(仅供参考)排列组合中分组(分堆)与分配问题

合集下载

排列组合问题

排列组合问题

排列组合综合问题的应用
一、分组分堆问题
处理原则:先分堆再分配
将标号为1,2,3,4,5,6的6张卡片放入三个不同的信封中,若每个信封放两张,其中标号为1,2的卡片放入同一信封,则不同的放法有多少种?
二、插空法
解决一些不相邻问题,先排其它元素,将不相邻的元素进行插空。

7人排成一排,甲乙不相邻有几种排法?
三、捆绑法
将相邻的元素捆绑在一起,看成一个整体再进行排列!
6人排成一排,甲乙必须相邻,有几种排法/
四、留空法(消序法)
先让其它元素进行排列,留下来的就只有一种顺序。

或者先不考虑顺序问题,排列后再除以定序元素的排列!
12名同学合影,站成前排4人后排8人,现在要从后排抽取2人到前排,其它人的想对顺序保持不变,则有多少种调整方案?五、隔板法
n个小球放入m个盒子中,要求每个盒子里,至少有一个小球的放法
某校准备参加今年数学联赛,把16个名额分配到1---4个教学班,每班至少有一个名额,则不同的分配方案有多少种/
六、特殊元素优先
特殊元素优先排列
某台小型晚会由6个节目组成,演出顺序如下要求;节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,共有多少种编排方案?。

10.2排列组合中的分组分配问题

10.2排列组合中的分组分配问题

2 10
2 8
2 6
4 4
4 4
2、有六本不同的书分给甲、乙、丙三名同学,按下条 件,各有多少种不同的分法? (1)每人各得两本; (2)甲得一本,乙得两本,丙得三本; (3)一人一本,一人两本,一人三本; (4)甲得四本,乙得一本,丙得一本; (5)一人四本,另两人各一本·
(1) (2) (3) 2 2 C6C4 1 2 C6C5 2 C2 3 C3 3 A3 (4) (5)
3 3 3 9 3 6
种.
3 ⑤先分3件为一堆有 C9 种方法,然后6件平均分配应有
3 2 2 2 C C C C C C C 9 6 4 2 1260 种. 种方法,故共有 3 A3 A
2 6
2 4 3 3
2 2
三:部分均分有分配对象的问题 例3 .12支笔按3:3:2:2:2再任意分给A、B、 C、D、E五个人有多少种不同的分法?
3 4 5 3 C 12 C 9 C 5 A 3 (2) C 3 C 4 C 5 9 5 12 5 5 2 (3) C 12 C 10 C 5 5 5 1 2 (4) A 3 C 12 C 10 C 5
12! 8! 4!· 8! 4!· 4!
1 3!
5775
• 练习1:把10人平均分成两组,再从每组中
选出正、副组长各一人,共有多少种选法?
解:分两步,先分组,再分别在每一组中选正、副 组长. 5 5 C10 C5 分组有 种方法, 2 A2
每组中选正、副组长都有 A 种方法. 由分步计数原理共有
5 5 C10 C5 2 2 A A 种. 5 5 50400 2 A2
2 5
二:均分有分配对象的问题
例2:6本不同的书按2∶2∶2平均分给甲、乙、 丙三个人,有多少种不同的分法?

排列组合分组分配问题课件

排列组合分组分配问题课件
12
1.平均分堆问题 例2. 6本不同的书按2∶2∶2平均分给甲、乙、丙三
个人,有多少种不同的分法?
解:先分再排法. 分成的堆数看成元素的个数.
均分的三堆看成是三个元素在三个位置上作排列
2
2
2
C C C A 6
4
2
3
3
3
A3
①若干个不同的元素“等分”为 m个堆,要将选取出 每一个堆的组合数的乘积除以m!
分法?
若干个不同的元素“等分”为 m个堆,要将选 取出每一个堆的组合数的乘积除以m!
15
1.平均分堆问题 练习2.10本不同的书 (1)按2∶2∶2∶4分成四 堆有多少种不同的分法? (2)按2∶2∶2∶4分给甲、 乙、丙、丁四个人有多少 种不同的分法?
①若干个不同的元素局部“等分”有 m个均等堆, 要将选取出每一个堆的组合数的乘积除以m!
从四个元素中选两个元素放到第一组,从剩下的两
个元素选一个放到第二组,剩下的一个放到第三组
故共有
种分法,又因为后两个小组
没有区别,故分组有
种.
10
局部平均分组
上述问题属于将部分元素平均分成m组,此时 的方法是将选取出每一个组的组合数的 乘积 除以m 的阶乘,意思是有几个小组的个数相同, 就除以几的阶乘.
13
1.平均分堆问题 例3. 12支笔按3: 3: 2: 2: 2分给A、 B、C、 D、
E 五个人有多少种不同的分法? 解:先分再排法.
①若干个不同的元素局部“等分”有 m个均等堆, 要将选取出每一个堆的组合数的乘积除以m!
14
1.平均分堆问题 练习1.12本不同的书平均分成四堆有多少 种不同
×3!
各有多少种不同的分法?

排列组合问题,常见解题策略

排列组合问题,常见解题策略

排列组合问题,常见解题策略曹永玉排列组合问题是高考的必考内容,也是高考题中正确率最低的题目之一。

究其原因,是因为其思维方式独特,解题思路新颖,如果对题意认识出现偏差的话,极易出现计数中的“重复”和“遗漏”。

教学中,提高学生解排列组合题的有效途径是将一些常见题型进行方法归类,构造模型解题,这样有利于学生认识模式,进而熟练应用。

本文列举了几种常见的排列组合问题的解题策略,以期对大家有所帮助。

一、排列问题1.某个(或某几个)元素要排在指定位置——特殊元素“优先法”。

例1. 乒乓球队的10 名队员中有3名主力队员,派5名参加比赛,3名主力要排在第一、三、五位置,其余7队员中选2名排在第二、四位置,那么不同的出场安排共有多少种?解析:3名主力的位置确定在第一、三、五位中选,将他们优先安排,有A72A33种可能,然后从其他队员中选2 人安排在第二、四位置,有A72种排法,因此结果有A33种。

点评:先排特殊(特殊元素或特殊位置)是解决排列问题的基本方法。

2.某个元素不排在指定位置——排除法。

例2. 5个人排队,其中甲不在排头的排法有多少?解析1:(排除法)5人的全排列数A55,其中甲在排头的排列数A44,故甲不在排头的排列数A55 --A44=96种解析2:(特殊元素优先法):先从余下的4个位置中选一位置排上,甲有A41种方法,然后其他4个元素排在余下的四个位置A44,所以总计A44A41种排法。

解析3:(特殊元素优先法):先从甲以外的4人中选出一人排在特殊位置——排头A41,然后其他四个元素排在余下的4个位置A44,所以总计A41A44种排法。

3. 相邻问题——捆绑法例3. 4名男生和4名女生排成一排照相,要求4名女生必须相邻,有多少种排法?解析:4名女生看作一个整体(捆绑),与4名男生共五个元素全排列A55,但这4名女生内部又有顺序A44,故A44A55种不同排法。

4. 小团体问题——捆绑法例4.5人站一排,其中甲、乙之间有且只有一人的站法有多少?解析:先从甲、乙之外的3人中选一人,然后将甲、乙排在他的两边有C31A22种方式,3人形成一个小团体,看作一个元素再与余下的2人排列有A33种。

