《平面图形的镶嵌》 )

合集下载

综合实践--《平面图形的镶嵌》教学设计

综合实践--《平面图形的镶嵌》教学设计

北师大版数学(八下)综合与实践<<平面图形的镶嵌>>教学设计一、学生起点分析学生知识基础:学生已经学习认识了线、角、三角形的相关知识,掌握了有关平行四边形的性制、判定,并了解多边形的内角和外角,认识探索了图形轴对称、平移、旋转及性质。

学生活动经验基础:在以往的探索活动中,学生体验了自主合作,动手实践,积累了一定的探索图形性质的经验,以及在活动过程中表现出一定的数学表达能力和数学思考的发展水平。

二、学习任务分析通过呈现丰富多彩的镶嵌图案,经历观察、分析、操作、交流、研讨等活动,强化学生对镶嵌的认识,了解镶嵌在现实生活中的广泛应用;加强学生对多边形的内角和以及有关几何事实的认识,进一步发展学生合情推理能力,积累数学活动经验。

教学目标:1.经历探索多边形镶嵌条件的过程,进一步发展学生推理、交流的意识和一定的审美情趣;2.通过探索平面图形的镶嵌,知道哪些图形可以镶嵌;3.通过本节的学习,进一步感受平面图形在现实生活中的广泛应用。

教学重点:多边形镶嵌的条件教学难点:运用三角形、四边形成正六边形进行简单的密铺镶嵌。

教学方法:观察实验、议论探索法、比较归纳。

三、教学过程设计第一环节数学眼光,观察感知1.活动内容:(1)观察工人师傅铺地砖的情境(生活观察提前布置)(2)观察校园中平面图形镶嵌的实况录像(课堂上生活情景再现)2.观察小结:(1)什么叫平面图形的镶嵌?用形状、大小完全相同的一种或几种平面图形进形拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的密铺,又称叫做平面图形的镶嵌。

(2)生活中平面图形的镶嵌随处可见。

3.活动目的:通过观察平面图形镶嵌的实例,进一步感受平面图形在现实生活中的广泛应用。

培养学生用数学的眼光观察现实世界。

第二环节数学思维,合作探究1.活动内容:四人小组合作研讨知识介绍:在平面内,各角相等,各边也都相等的多边形叫做正多边形;边数为n的多边形的内角和等于(n-2)·180°探索活动问题1:[做一做]:用准备好的学具进行小组合作活动。

数学探究活动课《平面图形的镶嵌》教案

数学探究活动课《平面图形的镶嵌》教案

《平面图形的镶嵌》探究活动课一、探究课题《平面图形的镶嵌》二、探究背景《平面图形的镶嵌》是在华师大版七(下)教材中以数学活动的形式呈现的。

课标中已将综合实践活动作为数学学习的一个重要组成部分。

“综合与实践”是一类以问题为载体,学生主动参与的学习活动.学生在教师的指导下,将所学过的知识有机地结合,增强对知识的理解;注意与实际问题有机地结合,进一步获得数学活动的经验,增强应用意识。

三、教材分析(一)学习目标分析:本课是在信息环境、资源环境中让学生通过实例认识图形的镶嵌,理解构成镶嵌的条件,在发现只用正三角形、正四边形、正六边形可以镶嵌的基础上,上升到任意三角形、四边形可以镶嵌平面,再将图形的镶嵌知识由平面拓展到空间。

