电磁感应中导轨+杆模型
微专题-模型系列 电磁感应中的“杆+导轨”模型
模型系列
电磁感应中的“杆+导轨”模型 试题
上页
下页
典例
解析
(1)因为杆b静止,所以有 F2-B2IL=mgtan 37°, 而F2=0.75+0.2t(N), 解得I=0.4t(A). 整个电路中的电动势由杆a运动产生,故 E=I(Ra+Rb),E=B1Lv, 解得v=4t(m/s) 所以杆a做加速度为a=4 m/s2的匀加速运动. 1 (2)杆 a 在 1 s 内运动的距离 d= at2=2 m. 2
模型系列
电磁感应中的“杆+导轨”模型 试题
上页
下页
典例
解析
【典例2】 如图所示,足够长的光滑平行金属导轨cd和ef 水平放置,在其左端连接倾角为θ=37°的光滑金属导轨 ge、hc,导轨间距均为L=1 m,在水平导轨和倾斜导轨上, 各放一根与导轨垂直的金属杆,金属杆与导轨接触良好.金 属杆a、b质量均为m=0.1 kg,电阻Ra=2 Ω、Rb=3 Ω,其 余电阻不计.在水平导轨和斜面导轨区域分别有竖直向上和 竖直向下的匀强磁场B1、B2,且B1=B2=0.5 T.已知从t=0 时刻起,杆a在外力F1作用下由静止开始水平向右运动,杆b 在水平向右的外力F2作用下始终保持静止状态,且F2=0.75 +0.2t(N).(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)
模型系列
电磁感应中的“杆+导轨”模型 试题
上页
下页
典例
解析
(1)求ab棒的加速度大小; (2)求磁感应强度B的大小; (1)1 m/s2 (2)2 T (3)18 J (4)5 s (3)若已知在前2 s内F做功W=30 J,求前2 s内电路产生的焦 耳热; (4)求cd棒达到最大速度所需的时间. 答案
核心素养微专题6 电磁感应中的“杆+导轨”模型
(1)若涉及变力作用下运动问题,可选用动量守恒和能量守恒的方法解决。
(2)若涉及恒力或恒定加速度,一般选用动力学的观点。若涉及运动时间
问题也可选用动量定理求解。
17
二轮 ·物理
[示例3] 如图所示,在大小为B的匀强磁场区域内跟磁场方向垂直的水 平面中有两根固定的足够长的金属平行导轨,在导轨上面平放着两根导 体棒ab和cd,两棒彼此平行,构成一矩形回路。导轨间距为l,导体棒的 质量都为m,电阻都为R,导轨部分电阻可忽略不计。设导体棒可在导 轨上无摩擦地滑行,初始时刻ab棒静止,给cd棒一个向右的初速v0,求: (1)当cd棒速度减为0.8v0时的加速度大小; (2)从开始运动到最终稳定,电路中产生的电能; (3)两棒之间距离增加量Δx的上限。
×mgsin θ=ma,解得加速度大小为 2.5 m/s2,B 正确;金属杆滑至底端
的整个过程中,整个回路中产生的焦耳热为 mgh-12mv2m,电阻 R 产生的
13
二轮 ·物理
焦耳热一定小于 mgh-21mvm2 ,C 错误;金属杆达到最大速度后,根据受 力平衡可得 mgsin θ=F 安=BIL,得 I=mgBsiLn θ=neSv-,得v-=ρgnseiBn θ, 其中 n 为单位体积的电子数,ρ 为金属杆的密度,所以杆中定向运动的 电荷沿杆长度方向的平均速度与杆的粗细无关,D 正确。 [答案] BD
8
二轮 ·物理
⑦ ⑧
二轮 ·物理
2.单杆“倾斜导轨”模型 匀强磁场与导轨垂直,磁感应强度为 B,导轨间距 L,导体棒 质量 m,电阻 R,导轨光滑,电阻不计(如图)
物理 模型
9
二轮 ·物理
棒 ab 由静止释放后下滑,此时 a=gsin α,棒 ab 速度 v↑→
热点专题系列(六) 电磁感应中的“杆和导轨”模型
热点专题系列(六) 电磁感应中的“杆和导轨”模型热点概述:电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点。
[热点透析]单杆模型初态v0≠0v0=0示意图质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定续表初态v0≠0v0=0运动分析导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBL,最后以v m匀速运动当a=0时,v最大,v m=FRB2L2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa安培力F安=BLI=CB2L2a F-F安=ma,a =Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量分析动能转化为内能,12m v2=Q电能转化为动能和内能,E电=12m v2m+Q外力做功转化为动能和内能,W F=12m v2m+Q外力做功转化为电能和动能,W F=E电+12m v2注:若光滑导轨倾斜放置,要考虑导体杆受到重力沿导轨斜面向下的分力作用,分析方法与表格中受外力F时的情况类似,这里就不再赘述。