排列组合中分组分配问题

排列组合中分组分配问题

分组分配问题一.基本内容1.案例分析:将4个不同的元素分为2份,每份2个,请问有多少不同的分法?解析:若按照2422C C 6=的方法进行分组,不妨设4个元素分别为,,,a b c d ,则会出现以下情况:①,ab cd ;②,cd ab ;③,ac bd ;④,bd ac ;⑤,ad bc ;⑥,bc ad .显然,用组合数公式计算出来的结果重复了三次,最终的分组结果应以为:242222C C 3A =2.基本原理2.1分组问题属于“组合”问题,常见的分组问题有三种:将n 个不同元素分成m 组,且每组的元素个数分别为m m m m m ,,,,321 ,记m m mm m m n mm m n mm n mn C C C C N )()(121321211-+++-+--⋅⋅⋅⋅= .(1)非均匀不编号分组:n 个不同元素分成m 组,每组元素数目均不相等,且不考虑各组间的顺序,其分法种数为N .(2)均匀不编号分组:将n 个不同元素分成不编号(即无序)的m 组,每组元素数目相等,其分法种数为m mA N .(3)部分均匀不编号分组:将n 个不同元素分成不编号的m 组,其中有r 组元素个数相等,其分法种数为r rA N ,如果再有k 组均匀分组,应再除以kk A .2.2分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.3.相同元素的分组问题:挡板法及其应用:对于n 个相同元素分成m 组(m n <),且每组至少一个元素的分组问题,可采用“隔板法”解决:n 个元素之间形成1n -个空格,只需放入1m -个隔板即可,故不同的分配方案有11C m n --种,其等效于不定方程的非负整数解个数:不定方程r x x x n =+⋅⋅⋅++21的非负整数解.(1)方程r x x x n =+⋅⋅⋅++21的正整数解为11--n r C 个.(2)方程r x x x n =+⋅⋅⋅++21的非负整数解为11--+n r n C 个.二.例题分析例1.某校有5名大学生打算前往观看冰球,速滑,花滑三场比赛,每场比赛至少有1名学生且至多2名学生前往,则甲同学不去观看冰球比赛的方案种数有()A .48B .54C .60D .72【解析】将5名大学生分为1-2-2三组,即第一组1个人,第二组2个人,第三组2个人,共有2215312215C C C A ∙∙=种方法;由于甲不去看冰球比赛,故甲所在的组只有2种选择,剩下的2组任意选,所以由2224A =种方法;按照分步乘法原理,共有41560⨯=种方法;故选:C.例2.甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有,,A B C 三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A .193243B .100243C .23D .59【解析】首先求所有可能情况,5个人去3个地方,共有53243=种情况,再计算5个人去3个地方,且每个地方至少有一个人去,5人被分为3,1,1或2,2,1当5人被分为3,1,1时,情况数为3353C A 60⨯=;当5人被分为2,2,1时,情况数为12354322C C A 90A ⨯⨯=;所以共有6090150+=.由于所求甲不去A ,情况数较多,反向思考,求甲去A 的情况数,最后用总数减即可,当5人被分为3,1,1时,且甲去A ,甲若为1,则3242C A 8⨯=,甲若为3,则2242C A 12⨯=共计81220+=种,当5人被分为2,2,1时,且甲去A ,甲若为1,则224222C A 6A ⨯=,甲若为2,则112432C C A 24⨯⨯=,共计62430+=种,所以甲不在A 小区的概率为()1502030100243243-+=,故选:B.例3.安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为()A .15B .310C .325D .625【解析】5名大学生分三组,每组至少一人,有两种情形,分别为2,2,1人或3,1,1人;当分为3,1,1人时,有3353C A 60=种实习方案,当分为2,2,1人时,有22353322C C A 90A ⋅=种实习方案,即共有6090150+=种实习方案,其中甲、乙到同一家企业实习的情况有13233333C A C A 36+=种,故大学生甲、乙到同一家企业实习的概率为36615025=,故选:D.例4.学校要安排2名班主任,3名科任老师共五人在本校以及另外两所学校去监考,要求在本校监考的老师必须是班主任,且每个学校都有人去,则有()种不同的分配方案.A .18B .20C .28D .34【解析】根据本校监考人数分为:本校1人监考,另外4人分配给两所学校,有2,2和3,1两种分配方案,所以总数为:28)(2233142222222412=+∙A C C A A C C C ;本校2人监考,另外3人分配给两所学校,有2,1一种分配方案,所以总数为:()212223226C C C A =,根据分类计数原理,所有分配方案总数为28+6=34;故选:D.例5.现有甲、乙、丙、丁、戊五位同学,分别带着A 、B 、C 、D 、E 五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A .45B .12C .47D .38【解析】先从五人中抽取一人,恰好拿到自己的礼物,有15C 种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有224222C C A 种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由3211C C 种情况,综上:共有22111425322245C C C C C A ⎛⎫⋅+= ⎪⎝⎭种情况,而五人抽五个礼物总数为55120A =种情况,故恰有一位同学拿到自己礼物的概率为4531208=.故选:D 例6.为贯彻落实《中共中央国务院关于全面深化新时代教师队伍建设改革的意见》精神,加强义务教育教师队伍管理,推动义务教育优质均衡发展,安徽省全面实施中小学教师“县管校聘”管理改革,支持建设城乡学校共同体.2022年暑期某市教体局计划安排市区学校的6名骨干教师去4所乡镇学校工作一年,每所学校至少安排1人,则不同安排方案的总数为()A .2640B .1440C .2160D .1560【解析】将6人分组有2种情况:2211,3111,所以不同安排方案的总数为2234646422C C A 1560A C ⎛⎫+= ⎪⎝⎭.故选:D.例7.为促进援疆教育事业的发展,某省重点高中选派了3名男教师和2名女教师去支援边疆工作,分配到3所学校,每所学校至少一人,每人只去一所学校,则两名女教师分到同一所学校的情况种数为______.【解析】①若2位女老师和1名男老师分到一个学校有1333C A =18种情况;②若2位女老师分在一个学校,则3名男教师分为2组,再分到3所学校,有2333C A =18种情况,故两名女教师分到同一所学校的情况种数为181836+=种.故答案为:36.例8.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遣到,,A B C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲、乙2名干部不被分到同一个贫困县的概率为___________.【解析】每个贫困县至少分到一人,4名干部分到三个县有211342132236C C C A A =种方案,其中甲、乙2名干部被分到同一个贫困县的方案有336A =种所以甲、乙2名干部不被分到同一个贫困县的概率为3665366P -==,故答案为:56例9.为弘扬学生志愿服务精神,某学校开展了形式多样的志愿者活动.现需安排5名学生,分别到3个地点(敬老院、幼儿园和交警大队)进行服务,要求每个地点至少安排1名学生,则有_______________________种不同的安排方案(用数字作答).【解析】先将5人分为三组,每组的人数分别为3、1、1或2、2、1,再将三组分配给三个地点,由分步乘法计数原理可知,不同的安排方案数为2233535322150C C C A A ⎛⎫+= ⎪⎝⎭种.故答案为:150.例10.6名教师分配到3所薄弱学校去支教,每个学校至少分配一名教师,甲乙两人不能去同一所学校,丙丁两人必须去同一所学校,共有________种分配方案(用数字作答).【解析】按题目要求可按4、1、1或3、2、1或2、2、2分配,若按4、1、1分配,丙丁必须在4人里,需要从其余剩下的4人里选2人,有24C 种,去掉选中甲乙的1种情况,有(24C -1)种选法,安排去3个学校,共有(24C -1)33A =30种;若按3、2、1分配有两类,丙丁为2,甲乙中选1人作1,分配到3个学校有1323C A ,丙丁在3人组中,从剩余4人中取1人,组成3人组,剩余3人取2人组成2人组,剩余1人构成1人组,去掉甲乙构成2人组的情况2种,共有12432C C -种取法,安排去3个学校有(12432C C -)33A 种,两类共有1323C A +(12432C C -)33A =72种;若按2、2、2分配有2·33A =12种,∴共有30+72+12=114种分配方案.下面是挡板法及其应用,仅做了解即可.例11.不定方程12x y z ++=的非负整数解的个数为()A .55B .60C .91D .540解析:不定方程12x y z ++=的非负整数解的个数⇔将12个相同小球放入三个盒子,允许有空盒的放法种数.现在在每个盒子里各加一个相同的小球,问题等价于将15个相同小球放入三个盒子,没有空盒的放法种数,则只需在15个小球中形成的空位(不包含两端)中插入两块板即可,因此,不定方程12x y z ++=的非负整数解的个数为21491C =.故选:C.例12.方程123412x x x x +++=的正整数解共有()组A .165B .120C .38D .35解析:如图,将12个完全相同的球排成一列,在它们之间形成的11个空隙中任选三个插入三块隔板,把球分成四组,每一种分法所得球的数目依次是1x 、2x 、3x 、4x ,显然满足123412x x x x +++=,故()1234,,,x x x x 是方程123412x x x x +++=的一组解,反之,方程123412x x x x +++=的每一组解都对应着一种在12个球中插入隔板的方式,故方程123412x x x x +++=的正整数解的数目为:31111109165321C ⨯⨯==⨯⨯,故选:A.。