通过学生思考,相互讨论,动手操作,丰富学生对镶嵌的认识,提高动手能力,发展空间观念,增强审美意识。

(二)资源环境分析:现代信息技术及各种有效的资源既能调动学生思维的主观能动性,培养其创新精神,又能使学生活跃思路,多角度、全方位的思考问题。

为此,我构建了图形镶嵌的图片资源、拼图动画资源、现场实物操作资源等环境。

在思考、操作、欣赏与提高各板块的活动中,充分利用现代信息技术让学生欣赏图形的镶嵌、感受到图形镶嵌的魅力;在合作学习、快乐体验中达到学习目标。

整个活动过程中学生积极性很高,最后学生在欣赏图片中,将图形的镶嵌知识由平面拓展到空间,从而达到了活动的高潮。

(三)学生学习心理分析:我所面对的教学对象是八年级学生,他们思维活跃、求知欲强,对事情有自己的看法,他们的学习在很大的程度上受着兴趣、情感的支配。

信息技术的运用这对他们来说是一种新异刺激,可使其充分集中注意力,更激发他们参与活动的在动机。

霍姆林斯基说:“儿童是用形象、色彩、声音来思维的”。

从儿童心理学角度看,儿童具有直观、形象的思维特征。

所以我同时又在信息环境的氛围中采用具体、形象的教学形式,学生在信息技术的引导下清楚的了解到图形镶嵌的实质。

《平面图形的镶嵌》教学课件

《平面图形的镶嵌》教学课件
正三角形、正方形、长方形、正六边形等。
镶嵌的条件
围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角。
学生心得体会分享
学生A
通过学习,我深刻理解了 平面图形镶嵌的原理和方 法,感受到了数学的美妙 和实用性。
学生B
在动手实践中,我发现了 很多有趣的镶嵌组合,对 平面图形的认识也更加深 入了。
学生C
节奏与韵律感营造方法
通过调整图形元素的间距、大小、形态和色彩等视觉属性,形成有规律 的排列组合和变化,营造出富有节奏感和韵律感的视觉效果。
03
节奏与韵律感在设计中的应用
如网页设计、UI设计、插画设计等,利用节奏和韵律感来增强视觉吸引
力和提升用户体验。
色彩搭配和视觉效果优化
色彩搭配原则
在平面图形镶嵌中,色彩搭配应遵循色彩的和谐与对比原则,通过合理的色彩组合来营造 出符合主题和氛围的视觉效果。
引导学生对自己的作品进行客观 评价,发现自己的优点和不足,
为今后的创作提供改进方向。
展示与交流
鼓励学生之间相互评价作品,发现 他人的优点并学习借鉴,同时提出 建设性的意见和建议,促进共同进
步。
互相评价
教师对学生的作品进行点评,肯定 学生的成绩和进步,指出存在的问 题并提出改进意见,引导学生不断 提高创作水平。
《平面图形的镶嵌》教学课件
contents
目录
• 平面图形镶嵌基本概念 • 常见平面图形镶嵌方法 • 美学原理在平面图形镶嵌中应用 • 创意设计实践:个性化平面图形镶嵌 • 评价标准及欣赏能力提升途径 • 课堂总结与拓展延伸
01 平面图形镶嵌基本概念
镶嵌定义及性质
镶嵌定义
用形状、大小完全相同的一种或 几种平面图形进行拼接,彼此之 间不留空隙、不重叠地铺成一片 ,这就是平面图形的镶嵌。

《平面图形的镶嵌》教案

《平面图形的镶嵌》教案

《平面图形的镶嵌》教案教学内容分析:本节课是八年级下册第二十二章第九节内容,属于“实践与综合应用”这一学习范畴。

平面图形的镶嵌在现实生活中随处可见。

由于这一内容是现实的且有一定的实践性,所以能够让学生充分感受到“数学来源于生活”,进一步认识到学习数学的必要性,利于激发学生的兴趣,使学生乐于参与其中;由于该问题的解决,需要综合应用前面所学内容“三角形”、“生活中的轴对称”、“图形的平移与旋转”、“四边形”、“多边形内角和外角的和”等知识,是学生对所学平面图形有关知识的一次综合应用,问题的这种综合性既能检查学生对旧知识的掌握程度,又能加深学生对所学内容的理解,进一步认识学习的价值;由于解决这一问题需要师生、生生之间的合作与交流,利于发展学生的合作与交流的意识与能力;由于本节课学生需要经历观察、归纳、猜想、实验、推理及应用的全过程,既能丰富学生的活动经验,又能获得课题学习的基本模式,对于今后的学习具有重要的指导意义。