(2020·山东省聊城市一模)(多选)如图所示,宽为L的水平光滑金属轨道上放置一根质量为m的导体棒MN,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R的电阻连接,匀强磁场的方向垂直于轨道平面向里,磁感应强度大小为B,电容器的电容为C,金属轨道和导体棒的电阻不计。
现将开关拨向“1”,导体棒MN在水平向右的恒力F作用下由静止开始运动,经时间t0后,将开关S拨向“2”,再经时间t,导体棒MN恰好开始匀速向右运动。
完整版电磁感应定律单杆导轨模型含思路分析
单杆+导轨”模型1.单杆水平式(导轨光滑)注:加速度a的推导,a=F合/m (牛顿第二定律),F合=F-F安,F安=BIL ,匸E/R 整合一下即可得到答案。
v变大之后,根据上面得到的a的表达式,就能推出a变小这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1, 2s末是5, 3s末是6, 4s末是6.1,每秒钟速度的增加量都是在变小的)2.单杆倾斜式(导轨光滑)BLv T【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L二1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m= 0.1 kg,空间存在磁感应强度B= 0.5 T、竖直向下的匀强磁场。
连接在导轨左端的电阻R= 3.0約金属杆的电阻r 二1.0約其余部分电阻不计。
某时刻给金属杆一个水平向右的恒力F, 金属杆P由静止开始运动,图乙是金属杆P运动过程的v—t图象,导轨与金属杆间的动摩擦因数尸0.5。
在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3 : 5。
g取10 m/s2。
求:(1)水平恒力F的大小;⑵前4 s内电阻R上产生的热量。
【答案】(1)0.75 N (2)1.8 J【解析】(1)由图乙可知金属杆P先做加速度减小的加速运动,2 s后做匀速直线运动当t= 2 s时,v= 4 m/s,此时感应电动势E= BLv感应电流1=吕R+ rB2I2v安培力F = BIL =R+ r根据牛顿运动定律有F —F '―卩m= 0解得 F = 0.75 N o过金JI杆p的电荷量厂"二磊^甘十);△型BLx所以尸驚qa为尸的位移)设第一个2 s內金属杆P的位移为Xi ;第二个肚内P的位移为助则二号g,又由于如:血=3 : 5麻立解得«=8mj IL=<8m前4 s内由能量守恒定律得其中 Q r : Q R = r : R = 1 : 3解得 Q R = 1.8 J o注:第二问的思路分析,要求 R 上产生的热量,就是焦耳热,首先想到的是公式Q=l2Rt ,但是在这里,前2s 的运动过程中,I 是变化的,而且也没办法求出I 的有效值来(电荷量对应的是电流的平均值,求焦耳热要用有效值,两者不一样), 所以这个思路行不通。
电磁感应中的“杆+导轨”模型
电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。
根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。
需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。
举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。
根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。
加速度随速度增大而减小,最终特征为匀速运动。
在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。
需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。
1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。
整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。
重力加速度为g,导轨电阻不计,杆与导轨接触良好。
求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。
高分策略之电磁感应中的杆导轨模型
一、单棒问题基本模型运动特点最终特征阻尼式a逐渐减小的减速运动静止I=0电动式匀速a逐渐减小的加速运动I=0 (或恒定)匀速发电式a逐渐减小的加速运动I 恒定二、含容式单棒问题基本模型运动特点最终特征放电式a逐渐减小的加速运动匀速运动I=0 无外力充电式a逐渐减小的减速运动匀速运动I=0 有外力充电式匀加速运动匀加速运动I 恒定三、无外力双棒问题基本模型运动特点最终特征无外力等距式杆1做a渐小的加速运动杆2做a渐小的减速运动v1=v2I=0无外力不等距式杆1做a渐小的减速运动杆2做a渐小的加速运动a=0I=0L1v1=L2v2四、有外力双棒问题基本模型运动特点最终特征有外力等距式杆1做a渐大的加速运动杆2做a渐小的加速运动a1=a2,Δv 恒定I恒定有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动a1≠a2,a1、a2恒定I 恒定题型一阻尼式单棒模型如图。