排列组合中的分组分配问题例解

排列组合中的分组分配问题例解

排列组合中的分组分配问题例解在排列、组合的学习中分组分配问题经常遇到,本文谈一谈几种常见问题。

实例:6本不同的书,按照以下要求处理,各有几种分法(1) 分成三堆,一堆一本,一堆两本,一堆三本; (2) 平均分成三堆;(3) 分成三堆,一堆四本,另两堆各一本; (4) 分成四堆,两堆各一本,另两堆各两本;(5) 分给甲、乙、丙三个人 ,甲得一本,乙得两本,丙得三本;(6) 分给甲、乙、丙三个人 ,一人得一本,一人得两本,一人得三本; (7) 平均分给甲、乙、丙三个人;(8) 分给甲、乙、丙三个人 ,甲得四本,乙、丙各得一本; (9) 分给甲、乙、丙三个人 ,一人得四本,另两人各得一本; (10) 分给甲、乙、丙、丁四个人 ,甲、乙各得一本,丙、丁各得两本; (11) 分给甲、乙、丙、丁四个人 ,两人各得一本,另两人各得两本;分析:在排列、组合中分组分配问题一般按照“先分组再分配”的原则,但不排除其他途径。

在分组时要区分是均分还是非均分或部分均分,在分配时要区分是定向分配还是非定向分配。

(1)非均匀分组,分步产生每一组不会造成重复:123653C C C(2) 均匀分组,分步产生每一组会造成重复,应消去步骤造成的重复计数:22264233C C C A(3)部分均匀分组,应消去均匀分组时步骤上造成的重复计数:41162122C C C A(4)同(3):112265422222C C C C A A(5)非均匀定向分配,等同于非均匀分组:123653C C C 亦可理解为甲、乙、丙依次选择。

(6)非均匀不定向分配,分组后再分配:12336533C C C A (7)均匀分配,分组后再分配:2223642333C C C A A 亦可理解为甲、乙、丙依次选择:222642C C C(8)部分非均匀定向分配,均匀部分要分配:4112621222C C C A A 亦可理解为甲、乙、丙依次选择:411621 C C C(9)部分非均匀不定向分配,分组后再分配:4113 621232C C CA A(10)同(8)::1122226542222222C C C CA AA A亦可理解为甲、乙、丙依次选择:11226542 C C C C(11)同(9)11224 654222422C C C CA A A小结:(1)分组时应注意消去均匀部分的重复计数。

排列组合中的分组、分配问题的有效解法

排列组合中的分组、分配问题的有效解法
V ABC - DEFG = V ABPC - DEFH = AB·AC·AD = 2×1×
图6
2= 4.
(2)由旋转体的定义可知,阴影部分绕直线 BC 旋
转一周形成的几何体为圆柱中挖掉一个半球和一个圆
锥 . 该圆柱的底面半径 R=BA=2,母线长 l=AD=2,故该圆
柱的体积 V1=π × 22 × 2 = 8π,半球的半径为 1,其体积
个不同对象,称为分配问题 . 包括定向分配和不定向分
配两类 . 其关键词:
不同元素、不同对象、条件、分配 .
2 分组 . 把 n 个不同元素按照确定的条件分成 m 组
(或 m 堆),称为分组问题,包括平均分组、非平均分组和
混合分组三类 . 其关键词:
不同元素、条件、分组 .
从以上概念的关键词足以看出,分配与分组联系紧
平面 ABB1A1⊥平面 A1BC.
点评:立体几何证明题,是历年高考必考题型,难度
不大,命题者一般不会在试题的难度上下“猛药”,而是
处处考查考生的转化思想,如要证线垂直于线,常常通
过线面垂直转化,要证线平行于面,常常通过线面平行
或面面平行转化 .
转化,是数学解题的主旋律,尤其是对于立体几何
来说更是如此 . 只要掌握Fra bibliotek转化的方法与技巧,那么立
1 4

V2= × π ×13 =
;圆锥的底面半径为 2,高为 1,其体
2 3
3
1
4
积 V3= π × 22 × 1= π,所以阴影部分绕直线 BC 旋转一
3
3
周形成的几何体的体积 V=V1-V2-V3=6π.
点评:割补法适用于求不规则几何体的体积,就是

高一数学排列组合中的分堆问题

高一数学排列组合中的分堆问题

A
3 3
少种不同的分法?
02.
按2∶2∶2∶4分给甲、乙、丙、
C 120 C 82 C 62 C 44 丁四个人有多少种不同的分法?
非均分组问题 (例3)
(1) C16C52C33
6本不同的书按 1∶2∶3分成三 堆有多少种不同 的分法?
(2) C16C52C33 P33
按1∶2∶3分给甲、乙、 丙三个人有多少种不同 的分法?
(4)一人两本,另两人各五本·
(1)
C
3 12
C
4 9
C
5 5
A
3 3
(2)
C
3 12
C
4 9
C
5 5
(3)
C
2 12
C
5 10
C
5 5
(4)
A
1 3
C
2 12
C
C
5 5
小结
平均分组问题
理论部分:平均分成的组,不管它们的顺序 如何,都是一种情况,所以分组后要除以 P(m,m),即m!,其中m表示组数。
cd
ab
有_____多少种分法?
C
2 4
C
2 2
A
2 2
3
这两个在分组时只能算一个
一:均分不安 排工作的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
(1)
C
4 12
C
4 8
C
4 4
A
3 3
12! 4!·8!
8! 4!·4!
CLICK TO ADD TITLE
排列组合中的分堆问题

排列组合中的分组分配问题完整

排列组合中的分组分配问题完整
注意:非均分问题无分配对象只要按比例分完再用 乘法原理作积
五非均分组分配对象确定问题
例6 六本不同的书按1∶2∶3分给甲、乙、丙三个人 有多少种不同的分法?
C61C52C33
非均分组有分配对象要把组数当作元素个数 再作排列。
五非均分组分配对象不固定问题
例7 六本不同的书分给3人,1人1本,1人2本,1人3本 有多少种分法
C
2 10
C
2 8
C
2 6
C
4 4
A
3 3
C
2 10
C
2 8
C
2 6
C
4 4
3 有六本不同的书分给甲、乙、丙三名同学,按下条 件,各有多少种不同的分法?
(1)每人各得两本; (2)甲得一本,乙得两本,丙得三本; (3)一人一本,一人两本,一人三本; (4)甲得四本,乙得一本,丙得一本; (5)一人四本,另两人各一本·
排列组合中的分组分配问题
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
一、 提出分组与分配问题,澄清模糊概念 n 个不同元素按照某些条件分配给 k 个不同得对象,称为
分配问题,分定向分配和不定向分配两种问题;将 n 个不同 元素按照某些条件分成 k 组,称为分组问题.分组问题有不平 均分组、平均分组、和部分平均分组三种情况。分组问题和 分配问题是有区别的,前者组与组之间只要元素个数相同是 不区分的;而后者即使 2 组元素个数相同,但因对象不同, 仍然是可区分的.对于后者必须先分组后排列。
C61C52C33 A33
练习1
1:12本不同的书平均分成四组有多少 种不同分法?

