高中数学必修1模块检测
高中数学 模块1 高考真题(含解析)新人教A版必修1-新人教A版高一必修1数学试题
模块1高考真题对应学生用书P81剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是由教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.但在难度上会有一些差异,但在试卷结构、命题方向上基本上都是相同的.“稳定”是高考的主旋律.在今年的高考试卷中,试题分布和考核内容没有太大的变动,三角、数列、立体几何、圆锥曲线、函数与导数等都是历年考查的重点.每套试卷都注重了对数学通性通法的考查,淡化特殊技巧,都是运用基本概念分析问题,基本公式运算求解、基本定理推理论证、基本数学思想方法分析和解决问题,这有利于引导中学数学教学回归基础.试卷难度结构合理,由易到难,循序渐进,具有一定的梯度.今年数学试题与去年相比整体难度有所降低.“创新”是高考的生命线.与历年试卷对比,Ⅰ、Ⅱ卷解答题顺序有变,这也体现了对于套路性解题的变革,单纯地通过模仿老师的解题步骤而不用心去理解归纳,是难以拿到高分的.在数据处理能力以及应用意识和创新意识上的考查有所提升,也符合当前社会的大数据处理热潮和青少年创新性的趋势.全国Ⅰ、Ⅱ、Ⅲ卷对必修1集合与函数知识的考查,相对来说比较常规,难度不大,变化小,综合性低,属于基础类必得分试题,主要考查集合的概念及运算,函数的图象及定义域、值域、单调性、奇偶性、对称性、周期、最值等基本性质.做题时若能熟练应用概念及性质,掌握转化的技巧和方法,基本不会丢分。
若综合其他省市自主命题卷研究,必修1的知识又能与命题、不等式、导数、分段函数等知识综合,强化了数形结合思想、分类讨论思想、转化与化归的数学思想的运用,提高了试题的难度,所以作为高一学生来说,从必修1就应该打好牢固的基础,培养最基本的能力.下面列出了2018年全国Ⅰ、Ⅱ、Ⅲ卷及其他自主命题省市试卷必修1所考查的全部试题,请同学们根据所学必修1的知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学习内容的小综合试题,同学们可根据目前所学内容,有选择性地试做!)穿越自测一、选择题1.(2018·全国卷Ⅰ,文1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( ) A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}答案A解析根据集合交集中元素的特征,可以求得A∩B={0,2},故选A.2.(2018·全国卷Ⅱ,文2)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( ) A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7}答案C解析∵A={1,3,5,7},B={2,3,4,5},∴A∩B={3,5},故选C.3.(2018·某某卷,1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}答案C解析因为全集U={1,2,3,4,5},A={1,3},所以根据补集的定义得,∁U A={2,4,5},故选C.4.(2018·全国卷Ⅲ,文1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1} C.{1,2} D.{0,1,2}答案C解析由集合A={x∈R|x≥1},所以A∩B={1,2},故选C.5.(2018·某某卷,文1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}答案 C解析由并集的定义可得,A∪B={-1,0,1,2,3,4},结合交集的定义可知,(A∪B)∩C ={-1,0,1}.故选C.6.(2018·某某卷,理1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}答案 B解析由题意可得,∁R B={x|x<1},结合交集的定义可得,A∩(∁R B)={x|0<x<1}.故选B.7.(2018·卷,文1)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2} D .{-1,0,1,2} 答案 A解析 A ={x ||x |<2}={x |-2<x <2},B ={-2,0,1,2},∴A ∩B ={0,1}.故选A. 8.(2018·全国卷Ⅰ,理2)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 解不等式x 2-x -2>0,得x <-1或x >2,所以A ={x |x <-1或x >2},于是∁R A ={x |-1≤x ≤2},故选B.9.(2018·全国卷Ⅲ,文7)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x ) 答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于x =1对称的点还是(1,0),只有y =ln (2-x )过此点.故B 正确.10.(2018·某某卷,理5)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b 答案 D解析 由题意结合对数函数的性质可知,a =log 2e>1,b =ln 2=1log 2e ∈(0,1),c =log1213=log 23>log 2e ,据此可得,c >a >b .故选D.11.(2018·全国卷Ⅱ,文3)函数f (x )=e x -e-xx2的图象大致为( )答案 B解析 ∵x ≠0,f (-x )=e -x-e xx2=-f (x ), ∴f (x )为奇函数,排除A ,∵f (1)=e -e -1>0,∴排除D ;∵f (2)=e 2-e -24=4e 2-4e 216;f (4)=e 4-e-416=e 2·e 2-1e 416,∴f (2)<f (4),排除C.因此选B.12.(2018·全国卷Ⅰ,理9)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值X 围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞) D.[1,+∞) 答案 C解析 画出函数f (x )的图象,再画出直线y =-x ,之后上下移动,可以发现当直线过点A 时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程f (x )=-x -a 有两个解,也就是函数g (x )有两个零点,此时满足-a ≤1,即a ≥-1,故选C.13.(2018·全国卷Ⅰ,文12)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值X 围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案 D解析 将函数f (x )的图象画出来,观察图象可知⎩⎪⎨⎪⎧2x <0,2x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值X 围是(-∞,0),故选D.14.(2018·全国卷Ⅲ,理12)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b 答案 B解析 ∵a =log 0.20.3,b =log 20.3,∴1a =log 0.30.2,1b =log 0.32,∴1a +1b=log 0.30.4,∴0<1a +1b <1,即0<a +b ab<1.又∵a >0,b <0,∴ab <0,即ab <a +b <0,故选B.二、填空题15.(2018·某某卷,1)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =________. 答案 {1,8}解析 由题设和交集的定义可知,A ∩B ={1,8}.16.(2018·某某卷,5)函数f (x )=log 2x -1的定义域为________. 答案 [2,+∞)解析 要使函数f (x )有意义,则log 2x -1≥0,解得x ≥2,即函数f (x )的定义域为[2,+∞).17.(2018·全国卷Ⅰ,文13)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2018·全国卷Ⅲ,文16)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=________.答案 -2解析 f (x )+f (-x )=ln (1+x 2-x )+1+ln (1+x 2+x )+1=ln (1+x 2-x 2)+2=2,∴f (a )+f (-a )=2,则f (-a )=-2.19.(2018·卷,理13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 y =sin x (答案不唯一)解析 令f (x )=⎩⎪⎨⎪⎧0,x =0,4-x ,x ∈0,2],则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.20.(2018·某某卷,9)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,x +12,-2<x ≤0,则f [f (15)]的值为________.答案22解析 由f (x +4)=f (x )得函数f (x )的周期为4,所以f (15)=f (16-1)=f (-1)=-1+12=12,因此f [f (15)]=f 12=cos π4=22. 21.(2018·某某卷,15)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值X 围是________.答案 (1,4) (1,3]∪(4,+∞)解析 由题意,得⎩⎪⎨⎪⎧x ≥2,x -4<0或⎩⎪⎨⎪⎧x <2,x 2-4x +3<0,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f (x )=x -4>0,此时f (x )=x 2-4x +3=0,x =1,3,即在(-∞,λ)上有两个零点;当λ≤4时,f (x )=x -4=0,x =4,由f (x )=x 2-4x +3在(-∞,λ)上只能有一个零点,得1<λ≤3.综上,λ的取值X 围为(1,3]∪(4,+∞).22.(2018·某某卷,理14)已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x的方程f (x )=ax 恰有2个互异的实数解,则a 的取值X 围是________.答案 (4,8)解析 当x ≤0时,方程f (x )=ax ,即x 2+2ax +a =ax ,整理可得,x 2=-a (x +1),很明显x =-1不是方程的实数解,则a =-x 2x +1,当x >0时,方程f (x )=ax ,即-x 2+2ax -2a =ax ,整理可得,x 2=a (x -2),很明显x =2不是方程的实数解,则a =x 2x -2,令g (x )=⎩⎪⎨⎪⎧-x 2x +1,x ≤0,x 2x -2,x >0,其中-x 2x +1=-x +1+1x +1-2,x 2x -2=x -2+4x -2+4,原问题等价于函数g (x )与函数y =a 有两个不同的交点,求a 的取值X 围.结合对勾函数和函数图象平移的规律绘制函数g (x )的图象,同时绘制函数y =a 的图象如图所示,考查临界条件,结合a >0观察可得,实数a 的取值X 围是(4,8).。
高中数学模块综合检测新人教A版选择性必修第一册