1.电路特点:导体棒相当于电源。
2.安培力的特点:安培力为阻力,并随速度减小而减小。
F B =BIl=3.加速度特点:加速度随速度减小而减小,a= =4.运动特点:速度如图所示。
a 减小的减速运动5.最终状态:静止 6.三个规律 (1)能量关系:-0 = Q , =(2)动量关系: 00BIl t mv -⋅∆=-q =, q ==(3)瞬时加速度:a= =【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a<L )的正方形闭合线圈以初速v 0垂直磁场边界滑过磁场后速度变为v (v<v 0)那么( )A. 完全进入磁场中时线圈的速度大于(v0+v)/2B. 安全进入磁场中时线圈的速度等于(v0+v)/2C. 完全进入磁场中时线圈的速度小于(v0+v)/2D. 以上情况A、B均有可能,而C是不可能的【答案】B【解析】设线圈完全进入磁场中时的速度为v x。
线圈在穿过磁场的过程中所受合外力为安培力。
电磁感应中的杆轨模型
发展方向:研究新型感应技术和应 用降低能耗和成本
电磁感应中的杆 轨模型在电力系 统中的应用广泛 可以提高电力系 统的效率和稳定 性。
杆轨模型在电磁 感应中的应用可 以促进新能源技 术的发展如太阳 能、风能等。
杆轨模型在电磁 感应中的应用可 以促进电磁感应 技术的发展如电 磁感应加热、电 磁感应驱动等。
计算杆的电流:使用电流公 式I=U/Z其中U为电压Z为阻 抗
计算杆的功率:使用功率公 式P=I^2*R其中I为电流R为 电阻
实例:计算杆轨模型 的感应电动势
解析:利用法拉第电磁 感应定律和欧姆定律进 行计算
实例:计算杆轨模型 的感应电流
解析:利用欧姆定律和 电流连续性方程进行计 算
实例:计算杆轨模型 的感应功率
准备材料:杆轨模型、电 源、开关、电流表、电压 表等
搭建实验装置:按照图纸 搭建杆轨模型连接电源、 开关、电流表、电压表等
实验操作:打开电源观察 电流表和电压表的读数记 录数据
分析实验结果:根据实验 数据分析杆轨模型的电磁 感应现象得出结论
实验注意事项:注意安全 遵守实验操作规程确保实 验顺利进行
杆轨模型在电磁 感应中的应用可 以促进电磁感应 技术的应用领域 如电磁感应加热、 电磁感应驱动等。
感谢您的观看
汇报人:
应用:杆轨模型可以用来解释交流电的 产生和传输
电磁感应:电流在磁场中受到力的作用 产生感应电动势
交流发电机:利用电磁感应原理产生交 流电的设备
交流电动机:利用电磁感应原理将交流 电能转换为机械能的设备
杆轨模型:由一根导轨和一根导线组成导线在导轨上滑动 直流电:电流方向保持不变大小可能发生变化 应用:在直流电中杆轨模型可以用来产生感应电动势 感应电动势:当导线在导轨上滑动时导线中的电流会产生感应电动势 应用实例:直流电动机、直流发电机等设备中杆轨模型被广泛应用
微专题 电磁感应中的“杆+导轨”模型
(2)0~4 s 内磁场均匀变化,产生的感应电动势 E1=ΔΔBt L1L2=0.5 V 由闭合电路欧姆定律得 I1=RE+1 r=0.1 A 0~4 s 内小灯泡上产生的焦耳热 Q1=I12Rt1=0.16 J
4~5 s 内导体棒在磁场中匀速运动,导体棒运动的位移 x=vt2=1 m<L2, 导体棒没有出磁场,小灯泡上产生的焦耳热 Q2=I22Rt2=0.16 J 0~5 s 内小灯泡上产生的焦耳热 Q=Q1+Q2=0.32 J. [答案] (1)0.8 kg 0.2 N (2)0.32 J
Q 总=-W 安=mgxsin θ-12mv2=2 J
QR=R+R rQ 总=1.5 J. 答案:(1)1 A b→a (2)1 N 平行于导轨平面向上 (3)1.5 J
3.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为 θ, 导轨间距为 l,所在平面的正方形区域 abcd 内存在有界匀强磁场,磁感 应强度大小为 B,方向垂直于斜面向上.将阻值相同、质量均为 m 的相 同甲、乙两金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙 相距 l.从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的 外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且 加速度大小为 a=gsin θ,乙金属杆刚进入磁场时做匀速运动.