(仅供参考)排列组合中分组(分堆)与分配问题

(仅供参考)排列组合中分组(分堆)与分配问题

太奇MBA 数学助教李瑞玲一.分组(分堆)与分配问题将n 个不同元素按照某些条件分配给k 个不同的对象,称为分配问题,又分为定向分配和不定向分配两种问题。

将n 个不同元素按照某些条件分成k 组,称为分组问题。

分组问题有不平均分组,平均分组,部分平均分组三情况。

分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使两组的元素个数相同,但因所要分配的对象不同,仍然是可区分的。

对于后者必须先分组后排列。

一.基本的分组问题例1.六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本(均分三组)(平均分组问题)(2)一组一本,一组两本,一组三本(不平均分组问题)(3)一组四本,另外两组各一本(部分平均分组问题)分析:(1)分组和顺序无关,是组合问题。

分组数为90222426=C C C ,而这90种分组方法实际上重复了6次。

现把六本不同的书标上6,5,4,3,2,1六个号码,先看一下这种情况:(1,2)(3,4)(5,6)(1,2)(5,6)(3,4)(3,4)(1,2)(5,6)(3,4)(5,6)(1,2)(5,6)(1,2)(3,4)(5,6)(3,4)(1,2)由于书是均匀分组的,三组的本数都一样,又与顺序无关,所以这种情况下这六种分法是同一种分法,于是可知重复了6次。

以上的分组实际上加入了组的顺序,同理其他情况也是如此,因此还应取消分组的顺序,即除以33P ,于是最后知分法为1569033222426==P C C C .(2)先分组,分组方法是60332516=C C C ,那么还要不要除以33P ???(很关键的问题)由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有60332516=C C C 。

(3)先分组,分组方法是30111246=C C C ,这其中有没有重复的分法???(需要好好考虑)现还把六本不同的书标上6,5,4,3,2,1六个号码,先看以下情况1)先取四本分一组,剩下的两本,一本一组,情况如下(1,2,3,4)56(1,2,3,4)652)先取一本分一组,再取四本分一组,剩余的一本为一组,情况如下5(1,2,3,4)66(1,2,3,4)53)先取一本分一组,再取一本为一组,剩下的四本为一组,情况如下56(1,2,3,4)65(1,2,3,4)由此可知每一种分法重复了2次,原因是其中两组的的书的本数都是一本,这两组有了顺序,需要把分组的顺序取消掉,而四本的那一组,由于书的本数不一样,不可重复,故最后的结果为1523022111246==P C C C .通过以上三个小题的分析,可以得出分组问题的一般结论如下:一般地,将n 个不同的元素分成p 组,各组内元素个数分别为p m m m ,,,21⋯,其中k 组内元素个数相等,那么分组方法数为()kk mm m m m m n m m n m n P C C C C pp i i ⋯⋯⋯121211−+++−−,即选完元素后要除以元素相同的总组数的全排列!三.基本的分配问题1.定向分配问题例2六本不同的书,分给甲乙丙三人,求在下列条件下各有多少种不同的分法?(1)甲两本,乙两本,丙两本(2)甲一本,乙两本,丙三本(3)甲四本,乙一本,丙一本分析:由于分配给三人,每人分几本是一定的,属于分配问题中的定向分配问题。

排列组合中的分堆问题最新版

排列组合中的分堆问题最新版

例2:(1)6本不同的书按2∶2∶2平均分给甲、 乙、丙三个人,有多少种不同的分法?
方法:先分再排法。分成的组数看成元 素的个数·
(1)均分的三组看成是三个元素在三 个位置上作排列
(1)
C
2 6
C
2 4
C
2 2
A
3 3
A
3 3
C
2 6
C
2 4
C
2 2
例2:(1)6本不同的书按 2∶2∶2平均分给甲、乙、丙三个 人,有多少种不同的分法?
一:均分不安排工作的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
(1)
C
14 2 C
84C
4 4
A
3 3
12! 8! 1 5775
4!·8! 4!·4! 3!
(2)
C
12 2 C
120C82
C
6 6
A
3 3
二:分堆安排工作的问题
C
2 6
C
2 4
C
2 2
(2)
C
1 6
C
2 5
C
3 3
(3)
C
1 6
C
2 5
C
3 3
A
3 3
(4)
C
4 6
C
1 2
C
1 1
(5)
Aቤተ መጻሕፍቲ ባይዱ
1 3
C
4 6
C
1 2
C
1 1
练习3
练习:12本不同的书分给甲、乙、丙三人按下列条 件,各有多少 种不同的分法?

排列与组合-分组与分配问题

排列与组合-分组与分配问题
思考:这样分组会有重复吗? 答 : 可以假设这6个人编号为1, 2, 3, 4, 5, 6号.
第一次分组:先取4个人,取到1, 2, 3, 4作为第一组,再取到 5作为第二组,剩下6作为第三组,这是一种分组的方法.
第二次分组:先取到1, 2, 3, 4作为第一组,再取到6作为第二 组,剩下5作为第三组,这两种分组方法是一样的,所以有重复.
4 个项目进行培训,每名志愿者只分配到 1 个项目,每个项目至少分配 1 名志愿者,则不同的分配方案共有多少种?
解:根据题意,可以将5名志愿者按照2,1,1,1分成4组,再分配到4个
项目,则有:
C52
C31 C21 A33
C11
A44
240
故共有240种不同的分配方案.
课堂小结
分组问题
完全非均匀分组:分步组合; 完全均匀分组:分步组合后除以组数的阶乘; 部分均匀分组:分步组合后,若有m组元素个数相同,则除以m!
法?
解析:本题可先按照问题3将书分成三堆,分堆方法数是
C64
C21 A22
C11
15
种,再分给甲、乙、丙三人,排列方法数有 A33 种,再根据分步乘法计
数原理 ,分配方法数是
C64
C21 A22
C11
A33
90

.
点拨:先分组、再分配!
解决问题
情境: 将 5 名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶
思考:这样分组有什么问题吗?
探究新知
思考:这样分组有什么问题吗? 分步骤而人为增加了顺序!!
答 : 可以假设这6个人编号为1, 2, 3, 4, 5, 6号. 第一次分组:先取到1, 2作为第一组,再取3, 4作为第二组,剩

排列组合题型全归纳 专题05 分堆问题(解析版)

排列组合题型全归纳 专题05 分堆问题(解析版)