模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设x ,y ∈R ,向量a =(x,1,1),b =(1,y,1),c =(2,-4,2),a ⊥c ,b ∥c ,则|a +b |=( )A .2 2B .10C .3D .4【答案】C【解析】∵b ∥c ,∴y =-2.∴b =(1,-2,1).∵a ⊥c ,∴a ·c =2x +1·()-4+2=0,∴x =1.∴a =(1,1,1).∴a +b =(2,-1,2).∴|a +b |=22+-12+22=3.2.如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD →+12(BC →-BD →)等于( )A .AD →B .FA →C .AF →D .EF →【答案】C【解析】∵BC →-BD →=DC →,12(BC →-BD →)=12DC →=DF →,∴AD →+12(BC →-BD →)=AD →+DF →=AF →.3.若直线l 1:mx +2y +1=0与直线l 2:x +y -2=0互相垂直,则实数m 的值为( ) A .2 B .-2 C .12 D .-12【答案】B【解析】直线l 1:y =-m 2x -12,直线l 2:y =-x +2,又∵直线l 1与直线l 2互相垂直,∴-m2×(-1)=-1,即m =-2.4.已知直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,则a =( )A .-9B .1C .1或-2D .1或-9【答案】D【解析】由条件得圆的半径为3,圆心坐标为(1,-2),因为直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,所以9-⎝ ⎛⎭⎪⎫422=⎝ ⎛⎭⎪⎫|1+4+a -1|52,所以a 2+8a -9=0,解得a =1或a =-9.5.已知M (x 0,y 0)是双曲线C :x 2a 2-y 2b2=1上的一点,半焦距为c ,若|MO |≤c (其中O 为坐标原点),则y 20的取值范围是( )A .⎣⎢⎡⎦⎥⎤0,b 4c 2 B .⎣⎢⎡⎦⎥⎤0,a 4c 2C .⎣⎢⎡⎭⎪⎫b 4c 2,+∞ D .⎣⎢⎡⎭⎪⎫a 2c 2,+∞ 【答案】A【解析】因为|MO |≤c ,所以|MO |≤a 2+b 2,所以x 20+y 20≤a 2+b 2,又因为x 20a 2-y 20b2=1,消去x 2得0≤y 20≤b 4a 2+b 2,所以0≤y 20≤b 4c2.6.已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,直线l :y =24x 与椭圆C 相交于A ,B 两点,若|AB |=2c ,则椭圆C 的离心率为( )A .32B .34C .12D .14【答案】A【解析】设直线与椭圆在第一象限内的交点为A (x ,y ),则y =24x ,由|AB |=2c ,可知|OA |=x 2+y 2=c ,即x 2+⎝⎛⎭⎪⎫24x 2=c ,解得x =223c ,所以A ⎝ ⎛⎭⎪⎫223c ,13c .把点A 代入椭圆方程得到⎝ ⎛⎭⎪⎫223c 2a2+⎝ ⎛⎭⎪⎫13c 2b2=1,整理得8e 4-18e 2+9=0,即(4e 2-3)(2e 2-3)=0,因为0<e <1,所以可得e =32. 7.在空间直角坐标系Oxyz 中,O (0,0,0),E (22,0,0),F (0,22,0),B 为EF 的中点,C 为空间一点且满足|CO →|=|CB →|=3,若cos 〈EF →,BC →〉=16,则OC →·OF →=( )A .9B .7C .5D .3【答案】D【解析】设C (x ,y ,z ),B (2,2,0),OC →=(x ,y ,z ),BC →=(x -2,y -2,z ),EF →=(-22,22,0),由cos 〈EF →,BC →〉=EF →·BC→|EF →||BC →|=-22,22,0·x -2,y -2,z 4×3=16,整理可得x -y =-22,由|CO →|=|CB →|=3,得x 2+y 2=x -22+y -22,化简得x +y =2,以上方程组联立得x =24,y =324,则OC →·OF →=(x ,y ,z )·(0,22,0)=22y =3. 8.已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =-116的距离为d ,若|MN |2=λ·d 2,则λ的最小值为( )A .22B .1-22C .1+22D .2+ 2【答案】D【解析】抛物线y =4x 2的焦点F ⎝ ⎛⎭⎪⎫0,116,准线为y =-116.设|MF |=a ,|NF |=b ,由∠MFN =135°,得|MN |2=|MF |2+|NF |2-2|MF |·|NF |·cos ∠MFN =a 2+b 2+2ab .由抛物线的定义,得点M 到准线的距离为|MF |,点N 到准线的距离为|NF |.由梯形的中位线定理,得d =12(|MF |+|NF |)=12(a +b ).由|MN |2=λ·d 2,得14λ=a 2+b 2+2ab a +b 2=1-2-2aba +b 2≥1-2-2ab 2ab2=1-2-24=2+24,得λ≥2+2,当且仅当a =b 时取得最小值2+2.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线l :(a 2+a +1)x -y +1=0,其中a ∈R ,下列说法正确的是( ) A .当a =-1时,直线l 与直线x +y =0垂直 B .若直线l 与直线x -y =0平行,则a =0C .直线l 过定点(0,1)D .当a =0时,直线l 在两坐标轴上的截距相等 【答案】AC【解析】对于A 项,当a =-1时,直线l 的方程为x -y +1=0,显然与x +y =0垂直,所以正确;对于B 项,若直线l 与直线x -y =0平行,可知(a 2+a +1)·(-1)=1·(-1),解得a =0或a =-1,所以不正确;对于C 项,当x =0时,有y =1,所以直线过定点(0,1),所以正确;对于D 项,当a =0时,直线l 的方程为x -y +1=0,在x 轴、y 轴上的截距分别是-1,1,所以不正确.故选AC .10.已知F 1,F 2是双曲线C :y 24-x 22=1的上、下焦点,点M 是该双曲线的一条渐近线上的一点,并且以线段F 1F 2为直径的圆经过点M ,则下列说法正确的是( )A .双曲线C 的渐近线方程为y =±2xB .以F 1F 2为直径的圆的方程为x 2+y 2=2 C .点M 的横坐标为± 2 D .△MF 1F 2的面积为2 3 【答案】ACD【解析】由双曲线方程y 24-x 22=1知a =2,b =2,焦点在y 轴,渐近线方程为y =±abx =±2x ,A 正确;c =a 2+b 2=6,以F 1F 2为直径的圆的方程是x 2+y 2=6,B 错误;由⎩⎨⎧x 2+y 2=6,y =2x ,得⎩⎨⎧x =2,y =2或⎩⎨⎧x =-2,y =-2,由对称性知点M 横坐标是±2,C 正确;S △MF 1F 2=12|F 1F 2||x M |=12×26×2=23,D 正确.故选ACD .11.已知点A 是直线l :x +y -2=0上一定点,点P ,Q 是圆x 2+y 2=1上的动点,若∠PAQ 的最大值为90°,则点A 的坐标可以是( )A .(0,2)B .(1,2-1)C .(2,0)D .(2-1,1)【答案】AC【解析】如图所示,原点到直线l 的距离为d =212+12=1,则直线l 与圆x 2+y 2=1相切.由图可知,当AP ,AQ 均为圆x 2+y 2=1的切线时,∠PAQ 取得最大值.连接OP ,OQ ,由于∠PAQ 的最大值为90°,且∠APO =∠AQO =90°,|OP |=|OQ |=1,则四边形APOQ 为正方形,所以|OA |=2|OP |=2.设A (t ,2-t ),由两点间的距离公式,得|OA |=t 2+2-t2=2,整理得2t 2-22t =0,解得t =0或t =2,因此,点A 的坐标为(0,2)或(2,0).故选AC .12.关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有OP →=16OA →+512OB →+512OC →,则P ,A ,B ,C 四点共面C .设{}a ,b ,c 是空间中的一组基底,则{2a ,-b ,c }也是空间的一组基底D .若a ·b <0,则〈a ,b 〉是钝角 【答案】ABC【解析】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有OP →=16OA →+13OB →+12OC →,因为16+512+512=1,所以P ,A ,B ,C 四点一定共面,所以是正确的;对于C 中,由{}a ,b ,c 是空间中的一组基底,则向量a ,b ,c 不共面,可得向量2a ,-b ,c 也不共面,所以{2a ,-b ,c }也是空间的一组基底,所以是正确的;对于D 中,若a ·b <0,又由〈a ,b 〉∈[0,π],所以〈a ,b 〉∈⎝ ⎛⎦⎥⎤π2,π,所以不正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是__________;|OM |=________.【答案】(1,1,-1)3【解析】在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是M ′(1,1,-1),|OM |=12+-12+12=3.14.(2021年惠州期末)圆C :(x -1)2+y 2=1关于直线l :x -y +1=0对称的圆的方程为______________.【答案】(x +1)2+(y -2)2=1【解析】圆C :(x -1)2+y 2=1圆心C (1,0),半径r =1,设圆C 关于直线l :x -y +1=0的对称点C ′(a ,b ),则⎩⎪⎨⎪⎧a +12-b2+1=0,ba -1=-1,解得a =-1,b =2,即圆C 的圆心关于直线l 的对称圆心为C ′(-1,2),而圆关于直线对称得到的圆的半径不变,所以所求的圆的方程为(x +1)2+(y -2)2=1.15.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M ,N 分别是线段BB 1,B 1C 1的中点,则直线MN 到平面ACD 1的距离为________.【答案】32【解析】如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),C (0,1,0),D 1(0,0,1),M ⎝ ⎛⎭⎪⎫1,1,12,A (1,0,0).∴AM →=⎝⎛⎭⎪⎫0,1,12,AC→=(-1,1,0),AD 1→=(-1,0,1).设平面ACD 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-x +y =0,-x +z =0,令x =1,则y =z =1,∴n =(1,1,1).∴点M 到平面ACD 1的距离d =|AM →·n ||n |=32.又∵MN →綉12AD 1→,∴MN ∥平面ACD 1.∴直线MN 到平面ACD 1的距离为32.16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为该双曲线上一点且2|PF 1|=3|PF 2|,若∠F 1PF 2=60°,则该双曲线的离心率为________.【答案】7【解析】2|PF 1|=3|PF 2|,|PF 1|-|PF 2|=2a ,故|PF 1|=6a ,|PF 2|=4a .在△PF 1F 2中,利用余弦定理得4c 2=36a 2+16a 2-2·6a ·4a cos60°,化简整理得到c =7a ,故e =7.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,A (2,-5,3),AB →=(4,1,2),BC →=(3,-2,5). (1)求顶点B ,C 的坐标; (2)求CA →·BC →.解:(1)设点O 为坐标原点,OB →=OA →+AB →=(2,-5,3)+(4,1,2)=(6,-4,5), 则B (6,-4,5).OC →=OB →+BC →=(6,-4,5)+(3,-2,5)=(9,-6,10),则C (9,-6,10).(2)AC →=AB →+BC →=(7,-1,7),则CA →=(-7,1,-7),又因为BC →=(3,-2,5),所以CA →·BC →=-7×3+1×(-2)+(-7)×5=-58. 18.(12分)菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程.解:(1)k BC =-5--16-8=2,∵AD ∥BC ,∴k AD =2.∴AD 边所在直线的方程为y -7=2(x +4),即2x -y +15=0. (2)k AC =-5-76--4=-65.∵菱形的对角线互相垂直,∴BD ⊥AC ,∴k BD =56.∵AC 的中点(1,1),也是BD 的中点,∴对角线BD 所在直线的方程为y -1=56(x -1),即5x -6y +1=0.19.(12分)已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. (1)证明:圆C 1的圆心C 1(1,3),半径r 1=11. 圆C 2的圆心C 2(5,6),半径r 2=4.两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4,|r 1-r 2|=4-11, ∴|r 1-r 2|<d <r 1+r 2. ∴圆C 1和圆C 2相交.