[典例 3] 如图所示,两根足够长的平行金属导轨固 定在倾角 θ=30°的斜面上,导轨电阻不计,间距 L= 0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边 界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直斜 面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场 的磁感应强度大小均为 B=0.5 T.在区域Ⅰ中,将质量为 m1=0.1 kg、电阻为 R1=0.1 Ω 的金属条 ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量 为 m2=0.4 kg、电阻为 R2=0.1 Ω 的光滑导体棒 cd 置于导轨上,由静止开始下 滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd 始终与导轨垂直且两端 与导轨保持良好接触,取 g=10 m/s2.求:
电磁感应中的导轨模型
无外力不等距式
1.电路特点棒 1 相当于电源;棒 2 受安培力而加 速起动,运动后产生反电动势.
2.电流特点随着棒 1 的减速、棒 2 的加速,最终当 Bl1v1=Bl2v2 时,电
流为零,两棒都做匀速运动
3.两棒的运动情况
安培力大
小:
两棒的相对速度变小,感应电流变小,安培力变小. 棒 1 做加速度变小的减速运动,最终匀速;棒 2 做加速度变小的 加速运动,最终匀速; 4.最终特征回路B中l1v电1 流B为l2v零2 5.能量转化规律系统动能电能内能 两棒产生焦耳热之比: 6.流过某一截面的电量
3.加速度特点加速度随速度减小而减小 a FB B2l2v
v0
m m(R r)
4.运动特点 a 减小的减速运动
5.最终状态静止
6.三个规律 (1)能量关系:
1 2
mv02
0
Q
(2)动量关系: BIl t 0 mv0
q mv0 Bl
(3)瞬时加速度: a FB B2l2v m m(R r)
电容有外力充电式
1.电路特点导体棒为发电棒;电容器被充电。
2.三个基本关系
FB BIl
导体棒受到的安培力为: a F FB m
导体棒加速度可表示为:
回路中的电流可表示为:
3.四个重要结论: (1)导体棒做初速度为零匀加速运动:
a
m
mg CB2L2
(2)回路中的电流恒定:
I
CBlmg mg CB2l 2
4.运动特点 a 减小的加速运动
5.最终特征匀速运动
6.两个极值
am
F
mg m
(1)v=0 时,有最大加速度:
高考物理大复习电磁感应第节微专题电磁感应中的“杆导轨”模型课件
(1)cd 下滑的过程中,ab 中的电流方向; (2)ab 刚要向上滑动时,cd 的速度 v 多大; (3)从 cd 开始下滑到 ab 刚要向上滑动的过程中,cd 滑动的距 离 x=3.8 m,此过程中 ab 上产生的热量 Q 是多少.
解析:(1)由右手定则可判断出 cd 中的电流方向为由 d 到 c, 则 ab 中电流方向为由 a 流向 b.