教学目的:1、在实验与探究的学习活动中,理解平面图形镶嵌的含义、本质及平面图形镶嵌的条件。

2、通过动手操作与合作交流,积累数学活动的经验,发展学生的合作交流、实践操作及推理能力。

3、通过平面图形镶嵌图案的设计,培养学生综合运用知识的能力和审美情趣。

教学重点:1、平面图形镶嵌的本质及条件的探究。

2、掌握课题学习的基本模式:现实生活中的问题——确立研究课题——搜集相关材料——提出研究子问题——归纳猜想、实验探究(推理、证明)——应用研究成果——形成研究报告。

教学难点:平面图形镶嵌的本质。

教学准备:1、学生准备:(1)正三、四、五、六、七边形纸片。

(2)生活中平面图形镶嵌的图片。

2、教师准备:平面图形镶嵌的图片及课件。

预计时间(分)教学内容教师活动学生活动教学评价4分一、创设情境,引出课题问1:在现实生活中,我们所见到的地面、墙面乃至于服装面料,常常都是由一些图形拼接而成的。

请同学们展示课前收集的镶嵌图案,并观看老师搜集到的一些生活中地砖图片,说一说这些图形都有怎样的共同特征?出示课题:《平面图形的镶嵌》问2:下面这个图形是镶嵌吗?像这样,用形状、大小完全相同的平面图形进行拼接,使图形之间没有空隙,也没有重叠地铺成一片,叫做平面图形的镶嵌。

