以1122sin 3442223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△. 因为11274233D ABC ABC V S AD AD -=⋅⋅=⨯⨯=△,所以14AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,111428EA OO AD ===,所以22221114324588R OO AO ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭.所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错【详解】①如下图所示:因为平面平面平面所以平面故①正确;②连接如下图所示:因为平面所以又因为且所以平面又因为解析:①②③ 【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错. 【详解】①如下图所示:因为平面11//ABB A 平面11CC D D ,BP ⊂平面11ABB A ,所以//PB 平面11CC D D ,故①正确;②连接,AC BD ,如下图所示:因为1DD ⊥平面ABCD ,所以1DD AC ⊥, 又因为AC BD ⊥且1DD BD D =,所以AC ⊥平面1DBD ,又因为1BD ⊂平面1DBD ,所以1BD AC ⊥,故②正确; ③连接11,,,AC PC B C BC ,如下图所示:因为11D C ⊥平面11BCC B ,所以11D C ⊥1B C ,又因为11BC B C ⊥,且1111D C BC C ⋂=,所以1B C ⊥平面11BD C ,又1BD ⊂平面11BD C ,所以11B C BD ⊥, 由②的证明可知1BD AC ⊥,且1AC B C C ⋂=,所以1BD ⊥平面1AB C , 又因为PC ⊂平面1AB C ,所以1BD PC ⊥,故③正确, 故答案为:①②③. 【点睛】本题考查空间线面平行、线线垂直关系的判断,涉及线面平行判定定理、线面垂直判定定理的运用,主要考查学生对空间中位置关系的逻辑推理能力,难度一般.19.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】 解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积. 【详解】正四面体的棱长为:a ,底面三角形的高:22a a =,3a =, 设外接球半径为R ,222))R R a =-+,解得R =,所以外接球的表面积为:22342a ππ⎫⨯=⎪⎪⎝⎭; 故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径.20.【详解】试题分析:如图正方体ABCD-EFGH 此时若要使液面不为三角形则液面必须高于平面EHD 且低于平面AFC 而当平面EHD 平行水平面放置时若满足上述条件则任意转动该正方体液面的形状都不可能是三角形解析:15,66⎛⎫⎪⎝⎭【详解】试题分析:如图,正方体ABCD-EFGH ,此时若要使液面不为三角形,则液面必须高于平面EHD ,且低于平面AFC .而当平面EHD 平行水平面放置时,若满足上述条件,则任意转动该正方体,液面的形状都不可能是三角形.所以液体体积必须>三棱柱G-EHD 的体积16,并且<正方体ABCD-EFGH 体积-三棱柱B-AFC 体积15166-=考点:1.棱柱的结构特征;2.几何体的体积的求法三、解答题21.(Ⅰ)证明见解析;(Ⅱ2 【分析】(Ⅰ)推导出AB AC ⊥,CD AC ⊥,PA CD ⊥,从而CD ⊥平面PAC ,进而CD AE ⊥,AE PC ⊥,由此能证明平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系,利用向量法能求出侧棱PA 的长. 【详解】证明:(Ⅰ)1,2,45AB BC ABC ==∠=︒,AB AC ∴⊥又//AB CD ,CD AC ∴⊥,PA ⊥平面ABCD ,PA CD ∴⊥,又AC AP A =,,AC AP ⊂平面PAC ,CD 平面PAC ,AE ⊂平面PAC ,CD AE ∴⊥,又AE PC ⊥,PC CD C =,,PC CD ⊂平面PCD ,AE ∴⊥平面PCD ,又AE ⊂平面AEB , ∴平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系.设AP t =,则(0A ,0,0),(1B ,0,0),(0C ,1,0),(1,10)D -,(0P ,0,)t ,AB PC ⊥,AE PC ⊥,PC ∴⊥平面ABE ,∴平面ABE 的一个法向量为(0,1,)n PC t ==-在Rt PAC △中,PA t =,211AC PC t =∴=+,又AE PC ⊥,21AE t =+,得222(0,,)11t tE t t ++设平面ADE 的一个法向量为(,,)m x y z =由m AD m AE ⎧⊥⎨⊥⎩,得222··0110t ty z t t x y ⎧+=⎪++⎨⎪-+=⎩,解得(1,1,)m t =- 二面角B AE D --的大小为150︒,∴222||3|cos ,||cos150|||||12m n m n m n t t 〈〉===︒=++, 解得2t =,故侧棱PA 的长为2.【点睛】本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.22.(1)证明见解析;(2 【分析】(1)根据题中条件,由线面垂直的判定定理,证明AF ⊥平面DEB ;即可推出AF DB ⊥;(2)先由题意,得到AEB △是等腰直角三角形时,三棱锥D ABE -体积最大,设点C 到平面EBD 的距离为h ,由C DBE E CBD V V --=,根据等体积法,即可求出结果. 