答案:(1)3Bm2LgR2
9m2g2R (2) 4B2L2
(3)32mgs-94mB3g4L2R4 2
考点三 双杆模型
物 理 模 型
“双杆”模型分为两类:一类是“一动一静”,甲杆静 止不动,乙杆运动,其实质是单杆问题,不过要注意 问题包含着一个条件:甲杆静止,受力平衡.另一种 情况是两杆都在运动,对于这种情况,要注意两杆切 割磁感线产生的感应电动势是相加还是相减.
第4节 微专题4 电磁感应中的“杆+导轨”模型
“杆+导轨”模型是电磁感应问题高考命题的“基本道 具”,也是高考的热点,考查的知识点多,题目的综合性强,物 理情景变化空间大,是我们复习中的难点.“杆+导轨”模型又 分为“单杆”型和“双杆”型(“单杆”型为重点);导轨放置方 式可分为水平、竖直和倾斜;杆的运动状态可分为匀速、匀变 速、非匀变速运动等.
E=BLvm,I=2ER, F=BIL+mgsin θ,解得 vm=3Bm2LgR2 ,
(2)PL=I2R,解得 PL=94mB22gL2R2 . (3)设整个电路放出的电热为 Q,由能量守恒定律有 F·2s=Q+mgsin θ·2s+12mv2m, 由题意可知 Q1=Q2 ,解得 Q1=32mgs-9m4B3g4L2R4 2.
(1)金属棒能达到的最大速度 vm; (2)灯泡的额定功率 PL; (3)若金属棒上滑距离为 s 时速度恰达到最大,求金属棒由静 止开始上滑 2s 的过程中,金属棒上产生的电热 Q1.
物理建模-10.电磁感应中的“杆+导轨”模型
物理建模10.电磁感应中的“杆+导轨”模型模型构建“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“杆+导轨”模型又分为“单杆”型和“双杆”型(“单杆”型为重点);导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速、匀变速、非匀变速运动等.模型分类及特点1.单杆水平式F B2L2vE解决电磁感应中综合问题的一般思路是“先电后力再能量”.【典例】图9-2-13(2013·安徽卷,16)如图9-2-13所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)().A.2.5 m/s 1 W B.5 m/s 1 WC.7.5 m/s9 W D.15 m/s9 W解析导体棒MN匀速下滑时受力如图所示,由平衡条件可得F安+μmg cos θ=mg sin θ,所以F安=mg(sin θ-μcos θ)=0.4 N,由F安=BIL得I=F安BL=1 A,所以E=I(R灯+R MN)=2 V,导体棒的运动速度v=EBL=5 m/s,小灯泡消耗的电功率为P灯=I2R灯=1 W.正确选项为B.答案 B图9-2-14即学即练如图9-2-14所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m 的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM ′、NN ′保持良好接触.当ab 运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g 取10 m/s 2. (1)求框架开始运动时ab 速度v 的大小;(2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量Q =0.1 J ,求该过程ab 位移x 的大小.解析 (1)ab 对框架的压力,F 1=m 1g ① 框架受水平面的支持力,F N =m 2g +F 1②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力,F 2=μF N ③ ab 中的感应电动势,E =Bl v ④ MN 中电流,I =ER 1+R 2⑤ MN 受到的安培力,F 安=IlB ⑥ 框架开始运动时,F 安=F 2⑦由上述各式代入数据解得,v =6 m/s ⑧ (2)闭合回路中产生的总热量,Q 总=R 1+R 2R 2Q ⑨ 由能量守恒定律,得,Fx =12m 1v 2+Q 总⑩代入数据解得x =1.1 m 答案 (1)6 m/s (2)1.1 m附:对应高考题组(PPT 课件文本,见教师用书)1.(2011·北京理综,19)某同学为了验证断电自感现象,自己找来带铁芯的线圈L 、小灯泡A 、开关S 和电池组E ,用导线将它们连接成如图所示的电路.检查电路后,闭合开关S ,小灯泡发光;再断开开关S ,小灯泡仅有不显著的延时熄灭现象.虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因.你认为最有可能造成小灯泡未闪亮的原因是( ).A .电源的内阻较大B .小灯泡电阻偏大C .线圈电阻偏大D .线圈的自感系数较大解析 由自感规律可知在开关断开的瞬间造成灯泡闪亮以及延时的原因是在线圈中产生了与原电流同向的自感电流且大于稳定时通过灯泡的原电流.