数学综合实践课《平面图形的镶嵌》教案

数学综合实践课《平面图形的镶嵌》教案

数学综合实践课《平面图形的镶嵌》教案一、教学目标1. 让学生了解平面图形的镶嵌概念,理解平面图形镶嵌的条件。

2. 培养学生观察、分析、解决问题的能力,提高空间想象能力。

3. 培养学生合作学习的精神,提高学生的动手实践能力。

二、教学内容1. 平面图形的镶嵌概念及其特点。

2. 平面图形镶嵌的条件。

3. 镶嵌在实际生活中的应用。

三、教学重点与难点1. 重点:平面图形的镶嵌概念、特点和条件。

2. 难点:平面图形镶嵌的判断和实际应用。

四、教学方法1. 采用问题驱动法,引导学生探究平面图形的镶嵌特点。

2. 利用实物模型和多媒体辅助教学,帮助学生直观理解平面图形镶嵌。

3. 组织学生进行合作交流,提高学生的实践操作能力。

五、教学过程1. 导入新课:通过展示一些生活中的镶嵌图案,引导学生关注平面图形的镶嵌现象。

2. 探究新知:讲解平面图形的镶嵌概念、特点和条件。

3. 实例分析:分析一些典型的平面图形镶嵌案例,让学生学会判断镶嵌。

4. 实践操作:学生分组进行镶嵌实践活动,制作平面图形镶嵌作品。

5. 总结提升:引导学生总结镶嵌的条件和判断方法,探讨镶嵌在实际生活中的应用。

6. 作业布置:让学生课后收集生活中的镶嵌图案,分析其特点和条件。

7. 课后反思:教师对本次课程进行总结,分析教学效果,为学生提供改进建议。

六、教学策略1. 利用多媒体展示不同类型的平面图形镶嵌案例,帮助学生直观理解镶嵌概念。

2. 设置富有挑战性的问题,激发学生的思考和探究兴趣。

3. 组织学生进行小组讨论和合作交流,培养学生的团队协作能力。

4. 鼓励学生提出自己的观点和想法,充分尊重学生的个性发展。

七、教学准备1. 准备相关的多媒体教学资源,如平面图形镶嵌的图片、视频等。

2. 准备一些平面图形镶嵌的实际案例,以便进行实例分析。

3. 准备一些平面图形镶嵌的制作材料,如纸张、剪刀、胶水等。

八、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、思考问题的方式和合作交流的能力。

数学综合实践课《平面图形的镶嵌》教案

数学综合实践课《平面图形的镶嵌》教案

数学综合实践课《平面图形的镶嵌》教案一、教学目标:1. 让学生了解平面图形镶嵌的概念,学会用简单的几何图形进行镶嵌。

2. 培养学生观察、分析、解决问题的能力,提高空间想象能力。

3. 培养学生合作学习的精神,提高学生的动手操作能力。

二、教学内容:1. 平面图形镶嵌的定义及特点。

2. 常见几何图形的镶嵌方法。

3. 镶嵌图案的设计与创作。

三、教学重点与难点:1. 重点:让学生掌握平面图形镶嵌的方法,学会设计简单的镶嵌图案。

2. 难点:如何运用不同的几何图形进行创新性的镶嵌设计。

四、教学准备:1. 教师准备镶嵌图案的示例及素材。

2. 学生准备剪刀、彩纸、直尺、圆规等工具。

五、教学过程:1. 导入新课:通过展示一些生活中的镶嵌图案,引导学生关注镶嵌现象,激发学生的学习兴趣。

2. 知识讲解:介绍平面图形镶嵌的定义及特点,讲解常见几何图形的镶嵌方法。

3. 动手实践:学生分组进行镶嵌图案的设计与制作,教师巡回指导。

4. 作品展示:学生展示自己的镶嵌作品,分享创作过程中的心得体会。

5. 总结评价:教师对学生的作品进行评价,总结本节课的学习内容。

6. 拓展延伸:鼓励学生课后搜集更多的镶嵌图案,进行创新性的设计制作。

六、教学评价:1. 学生能理解平面图形镶嵌的概念,并能够运用不同的几何图形进行简单的镶嵌设计。

2. 学生能够通过实践活动,提高观察、分析、解决问题的能力,以及空间想象能力。

3. 学生在创作过程中能够展现出合作学习的精神,以及动手操作的能力。

七、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索、发现和解决问题。

2. 通过实践活动,让学生在操作中感知、理解和掌握平面图形镶嵌的方法。

3. 鼓励学生进行合作学习,培养学生的团队精神和沟通能力。

八、教学步骤:1. 引导学生观察生活中的镶嵌图案,引发学生对镶嵌现象的兴趣。

2. 讲解平面图形镶嵌的定义及特点,引导学生理解镶嵌的基本原理。

3. 教授常见几何图形的镶嵌方法,让学生掌握镶嵌的基本技巧。

平面图形的镶嵌ppt

平面图形的镶嵌ppt

剪出一些形状、大小完全相同 的任意三角形纸板,拼拼看,它们 能否镶嵌成平面图案?
剪出一些形状、大小完全相同 的任意四边形纸板,拼拼看,它们 能否镶嵌成平面图案?
D
4
A1
3C 2B
整个图案可以由一个基本图形通过平移、旋转 或对称得到。
探究二 哪两种正多边形可以组合镶嵌
镶嵌组合 正三边形 正四边形 正五边形 正六边形
0
5
10
15
20
用形状、大小 完全相同的一 种或几种平面 图形进行拼接, 彼此之间不留 空隙、不重叠 地铺成一片, 就是平面图形 的镶嵌.(也 叫平面图形的 密铺)
探究一 哪些正多边形可以单独镶嵌
每个内角和度数
正三角形
正四边形
能否镶嵌
正五边形
正六边形
能够单独镶嵌的正多边形只有正三角形、正方形和正六边形。 用一种正多边形能进行平面图形铺设的条件是:内角整除360度
….
能否组 合镶嵌? 正三边形
正四边形
正五边形
正六边形
……
平面镶嵌的条件
满足边长相等和每个公共顶点处几个内角 的和为360度,两个正多边形就进进行镶嵌。
1、边长相等。 2、每个公共顶点处几个内角的 和为360°。
用同一种大小相等的正多边形密铺成一个“环”, 我们称之为环形密铺
小结
• 从实际生 活出发• Biblioteka 面图形 的镶嵌• 图案设计
hanks
0
5
10
15
20