专题05分堆问题【方法技巧与总结】分组问题(分成几堆,无序)有等分、不等分、部分等分之别.一般地,平均分成n堆(组)必须除以n n A;如果有m堆(组)元素个数相同,必须除以m m A.【典型例题】例1.(2023·全国·高三专题练习)某研究机构采访了“—带一路”沿线20国的青年,让他们用一个关键词表达对中国的印象,使用频率前12的关键词为高铁,移动支付,网购,共享单车、一带一路、无人机、大熊猫、广场舞、中华美食、长城、京剧、美丽乡村.其中使用频率排前4的关键词“高铁、移动支付、网购、共享单车”也成为了他们眼中的“新四大发明”.若将这12个关键词平均分成3组,且各组都包含“新四大发明”关键词.则不同的分法种数为()A.1680B.3360C.6720D.10080【答案】B【解析】先将4个“新四大发明”分成1,1,2三组,有11243222C C C6A=种不同的分法,再将余下的8个分成3,3,2三组,有33285222C C C280A=种不同的分法,最后配成三组,所以共有628023360⨯⨯=种不同的分法.故选:B.例2.(2023·全国·高三专题练习)贵阳一中体育节中,乒乓球球单打12强中有4个种子选手,将这12人平均分成3个组(每组4个人)、则4个种子选手恰好被分在同一组的分法有()A.21B.42C.35D.70【答案】C【解析】4个种子选手分在同一组,即剩下的8人平均分成2组,方法有448422C C35A=种,故选:C.例3.(2023·高二课时练习)把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有()A.4种B.5种C.6种D.7种【答案】A【解析】分类:三堆中“最多”的一堆为5个,其他两堆总和为5,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为4个,其他两堆总和为6,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为3个,那是不可能的.考点:本题主要考查分类计数原理的应用.例4.(2022春·福建泉州·高二校联考期中)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有()A .25种B .30种C .40种D .50种【答案】C【解析】就Grace 的实际参与情况进行分类计数:第一类,Grace 不参与该项任务,则满足题意的不同搜寻方案有1254C C 30=种:第二类,Grace 参与搜寻近处投掷点的食物,则满足题意的不同搜寻方案有25C 10=种,因此由加法计数原理得知,满足题意的不同搜寻方案有30+10=40(种),故选:C.例5.(2022春·山东淄博·高二山东省淄博第一中学校考期中)某市政府决定派遣6名干部分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少2人,则不同的派遣方案共有()A .360种B .90种C .50种D .180种【答案】C【解析】两组至少都是2人,则分组中两组的人数分别为3、3或2、4,两组的人数为2和4的方法数为1226C C 30=(种),两组的人数都是3的方法为36C 20=(种),则不同的派遣方案种数为302050+=(种).故选:C例6.(2022·全国·高二专题练习)将12个不同的物体分成3组,每组4个,则不同的分法种数为().A .34650B .5940C .495D .5775【答案】D【解析】不同的分法种数为444128433121110987651432143215775321C C C A ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯==⨯⨯.故选:D.例7.(2022·全国·高二专题练习)某中学要给三个班级补发8套教具,先将其分成3堆,其中一堆4套,另两堆每堆2套,则不同的分堆方法种数为()A .422842C C CB .1238C C C .42284222C C C A D .42284233C C C A 【答案】C【解析】由条件可知,8套教具,分成4,2,2,共有42284222C C C A 种分法.故选:C .例8.(2022秋·福建厦门·高三厦门双十中学校考阶段练习)将6名同学分成两个学习小组,每组至少两人,则不同的分组方法共有___________种.【答案】25【解析】由题知,6人分为两组共有两种分法:(1)一组2人,一组4人:这种分法数为4262C C 15=种;(2)两组均为3人:这种分法数为3363C C 102!=种,所以,由分类加法原理可得共有25种分法.故答案为:25例9.(2022·高二课时练习)某亲子栏目中,节目组给6位小朋友布置一项搜寻空投食物的任务,已知:①食物投掷点有远、近两处;②由于小朋友甲年纪尚小,所以要么不参与该项任务,要么参与搜寻近处投掷点的食物,但不参与时另需1位小朋友在大本营陪同;③所有参与搜寻任务的小朋友被均匀分成两组,一组去远处,一组去近处.那么不同的搜寻方案共有______种.【答案】40【解析】若甲不参与任务,则需要先从剩下的5位小朋友中任意选出1位陪同,有15C 种选择,再从剩下的4位小朋友中选出2位搜寻远处,有24C 种选择,最后剩下的2位小朋友搜寻近处,因此搜寻方案有1254C C 30=(种);若甲参与任务,则其只能去近处,需要从剩下的5位小朋友中选出2位搜寻近处,有25C 种选择,剩下的3位小朋友去搜寻远处,因此搜寻方案有25C 10=(种).综上,搜寻方案共有30+10=40(种).故答案为:40.例10.(2022春·河北保定·高二校联考阶段练习)将11人分成4组,每组至少2人,则不同的分组方法种数为___________.【答案】56980【解析】依题意,将11人分成4组,可得各组的人数为2,2,2,5或2,2,3,4或2,3,3,3,故不同的分组方法种数为222522342333119751197411963323323C C C C C C C C C C C C A A A ++()1106331514056980=⨯++=.故答案为:56980.例11.(2022·全国·高三专题练习)8名学生平均分成两组,每组都围成一个个圆圈,有______种不同的围法.【答案】1260或()44284C C 32!!【解析】8名学生平均分成两组,有4484C C 2!种分组法,每组都围成一个圈,两个组有323(A )种围法,所以共有()()444422384843C C C C A =3126022=!!!种不同的围法.故答案为:1260或()44284C C 32!!.例12.(2022春·天津河西·高二天津市新华中学校考期中)10个人参加义务劳动,分成4组,各组分别为2人、2人、2人、4人,则不同的分组方案共有__________种(用数字作答).【答案】3150【解析】先从10人抽出4人,有410C 种方法,再将剩余的6人平均分为3组,有226433C CA 种分法,故共有224641033C CC 3150A ⨯=种分组方案,故答案为:3150例13.(2022·高二课时练习)6本不同的书平均分成3堆,每堆2本,共有______种分法.【答案】15【解析】先分三次取书,每次取两本,则应是222642C C C 种方法,但是这里出现了重复.不妨记6本书分别为A 、B 、C 、D 、E 、F ,若第一次取AB ,第二次取CD ,第三次EF ,该种分法记为(),,AB CD EF ,则222642C C C 种分法中还有(),,AB EF CD 、(),,CD AB EF 、(),,CD EF AB 、(),,EF AB CD 、(),,EF CD AB ,33A 种情况,而这33A 种情况,仅是AB 、CD 、EF 的顺序不同,因此只能作为一种分法,故满足题意的分法共有22264233C C C 15A =(种).故答案为:15.例14.(2023·全国·高二专题练习)6本不同的书,按照以下要求处理,各有几种分法?(1)一堆1本,一堆2本,一堆3本;(2)甲得1本,乙得2本,丙得3本;(3)一人得1本,一人得2本,一人得3本;(4)平均分给甲、乙、丙三人;(5)平均分成三堆.【解析】(1)先从6本书中任取1本,作为一堆,有16C 种取法,再从余下的5本书中任取2本,作为一堆,有25C 种取法,最后从余下的3本书中取3本作为一堆,有33C 种取法,故共有分法123653C C C 60=种.(2)由(1)知,分成三堆的方法有123653C C C 种,而每种分组方法仅对应一种分配方法,故甲得1本,乙得2本,丙得3本的分法亦为123653C C C 60=种.(3)由(1)知,分成三堆的方法有123653C C C 种,但每一种分组方法又有33A 种分配方法,故一人得1本,一人得2本,一人得3本的分法有12336533C C C A 360=种.(4)3个人一个一个地来取书,甲从6本不同的书中任取出2本的取法有26C 种,乙再从余下的4本书中取2本书,有24C 种取法,丙从余下的2本中取2本书,有22C 种取法,所以一共有222642C C C 90=种取法.(5)把6本不同的书分成三堆,每堆2本与把6本不同的书分给甲、乙、丙三人,每人2本的区别在于,后者相当于把6本不同的书平均分成三堆后,再把书分给甲、乙、丙三人,因此,设把6本不同的书,平均分成三堆的方法有x 种,那么把6本不同的书分给甲、乙、丙三人每人2本的分法就应有33A x 种,由(4)知,把6本不同的书分给甲、乙、丙三人,每人2本的方法有222642C C C 种.所以32223642A C C C x =,则22264233C C C 15A x ==.例15.(2022·全国·高三专题练习)已知有6本不同的书.分成三堆,每堆2本,有多少种不同的分堆方法?【解析】6本书平均分成3堆,所以不同的分堆方法的种数为222642336543××1C C C 2121==15A 321⨯⨯⨯⨯⨯⨯.故答案为:15.例16.(2022·全国·高三专题练习)已知有6本不同的书.分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?【解析】从6本书中,先取1本作为一堆,再从剩下的5本中取2本作为一堆,最后3本作为一堆,所以不同的分堆方法的种数为12365354C C C 616021⨯=⨯⨯=⨯.例17.(2022·全国·高三专题练习)现有6本不同的书,如果满足下列要求,分别求分法种数.(1)分成三组,一组3本,一组2本,一组1本;(2)分给三个人,一人3本,一人2本,一人1本;(3)平均分成三个组每组两本.【解析】(1)根据题意,第一组3本有36C 种分法,第二组2本有23C 种分法,第三组1本有1种分法,所以共有3263C C 160⨯=种分法.(2)根据题意,先将6本书分为1、2、3的三组,有3263C C 160⨯=种分法,再将分好的三组分给3人,有33A =6种情况,所以共有606360⨯=种分法.(3)根据题意,将6本书平均分为3组,有22264233C C C A =15种不同的分法.例18.(2022·全国·高三专题练习)已知有6本不同的书.(1)分成三堆,每堆2本,有多少种不同的分堆方法?(2)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?【解析】(1)6本书平均分成3堆,所以不同的分堆方法的种数为222642336×54×3××1C C C 2×12×1==15A 3×2×1.(2)从6本书中,先取1本作为一堆,再从剩下的5本中取2本作为一堆,最后3本作为一堆,所以不同的分堆方法的种数为12365354C C C 616021⨯=⨯⨯=⨯.例19.(2022·全国·高三专题练习)设有99本不同的书(用排列数、组合数作答).(1)分给甲、乙、丙3人,一人得93本,另两人各得3本,共有多少种不同的分法?(2)分成3份,一份93本,另两份各3本,共有多少种不同的分法?【解析】(1)99本不同的书,分给甲、乙、丙3人,一人得93本,另两人各得3本,3人中,谁都有得到93本的可能,所以不同的分法共有933339963322C C C A C ⋅(种).(2)99本不同的书,分成3份,一份93本,另两份各3本,两份3本的有重复,所以不同的分法共有9333996322C C C )A ⋅(种).例20.(2022·全国·高三专题练习)6本不同的书,按照以下要求处理,各有几种分法?(1)平均分给甲、乙、丙三人;(2)平均分成三堆.【解析】(1)3个人一个一个地来取书,甲从6本不同的书中任取出2本的取法有26C 种,乙再从余下的4本书中取2本书,有24C 种取法,丙从余下的2本中取2本书,有22C 种取法,所以一共有222642C C C 90=种取法.(2)把6本不同的书分成三堆,每堆2本与把6本不同的书分给甲、乙、丙三人,每人2本的区别在于,后者相当于把6本不同的书平均分成三堆后,再把书分给甲、乙、丙三人,因此,设把6本不同的书,平均分成三堆的方法有x 种,那么把6本不同的书分给甲、乙、丙三人每人2本的分法就应有33A x 种,由(1)知,把6本不同的书分给甲、乙、丙三人,每人2本的方法有222642C C C 种.所以32223642A C C C x =,则22264233C C C 15A x ==.例21.(2022·全国·高三专题练习)某班有一个5男4女组成的社会实践调查小组,准备在暑假进行三项不同的社会实践,若不同的组合调查不同的项目算作不同的调查方式,求按下列要求进行组合时,有多少种不同的调查方式?(1)将9人分成人数分别为2人、3人、4人的三个组去进行社会实践;(2)将9人平均分成3个组去进行社会实践;(3)将9人平均分成每组既有男生又有女生的三个组去进行社会实践.【解析】(1)将9人按2:3:4分组,有234974C C C 种分组方法,再把各组分配到三个项目中去有33A 方法,由分步乘法计数原理得:23439743C C C A 7560=,所以不同的调查方式有7560.(2)从9人中任取3人去调查第一个项目,从余下6人中任取3人去调查第二个项目,最后3人去调查第三个项目,由分步乘法计数原理得:333963C C C 1680=,所以不同的调查方式有1680.(3)把4个女生按2:1:1分组,有24C 种分法,再从5个男生中任取1个到两个女生的一组,从余下4个男生中任取2人到1个女生的一组,最后2个男生到最后的1个女生组,分法种数为541222C C C ,将分得的三个小组分配到三个项目中去有33A 方法,由分步乘法计数原理得:5422122343C C C C A 1080 ,所以不同的调查方式有1080.。