(2)解:圆C 1和圆C 2的方程相减, 得4x +3y -23=0,∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.20.(12分)如图,过抛物线C :x 2=2py (p >0)的焦点F 的直线交C 于M (x 1,y 1),N (x 2,y 2)两点,且x 1x 2=-4.(1)求抛物线C 的标准方程;(2)R ,Q 是C 上的两动点,R ,Q 的纵坐标之和为1,R ,Q 的垂直平分线交y 轴于点T ,求△MNT 的面积的最小值.解:(1)由题意,设直线MN 的方程为y =kx +p2,由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py ,得x 2-2pkx -p 2=0,由题意知x 1,x 2是方程两根,所以x 1x 2=-p 2=-4, 所以p =2,抛物线的标准方程为x 2=4y .(2)设R (x 3,y 3),Q (x 4,y 4),T (0,t ),因为点T 在RQ 的垂直平分线上,所以|TR |=|TQ |, 得x 23+(y 3-t )2=x 24+(y 4-t )2.因为x 23=4y 3,x 24=4y 4,所以4y 3+(y 3-t )2=4y 4+(y 4-t )2, 即4(y 3-y 4)=(y 3+y 4-2t )(y 4-y 3), 所以-4=y 3+y 4-2t .又因为y 3+y 4=1,所以t =52,故T ⎝ ⎛⎭⎪⎫0,52.于是S △MNT =12|FT ||x 1-x 2|=34|x 1-x 2|.由(1)得x 1+x 2=4k ,x 1x 2=-4, 所以S △MNT =34|x 1-x 2|=34x 1+x 22-4x 1x 2=3416k 2-4×-4=3k 2+1≥3. 所以当k =0时,S △MNT 有最小值3.21.(12分)如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 上的点.(1)求证:平面EAC ⊥平面PBC ; (2)二面角P -AC -E 的余弦值为63,求直线PA 与平面EAC 所成角的正弦值.(1)证明:∵PC ⊥底面ABCD ,AC ⊂底面ABCD , ∴PC ⊥AC .∵AB =2,AD =CD =1,∴AC =BC =2. ∴AC 2+BC 2=AB 2,∴AC ⊥BC . 又∵BC ∩PC =C ,∴AC ⊥平面PBC . ∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)解:如图,以C 为原点,取AB 中点F ,CF →,CD →,CP →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0). 设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫12,-12,a 2,CA →=(1,1,0),CP →=(0,0,a ),CE →=⎝ ⎛⎭⎪⎫12,-12,a 2,设m =(x 1,y 1,z 1)为平面PAC 的法向量, 由⎩⎪⎨⎪⎧m ·CA →=x 1+y 1=0,m ·CP →=az 1=0,所以可取x 1=1,y 1=-1,z 1=0,即m =(1,-1,0). 设n =(x 2,y 2,z 2)为平面EAC 的法向量, 则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,x 2-y 2+az 2=0,取x 2=a ,y 2=-a ,z 2=-2,则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2.于是n =(2,-2,-2),PA →=(1,1,-2). 设直线PA 与平面EAC 所成角为θ,则sin θ=|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23. 22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且经过点⎝⎛⎭⎪⎫-1,32.(1)求椭圆C 的方程.(2)过点(3,0)作直线l 与椭圆C 交于A ,B 两点,试问在x 轴上是否存在定点Q 使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由.解:(1)由题意可得32=c a ,1a 2+34b2=1, 又因为a 2-b 2=c 2, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)存在定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称,理由如下: 设直线l 的方程为x +my -3=0,与椭圆C 联立,整理得(4+m 2)y 2-23my -1=0. 设A (x 1,y 1),B (x 2,y 2),定点Q (t,0)(依题意t ≠x 1,t ≠x 2),则由韦达定理可得,y 1+y 2=23m 4+m 2,y 1y 2=-14+m2. 直线QA 与直线QB 恰关于x 轴对称,等价于AQ ,BQ 的斜率互为相反数. 所以y 1x 1-t +y 2x 2-t=0,即y 1(x 2-t )+y 2(x 1-t )=0.又因为x 1+my 1-3=0,x 2+my 2-3=0, 所以y 1(3-my 2-t )+y 2(3-my 1-t )=0, 整理得(3-t )(y 1+y 2)-2my 1y 2=0. 从而可得(3-t )·23m 4+m 2-2m ·-14+m2=0,11 即2m (4-3t )=0,所以当t =433,即Q ⎝ ⎛⎭⎪⎫433,0时,直线QA 与直线QB 恰关于x 轴对称成立.特别地,当直线l 为x 轴时,Q ⎝ ⎛⎭⎪⎫433,0也符合题意. 综上所述,存在x 轴上的定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称.。
高中数学必修一第一章《集合与函数概念》单元测试题(含答案)
⾼中数学必修⼀第⼀章《集合与函数概念》单元测试题(含答案)《集合与函数概念》单元测试题(第⼀章)(120分钟150分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.集合A={0,1,2},B={x|-1A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N?M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满⾜f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定5.已知⼀次函数y=kx+b为减函数,且kb<0,则在直⾓坐标系内它的⼤致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为⾃变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=?,则实数m的取值范围是( )A.m<4B.m>4C.0D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中⼀个为正偶数,另⼀个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x14.已知a是实数,若集合{x|ax=1}是任何集合的⼦集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本⼤题共6⼩题,共70分.解答时应写出必要的⽂字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2(1)分别求A∩B,(eB)∪A.R(2)已知C={x|a18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)(2015·烟台⾼⼀检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并⽤定义证明..【拓展延伸】定义法证明函数单调性时常⽤变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进⾏因式分解.(2)通分:当原函数是分式函数时,作差后往往进⾏通分,然后对分⼦进⾏因式分解.(3)配⽅:当原函数是⼆次函数时,作差后可考虑配⽅,便于判断符号.21.(12分)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,⼜f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满⾜:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.《集合与函数概念》单元测试题参考答案(第⼀章)(120分钟150分)。
人教版高中数学必修一第一章单元测试(含答案)
高中数学《必修一》第一章教学质量检测卷佛冈中学全校学生家长的全体 1、下列各组对象中不能构成集合的是()A 、佛冈中学高一(20)班的全体男生B 、C 、李明的所有家人D 王明的所有好朋友 选择 (将 题的 填入2、 已知集合A x R|x 5 ,B x R x 1 ,那么AI B 等于3、4、5、 A 、6、 7、 A. C. {2, 2,3,4,5 3,4} D.B.2, 3,4,12,3,4,5,6,7,8 ,集合 A {1,2,315}, 设全集U 则图中的阴影部分表示的集合为()A. 2B. 4,6C. 1,3,5D. 4,6,7,8 下列四组函数中表示同一函数的是 A. f(x) x , g(x) (Tx )2B. f (x) C. f (x)廉,g(x) |x|D. f(x) 函数 f(x)= 2x 2- 1 , x? (0,3) o1B 1C 、2D B {2,4,6} ()x 2,g(x) x 1 0 , g(x) < x 1 ■. 1 x若f (a )= 7,则a 的值是() x 2,(x 0)血 设f(x) !,(x 0),则f[f(1)]() A 3B 1C.0D.-1 函数f (x ) = . x + 3的值域为() A 、[3 , +x ) B 、(一x, 3]C 、[0 , +x )D R 8、下列四个图像中,不可能是函数图像的是 () 9、设f (x )是R上 的偶函数,且在 [0,+ x )上单调 递增,则f(-2),f(3),f(- )的大小顺序是:() A f(- )>f(3)>f(-2)B 、f(- )>f(-2)>f(3) C 、f(-2)>f(3)>f(- )D 、f(3)>f(-2)>f(- ) 10、在集合{a , b , c , d }上定义两种运算 和 如下:那么 b (a c)() A. aB. bC. cD. d二、填空题(本大题共4小题,每小题5分,共20分) 11、 函数y 1 (x 3)0的定义域为12、 函数f(x) x 2 6x 10在区间[0,4]的最大值是Q I /'13、 若 A { 2,2,3,4} , B {x|x t 2,t A},用列举法表示 B 是.14、 下列命题:①集合a,b,c,d 的子集个数有16个;②定义在R 上的奇函数f(x)必满足f (0) 0 ; ③f(x) 2x 1 2 2 2x 1既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤f(x)」x在 ,0 U 0, 上是减函数。
新教材人教B版高中数学选择性必修第一册各章综合测验及模块测验含答案解析