第六章综合与实践平面图形的镶嵌课件

第六章综合与实践平面图形的镶嵌课件

知2-练
2 阿男的父亲想购买同一种大小一样、形状相同
的地板砖铺设地面.阿男根据所学的知识告知
父亲,为了能够做到无缝隙、不重叠地铺设,
购买的地板砖形状不能是( )
A.正三角形
B.正方形
C.正五边形
D.正六边形
知2-练
3 用黑白两种颜色的正六边形地砖按如图所示的 规律拼成若干个图案: (1)第4个图案中有白色地砖________块; (2)第n个图案中有白色地砖________块.
知2-讲
导引:A、正三角形的一个内角度数为180°÷3=60°, 是360°的约数,能进行平面镶嵌;B、正六边形 的一个内角度数为180°-360°÷6=120°,是 360°的约数,能进行平面镶嵌;C、正方形的一 个内角度数为180°-360°÷4=90°,是360°的 约数,能进行平面镶嵌;D、正五边形的一个内角 度数为180°-360°÷5=108°,不是360°的约 数,不能进行平面镶嵌.
嵌而成,其中三个分别为正三角形、正方形、正
六边形,则另一个为( )
A.正六边形
B.正五边形
C.正方形
D.正三角形
知3-练
3 用正三角形和正六边形镶嵌,若每一个顶点周围
有m个正三角形,n个正六边形,则m,n满足的
关系式是( )
A.2m+3n=12
B.m+n=8
C.2m+n=6
D.m+2n=6
1. 用相同的正多边形镶嵌的条件: (1)边长要相等; (2)有公共顶点; (3)在公共顶点处各内角的和为360°.
知2-讲
1. 平面镶嵌的原则:环绕一点拼在一起的多边形的 内角加在一起恰好组成一个周角.
2. 平面镶嵌的常用方法: (1)只用一种正多边形; (2)同时用两种正多边形; (3)用非正多边形.

北师版数学八下《平面图形的镶嵌》教学设计

北师版数学八下《平面图形的镶嵌》教学设计

《平面图形的镶嵌》教学设计一、教材分析1.从教材编写角度看《平面图形的镶嵌》是北师大版数学教材八年级下册的一节综合实践课,本节课主要是让学生通过动手操作、小组合作、多媒体辅助(几何画板)等多种形式探究平面图形镶嵌的条件。

在此之前,学生已经学习了三角形的内角和、多边形的内角和等知识。

通过这个课题的学习,学生可以经历从实际问题抽象出数学问题,建立数学模型,综合应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力,获得分析问题的方法,对于今后的学习具有重要意义。

2.从在教材中的地位与作用看本综合与实践活动课具有一定的现实性,可以激发学生的学习兴趣,形成良好的数学观,同时也有利于发展学生的数学应用意识。

进行本节课的学习,需要学生对图形进行一定的分解、组合、拼接,需要进行图案设计等操作活动,同时也需要应用所学习的平面图形的有关知识,因此本节课还具有一定的实践性和综合性。

本节课需要学生经历一个具体的研究过程,探索过程中需要从事一定的归纳、猜想、验证、推理等思维活动,这都有助于丰富学生的数学活动经验,发展学生的推理能力,以及分析问题和解决问题的能力。

二、学情分析在学习本节课之前,学生经历了对平行四边形性质和判定的探索活动,并掌握了如何求解多边形的内角和以及外角和。

在本章前几节的综合实践活动中,学生体现出了较强的主动合作和实践动手能力,积累了丰富的探索图形性质的经验。

八年级学生对镶嵌的认识大多数来源于生活实际中的感性认识,对其内在规律关注不够,因而在本节课教学中教师应通过创设情境,组织学生动手活动,在活动中与学生共同探究,从而加深对镶嵌的认识,发现其内在规律,将感性认识上升为理性认识。

三、教学任务分析1.教学目标(1)知识传授:通过探索平面图形的镶嵌,认识多边形镶嵌平面的条件,并能运用其中的一种或几种图形进行平面图形镶嵌;了解构造基本镶嵌图案的一些方法。