由题图可知灯泡和线圈构成闭合的自感回路,与电源无关,故A 错误;造成不闪亮的原因是自感电流不大于稳定时通过灯泡的原电流,当线圈电阻小于灯泡电阻时才会出现闪亮现象,故B 错误,C 正确;自感系数越大,则产生的自感电流越大,灯泡更亮,故D 错误. 答案C2.(2012·课标全国,19)如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt 的大小应为( ).A.4ωB 0π B.2ωB 0π C.ωB 0π D.ωB 02π解析 当线框绕过圆心O 的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流.设半圆的半径为r ,导线框的电阻为R ,即I 1=E R =ΔΦR Δt =B 0ΔS R Δt =12πr 2B 0R πω=B 0r 2ω2R 当线框不动,磁感应强度变化时,I 2=E R =ΔΦR Δt=ΔBS R Δt =ΔB πr 22R Δt ,因I 1=I 2,可得ΔB Δt =ωB 0π,C 选项正确. 答案 C3.(2012·四川理综,20)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着垂直纸面向里的匀强磁场,磁感应强度为B .直杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,直杆始终有两点与圆环良好接触,从圆环中心O 开始,直杆的位置由θ确定,如图所示.则( ).A .θ=0时,直杆产生的电动势为2Ba vB .θ=π3时,直杆产生的电动势为3Ba vC .θ=0时,直杆受的安培力大小为2B 2a v(π+2)R 0D .θ=π3时,直杆受的安培力大小为3B 2a v(5π+3)R 0解析 当θ=0时,直杆切割磁感线的有效长度l 1=2a ,所以直杆产生的电动势E 1=Bl 1v =2Ba v ,选项A 正确.此时直杆上的电流I 1=E 1(πa +2a )R 0=2B v(π+2)R 0,直杆受到的安培力大小F 1=BI 1l 1=4B 2a v (π+2)R 0,选项C 错误.当θ=π3时,直杆切割磁感线的有效长度l 2=2a cos π3=a ,直杆产生的电动势E 2=Bl 2v =Ba v ,选项B错误.此时直杆上的电流I 2=E 2⎝ ⎛⎭⎪⎫2πa -2πa 6+a R 0=3B v(5π+3)R 0,直杆受到的安培力大小F 2=BI 2l 2=3B 2a v(5π+3)R 0,选项D 正确.答案AD4.(2012·山东卷,20)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ). A .P =2mg v sin θ B .P =3mg v sin θC .当导体棒速度达到v 2时加速度大小为g2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 解析 导体棒由静止释放,速度达到v 时,回路中的电流为I ,则根据平衡条件,有mg sin θ=BIL .对导体棒施加一平行于导轨向下的拉力,以2v 的速度匀速运动时,则回路中的电流为2I ,有F +mg sin θ=2BIL ,所以拉力F =mg sin θ,拉力的功率P =F 2v =2mg v sin θ,故选项A 正确、选项B 错误;当导体棒的速度达到v2时,回路中的电流为I 2,根据牛顿第二定律,得mg sin θ-B I 2L =ma ,解得a =g2sin θ,选项C 正确;当导体棒以2v 的速度匀速运动时,根据能量守恒定律,重力和拉力所做的功之和等于R 上产生的焦耳热,故选项D 错误. 答案 AC5.(2012·广东理综,35)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属导轨上.导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板.R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻. (1)调节R x =R ,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I 及棒的速率v .(2)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x .解析 (1)导体棒匀速下滑时,Mg sin θ=BIl ① I =Mg sin θBl②设导体棒产生的感应电动势为E 0,E 0=Bl v ③ 由闭合电路欧姆定律得:I =E 0R +R x④ 联立②③④,得v =2MgR sin θB 2l 2⑤(2)改变R x ,由②式可知电流不变.设带电微粒在金属板间匀速通过时,板间电压为U ,电场强度大小为E U =IR x ⑥ E =U d ⑦mg =qE ⑧联立②⑥⑦⑧,得R x =mldBMq sin θ⑨答案 (1)Mg sin θBl 2MgR sin θB 2l 2 (2)mldBMq sin θ。