人教B 选择性必修第一册综合测验第一章 空间向量与立体几何............................................................................................ 1 第二章 平面解析几何 .................................................................................................... 15 模块综合测验 . (28)第一章 空间向量与立体几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平行六面体ABCD-A'B'C'D'中,向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD ⃗⃗⃗⃗⃗⃗ 是( ) A.有相同起点的向量 B .等长的向量C.共面向量 D .不共面向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD⃗⃗⃗⃗⃗⃗ 显然不是有相同起点的向量,A 不正确; 由该平行六面体不是正方体可知,这三个向量不是等长的向量,B 不正确. 又∵AD '⃗⃗⃗⃗⃗⃗ −AB '⃗⃗⃗⃗⃗⃗ =B 'D '⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ , ∴AB '⃗⃗⃗⃗⃗⃗ ,AD '⃗⃗⃗⃗⃗⃗ ,BD⃗⃗⃗⃗⃗⃗ 共面,C 正确,D 不正确. 2.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A.a ∥c ,b ∥c B.a ∥b ,a ⊥c C.a ∥c ,a ⊥b D.以上都不对a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),∴a ·b =-4+0+4=0,∴a ⊥b .∵-4-2=-6-3=21,∴a ∥c .3.在长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ = ( ) A.D 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.D 1B ⃗⃗⃗⃗⃗⃗⃗ C.DB 1⃗⃗⃗⃗⃗⃗⃗⃗ D.BD 1⃗⃗⃗⃗⃗⃗⃗⃗,长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD 1⃗⃗⃗⃗⃗⃗⃗⃗ .4.如图所示,已知空间四边形ABCD ,连接AC ,BD.M ,G 分别是BC ,CD 的中点,则AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ 等于 ( )A.AD ⃗⃗⃗⃗⃗B.GA ⃗⃗⃗⃗⃗C.AG ⃗⃗⃗⃗⃗D.MG ⃗⃗⃗⃗⃗⃗M ,G 分别是BC ,CD 的中点,∴12BC ⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ ,12BD ⃗⃗⃗⃗⃗⃗ =MG ⃗⃗⃗⃗⃗⃗ .∴AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AG⃗⃗⃗⃗⃗ . 5.在四棱锥P-ABCD 中,AB ⃗⃗⃗⃗⃗ =(4,-2,3),AD ⃗⃗⃗⃗⃗ =(-4,1,0),AP ⃗⃗⃗⃗⃗ =(-6,2,-8),则这个四棱锥的高h 等于 ( )A.1 B .2C.13D .26ABCD 的法向量为n =(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD ⃗⃗⃗⃗⃗ =0,即{4x -2y +3z =0,-4x +y =0.不妨令x=3,则y=12,z=4,可得n =(3,12,4), 四棱锥的高h=|AP ⃗⃗⃗⃗⃗ ·n ||n |=2613=2.6.已知两不重合的平面α与平面ABC ,若平面α的法向量为n 1=(2,-3,1),AB ⃗⃗⃗⃗⃗ =(1,0,-2),AC ⃗⃗⃗⃗⃗ =(1,1,1),则( ) A.平面α∥平面ABC B.平面α⊥平面ABCC.平面α、平面ABC 相交但不垂直D.以上均有可能,n 1·AB ⃗⃗⃗⃗⃗ =2×1+(-3)×0+1×(-2)=0,得n 1⊥AB ⃗⃗⃗⃗⃗ ,n 1·AC ⃗⃗⃗⃗⃗ =2×1+(-3)×1+1×1=0,得n 1⊥AC⃗⃗⃗⃗⃗ , 所以n 1⊥平面ABC ,所以平面α的法向量与平面ABC 的法向量共线,则平面α∥平面ABC.7.直线AB 与直二面角α-l-β的两个面分别交于A ,B 两点,且A ,B 都不在棱l 上,设直线AB 与α,β所成的角分别为θ和φ,则θ+φ的取值范围是( ) A.0°<θ+φ<90° B.0°<θ+φ≤90° C.90°<θ+φ<180° D.θ+φ=90°,分别过点A ,B 向平面β,α作垂线,垂足为A 1,B 1,连接BA 1,AB 1.由已知α⊥β,所以AA 1⊥β,BB 1⊥α,因此∠BAB 1=θ,∠ABA 1=φ.由最小角定理得∠BAA 1≥θ,而∠BAA 1+φ=90°,故θ+φ=θ+90°-∠BAA 1≤90°,当AB ⊥l 时,θ+φ=90°,应选B .8.长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,则集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}中元素的个数为( )A.1 B .2 C .3 D .4长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,∴建立如图的空间直角坐标系, 则A 1(1,1,0),A 2(0,1,0),A 3(0,0,0),A 4(1,0,0), B 1(1,1,2),B 2(0,1,2),B 3(0,0,2),B 4(1,0,2), 则A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2),与A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)相等的向量为A 2B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 3B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 4B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-1,2)相等的向量为A 2B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,2)相等的向量为A 3B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4,与A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,2)相等的向量为A 3B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,与A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2)相等的向量为A 4B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,体对角线向量为A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-1,2),此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3, A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,综上集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}={3,4,5},集合中元素的个数为3个.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.设向量a ,b ,c 可构成空间一个基底,下列选项中正确的是( ) A.若a ⊥b ,b ⊥c ,则a ⊥cB.则a,b,c两两共面,但a,b,c不可能共面C.对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z cD.则a+b,b+c,c+a一定能构成空间的一个基底a,b,c是空间一个基底,知:在A中,若a⊥b,b⊥c,则a与c相交或平行,故A错误;在B中,a,b,c两两共面,但a,b,c不可能共面,故B正确;在C中,对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z c,故C正确;在D中,a+b,b+c,c+a一定能构成空间的一个基底,故D正确.10.已知向量a=(1,2,3),b=(3,0,-1),c=(-1,5,-3),下列等式中正确的是()A.(a·b)c=b·cB.(a+b)·c=a·(b+c)C.(a+b+c)2=a2+b2+c2D.|a+b+c|=|a-b-c|左边为向量,右边为实数,显然不相等,不正确;B.左边=(4,2,2)·(-1,5,-3)=0,右边=(1,2,3)·(2,5,-4)=2+10-12=0,∴左边=右边,因此正确.C.a+b+c=(3,7,-1),左边=32+72+(-1)2=59,右边=12+22+32+32+0+(-1)2+(-1)2+52+(-3)2=59,∴左边=右边,因此正确.D.由C可得左边=√59,∵a-b-c=(-1,-3,7),∴|a-b-c|=√59,∴左边=右边,因此正确.故BCD正确.11.在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AB,CC1,A1D1,C1D1的中点,则下列结论正确的是 ()A.A1E⊥AC1B.BF∥平面ADD1A1C.BF⊥DGD.A1E∥CH解析设正方体的棱长为1,以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A 1(1,0,1),E (1,12,0),C (0,1,0),F (0,1,12),C 1(0,1,1),H 0,12,1,G (12,0,1),A (1,0,0),B (1,1,0),D (0,0,0),则A 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,1,1),BF ⃗⃗⃗⃗⃗ =(-1,0,12),DG ⃗⃗⃗⃗⃗ =(12,0,1),CH ⃗⃗⃗⃗⃗ =(0,-12,1), 所以A 1E ⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =-12,所以A 1E 与AC 1不垂直,故A 错误; 显然平面ADD 1A 1的一个法向量v =(0,1,0), 有BF ⃗⃗⃗⃗⃗ ·v =0,所以BF ∥平面ADD 1A 1,故B 正确; BF ⃗⃗⃗⃗⃗ ·DG ⃗⃗⃗⃗⃗ =0,所以BF ⊥DG ,故C 正确; A 1E ⃗⃗⃗⃗⃗⃗⃗ =-CH⃗⃗⃗⃗⃗ ,所以A 1E ∥CH ,故D 正确. 12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 所成的角为60°;④AB 与CD 所成的角为60°.其中正确的结论有( ) A.① B.②C.③D.④,建立空间直角坐标系Oxyz ,设正方形ABCD 的边长为√2,则D (1,0,0),B (-1,0,0),C (0,0,1),A (0,1,0),所以AC ⃗⃗⃗⃗⃗ =(0,-1,1),BD ⃗⃗⃗⃗⃗⃗ =(2,0,0),CD ⃗⃗⃗⃗⃗ =(1,0,-1),AD ⃗⃗⃗⃗⃗ =(1,-1,0),AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =0,故AC ⊥BD ,①正确.又|AC ⃗⃗⃗⃗⃗ |=√2,|CD ⃗⃗⃗⃗⃗ |=√2,|AD ⃗⃗⃗⃗⃗ |=√2, 所以△ACD 为等边三角形,②正确. 对于③,OA ⃗⃗⃗⃗⃗ 为平面BCD 的一个法向量, cos <AB ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ ||OA⃗⃗⃗⃗⃗⃗ |=√2·√1=√2=-√22.因为直线与平面所成的角∈[0°,90°],所以AB 与平面BCD 所成的角为45°,故③错误.又cos <AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ ||CD⃗⃗⃗⃗⃗⃗ |=√2·√2=-12,因为异面直线所成的角为锐角或直角,所以AB 与CD 所成的角为60°,故④正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在棱长为a 的正四面体中,AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ = . -a 22a 的正四面体中,AB=BC=a ,且AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角为120°,AC ⊥BD.∴AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =a ·a cos120°+0=-a22.14.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则xy= .2a +2b =(1+2x ,4,-y+4),2a -b =(2-x ,3,-2y-2),因为(a+2b )∥(2a-b ),所以存在λ∈R 使得1+2x=λ(2-x )且4=3λ且-y+4=λ(-2y-2),所以λ=43,x=12,y=-4,所以xy=-2.15.