【详解】(1) EB ⊂平面AEB ,DA EB ∴⊥,AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,AE ⊂平面DAE ,DA ⊂平面DAE , BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,EB ⊂平面DEB ,DE ⊂平面DEB , AF ∴⊥平面DEB ,DB ⊂平面DEB , AF DB ∴⊥;(2)13D AEB AEBV S DA -=⨯⨯,3DA =, 当D AEB V -最大时,即12AEBEA EB S=⋅最大, 因为211222AEBEA EB B SEA E ⎛⎫+=⋅≤ ⎪⎝⎭,当且仅当EA EB =相等时,等号成立; 即AEB △是等腰直角三角形时,AEB △的面积最大;3DA =,2AB =,BE ∴=DE ==,点E 到平面ABCD 的距离112AB =, 设点C 到平面EBD 的距离为h ,则C DBE E CBD V V --=,即11113213232h ⨯=⨯⨯⨯⨯,解得:h = 【点睛】方法点睛:求解空间中点P 到面α的距离的常用方法:(1)等体积法:先设所求点到面的距离,根据几何体中的垂直关系,由同一几何体的不同的侧面(或底面)当作底,利用体积公式列出方程,即可求解;(2)空间向量法:先建立适当的空间直角坐标系,求出平面α的一个法向量m ,以及平面α的一条斜线PA所对应的向量PA,则点P到面α的距离即为PA m dm⋅=. 23.(1)证明见解析(2)322【分析】(1)取CB的中点M,连,MF AM,可证四边形AMFE为平行四边形,从而可得//EF AM,再根据直线与平面平行的判定定理可证结论;(2)根据A ECD D ACE B ACE E ACBV V V V----===可求得结果.【详解】(1)取CB的中点M,连,MF AM,因为F为CD的中点,所以//MF BD,且12MF BD=,因为//AE BD且12AE BD=,所以//MF AE且MF AE=,所以四边形AMFE为平行四边形,所以//EF AM,因为EF⊄平面ABC,AM⊂平面ABC,所以//EF平面ABC.(2)因为DB⊥平面ABC,BD∥AE,所以AE⊥平面ABC,所以BD BC⊥,BD AB⊥,AE AC⊥,AE AB⊥,因为AB=BC=CA=BD=6,BD=2AE.所以3AE=,所以363662CD=+=93635CE=+=93635DE=+=,又F为CD的中点,所以EF CD⊥,所以()()22353233EF=-=所以1133629622ECDS CD EF=⋅⋅=⨯=△因为21133693334E ACB ABCV AE S-=⋅=⨯⨯=△因为//AE BD,所以A ECD D ACEB ACE E ACBV V V V----====3设点A到平面ECD的距离为h,则11963633A ECD ECDV hS h h-==⨯=△,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章立体几何综合检测题一、选择题1.如下图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )A.12倍 B .2倍 C.24倍 D.22倍 3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )4.已知某几何体的三视图如图所示,那么这个几何体是( )A .长方体B .圆柱C .四棱锥D .四棱台 5.正方体的体积是64,则其表面积是( ) A .64 B .16C .96 D .无法确定6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A .缩小到原来的一半B .扩大到原来的2倍C .不变D .缩小到原来的167.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍 C.95倍 D.74倍8.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm 2B .15πcm 2C .24πcm 2D .36πcm 29.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7 学B .6C .5D .310.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( ) A.32,1 B.23,1 C.32,32 D.23,3211.某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( ) A .24 B .80 C .64 D .24012.如果用表示1个立方体,用表示两个立方体叠加,用表示3个立方体叠加,那么图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是( )13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________.14.一个几何体的三视图如图所示,则这个几何体的体积为___________________.15.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为________.16.一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________.17.画出如图所示几何体的三视图.19.如下图所示是一个空间几何体的三视图,试用斜二测画法画出它的直观图(尺寸不限).等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?21.