2019年河南省洛阳市洛龙区六校联考中考数学二模试卷 解析版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年河南省洛阳市洛龙区六校联考中考数学二模试卷
一、选择题(每小题3分,共30分)
1.(3分)在下列各数中,比大的数是()
A.B.πC.0D.
2.(3分)3月1日,国家统计局公布了31省份2018年GDP数据,其中,河南省2018年GDP总量约为4.8万亿元,位居全国第五,数据“4.8万亿”用科学记数法表示为()A.4.8×1013B.48×1011C.4.8×1012D.4.8×1011
3.(3分)如图所示,该几何体的俯视图是()
A.B.
C.D.
4.(3分)如图,a∥b,A、B为直线a、b上的两点,且AB⊥BC,∠BAC=30°,则∠1与∠2的度数之和为()
A.60°B.90°C.30°D.120°
5.(3分)下列运算正确的是()
A.B.
C.(﹣3xy3)2=9x2y5D.
6.(3分)不等式组的整数解之和为()
A.﹣3B.﹣1C.1D.3
7.(3分)一元二次方程(x﹣1)(x+5)=3x+2的根的情况是()
A.方程没有实数根
B.方程有两个相等的实数根
C.方程有两个不相等的实数根
D.方程的根是1、﹣5和
8.(3分)2019年2月9日国际滑联四大洲花样滑冰锦标赛的花滑短节目比赛中,中国选手的得分为74.19分,当天比赛的其他四组选手的得分分别为61.91分、66.34分、61.71分、57.38分,则这5组数据的平均数、中位数分别是()
A.61.835分、66.34分B.61.835分、61.91分
C.64.306分、66.34分D.64.306分、61.91分
9.(3分)如图,在平面直角坐标系中,△OAB是等腰三角形,∠OBA=120°,位于第一
象限,点A的坐标是(,),将△OAB绕点O旋转30°得到△OA1B1,则点A1的坐标是()
A.(,)B.(,﹣)
C.(,)或(3,0)D.(,)或(,﹣)10.(3分)如图,已知平行四边形ABCD中,AB=BC,点M从点D出发,沿D→C→A 以1cm/s的速度匀速运动到点A,图2是点M运动时,△MAB的面积y(cm2)随时间x (s)变化的关系图象,则边AB的长为()cm.
A.B.C.D.
二、填空题(每小题3分,共15分)
11.(3分)计算:=.
12.(3分)如图,分别以AB的两个端点A、B为圆心,大于AB的长为半径画弧,两弧分别交于点P、Q,作直线PQ交AB于点C,在CP上截取CD=AC,过点D作DE∥AC,使DE=AC,连接AD、BE,当AD=1时,四边形DCBE的面积是.
13.(3分)在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是.
14.(3分)如图,O是圆心,半圆O的直径AB=2,点C在上,=3,连接BC,则图中阴影部分的面积是.
15.(3分)如图,在矩形ABCD中,AB=2,BC=3,点M是BC边上的一个动点(点M 不与点B、C重合),BM=x,将△ABM沿着AM折叠,使点B落在射线MP上的点B′处,点E是CD边上一点,CE=y,将△CME沿ME折叠,使点C也落在射线MP上的点C′处,当y取最大值时,△C′ME的面积为.
三、解答题(本大题共8个小题,满分75分)
16.(8分)先化简,再求值:,其中.
17.(9分)据最新统计显示,中国人口约为13901亿,河南省人口约为955913万,全国
在用姓氏共计6150个,《户籍人口数据超过千万的姓氏表》中排在前20的姓氏和户籍人口数据如表:
表一:
表二:
请根据以上信息解答下列问题:
(1)填空:a=,b=;
(2)请补全频数分布直方图;
(3)请估计河南省户籍人口中,姓氏为王的有多少万人?
18.(9分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE 与AB交于点P,再连接FP、FB,且∠AED=45°.
(1)求证:CD∥AB;
(2)填空:
①当∠DAE=时,四边形ADFP是菱形;
②当∠DAE=时,四边形BFDP是正方形.
19.(9分)如图,滑翔运动员在空中测量某寺院标志性高塔“云端塔”的高度,空中的点P距水平地面BE的距离为200米,从点P观测塔顶A的俯角为33°,以相同高度继续向前飞行120米到达点C,在C处观测点A的俯角是60°,求这座塔AB的高度(结果精确到1米).(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,
≈1.41)
20.(10分)如图,在Rt△ABO中,∠OAB=90°,点A在y轴正半轴上,AB=OA,
点B的坐标为(x,3),点D是OB上的一个动点,反比例函数的图象经
过点D,交AB于点C,连接CD.
(1)当点D是OB的中点时,求反比例函数的解析式;
(2)当点D到y轴的距离为1时,求△CDB的面积.
21.(10分)某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.(1)该商品的售价和进价分别是多少元?
(2)设每天的销售利润为w元,每件商品涨价x元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?
(3)为增加销售利润,营销部推出了以下两种销售方案:方案一:每件商品涨价不超过8元;方案二:每件商品的利润至少为24元,请比较哪种方案的销售利润更高,并说明理由.
22.(10分)如图,在平行四边形ABCD中,AC与BD交于点O,以点O为顶点的∠EOF 的两边分别与边AB、AD交于点E、F,且∠EOF与∠BAD互补.
(1)若四边形ABCD是正方形,则线段OE与OF有何数量关系?请直接写出结论;
(2)若四边形ABCD是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由;
(3)若AB:AD=m:n,探索线段OE与OF的数量关系,并证明你的结论.
23.(10分)如图,已知抛物线y=ax2+4x+c与x轴交于点M,与y轴交于点N,抛物线的