(2)能力培养:经历动手拼、相互交流、展示成果等活动,探索发现多边形镶嵌的条件,培养学生发现问题、提出问题的能力,进一步发展探究意识,积累探究经验。

湘教版数学八年级下册《综合与实践 平面图形的镶嵌》教学设计

湘教版数学八年级下册《综合与实践 平面图形的镶嵌》教学设计

湘教版数学八年级下册《综合与实践平面图形的镶嵌》教学设计一. 教材分析《综合与实践平面图形的镶嵌》是湘教版数学八年级下册的一章内容。

本章主要让学生了解平面图形的镶嵌方法,学会用简单的几何图形进行平面镶嵌,并理解平面镶嵌的条件。

教材通过一系列的实例,让学生学会用直观的方法判断平面图形能否镶嵌,并能够解释生活中的镶嵌现象。

二. 学情分析学生在学习本章内容前,已经学习了平面几何的基本知识,对几何图形的性质和特点有一定的了解。

但是,对于平面图形的镶嵌方法和生活实际中的镶嵌现象,学生可能比较陌生。

因此,在教学过程中,需要通过具体的实例和实际操作,让学生理解和掌握平面图形的镶嵌方法。

三. 教学目标1.知识与技能:让学生了解平面图形的镶嵌方法,学会用简单的几何图形进行平面镶嵌,并理解平面镶嵌的条件。

2.过程与方法:通过观察、操作、分析和推理,培养学生解决问题的能力。

3.情感态度与价值观:让学生体验数学与生活的联系,培养学生的学习兴趣和合作意识。

四. 教学重难点1.重点:让学生掌握平面图形的镶嵌方法,学会用简单的几何图形进行平面镶嵌。

2.难点:理解平面镶嵌的条件,能够解释生活中的镶嵌现象。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生观察、思考和操作,激发学生的学习兴趣和探究欲望。

2.运用小组合作的学习方式,让学生在讨论和交流中,共同解决问题,培养学生的合作意识。

3.利用多媒体辅助教学,展示生活中的镶嵌现象,增强学生的直观感受。

六. 教学准备1.准备相关的教学课件和教学素材,包括平面图形的镶嵌实例和生活中的镶嵌现象。

2.准备足够的学习材料,如几何图形、剪刀、胶水等,让学生能够进行实际操作。

七. 教学过程1.导入(5分钟)通过展示一些生活中的镶嵌现象,如地砖、壁画等,引导学生观察和思考,激发学生的学习兴趣。

2.呈现(10分钟)呈现本节课的学习内容,让学生了解平面图形的镶嵌方法,并用多媒体展示一些平面镶嵌的实例。

《平面图形的镶嵌》教学PPT课件【初中数学】公开课

《平面图形的镶嵌》教学PPT课件【初中数学】公开课
(1)用于拼接的图案都是平面图形; (2)拼接处没有空隙,没有重叠的现象; (3)铺成的图案把一个平面完全覆盖.
平面镶嵌的概念:
用形状、大小完全相同的一种或几种平面图形进行 拼接,彼此之间不留空隙、不重叠地铺成一片,就是 平面图形的镶嵌或密铺。
探究多边形能平面镶嵌的条件
探究1 分别剪一些边长相等的正三角形、正方形、 正五边形、正六边形,用其中一种正多边形镶嵌,哪 几种正多边形 可以进行平面镶嵌?
ax360x表示正多边形的每一个内角的度数a表示正多边形的个数探究22在边长相等的正三角形正方形正五边形正六边形中取两种正多边形镶嵌哪两种正多边形可以进行平面镶嵌
感受并理解平面镶嵌的概念
生活中的各种图案:
问题1 你能说说你家的地砖的形状?
感受并理解平面镶嵌的概念
问题2 结合刚才欣赏的美丽图案,你能说说对镶 嵌的理解吗?由此,你想到什么数学问题?
1
3
2
1 23 1 23
全等的任意四边形能够密铺
全等的任图意中四所边标形的四能个够角密,铺恰好是一个四
边形的四个内角,它们的和等于360度。
4 2
3
1
12 34
如图在一个正方形的内部剪去一个三 角形,并将其平移,形成新图案。以这个 新图案为“基本单位”能否进行密铺?
(1) (2) (3) (4)
规律小结
(1)平面镶嵌条件:共顶点的各个角 的度数之和应等于360°. (2)能单独用来镶嵌平面的正多边形 的内角度数一定能整除360.
即:ax =360°,x 表示正多边形的每一个内角 的度数,a 表示正多边形的个数
探究2 在边长相等的正三角形、正方形、正五边 形、正六边形中取两种正多边形镶嵌,哪两种正多边形 可以进行平面镶嵌?