设PA ⊥Rt △ABC 所在的平面α,∠BAC=90°,PB ,PC 分别与α成45°和30°角,PA=2,则PA 与BC 的距离是 ;点P 到BC 的距离是 . √3 √7AD ⊥BC 于点D ,∵PA ⊥面ABC ,∴PA ⊥AD.∴AD 是PA 与BC 的公垂线.易得AB=2,AC=2√3,BC=4,AD=√3,连接PD ,则PD ⊥BC ,P 到BC 的距离PD=√7. 16.已知向量m =(a ,b ,0),n =(c ,d ,1),其中a 2+b 2=c 2+d 2=1,现有以下命题:①向量n 与z 轴正方向的夹角恒为定值(即与c ,d 无关); ②m ·n 的最大值为√2;③<m ,n >(m ,n 的夹角)的最大值为3π4;④若定义u ×v =|u |·|v |sin <u ,v >,则|m×n |的最大值为√2. 其中正确的命题有 .(写出所有正确命题的序号)取z 轴的正方向单位向量a =(0,0,1),则cos <n ,a >=n ·a|n ||a |=√c 2+d 2+12×1=√2=√22,∴向量n 与z 轴正方向的夹角恒为定值π4,命题正确;②m ·n =ac+bd ≤a 2+c 22+b 2+d 22=a 2+c 2+b 2+d 22=1+12=1,当且仅当a=c ,b=d 时取等号,因此m ·n 的最大值为1,命题错误;③由②可得|m ·n |≤1,∴-1≤m ·n ≤1, ∴cos <m ,n >=m ·n|m ||n | =√a 2+b 2·√c 2+d 2+12≥-1×√2=-√22, ∴<m ,n >的最大值是3π4,命题正确; ④由③可知:-√22≤cos <m ,n >≤√22,∴π4≤<m ,n >≤3π4,√22≤sin <m ,n >≤1,∴m×n =|m|×|n|×sin <m ,n >≤1×√2×1=√2,命题正确.综上可知,正确的命题序号是①③④.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图所示,在四棱锥M-ABCD 中,底面ABCD 是边长为2的正方形,侧棱AM 的长为3,且AM 和AB ,AD 的夹角都是60°,N 是CM 的中点,设a =AB ⃗⃗⃗⃗⃗ ,b =AD ⃗⃗⃗⃗⃗ ,c =AM ⃗⃗⃗⃗⃗⃗ ,试以a ,b ,c 为基向量表示出向量BN⃗⃗⃗⃗⃗⃗ ,并求BN 的长.⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12CM ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12(AM ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ +12[AM ⃗⃗⃗⃗⃗⃗ -(AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )] =-12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ +12AM ⃗⃗⃗⃗⃗⃗ . 所以BN⃗⃗⃗⃗⃗⃗ =-12a+12b+12c , |BN ⃗⃗⃗⃗⃗⃗ |2=BN⃗⃗⃗⃗⃗⃗ 2=-12a+12b+12c 2 =14(a 2+b 2+c 2-2a ·b-2a ·c+2b ·c )=174. 所以|BN⃗⃗⃗⃗⃗⃗ |=√172,即BN 的长为√172.18.(12分)如图,正三棱柱ABC-A 1B 1C 1中,底面边长为√2. (1)设侧棱长为1,求证:AB 1⊥BC 1;(2)设AB 1与BC 1所成的角为π3,求侧棱的长.1=AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ .因为BB 1⊥平面ABC , 所以BB 1⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0. 又△ABC 为正三角形,所以<AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=π-<BA ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ >=π-π3=2π3. 因为AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ )·(BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =AB ⃗⃗⃗⃗⃗ ·BB 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=-1+1=0, 所以AB 1⊥BC 1.(1)知AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=BB 1⃗⃗⃗⃗⃗⃗⃗ 2-1.又|AB 1⃗⃗⃗⃗⃗⃗⃗ |=√AB ⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=√2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=|BC 1⃗⃗⃗⃗⃗⃗⃗ |,所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12+BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2=12,所以|BB 1⃗⃗⃗⃗⃗⃗⃗ |=2,即侧棱长为2.19.(12分)已知空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC ⃗⃗⃗⃗⃗ . (1)若|c |=3,且c ∥BC⃗⃗⃗⃗⃗ ,求向量c ; (2)已知向量k a +b 与b 互相垂直,求k 的值; (3)求△ABC 的面积.∵空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC⃗⃗⃗⃗⃗ , ∴BC⃗⃗⃗⃗⃗ =(3,0,-4)-(1,-1,-2)=(2,1,-2), ∵|c |=3,且c ∥BC⃗⃗⃗⃗⃗ , ∴c =m BC⃗⃗⃗⃗⃗ =m (2,1,-2)=(2m ,m ,-2m ), ∴|c |=√(2m )2+m 2+(-2m )2=3|m|=3,∴m=±1,∴c =(2,1,-2)或c =(-2,-1,2). (2)由题得a =(-1,-1,0),b =(1,0,-2),∴k a +b =k (-1,-1,0)+(1,0,-2)=(1-k ,-k ,-2),∵向量k a +b 与b 互相垂直,∴(k a +b )·b =1-k+4=0,解得k=5.∴k 的值是5. (3)AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ =(1,0,-2),BC ⃗⃗⃗⃗⃗ =(2,1,-2), cos <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |·|AC⃗⃗⃗⃗⃗ |=√2×√5=-√10,sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=√1-110=√10,∴S △ABC =12×|AB ⃗⃗⃗⃗⃗ |×|AC ⃗⃗⃗⃗⃗ |×sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=12×√2×√5×√10=32.20.(12分)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM ⃗⃗⃗⃗⃗⃗ =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ).如图,连接BG ,BD ⃗⃗⃗⃗⃗⃗ =2EH ⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =2BF ⃗⃗⃗⃗⃗ ,则EG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +BG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +12(BC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=EB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +EH ⃗⃗⃗⃗⃗⃗ =EF ⃗⃗⃗⃗⃗ +EH⃗⃗⃗⃗⃗⃗ , 由共面向量定理的推论知E 、F 、G 、H 四点共面.(2)因为EH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗=12(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12BD⃗⃗⃗⃗⃗⃗ . 所以EH ∥BD ,又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH.(3)连接OM ,OA ,OB ,OC ,OD ,OE ,OG , 由(2)知EH ⃗⃗⃗⃗⃗⃗ =12BD⃗⃗⃗⃗⃗⃗ , 同理FG ⃗⃗⃗⃗⃗ =12BD ⃗⃗⃗⃗⃗⃗ ,所以EH ⃗⃗⃗⃗⃗⃗ =FG⃗⃗⃗⃗⃗ , EH ∥FG ,EH=FG ,所以EG 、FH 交于一点M 且被M 平分,所以OM ⃗⃗⃗⃗⃗⃗ =12(OE ⃗⃗⃗⃗⃗ +OG ⃗⃗⃗⃗⃗ )=1212(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )+12(OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ) =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ).21.(12分)(2021全国甲,理19)已知直三棱柱ABC-A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB=BC=2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1. (1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?如图,连接A 1E ,取BC 中点M ,连接B 1M ,EM.∵E ,M 分别为AC ,BC 中点, ∴EM ∥AB.又AB ∥A 1B 1,∴A 1B 1∥EM ,则点A 1,B 1,M ,E 四点共面,故DE ⊂平面A 1B 1ME.又在侧面BCC 1B 1中,△FCB ≌△MBB 1,∴∠FBM=∠MB 1B. 又∠MB 1B+∠B 1MB=90°,∴∠FBM+∠B 1MB=90°,∴BF ⊥MB 1.又BF ⊥A 1B 1,MB 1∩A 1B 1=B 1,MB 1,A 1B 1⊂平面A 1B 1ME ,∴BF ⊥平面A 1B 1ME ,∴BF ⊥DE.(2)∵BF ⊥A 1B 1,∴BF ⊥AB ,∴AF 2=BF 2+AB 2=CF 2+BC 2+AB 2=9. 又AF 2=FC 2+AC 2,∴AC 2=8,则AB ⊥BC.如图,以B 为原点,BC ,BA ,BB 1为x 轴、y 轴、z 轴建立空间直角坐标系,则B (0,0,0),C (2,0,0),A (0,2,0),E (1,1,0),F (2,0,1).则EF ⃗⃗⃗⃗⃗ =(1,-1,1),ED ⃗⃗⃗⃗⃗ =(-1,t-1,2),设DB 1=t ,则D (0,t ,2),0≤t ≤2.则平面BB 1C 1C 的法向量为m =(0,1,0),设平面DEF 的法向量为n =(x ,y ,z ),∴{EF⃗⃗⃗⃗⃗ ·n =0,ED ⃗⃗⃗⃗⃗ ·n =0,即{x -y +z =0,-x +(t -1)y +2z =0,∴n =(1+t ,3,2-t ). 则cos <m ,n >=√(1+t )+32+(2-t )=√2t 2-2t+14.要求最小正弦值,则求最大余弦值.当t=1时二面角的余弦值最大,2时二面角正弦值最小.则B1D=1222.(12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平AD=1,CD=√3.面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=12(1)求证:平面PBC⊥平面PQB;(2)当PM的长为何值时,平面QMB与平面PDC所成的角的大小为60°?AD,AD∥BC,Q为AD的中点,BC=12∴BC∥QD,BC=QD,∴四边形BCDQ为平行四边形,∴BQ∥CD.∵∠ADC=90°,∴BC⊥BQ.