电磁感应中的“杆—轨道”模型
速度 图像
F 做的功一部分转 F 做的功一部分转
动 能 全 部 转 化 电源输出的电能
能量 为内能
化为杆的动能,一 化为动能,一部分 转化为杆的动能
分析 Q=12mv20
W 电=12mv2m
部分产生焦耳热 WF=Q+12mv2m
转化为电场能 WF=12mv2+EC
例 1 (多选)如图 1 所示,两平行光滑长直金属导轨水平放置,间距为 L,两导轨间 存在磁感应强度大小为 B、方向竖直向下的匀强磁场。一质量为 m、电阻为 R、 长度恰好等于导轨间宽度的导体棒 ab 垂直于导轨放置。闭合开关 S,导体棒 ab 由静止开始运动,经过一段时间后达到最大速度。已知电源电动势为 E、内阻为
01 02 03 04 05 06
教师备选用题
而做加速运动,由于两者的速度差逐渐减小,可知 感应电流逐渐减小,安培力逐渐减小,可知 cd 向右 做加速度减小的加速运动,故 B 正确;ab 从释放到 刚进入磁场过程,由动能定理得 mgR=21mv20,对 ab 和 cd 系统,合外力为零,则由动量守恒定律有 mv0 =m·2vcd+2m·vcd,解得 vcd=14v0=41 2gR,对 cd 由动量定理有 B-IL·Δt=2m·vcd, 其中 q=-I·Δt,解得 q=m2B2LgR,故 C 正确;从 ab 由静止释放,至 cd 刚离开磁 场过程,由能量守恒定律得 mgR=21m2vcd2+12×2mv2cd+Q,又 Qcd=32Q,解得 Qcd=152mgR,故 D 错误。
析 v↓⇒F↓⇒a↓,当 v=0 速度 a↓,当 E 感= -F 安=ma 知 a↓, 安培力 F 安=ILB=CB2L2a
时,F=0,a=0,杆保 持静止
E 时,v 最大,且 vm =BEL
电磁感应中导轨+杆模型
电磁感应中导轨+杆模型摘要: 电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。
关键词:安培力,稳定速度,安培力做的功和热量解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路。
电磁感应和我们以前所学的力学,电学等知识有机的结合在一起能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力,其中导轨+杆的模型更是历次考试的重点和难点。
下面我就具体给大家总结一下此类问题。
一模型特点1导轨+杆模型分为单杆型和双杆型;放置的方式可分为水平,竖直和倾斜。
2导体棒在导轨上切割磁感线运动,发生电磁感应现象3导体棒受到的安培力为变力,在安培力的作用下做变加速运动4当安培力与其他力平衡时,导体棒速度达到稳定,称为收尾速度二解题思路1涉及瞬时速度问题,用牛顿第二定律求解2求解导体棒稳定速度,用平衡条件求解3涉及能量问题,用动能定理或者功能关系求解.其中导体棒切割磁感线克服安培力做功→焦耳热等于克服安培力做的功:Q=W三两类常见的模型例1:如图所示,固定的光滑金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中。
质量为m 、电阻为r 的导体棒与固定弹簧相连后放在导轨上。
初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。
整个运动过程中导体棒始终与导轨垂直并保持良好接触。
已知弹簧的劲度系数为k ,弹簧的中心轴线与导轨平行。
⑴求初始时刻通过电阻R 的电流I 的大小和方向;⑵当导体棒第一次回到初始位置时,速度变为v ,求此时导体棒的加速度大小a ;⑶导体棒最终静止时弹簧的弹性势能为Ep ,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中导轨+杆模型
摘要: 电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。
关键词:安培力,稳定速度,安培力做的功和热量
解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路。
电磁感应和我们以前所学的力学,电学等知识有机的结合在一起能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力,其中导轨+杆的模型更是历次考试的重点和难点。
下面我就具体给大家总结一下此类问题。
一模型特点
1导轨+杆模型分为单杆型和双杆型;放置的方式可分为水平,竖直和倾斜。
2导体棒在导轨上切割磁感线运动,发生电磁感应现象
3导体棒受到的安培力为变力,在安培力的作用下做变加速运动
4当安培力与其他力平衡时,导体棒速度达到稳定,称为收尾速度
二解题思路
1涉及瞬时速度问题,用牛顿第二定律求解
2求解导体棒稳定速度,用平衡条件求解
3涉及能量问题,用动能定理或者功能关系求解.