《平面图形的镶嵌》)

《平面图形的镶嵌》)

曲线形镶嵌
使用曲线形状进行镶嵌,如波浪线、 弧线等,可以营造出柔和、流动的视 觉效果。
组合图形镶嵌
1 2
几何图形组合镶嵌
将不同种类的几何图形(如三角形、正方形、圆 形等)组合在一起进行镶嵌,可以形成富有创意 的视觉效果。
图案与几何图形组合镶嵌
在几何图形的基础上,加入特定的图案或纹理进 行镶嵌,可以丰富视觉效果,增加层次感。
提升自身技能,拓展应用领域
学习掌握新技术
设计师需要不断学习和掌握新技术,如参数化设计、3D打印等,以提升平面图形镶嵌的 设计水平和制造能力。
拓展应用领域
平面图形镶嵌具有广泛的应用前景,设计师可以积极拓展应用领域,如建筑、艺术、工业 设计等,为不同领域提供更多的创新解决方案。
加强实践与交流
通过参与实际项目、参加专业研讨会等方式,加强实践与交流,不断提升自身的专业素养 和实践能力。
检查镶嵌作品是否完整, 对不满意的地方进行修
饰和完善。
注意事项及常见问题解答
注意事项
使用剪刀和刻刀时要注意安全,避免 划伤;粘贴时要确保图形平整,避免 起皱或翘起。
常见问题解答
如遇到图形大小不合适、颜色搭配不 协调等问题,可重新设计图案或调整 裁剪方式;如粘贴不牢固,可更换胶 水或增加粘贴面积。
06 总结与展望
平面图形镶嵌广泛应用于建筑、装饰、纺织、计算机图形学等领域。
意义
镶嵌不仅是一种美学上的表现形式,更是数学、物理学等学科研究的重要对象, 对于理解平面图形的性质、空间结构以及自然界中的晶体结构等具有重要意义。
02 常见平面图形镶嵌方法
规则图形镶嵌
三角形镶嵌
使用等边三角形或等腰三 角形进行镶嵌,可以形成 美观且稳定的图案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




m=1
n=2
形正 的八 平边 面形 镶与 嵌正 方
正十二边形与正三角形 的平面镶嵌
正十边形与正五边 形的平面镶嵌
(05山东)9.用两种正多边形镶嵌,不能与正三 角形匹配的正多边形是 (A)正方形 (B)正六边形 (C)正十二边形 (D)正十八边形
1、镶嵌的要求:
无缝隙,不重叠
2、多边形能否镶嵌的条件:
6
4
C
A
B
C
D
练习三
如图用两种颜色的正六边形的砖按图所示的 规律,镶嵌成若干个图案:
18 )块. (2).第n个图案中有白色地砖( 4n+2 )块.
(1).第4个图案中有白色地砖(
试试看:
请你用两种或两种以上 的多边形设计镶嵌图案
下列多边形组合,能够铺满地面的是:
(1)正三角形与正六边形;
(2)正三角形与正方形;
60° 60° 60° 60° 60° 60°
2、 正方形的平面镶嵌
90°
3、 正六边形的平面镶嵌 F A
ห้องสมุดไป่ตู้
E D
B
C
你能只用一种正五边形拼成一个地面吗?为什么正五 边形拼不成地面?而用正三角形可以?可以拼成一个地 面条件是什么?
因为正五边形的内角 不能组成360°的角, 而正三角形的内角能 组成360°的角。
(3)正方形与正八边形; (4)正六边形与正八边形;
(5)正三角形、正方形与正六边形。
(1) 正三角形与正方形的平面镶嵌
设在一个顶点周围有m个正三角形,n个正方形的角。
m 3 60m 90n 360 n 2
注意:同一个组合会有 不同的镶嵌效果