如下图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.22.(本题满分12分)如图所示(单位:cm),四边形ABCD 是直角梯形,求图中阴影部分绕AB 旋转一周所成几何体的表面积和体积.详解答案 1[答案] C[解析] 图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥. 2[答案] C[解析] 设△ABC 的边AB 上的高为CD ,以D 为原点,DA 为x 轴建系,由斜二测画法规则作出直观图△A ′B ′C ′,则A ′B ′=AB ,C ′D ′=12CD .S △A ′B ′C ′=12A ′B ′·C ′D ′sin45°=24(12AB ·CD )=24S △ABC . 3[答案] D[解析] 本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C 都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.[点评] 本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 4[答案] A[解析] 该几何体是长方体,如图所示.5[答案] C[解析] 由于正方体的体积是64,则其棱长为4,所以其表面积为6×42=96. 6[答案] A[解析] V =13π⎝⎛⎭⎫12r 2×2h =16πr 2h ,故选A.[答案] C7[解析] 设最小球的半径为r ,则另两个球的半径分别为2r 、3r ,所以各球的表面积分别为4πr 2,16πr 2,36πr 2,所以36πr 24πr 2+16πr 2=95.8[答案] C[解析] 由三视图可知该几何体是圆锥,S 表=S 侧+S 底=πrl +πr 2=π×3×5+π×32=24π(cm 2),故选C. 9[答案] A[解析] 设圆台较小底面圆的半径为r ,由题意,另一底面圆的半径R =3r . ∴S 侧=π(r +R )l =π(r +3r )×3=84π,解得r =7. 10[答案] C[解析] 设球的半径为R ,则圆柱的底面半径为R ,高为2R ,∴V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3.∴V 圆柱V 球=2πR 343πR 3=32, S 圆柱=2πR ×2R +2×πR 2=6πR 2,S 球=4πR 2. ∴S 圆柱S 球=6πR 24πR 2=32. 11[答案] B[解析] 该几何体的四棱锥,高等于5,底面是长、宽分别为8、6的矩形,则底面积S =6×8=48,则该几何体的体积V =13Sh =13×48×5=80.12[答案] B[解析] 画出该几何体的正视图为,其上层有两个立方体,下层中间有三个立方体,两侧各一个立方体,故B 项满足条件.13[答案]1423π [解析] 圆台高h =32--2=22,∴体积V =π3(r 2+R 2+Rr )h =1423π.14[答案] 36[解析] 该几何体是底面是直角梯形的直四棱柱,如图所示,底面是梯形ABCD ,高h =6,则其体积V =Sh =⎣⎡⎦⎤12+×6=36. [答案] 24π2+8π或24π2+18π15[解析] 圆柱的侧面积S 侧=6π×4π=24π2.(1)以边长为6π的边为轴时,4π为圆柱底面圆周长,所以2πr =4π,即r =2.所以S 底=4π,所以S 表=24π2+8π.(2)以4π所在边为轴时,6π为圆柱底面圆周长,所以2πr =6,即r =3.所以S 底=9π,所以S 表=24π2+18π. 16[答案] 2(1+3)π+4 2[解析] 此几何体是半个圆锥,直观图如下图所示,先求出圆锥的侧面积S 圆锥侧=πrl =π×2×23=43π,S底=π×22=4π,S △SAB =12×4×22=42,所以S 表=43π2+4π2+4 2=2(1+3)π+4 2.17[解析] 该几何体的上面是一个圆柱,下面是一个四棱柱,其三视图如图所示.18[解析] 设圆柱的底面圆半径为r cm,∴S圆柱表=2π·r·8+2πr2=130π.∴r=5(cm),即圆柱的底面圆半径为5cm.则圆柱的体积V=πr2h=π×52×8=200π(cm3).19[解析] 由三视图可知该几何体是一个正三棱台.画法:(1)如图①所示,作出两个同心的正三角形,并在一个水平放置的平面内画出它们的直观图;(2)建立z′轴,把里面的正三角形向上平移高的大小;(3)连接两正三角形相应顶点,并擦去辅助线,被遮的线段用虚线表示,如图②所示,即得到要画的正三棱台.20[解析]如图所示,连接AC和BD交于O,连接SO.作SP⊥AB,连接OP.在Rt △SOP 中,SO =7(m),OP =12BC =1(m),所以SP =22(m),则△SAB 的面积是12×2×22=22(m 2).所以四棱锥的侧面积是4×22=82(m 2), 即制造这个塔顶需要82m 2铁板.21[解析] 设圆柱的底面半径为r ,高为h ′.圆锥的高h =42-22=23,又∵h ′=3,∴h ′=12h .∴r 2=23-323,∴r =1.∴S 表面积=2S 底+S 侧=2πr 2+2πrh ′ =2π+2π×3=2(1+3)π.22[解析] 由题意,知所成几何体的表面积等于圆台下底面积+圆台的侧面积+半球面面积.又S 半球面=12×4π×22=8π(cm 2),S 圆台侧=π(2+5)-2+42=35π(cm 2), S 圆台下底=π×52=25π(cm 2),即该几何全的表面积为8π+35π+25π=68π(cm 2).又V 圆台=π3×(22+2×5+52)×4=52π(cm 3),V 半球=12×4π3×23=16π3(cm 3).所以该几何体的体积为V 圆台-V 半球=52π-16π3=140π3(cm 3).。