其中导体棒切割磁感线克服安培力做功→焦耳热等于克服安培力做
的功:Q=W
三两类常见的模型
例1:如图所示,固定的光滑金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中。
质量为m 、电阻为r 的导体棒与固定弹簧相连后放在导轨上。
初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。
整个运动过程中导体棒始终与导轨垂直并保持
良好接触。
已知弹簧的劲度系数为k ,弹簧的
中心轴线与导轨平行。
⑴求初始时刻通过电阻R 的电流I 的大小和方向;
⑵当导体棒第一次回到初始位置时,速度变为v ,求此时导体棒的加速度大小a ;
⑶导体棒最终静止时弹簧的弹性势能为Ep ,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q 。
【答案】⑴棒产生的感应电动势01BLv E =
通过R 的电流大小r R BLv r R E I +=+=011 电流方向为b→a
⑵棒产生的感应电动势为BLv E =2 感应电流
r R BLv r R E I +=+=22 棒受到的安培力大小
r R v L B BIL F +==22,方向沿斜面向上 根据牛顿第二定律 有 ma F mg =-θsin
解得
)(sin 22r R m v L B g a +-=θ ⑶导体棒最终静止,有 kx mg =θsin 压缩量
k mg x θ
sin = 设整个过程回路产生的焦耳热为Q 0,根据能量守恒定律 有
2001sin 2P mv mgx E Q θ+=+ 22001(sin )2P mg Q mv E k θ=+-
电阻R 上产生的焦耳热2
2001(sin )[]2P R R mg Q Q mv E R r R r k θ==+-++
例:2:如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上(两导轨与水平面的夹角也为θ),导轨上端连接一个定值电阻。
导体棒a 和b 放在导轨上,与导轨垂直并良好接触。
斜面上水平虚线
PQ 以下区域内,存在着垂直穿过斜面向上的匀强磁场。
现对a 棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b 棒恰好静止。
当a 棒运动到磁场的上边界PQ 处时,撤去拉力,a 棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b 棒已滑离导轨。
当a 棒再次滑回到磁场上边界PQ 处时,又恰能沿导轨匀速向下运动。
已知a 棒、b 棒和定值电阻的阻
值均为R ,b 棒的质量为m ,重力加速度为g ,导
轨电阻不计。
求:
⑴a 棒的质量m a ;
⑵a 棒在磁场中沿导轨向上运动时所受的拉
力F 。
解 ⑴a 棒在PQ 上方运动的过程中只有重力做功,机械能守恒,故可知a 棒在磁场中沿导轨向上匀速运动和向下匀速运动的速度大小相等,进一步结合法拉第电磁感应定律可知,在这两个过程中,a 棒因切割磁感线而产生的感应电动势的大小相等,设为E 。
a 棒在磁场中沿导轨向上匀速运动时,
b 棒中的电流为:1322
b E I R =⨯ 此时,b 棒恰好静止,有:I b LB =mg sin θ 。
a 棒在磁场中沿导轨向下匀速运动时,设a 棒中的电流为I a ′,有:´2a E I R = I a ′LB =m a g sin θ 解得:m a =1.5m 。
⑵a 棒在磁场中沿导轨向上运动时,设a 棒中的电流为I a ,有:I a =2I b ,处于磁场中的a 棒在平行导轨斜向上的拉力F 作用下沿导轨匀速向上运动,有:
F=I a LB+m a g sin θ又:I b LB=mg sin θ解得:F=3.5mg sin θ。