∵PA=PD,AQ=QD,∴PQ⊥AD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD,∴PQ ⊥BC.又∵PQ∩BQ=Q,∴BC⊥平面PQB.∵BC⊂平面PBC,∴平面PBC⊥平面PQB.(1)可知PQ⊥平面ABCD.如图,以Q为原点,分别以QA,QB,QP所在直线为x轴,y 轴,z轴,建立空间直角坐标系,则Q(0,0,0),D(-1,0,0),P(0,0,√3),B(0,√3,0),C(-1,√3,0),∴QB ⃗⃗⃗⃗⃗ =(0,√3,0),DC ⃗⃗⃗⃗⃗ =(0,√3,0),DP ⃗⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗⃗ =(-1,√3,-√3), PC=√(-1)2+(√3)2+(-√3)2=√7.设PM ⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则PM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,-√3λ),且0≤λ≤1,得M (-λ,√3λ,√3−√3λ),∴QM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,√3(1-λ)).设平面MBQ 的法向量为m =(x ,y ,z ),则{QM ⃗⃗⃗⃗⃗⃗ ·m =0,QB ⃗⃗⃗⃗⃗ ·m =0,即{-λx +√3λy +√3(1-λ)z =0,√3y =0.令x=√3,则y=0,z=λ1-λ,∴平面MBQ 的一个法向量为m =√3,0,λ1-λ. 设平面PDC 的法向量为n =(x',y',z'),则{DC ⃗⃗⃗⃗⃗ ·n =0,DP ⃗⃗⃗⃗⃗ ·n =0,即{√3y '=0,x '+√3z '=0.令x'=3,则y'=0,z'=-√3,∴平面PDC 的一个法向量为n =(3,0,-√3).∴平面QMB 与平面PDC 所成的锐二面角的大小为60°, ∴cos60°=|n ·m ||n ||m |=|3√3-√3·λ1-λ|√12·√3+(λ1-λ) 2=12,∴λ=12.∴PM=12PC=√72.即当PM=√72时,平面QMB 与平面PDC 所成的角大小为60°.第二章 平面解析几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x-my-2=0的距离,当θ,m 变化时,d 的最大值为 ( ) A.1 B.2C.3D.4cos 2θ+sin 2θ=1,∴P 为单位圆上一点,而直线x-my-2=0过点A (2,0),∴d 的最大值为|OA|+1=2+1=3,故选C .2.已知点P (-2,4)在抛物线y 2=2px (p>0)的准线上,则该抛物线的焦点坐标是( ) A.(0,2) B.(0,4) C.(2,0) D.(4,0)P (-2,4)在抛物线y 2=2px 的准线上,所以-p2=-2,所以p=4,则该抛物线的焦点坐标是(2,0).3.已知直线l 1:x cos 2α+√3y+2=0,若l 1⊥l 2,则l 2倾斜角的取值范围是( ) A.[π3,π2) B.[0,π6] C.[π3,π2] D.[π3,5π6]l 1:x cos 2α+√3y+2=0的斜率k 1=-2√3∈[-√33,0],当cos α=0时,即k 1=0时,k 不存在,此时倾斜角为12π,由l 1⊥l 2,k 1≠0时,可知直线l 2的斜率k=-1k 1≥√3,此时倾斜角的取值范围为[π3,π2).综上可得l 2倾斜角的取值范围为[π3,π2].4.(2021全国乙,文11)设B 是椭圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A.52 B.√6 C.√5 D.2方法一)由椭圆方程可得a=√5,b=1,故椭圆的上顶点为B (0,1).设P (x ,y ),则有x 25+y 2=1, 故x 2=5(1-y 2),由椭圆的性质可得-1≤y ≤1.则|PB|2=x 2+(y-1)2=5(1-y 2)+(y-1)2=-4y 2-2y+6=-4y 2+y2+6=-4y+142+254.因为-1≤y ≤1,所以当y=-14时,|PB|2取得最大值,且最大值为254,所以|PB|的最大值为52. (方法二)由题意可设P (√5cos θ,sin θ)(θ∈R ),又B (0,1),则|PB|2=5cos 2θ+(sin θ-1)2=5cos 2θ+sin 2θ-2sin θ+1=-4sin 2θ-2sin θ+6,于是当sin θ=-14时,|PB|2最大,此时|PB|2=-4×116-2×(-14)+6=-14+12+6=254,故|PB|的最大值为52.5.在一个平面上,机器人到与点C (3,-3)的距离为8的地方绕C 点顺时针而行,它在行进过程中到经过点A (-10,0)与B (0,10)的直线的最近距离为( ) A.8√2-8 B.8√2+8C.8√2D.12√2C (3,-3)距离为8的地方绕C 点顺时针而行,在行进过程中保持与点C 的距离不变,∴机器人的运行轨迹方程为(x-3)2+(y+3)2=64,如图所示;∵A (-10,0)与B (0,10),∴直线AB 的方程为x-10+y10=1,即为x-y+10=0, 则圆心C 到直线AB 的距离为d=√1+1=8√2>8,∴最近距离为8√2-8.6.设P 是双曲线x 2a 2−y 2b 2=1(a>0,b>0)上的点,F 1,F 2是焦点,双曲线的离心率是43,且∠F 1PF 2=90°,△F 1PF 2的面积是7,则a+b 等于( ) A.3+√7 B.9+√7C.10D.16,不妨设点P 是右支上的一点,|PF 1|=m ,|PF 2|=n ,则{ 12mn =7,m -n =2a ,m 2+n 2=4c 2,c a =43,∴a=3,c=4.∴b=√c 2-a 2=√7.∴a+b=3+√7.7.位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为h ,跨径为a ,则桥形对应的抛物线的焦点到准线的距离为()A.a 28ℎ B.a 24ℎC.a 22ℎD.a 2ℎ,以桥顶为坐标原点,桥形的对称轴为y 轴建立如图所示的平面直角坐标系,该抛物线方程可写为x 2=-2py (p>0).∵该抛物线经过点(a2,-ℎ),代入抛物线方程可得a 24=2hp ,解得p=a 28ℎ.∴桥形对应的抛物线的焦点到准线的距离即为p=a 28ℎ.8.平面直角坐标系中,设A (-0.98,0.56),B (1.02,2.56),点M 在单位圆上,则使得△MAB 为直角三角形的点M 的个数是( ) A.1 B.2C.3D.4,如图,若△MAB为直角三角形,分3种情况讨论:①∠MAB=90°,则点M在过点A与AB垂直的直线上,设该直线为l1,又由A(-0.98,0.56),B(1.02,2.56),则k AB=2.56-0.561.02-(-0.98)=1,则k l1=-1,直线l1的方程为y-0.56=-(x+0.98),即x+y+0.42=0,此时原点O到直线l1的距离d=√2=21√2100<1,直线l1与单位圆相交,有2个公共点,即有2个符合题意的点M;②∠MBA=90°,则点M在过点B与AB垂直的直线上,设该直线为l2,同理可得,直线l2的方程为y-2.56=-(x-1.02),即x+y-3.58=0,此时原点O到直线l2的距离d=√2=179√2100>1,直线l2与单位圆相离,没有公共点,即没有符合题意的点M;③∠AMB=90°,此时点M在以AB为直径的圆上,又由A(-0.98,0.56),B(1.02,2.56),设AB的中点为C,则C的坐标为(0.02,1.56),|AB|=√4+4=2√2,则以AB为直径的圆的圆心C为(0.02,1.56),半径r=12|AB|=√2,此时|OC|=√(0.02)2+(1.56)2=√2.4340,则有√2-1<|OC|<√2+1,两圆相交,有2个公共点,即有2个符合题意的点M.综合可得,共有4个符合条件的点M.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分.9.已知圆C1:x2+y2=r2,圆C2:(x-a)2+(y-b)2=r2(r>0)交于不同的A(x1,y1),B(x2,y2)两点,下列结论正确的有()A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=aD.y1+y2=2bAB的方程为a2+b2-2ax-2by=0,即2ax+2by=a2+b2,故B正确;分别把A(x1,y1),B(x2,y2)两点代入2ax+2by=a2+b2得2ax1+2by1=a2+b2,2ax2+2by2=a2+b2,两式相减得2a(x1-x2)+2b(y1-y2)=0,即a(x1-x2)+b(y1-y2)=0,故A正确;由圆的性质可知,线段AB与线段C1C2互相平分,∴x1+x2=a,y1+y2=b,故C正确,D错误.10.若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的值可以为()A.4B.6C.3√2+1D.8y=kx-1恒过定点A(0,-1)点,当直线与AC垂直时,点P到直线y=kx-1距离最大,等于AC+r,圆心坐标为(-3,3),所以为√(-3)2+(3+1)2+1=6,当直线与圆有交点时,点P到直线的距离最小为0,所以点P到直线y=kx-1距离的范围为[0,6].11.在平面直角坐标系中,曲线C上任意点P与两个定点A(-2,0)和点B(2,0)连线的斜率之和等于2,则关于曲线C的结论正确的有()A.曲线C是轴对称图形B.曲线C上所有的点都在圆x2+y2=2外C.曲线C是中心对称图形D.曲线C上所有点的横坐标x满足|x|>2P(x,y),则k PA+k PB=2,即yx+2+yx-2=2(x≠±2),整理得x2-xy=4(x≠±2),所以曲线C 是中心对称图形,不是轴对称图形,故C 正确,A 错误;由x 2-xy=4>2=x 2+y 2,所以曲线C 上所有的点都在圆x 2+y 2=2外,故B 正确; 由x 2-xy=4可知,x ∈R 且x ≠0,x ≠±2,故D 错误. 12.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左右焦点,且△F 1PF 2的面积为3,则下列说法正确的是 ( )A.P 点纵坐标为3B.∠F 1PF 2>π2C.△F 1PF 2的周长为4(√2+1)D.△F 1PF 2的内切圆半径为32(√2-1)P 点坐标为(x ,y ),S=12×2c×|y|=12×4×|y|=3,得y=32或y=-32,故A 错误;椭圆中焦点三角形面积为S=b 2tan θ2(θ为焦点三角形的顶角),S=4tan θ2=3,得tan θ2=34,则θ2<π4,∠F 1PF 2<π2,故B 错误;C △F 1PF 2=2a+2c=4(√2+1),故C 正确;设△F 1PF 2的内切圆半径为R ,12R (4√2+4)=3,得R=32(√2-1),故D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.经过点P (1,4),且在两坐标轴上的截距相反的直线方程是 .4x 或y=x+3,分2种情况讨论:①直线经过原点,则直线l 的方程为y=4x ;②直线不经过原点,设直线方程为x-y=a ,把点P (1,4)代入可得1-4=a ,解得a=-3,即直线的方程为y=x+3.综上可得,直线的方程为y=4x 或y=x+3.14.若双曲线x 2m −y 2m -5=1的一个焦点到坐标原点的距离为3,则m 的值为 .或-2c=3,当双曲线的焦点在x 轴上时,m>5,c 2=m+m-5=9,所以m=7;当双曲线的焦点在y 轴上时,m<0,c 2=-m+5-m=9,所以m=-2.综上,m=7或m=-2.15.如图,过抛物线y 2=4x 的焦点F 作直线,与抛物线及其准线分别交于A ,B ,C 三点,若FC ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则直线AB 的方程为 ,|AB|= .√3(x-1)163F (1,0),准线方程为x=-1,设C (-1,m ),B (a ,b ),∵FC ⃗⃗⃗⃗⃗ =3FB⃗⃗⃗⃗⃗ ,∴(-2,m )=3(a-1,b )=(3a-3,3b ),则3a-3=-2,m=3b ,即a=13,此时b 2=4×13,得b=-√43=-2√33,即m=-2√3,则C (-1,-2√3),则AB 的斜率k=2√32=√3,则直线方程为y=√3(x-1),代入y 2=4x ,得3x 2-10x+3=0,得x 1+x 2=103,即|AB|=x 1+x 2+2=103+2=163.16.