排列组合中的分堆与分配问题

排列组合中的分堆与分配问题

排列组合中的分堆与分配问题作者:陈学帅来源:《中国校外教育·综合(上旬)》2015年第13期摘要:介绍了排列、组合中比较困难的分堆与分配问题的解决方法。

从分给的对象和被分的元素是否相同(即有无差别)两个方面分别进行了研究。

分给的对象相同(即无差别)但被分的元素不相同是分堆问题,当各堆的元素数不同时是非平均分堆,一堆一堆的拿开即可;当各堆(或部分堆)的元素数相同时是平均分堆,按堆拿开后,若有k堆元素数相等,再除以;分给的对象不同(即有差别)是分配问题,给不同的对象逐次拿开或先分堆再分配。

关键词:排列组合分堆分配解决方法排列、组合中的分堆与分配问题是近几年高考中的一个热点问题,同时也是学生学习中的一个难点,本文就从被分的元素和分给的对象两端这两个方面来探讨一下此类问题的解决方法。

在将某些元素进行分配的问题中,我们按分给的对象是否相同(即有无差别)分为分堆问题与分配问题。

一、分堆问题分堆是研究将元素所分给的对象相同(即无差别)但被分的元素不相同的一类问题。

当各堆(或部分堆)分得的元素数相同时,称为平均分堆;当每堆分得的元素数各不相同时,称为非平均分堆。

1.非平均分堆例:将6名运动员分成三组,其中有一组1人的,一组2人的,一组3人的,有多少种不同的分法?解:本题中由于分给的对象无差别,并且每组的人数各不相同,所以这是一个非平均分堆问题,按题设要求逐堆随机拿开即可。

二、分配问题将元素所分给的对象不相同(即有差别)时的问题叫做分配问题。

分配问题按被分的元素是否相同又分为被分的元素相同(无差别)的分配问题与被分的元素不相同(即有差别)的分配问题两类:(一)被分的元素相同(无差别)的分配问题此类分配问题中,由于被分的元素无差别,因此在分配中,若将若干个元素平均分给几个对象,则只有一种分法;若几个对象所得元素数各不相同,则存在不同的分法。

例2.要从7个班中选10人参加数学竞赛,每个班至少出1人,共有多少种不同的选法?分析:本例其实就是将10个参加数学竞赛的名额分给7个班的分配问题,被分的名额是无差别的,但分给的对象即7个班是不同的。

排列组合中的分堆问题

排列组合中的分堆问题

(1)
C
2 6
C
2 4
C22
90
二:分堆安排工作的问题(续)
例2(2)12支笔按3:3:2:2:2分给A、B、C、 D、E五个人有多少种不同的分法?
方法:先分再排法。分成的组数看成元素的个数·
(2)均分的五组看成是五个元素在五个位置上作 排列
(2)
C
13 2 C
3 9
C62
C 42 C22
A
3 3