(2)正三角形与正六边形的平面镶嵌 图案(Ⅰ)
每个顶点处几个角的和为
360°
生活中利用镶嵌组成的美丽图案
镶嵌画欣赏
练习四:
边数
3
4 5 6
当围绕一点拼在一起的几个正多边形的内角 和加在一起恰好组成一个周角时,就能镶嵌成 一个平面图形;那么那些正多边形可以进行 镶呢? 每个内角
60°
内角和
180°
周角与每个内角的商
6
8
… n …
360° 540° 720° 1080°
例如:
观察以下图形并思考在镶嵌时 如何做到既无缝隙又不重叠?
每个顶点处几个角的和为360°
若用一种正多边形进行镶嵌 , 下列哪些正多边形可以镶嵌? 为什么呢? ①正三角形; ②正方形 ; ③正五边形; ④正六边形; ⑤正八边形; ⑥正十二边形。 还有其他的正多边形可以进行 镶嵌吗?
1、 正三角形的平面镶嵌
设在一个顶点周围有m个正三角形的角、 n个正十二边形的角,则有 。 。 。
m· +n· 60 150 =360
2m+5n=12
∵m、n为正整数
∴解为
m=1 n=2
设在一个顶点周围有个m正四边形的角、n个正八边形 的角,则有
m· +n· 90 135 =360 2m+3n=8
∵m、n为正整数 ∴解为
设在一个顶点周围有m个正三角形,n个正六边形的角。 m 4 m 2 60m 120n 360 , n 1 n 2
(2)正三角形与正六边形的平面镶嵌 图案(Ⅱ)
60° 60°
每个顶点处正三角形4个,正六边形1个。
(3)正三角形和正十二边形平面镶嵌图案
2、四边形呢?
如图,四边形ABCD中,因为 ∠A+∠B+∠C+ ∠D = 360°,所以
D A
用四边形也可以作平面镶嵌
C
B
那么四边形如何 镶嵌呢? 请看!
练习一:
(2003年中考题)商店出售下列形状的地砖:①正方形; ②长方形; ③正五边形;④正六边形。若只选择其中 某一种地砖镶嵌地面,可供选择的地砖共有( ) A.1种
90° 108° 120° 135°

4 3+1/3 3 2+2/3

(n-2)180° (n-2)180°/n
2+4/n-2
2.由表可知,周角与正n边形每个内角的商为( 2 ), 当n=( ) 时,商为整数,即( 正三角形,正方形,正六边形 ) 等正多边形能单独作平面镶嵌.
3,4,6
2+4/n-
再见!
C
B.2种
C.3种
D.4种
边长为a的正方形与下列边长为a的正多边形组合起来, 不能镶嵌成平面的是( ) B
①正三角形;②正五边形;③正六边形;④正八边形
A. ① ② B. ② ③ C. ① ③ D. ① ④
练习二
1、形状、大小完全相同的任意三角形、四边形 能否单独作镶嵌 ( 能 ) 2. 用任意三角形镶嵌平面时,同一顶点处应摆 放( )个三角形;用任意四边形镶嵌平面时, 同一顶点处应摆放( )个四边形. 3、下面四种正多边形中,用同一种图形不能平 面镶嵌的是( ).
新课标北师大版课件系列
《初中数学》
八年级 上册
7.4 平面镶嵌
请你欣赏
观察以下图案,说明它们都是 由哪些几何图形组成?
观察以下图案,说明它们都是 由哪些几何图形组成?
第一页
第二页
第三页
第四页
定 义
用一些不重叠摆放的多边形把平面 的一部分全部覆盖,在几何里叫做用 多边形覆盖平面(或平面镶嵌)。
仅用正多边形进行 镶嵌,要嵌成一个平面, 必须要求在公共顶点上 所有内角和为360∘
只用一种正多边形 进行平面镶嵌,有三种 方法:3个六边形;4个 四边形;6个三角形。
能否 平面 镶嵌
正三角形

图形
一个顶点周 围正多边形 的个数
6
正方形

4
正五边形
不能
正六边形

3
1、三角形可以作 平面镶嵌吗?如果 能三角形如何镶嵌 呢?
相关文档
最新文档