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为 ;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是 (结果用m 表示).2y+2=0 √2m 2+32,设点P 1(a ,b )与点P (1,0)关于直线AB 对称,则P 1在反射光线所在直线上,又由A (4,0),B (0,4),则直线AB 的方程为x+y=4,则有{ba -1=1,a+12+b2=4,解得{a =4,b =3,即P 1(4,3), 反射光线所在直线的斜率k=3-04-(-2)=12, 则其方程为y-0=12(x+2),即x-2y+2=0;设点M 1(a 0,b 0)与点M 关于直线AB 对称,点M 2与M 关于y 轴对称,易得M 2(-m ,0); 线段M 1M 2的长度就是光线所经过的路程,则有{b 0a 0-m=1,m+a2+b 02=4,解得{a 0=4,b 0=4-m ,即M 1(4,4-m ),又由M 2(-m ,0),则|M 1M 2|=√(4+m )2+(4-m )2=√2m 2+32.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知△ABC 三个顶点的坐标分别为A (2,4),B (0,-5),C (10,0),线段AC 的垂直平分线为l.(1)求直线l 的方程;(2)点P 在直线l 上运动,当|AP|+|BP|最小时,求此时点P 的坐标.直线AC 的斜率为k AC =4-02-10=-12,所以直线l 的斜率为k 1=2,直线AC 的中点为(6,2),所以直线l 的方程为y-2=2(x-6),即2x-y-10=0.(2)由(1)得点A 关于直线l 的对称点为点C ,所以直线BC 与直线l 的交点即为|AP|+|BP|最小的点.由B (0,-5),C (10,0)得直线BC 的方程为x10+y-5=1,即x-2y-10=0,联立方程{x -2y -10=0,2x -y -10=0,解得{x =103,y =-103,所以点P 的坐标为(103,-103). 18.(12分)已知直线l :ax-y-3a+1=0恒过定点P ,过点P 引圆C :(x-1)2+y 2=4的两条切线,设切点分别为A ,B.(1)求直线AB 的一般式方程;(2)求四边形PACB 的外接圆的标准方程.∵直线l :y-1=a (x-3).∴直线l 恒过定点P (3,1).由题意可知直线x=3是其中一条切线,且切点为A (3,0). 由圆的性质可知AB ⊥PC ,∵k PC =1-03-1=12,∴k AB =-2,所以直线AB 的方程为y=-2(x-3),即2x+y-6=0. (2)由题意知|PC|=√(3-1)2+(1-0)2=√5.∵PA ⊥AC ,PB ⊥BC ,所以四边形PACB 的外接圆是以PC 为直径的圆,PC 的中点坐标为(2,12),所以四边形PACB 的外接圆为(x-2)2+(y -12)2=54.19.(12分)已知F 1,F 2分别是双曲线E :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,P 是双曲线上一点,F 2到左顶点的距离等于它到渐近线距离的2倍, (1)求双曲线的渐近线方程;(2)当∠F 1PF 2=60°时,△PF 1F 2的面积为48√3,求此双曲线的方程.因为双曲线的渐近线方程为bx ±ay=0,则点F 2到渐近线距离为√b 2+a 2=b (其中c 是双曲线的半焦距),所以由题意知c+a=2b.又因为a 2+b 2=c 2,解得b=43a ,故所求双曲线的渐近线方程是4x ±3y=0.(2)因为∠F 1PF 2=60°,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=|F 1F 2|2,即|PF 1|2+|PF 2|2-|PF 1|·|PF 2|=4c 2. 又由双曲线的定义得||PF 1|-|PF 2||=2a ,平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,相减得|PF 1|·|PF 2|=4c 2-4a 2=4b 2.根据三角形的面积公式得S=12|PF 1|·|PF 2|sin60°=√34·4b 2=√3b 2=48√3,得b 2=48. 由(1)得a 2=916b 2=27,故所求双曲线方程是x 227−y 248=1.20.(12分)已知过抛物线x 2=2py (p>0)的焦点,斜率为√24的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB|=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,求λ的值.抛物线x 2=2py 的焦点为(0,p2),所以直线AB 的方程为y=√24x+p 2, 联立{y =√24x +p2,x 2=2py ,消去x ,得4y 2-5py+p 2=0,所以y 1+y 2=5p4,由抛物线定义得|AB|=y 1+y 2+p=9,即5p4+p=9,所以p=4.所以抛物线的方程为x 2=8y. (2)由p=4知,方程4y 2-5py+p 2=0, 可化为y 2-5y+4=0,解得y 1=1,y 2=4,故x 1=-2√2,x 2=4√2. 所以A (-2√2,1),B (4√2,4).则OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ =(-2√2,1)+λ(4√2,4)=(-2√2+4√2λ,1+4λ).因为C 为抛物线上一点,所以(-2√2+4√2λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.21.(12分)(2021全国乙,文20)已知抛物线C :y 2=2px (p>0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,求直线OQ 斜率的最大值.在抛物线C 中,焦点F 到准线的距离为p ,故p=2,C 的方程为y 2=4x.(2)设点P (x 1,y 1),Q (x 2,y 2).又F (1,0),则PQ ⃗⃗⃗⃗⃗ =(x 2-x 1,y 2-y 1),QF ⃗⃗⃗⃗⃗ =(1-x 2,-y 2). 因为PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,所以x 2-x 1=9(1-x 2),y 2-y 1=-9y 2, 得x 1=10x 2-9,y 1=10y 2.又因为点P 在抛物线C 上,所以y 12=4x 1,所以(10y 2)2=4(10x 2-9), 则点Q 的轨迹方程为y 2=25x-925. 易知直线OQ 的斜率存在.设直线OQ 的方程为y=kx ,当直线OQ 和曲线y 2=25x-925相切时,斜率取得最大值、最小值.由{y =kx ,y 2=25x -925,得k 2x 2=25x-925,即k 2x 2-25x+925=0,(*)当直线OQ 和曲线y 2=25x-925相切时,方程(*)的判别式Δ=0,即(-25)2-4k 2·925=0,解得k=±13,所以直线OQ 斜率的最大值为13. 22.(12分)如图所示,取同离心率的两个椭圆成轴对称内外嵌套得一个标志,为美观考虑,要求图中标记的①,②,③三个区域面积彼此相等.已知椭圆面积为圆周率与长半轴、短半轴长度之积,即椭圆x 2a 2+y 2b 2=1(a>b>0)面积为S 椭圆=πab(1)求椭圆的离心率的值;(2)已知外椭圆长轴长为6,用直角角尺两条直角边内边缘与外椭圆相切,移动角尺绕外椭圆一周,得到由点M 生成的轨迹将两椭圆围起来,整个标志完成.请你建立合适的坐标系,求出点M 的轨迹方程.建立如图平面直角坐标系.设外椭圆的方程为x 2a 2+y 2b 2=1(a>b>0),∵内外椭圆有相同的离心率且共轴,可得内椭圆长轴为b ,设内椭圆短轴长为b',焦距长为c',得ca =c 'b ,c'=bca ,b'2=b 2-c'2=b 2-b 2c2a 2=b 2(a 2-c 2)a 2=b 4a 2.∴内椭圆的方程为y 2b 2+x 2b 4a 2=1.图中标记的①,②,③三个区域面积彼此相等,由对称性只需S 外=3S 内,即πab=3πb ·b 2a 得a 2=3b 2,即a 2=3(a 2-c 2),故e=√63.(2)同(1)建立如图平面直角坐标系,由于外椭圆长轴为6,∴a=3,又e=√63,∴c=√6,b 2=3. 则外椭圆方程为x 29+y 23=1.设点M (x 0,y 0),切线方程为y-y 0=k (x-x 0),代入椭圆方程得,(1+3k 2)x 2+6k (y 0-kx 0)x+3(y 0-kx 0)2-9=0.∴Δ=36k 2(y 0-kx 0)2-4(1+3k 2)[3(y 0-kx 0)2-9]=0.化简得(x 0-9)k 2-2x 0y 0k+y 02-3=0.∵两条切线互相垂直,∴k 1k 2=-1,即y 02-3x 02-9=-1,即x 02+y 02=12(x 0≠±3).当两切线与坐标轴垂直时,四点(3,±√3),(-3,±√3)也满足方程,∴轨迹方程为x 2+y 2=12.模块综合测验一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件两直线平行,∴斜率相等.即可得ab=4,又因为不能重合,当a=1,b=4时,满足ab=4,但是重合,故“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要不充分条件.2.如图,四面体S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,则SE ⃗⃗⃗⃗⃗ =( ) A.13SA ⃗⃗⃗⃗⃗ +12SB ⃗⃗⃗⃗⃗ +13SC ⃗⃗⃗⃗B.23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ C.12SA ⃗⃗⃗⃗⃗ +14SB ⃗⃗⃗⃗⃗ +14SC ⃗⃗⃗⃗ D.12SA ⃗⃗⃗⃗⃗ +13SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,∴SE ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ =SA⃗⃗⃗⃗⃗ +13×12(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=SA ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +16(SC ⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )+16(SB ⃗⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )=23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ .3.圆P :(x+3)2+(y-4)2=1关于直线x+y-2=0对称的圆Q 的标准方程是( ) A.(x+2)2+(y-1)2=1 B.(x+2)2+(y-5)2=1 C.(x-2)2+(y+5)2=1 D.(x-4)2+(y+3)2=1P :(x+3)2+(y-4)2=1,圆心(-3,4),半径1,关于直线x+y-2=0对称的圆半径不变,设对称圆的圆心为(a ,b ),则{a -32+b+42-2=0,b -4a+3=1,解得{a =-2,b =5,所求圆Q 的标准方程为(x+2)2+(y-5)2=1.4.(2021新高考Ⅰ,5)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A.13 B.12 C.9 D.6|MF 1|+|MF 2|=2a=6,则√|MF 1|·|MF 2|≤|MF 1|+|MF 2|2=3,则|MF 1|·|MF 2|≤9,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故|MF 1|·|MF 2|的最大值为9.故选C .5.坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,若点Q (-1,-1),那么|PQ|的取值范围为( ) A.[√2,3√2] B.[√2,2√2] C.[2√2,3√2] D.[1,3√2]mx+ny-2m-2n=0,可化为m (x-2)+n (y-2)=0,故直线过定点M (2,2),坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,故∠OPM=90°,所以P 在以OM 为直径的圆上,圆的圆心N为(1,1),半径为√2,根据点与圆的关系,|NQ|=√(1+1)2+(1+1)2=2√2, 故√2=2√2−√2≤|PQ|≤√2+2√2=3√2.6.正确使用远光灯对于夜间行车很重要.