六十一、生命里最重要的事情是要有个远大的目标,并借助才能与坚毅来完成它。——歌德

六十二、没有大胆的猜测就作不出伟大的发现。──牛顿

六十三、梦想,是一个目标,是让自己活下去的原动力,是让自己开心的原因。——佚名

六十四、人生太短,要干的事太多,我要争分夺秒。——爱迪生

六十五、一路上我都会发现从未想像过的东西,如果当初我没有勇气去尝试看来几乎不可能的事,如今我就还只是个牧羊人而已。——《牧羊少年的奇幻之旅》

五十七、一个人的理想越崇高,生活越纯洁。——伏尼契

五十八、梦想一旦被付诸行动,就会变得神圣。——阿·安·普罗克特

五十九、一个人追求的目标越高,他的才力就发展得越快,对社会就越有益。——高尔基

六十、青春是人生最快乐的时光,但这种快乐往往完全是因为它充满着希望,而不是因为得到了什么或逃避了什么。——佚名

二十二、世界上最快乐的事,莫过于为理想而奋斗。——苏格拉底

二十三、“梦想”是一个多么“虚无缥缈不切实际”的词啊。在很多人的眼里,梦想只是白日做梦,可是,如果你不曾真切的拥有过梦想,你就不会理解梦想的珍贵。——柳岩

2023年高考数学复习---排列组合分组问题、分配问题典型例题讲解

2023年高考数学复习---排列组合分组问题、分配问题典型例题讲解

2023年高考数学复习---排列组合分组问题、分配问题典型例题讲解分组问题【典型例题】例1.2021年春节期间电影《你好,李焕英》因“搞笑幽默不庸俗,真心实意不煽情”深受热棒,某电影院指派5名工作人员进行电影调查问卷,每个工作人员从编号为1,2,3,4的4个影厅选一个,可以多个工作人员进入同一个影厅,若所有5名工作人员的影厅编号之和恰为10,则不同的指派方法种数为( )A .91B .101C .111D .121【答案】B 【解析】(1)若编号为1222310++++=,则有25220C ⨯=种,(2)若编号为1123310++++=,则有215330C C ⨯=种,(3)若编号为1122410++++=,则有225330C C ⨯=种,(4)若编号为1113410++++=,则有315220C C ⨯=种,(5)若编号为2222210++++=,则有1种,所以不同的指派方法种数为203030201101++++=种.故选:B .例2.已知有6本不同的书.(1)分成三堆,每堆2本,有多少种不同的分堆方法?(2)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?【解析】(1)6本书平均分成3堆,不同的分堆方法的种数为2226423315 C C C A =. (2)从6本书中,先取1本作为一堆,再从剩下的5本中取2本作为一堆,最后3本作为一堆,不同的分堆方法的种数为12365360.C C C =分配问题【典型例题】例1.(2022·浙江·模拟预测)杭州亚运会启动志愿者招募工作,甲、乙、丙、丁等4人报名参加了,,A B C 三个项目的志愿者工作,每个项目需1名或2名志愿者,若甲不能参加A 项目,乙不能参加B 、C 项目,那么共有______种不同的志愿者选拔方案.【答案】10【解析】由题意可得乙一定参加A 项目,若A 项目只有一个人时,即为乙,则先将甲、丙、丁分为两组,有23C 种, 再将两组分配到,B C 两个项目,有22A 种, 则有2232C A 6⋅=种不同的志愿者选拔方案,若A 项目有2人时,又甲不能参加A 项目,则只能从丙、丁中选1人和乙组队到A 项目,有12C 种,再将剩下的2人分配到,B C 两个项目,有22A 种, 则有1222C A 4⋅=种不同的志愿者选拔方案,综上,共有6410+=种不同的志愿者选拔方案.故答案为:10.例2.(2022·上海长宁·统考一模)有甲、乙、丙三项任务,其中甲需2人承担,乙、丙各需1人承担;现从6人中任选4人承担这三项任务,则共有___________种不同的选法【答案】180【解析】第一步,先从6人中任选2人承担任务甲,有26C 种选法,第二步,再从剩余4人中任选1人承担任务乙,有14C 种选法,第三步,再从3人中任选1人承担任务丙,有13C 种选法, 所以共有211643C C C 180=种选法.故答案为: 180.例3.(2022·四川南充·高三统考期中)随着高三学习时间的增加,很多高三同学心理压力加大.通过心理问卷调查发现,某校高三年级有5位学生心理问题凸显,需要心理老师干预.已知该校高三年级有3位心理老师,每位心理老师至少安排1位学生,至多安排3位学生,则共有______种心理辅导安排方法.【答案】150【解析】根据题意,分2步进行分析:①将5位学生分为3组,若有两组2人,一组1人,有225322C C 15A =种分组方法, 若两组1人,一组3人,有35C 10=种分组方法,则有15+10=25种分组方法,②将分好的3组安排给3个老师进行心理辅导,有33A 6=种情况,则有25×6=150种安排方法,故答案为:150.。

排列组合中的分配分组问题

排列组合中的分配分组问题

排列组合中的分配分组问题排列、组合以其独特的研究对象和研究方法,在高中数学教学中占有特殊的地位,是高考必考内容之一,它既是学习概率的预备知识,又是进一步学习数理统计、组合数学等高等数学的基础,因此排列与组合问题的应用题是高考的常见题型。

本文就笔者自己解决排列组合问题中的分配分组问题的一些浅见拙知与大家分享,不值一飧,还望批评与指正。

一、基本定义:1、排列:从n 个不同的元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中取出m 个元素的一个排列。

2、组合:从n 个不同的元素中取出)(n m m ≤个元素合成一组,叫做从n 个不同的元素中取出m 个元素的一个组合。

3、排列数与组合数公式:)1)......(1(A +--=m n n n mn!)1().........1(m m n n n C A C m n m n m n+--== 二、解题思路总析:从排列与组合的定义来看,这两个数学名词的相同之处在于“选”—从n 个不同的元素中取出)(n m m ≤个元素;不同之处在于:排列有“序”——取出的m 各元素之间有顺序,组合无“序”——取出的m 各元素之间无顺序。

所以根据题目的意思分析元素之间是否有序就成了解决问题是用排列数公式还是用组合数公式的关键。

另外,在分配分组问题中,还存在分成的各组元素个数相等或不相等的问题,各组元素个数相等的分配分组称为“均匀”,各组元素个数全不相等的分配分组称为“不均匀”。

综合以上两点,笔者把排列组合中的分配分组问题统分为四类:1、均匀有序:各组元素个数相等,各组之间有顺序;2、均匀无序:各组元素个数相等,各组之间没有顺序;3、不均匀无序:各组元素个数全不相等,各组之间没有顺序;4、不均匀有序:各组元素个数全不相等,各组之间有顺序。

其中均匀有序又称“双肯定”分法,不均匀无序又称“双否定”,均匀无序和不均匀有序称为“单肯定”下面就以具体例题来说明上面四类问题的一般解法:例1:有6本不同的书,(1)甲、乙、丙3人每人2本,有多少种不同的分法?(2)分成3堆,每堆2本,有多少种不同的分法?(3)分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分法?(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少种不同的分法?解析:对于问题(1),首先从6本不同的书中选出2本来给甲,选出的2本书之间无顺序,为26C ;其次,从剩下的4本书中选出2本来给乙,为24C ;最后剩下的2本给丙,为22C ;整个解题过程应用的是分步计数原理,所以最终的分法数为90C *C *C N 2224261==;对于问题(2),与问题(1)的相同在于都是均匀分组,差别仅仅在于,一个是分给3人,一个是分成3堆,即就是分成的3组之间一个是有顺序的,一个是没有顺序的,所以问题(2)的解决可以在问题(1)解决的基础上对3组进行“消序”,即15A C *C *C N 332224262==; 对于问题(3),解决方法与问题(1)一样,用分步计数原理,先从6本不同的书中选出1本来,再从剩下的5本书中选出2本来,最后剩下的3本作为一堆,最终的分法数为60C *C *C N 3325163==;对于问题(4),分析题目,可见问题(4)与问题(3)的相同在于都是不均匀分组,差别在于问题(3)是分成3堆,即分成的3组无序,问题(4)是分给3人,即分成的3组有序,所以问题(4)的解决可以在问题(3)解决的基础上对3组进行“排序”,即603A *C *C *C N 333325164==。

顿悟排列组合80题(精华)

顿悟排列组合80题(精华)

顿悟排列组合80题【分堆(分组)与分配】1、8本不同的书,按照以下要求分配,各有多少种不同的分法?⑴一堆1本, 一堆2本, 一堆5本;⑵甲得1本,乙得2本,丙得5本;⑶三人,一人1本, 一人2本, 一人5本;⑷平均分给甲、乙、丙、丁四人;⑸平均分成四堆;⑹分成三堆,一堆4本,一堆2本,一堆2本;⑺给三人一人4本, 一人2本, 一人2本。

2、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法种数共有______3、6名旅客安排在3个房间,每个房间至少安排一名旅客,则不同的安排方法种数共____4、把A、B、C、D四个小球平均分成两组,有_________种分法5、七个人参加义务劳动,按下列方法分组有______种不同的分法(1)分成三组,分别为1人、2人、4人;(2)选出5个人再分成两组,一组2人,另一组3人。

6、四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有_____种7、5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为(A)480 (B)240 (C)120 (D)96 (E)808、将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为A.70 B.140 C.280 D.840 E. 809、将9个(含甲、乙)平均分成三组,甲、乙分在不同组,则不同分组方法的种数为A.220 B.240 C.420 D.210 E. 18010、从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有A.300 B.240 C.144 D.96 E. 28011、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有___种.(A)480 (B)600 (C)430 (D)500 (E)48012、将9本不同的书分成3堆,问:(1)每堆3本,有多少种不同的分法?若分给三人,每人3本,又有多少种不同分法?(2)一堆5本,其余两堆各2本,有多少种不同的分法?若分给甲,乙,丙3人,①每人拿一堆,有多少种不同的分法?②若甲得5本,乙与丙各得2本,又有多少种分法?(3)如果一堆4本,一堆3本,一堆2本,又有多少种的分法?【排队、排座位(元素--位置):相邻捆绑与相间插空】13、6人排成一排照相,甲不排在左端,乙不排在右端,共有______种不同的排法14、n 个人围圆桌而坐,一共有_________种不同的排法15、7人照相,要求排成一排,甲乙两人相邻但不排在两端,不同的排法共有______种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太奇MBA 数学助教
李瑞玲
一.分组(分堆)与分配问题
将n 个不同元素按照某些条件分配给k 个不同的对象,称为分配问题,又分为定向分配和不定向分配两种问题。

将n 个不同元素按照某些条件分成k 组,称为分组问题。

分组问题有不平均分组,平均分组,部分平均分组三情况。

分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使两组的元素个数相同,但因所要分配的对象不同,仍然是可区分的。

对于后者必须先分组后排列。

一.基本的分组问题
例1.六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?
(1)每组两本(均分三组)(平均分组问题)(2)一组一本,一组两本,一组三本(不平均分组问题)(3)一组四本,另外两组各一本
(部分平均分组问题)
分析:(1)分组和顺序无关,是组合问题。

分组数为90222426=C C C ,而这90种分组方法实际上重复了6次。

现把六本不同的书标上
6,5,4,3,2,1六个号码,先看一下这种情况:
(1,2)(3,4)(5,6)(1,2)(5,6)(3,4)(3,4)(1,2)(5,6)(3,4)(5,6)(1,2)(5,6)(1,2)(3,4)
(5,6)(3,4)(1,2)
由于书是均匀分组的,三组的本数都一样,又与顺序无关,所以这种
情况下这六种分法是同一种分法,于是可知重复了6次。

以上的分组实际上加入了组的顺序,同理其他情况也是如此,因此还应取消分组
的顺序,即除以3
3
P ,于是最后知分法为156
90
332
22426==P C C C .
(2)先分组,分组方法是603
32516=C C C ,那么还要不要除以33P ???(很
关键的问题)
由于每组的书的本数是不一样的,因此不会出现相同的分法,即
共有60332516=C C C 。

(3)先分组,分组方法是30111246=C C C ,这其中有没有重复的分法???(需
要好好考虑)
现还把六本不同的书标上6,5,4,3,2,1六个号码,先看以下情况1)先取四本分一组,剩下的两本,一本一组,情况如下(1,2,3,4)5
6
(1,2,3,4)6
5
2)先取一本分一组,再取四本分一组,剩余的一本为一组,情况如下
5
(1,2,3,4)6
6(1,2,3,4)5
3)先取一本分一组,再取一本为一组,剩下的四本为一组,情况如下
5
6(1,2,3,4)
6
5(1,2,3,4)
由此可知每一种分法重复了2次,原因是其中两组的的书的本数都是一本,这两组有了顺序,需要把分组的顺序取消掉,而四本的那一组,由于书的本数不一样,不可重复,故最后的结果为
152
30
2
21
11246==P C C C .通过以上三个小题的分析,可以得出分组问题的一般结论如下:一般地,将n 个不同的元素分成p 组,各组内元素个数分别为
p m m m ,,,21⋯,其中k 组内元素个数相等,那么分组方法数为
()k
k m
m m m m m n m m n m n P C C C C p
p i i ⋯⋯⋯121211−+++−−,即选完元素后要除以元素相同
的总组数的全排列!
三.基本的分配问题1.定向分配问题
例2六本不同的书,分给甲乙丙三人,求在下列条件下各有多少种不同的分法?
(1)甲两本,乙两本,丙两本(2)甲一本,乙两本,丙三本(3)甲四本,乙一本,丙一本
分析:由于分配给三人,每人分几本是一定的,属于分配问题中的定向分配问题。

由分步计数原理得(1)222426C C C =90(2)60
3
32516=C C C (3)30
1
11246=C C C 2.不定向分配问题
例3.六本不同的书,分给甲乙丙三人,求在下列条件下各有多少种不同的分法?(1)每人两本
(2)一人一本,一人两本,一人三本(3)一人四本,一人一本,一人一本
分析:此题属于分配中的不定向分配问题。

由于分配给三人,同一本书给不同的人是不同的分法,所以是排列问题。

实际上可看作是“六本不同的书分为三组,再将这三组分给甲乙丙三人”,因此只要将元素的分组的方法数再乘以所分配对象的全排列即可!
所以有(1)90333
3
2
2
2426=×P P C C C (2)360333
32516=×P C C C (3)90332
2
1
1
1246=×P P C C C 结论:一般地,如果把n 个不同的元素分配给k 个不同的对象,并且每个不同的对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,结果为分组方案数乘以不同对象数的全排列。

解不定向分配题的一般原则是:先分组后排列!
数学讲义上第95页排列组合本章作业
第4题属于不定向分配问题(需要先分组,再分配,其中分组为不
平均分组)结果为36033332516=×P C C C ,故选B 。

第5题属于定向分配问题,所以为60332516=C C C ,故选D 。

第6题属于不定向分配问题(需要先分组,再分配,其中分组为平均
分组)结果为903
33
3
2
22426=×P P C C C ,故选C 。

第28题也属于不定向分配问题,同第6题,结果为
4
448412333
3
4448412C C C P P C C C =×,故选A 。

元素种类
(1)元素相同(2)元素不同
1)分配对象相同2)分配对象不同1)分配对象相同2)分配对象不同分组(分堆)问题隔板法解决分组(分堆)问题可重复和不可重复此时要依据每组的数量来区别
要依据每组的数量和元素特征来区别可重复:投信,人进房间问题不可重复:组合,排列问题
例:现有6个球,4个盒子,每个盒子至少一个球,在下列各种情况下各有多少种放法?
(1)球不同,盒子不同(2)球不同,盒子相同(3)球相同,盒子不同(4)球相同,盒子相同解:(1)属于组合,排列问题,需要先分组,再分配给不同的对象。

分组有两种分法:1)2211
2)3111
则有33111213362211122426P C C C C P C C C C +,最后结果为44331
11213362211122426P P C C C C P C C C C ×⎟⎟⎠
⎞⎜⎜⎝⎛+.(2)由于分配对象相同,没有区别,所以实质上为分组问题。

分组有两种分法:1)2
2112)3
1
11
则有3
31
1
1213362211122426P C C C C P C C C C +,即为最后结果。

(3)球相同,即元素相同,但分配对象不同,又要求每个盒子至少一个球,故
为隔板问题,需用隔板法来解决,即103
5=C 种。

(4)球相同,盒子相同,就有两种方法,即2211和3111这两
种方法。

相关文档
最新文档