已知某家用汽车远光灯(如图)的纵断面是抛物线的一部分,光源在抛物线的焦点处,若灯口直径是20 cm,灯深10 cm,则光源到反光镜顶点的距离是()A.2.5 cmB.3.5 cmC.4.5 cmD.5.5 cmxOy,如图所示,设对应抛物线的标准方程为y2=2px,由题意知抛物线过点(10,10),得100=2p×10,得p=5,=2.5,即焦点坐标为(2.5,0),则p2则光源到反光镜顶点的距离是2.5cm.7.如图,四棱锥S-ABCD 中,底面是正方形,各棱长都相等,记直线SA 与直线AD 所成角为α,直线SA 与平面ABCD 所成角为β,二面角S-AB-C 的平面角为γ,则( ) A.α>β>γ B.γ>α>β C.α>γ>β D.γ>β>αAC ,BD ,交于点O ,连接OS ,则OA ,OB ,OS 两两垂直,以O 为原点,OA 为x 轴,OB 为y 轴,OS 为z 轴,建立空间直角坐标系,设|AB|=2,则S (0,0,√2),A (√2,0,0),D (0,-√2,0),B (0,√2,0),SA ⃗⃗⃗⃗⃗ =(√2,0,-√2),AD ⃗⃗⃗⃗⃗ =(-√2,-√2,0),SB ⃗⃗⃗⃗⃗ =(0,√2,-√2),cos α=|SA ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗ ||SA⃗⃗⃗⃗⃗ |·|AD ⃗⃗⃗⃗⃗⃗ |=√4×√4=12,平面ABCD 的法向量n =(0,0,1),cos β=|n ·SA ⃗⃗⃗⃗⃗ ||n |·|SA⃗⃗⃗⃗⃗ |=√2√4=√22,设平面SAB 的法向量m =(x ,y ,z ),则{m ·SA ⃗⃗⃗⃗⃗ =√2x -√2z =0,m ·SB⃗⃗⃗⃗⃗ =√2y -√2z =0,取x=1,得m =(1,1,1),cos γ=|m ·n ||m |·|n |=√3=√33,∵cos α<cos γ<cos β,∴α>γ>β.8.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为( ) A.√5 B.√3 C.2 D.√2|PF 2|=b ,|OF 2|=c ,∴|PO|=a.在Rt △POF 2中,cos ∠PF 2O=|PF 2||OF 2|=bc ,∵在△PF 1F 2中,cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2-(√6a )22b ·2c=bc ⇒c 2=3a 2,∴e=√3.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.(2021新高考Ⅰ,11)已知点P 在圆(x-5)2+(y-5)2=16上,点A (4,0),B (0,2),则( ) A.点P 到直线AB 的距离小于10 B.点P 到直线AB 的距离大于2 C.当∠PBA 最小时,|PB|=3√2 D.当∠PBA 最大时,|PB|=3√2,记圆心为M ,半径为r ,则M (5,5),r=4.由条件得,直线AB 的方程为x4+y2=1,整理得x+2y-4=0,过点M 作MN 垂直于直线AB ,垂足为N ,直线MN 与圆M 分别交于点P 1,P 2,圆心M (5,5)到直线AB 的距离|MN|=√12+22=√5,于是点P 到直线AB 的距离最小值为|P 2N|=|MN|-r=√5-4,最大值为|P 1N|=|MN|+r=√5+4.又√5-4<2,√5+4<10,故A 正确,B 错误;过点B 分别作圆的两条切线BP 3,BP 4,切点分别为点P 3,P 4,则当点P 在P 3处时∠PBA 最大,在P 4处时∠PBA 最小.又|BP 3|=|BP 4|=√|BM |2-r 2=√52+(5-2)2-42=3√2,故C,D 正确.故选A,C,D .10.若a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,则λ的值为( ) A.17 B.-17 C.-1 D.1a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,∴cos120°=a ·b|a |·|b |=√5+λ2·√6,解得λ=-1或λ=17.11.已知P是椭圆C:x 26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为√5B.C的离心率为√306C.圆D在C的内部D.|PQ|的最小值为2√55c=√6-1=√5,则C的焦距为2√5,e=√5√6=√306.设P(x,y)(-√6≤x≤√6),则|PD|2=(x+1)2+y2=(x+1)2+1-x 26=56(x+65)2+45≥45>15,所以圆D在C的内部,且|PQ|的最小值为√45−√15=√55.12.已知直线l过点P(1,0,-1),平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量可能是()A.(1,-4,2)B.(14,-1,12)C.(-14,1,-12) D.(0,-1,1),所研究平面的法向量垂直于向量a=(2,1,1)和向量PM⃗⃗⃗⃗⃗⃗ , 而PM⃗⃗⃗⃗⃗⃗ =(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)·(1,-4,2)=0,(0,2,4)·(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)·(14,-1,12)=0,(0,2,4)·(14,-1,12)=0满足垂直,故正确;选项C,(2,1,1)·(-14,1,-12)=0,(0,2,4)·(-14,1,-12)=0满足垂直,故正确;选项D,(2,1,1)·(0,-1,1)=0,但(0,2,4)·(0,-1,1)≠0,故错误.三、填空题:本题共4小题,每小题5分,共20分.13.过点(1,√2)的直线l将圆x2+y2-4x=0分成两段弧,当劣弧所对圆心角最小时,直线l的斜率k=.。
高中数学选择性必修一选择性必修第一册模块检测B(解析版)
2020-2021年高二数学选择性必修一尖子生同步培优题典选择性必修第一册 模块检测B 解析版学校:___________姓名:___________班级:___________考号:___________ 注:本检测满分150分。
其中8道单选题,4道多选题,4道填空题,6道解答题。
一、单选题1.在棱长为1的正方体1111ABCD A B C D -中,P 是底面ABCD 上(含边界)一动点,满足11A P AC ⊥,则线段1A P 长度的取值范围( )A .2⎣B .2⎣C .⎡⎣D .【答案】A 【解析】 【分析】利用线面垂直的判定定理可以证明1AC ⊥平面1BDA ,这样可以确定P 的轨迹,利用平面几何的知识求出1A P 的最值,选出答案. 【详解】因为1CC ⊥底面ABCD ,DB ⊂底面ABCD ,所以1CC BD ⊥,底面ABCD 是正方形,所以有CA BD ⊥,1CC CA C ⋂=,1,CC CA ⊂平面1CC A ,因此有BD ⊥平面1CC A ,1AC ⊂平面1CC A ,所以有1BD AC ⊥,同理可证明出11AC DA ⊥,因为1BD DA D ⋂=,1,BD DA ⊂平面1BDA ,所以1AC ⊥平面1BDA ,所以点P 的轨迹就是线段BD ,所以P 在B 或D 时1A P ,在BD 中点时1A P 故选:A 【点睛】本题考查了空间点的轨迹问题,考查了线面垂直的判定定理,考查了推理论证能力.2.已知双曲线22221(0,0)x y a b a b-=>>的焦距为且双曲线的一条渐近线与直线20x y +=平行,则双曲线的方程为( )A .2214x y -=B .2214y x -=C .221164x y -=D .22331520x y -=【答案】B 【解析】【分析】利用双曲线2222x y a b-=1(a >0,b >0)的焦距为2x +y =0平行,求出几何量a ,b ,c ,即可求出双曲线的方程. 【详解】∵双曲线2222x y a b-=1(a >0,b >0)的焦距为且双曲线的一条渐近线与直线2x +y =0平行,∴2ba=-, ∴b =-2a , ∵c 2=a 2+b 2, ∴a =1,b =2,∴双曲线的方程为2214y x -=.故选B . 【点睛】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.3.设点()2,3A -,()3,2B --,直线l 过点()1,1P 且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .34k ≥或4k ≤- B .344k -≤≤ C .344k ≤≤ D .以上都不对【答案】A 【解析】 【分析】根据题意,设直线l 的方程为1(x 1)y k -=-,即10kx y k -+-=,由一元二次不等式的几何意义可得(231)(321)0k k k k ++--++-,解可得k 的取值范围,即可得答案. 【详解】根据题意,设直线l 的方程为1(x 1)y k -=-,即10kx y k -+-=, 直线l 过(1,1)P 且与线段AB 相交,则A 、B 在l 的两侧或在直线上, 则有(231)(321)0k k k k ++--++-,即(4)(43)0k k +-, 解得:34k或4k -, 故选:A . 【点睛】本题考查一元二次不等式表示平面区域的问题,注意直线与线段相交,即线段的2个端点在直线的两侧或在直线上.4.若圆22:2430C x y x y ++-+=关于直线620ax by ++=对称,则由点(),a b 向圆所作的切线长的最小值是( ) A .2 B .3C .4D .6【答案】C 【解析】 【分析】由题意圆C 的圆心()1,2-在直线620ax by ++=上,可得2260a b -++=,即点(),a b 在直线:30l x y -++=上,过点作圆C 的切线,切点为E ,则DE ==CD最短,可得答案. 【详解】由将圆C 的方程化为标准方程为:()()22122x y ++-=,圆心为()1,2-,因为圆C 关于直线620ax by ++=对称,所以圆心位于该直线上,将圆心坐标代入直线方程中, 有2260a b -++=,即点(),a b 在直线:30l x y -++=上, 设(),D a b ,过点作圆C 的切线,切点为E则DE ==要使得切线DE 长最短,则只需CD 最短.CD 的最小值为过点C 作直线:30l x y -++=的垂线.此时CD ==CE r ==所以根据勾股定理,得4DE ==. 故选:C【点睛】本题考查了求圆的切线长,解题关键是掌握圆的定义和圆切线的长的求法,,考查了分析能力和计算能力,属于中档题.5.已知圆C 经过原点O 且圆心在x 轴正半轴上,经过点()2,0N -且倾斜角为o 30的直线l 与圆C 相切于点Q ,点Q 在x 轴上的射影为点P ,设点M 为圆C 上的任意一点,则MNMP=( ) A .4 B .3C .2D .1【答案】C 【解析】分析:根据题干写出直线方程,再利用直线与圆相切求出圆心坐标为(2,0),写出圆的方程,得出P 点坐标,设(,)M x y ,并将圆的方程代入MN MP可求得值为2.详解:由题可知直线3:2)3l y x =+,即320x +=, 设圆心(,0)(0)C a a >221(3)a =+,解得2a =.所以圆C 的方程为:22(2)4x y -+=,将3:(2)3l y x =+代入圆C 的方程,可解得1p x =,故(1,0)P , 设(,)M x y ,则2222222222||(2)44||(1)21MN x y x y x MP x y x y x +++++==-++-+, 将圆C 的方程224x y x +=代入得222222||44844||2121MN x y x x MP x y x x ++++===+-++, 所以2MN MP=,故选C.点睛:已知直线方程:0l Ax By C ++=,和圆的方程222:()()C x a y b r -+-=,且设圆心(,)a b 到直线l 的距离为d ,则d r <⇔直线与圆相交;d r =⇔直线与圆相交.6.设P 为直线34130x y -+=上的动点,PA 、PB 为圆()()22:211C x y -+-=的两条切线,A 、B 为切点,则四边形APBC 面积的最小值为( )A .2B .22C .10D .210【答案】B 【解析】 【分析】作出图形,求得PA 的最小值,进而可求得四边形APBC 面积的最小值. 【详解】 如下图所示:易知圆心()2,1C ,圆的半径为1,由圆的几何性质可得AC PA ⊥, 由勾股定理得21PA PC =-PC 取最小值时,PA 最小,PC 的最小值为点C 到直线34130x y -+=的距离()22324113334d ⨯-⨯+==+-,2min 3122PA ∴=-=由切线长定理得PA PB =,又AC BC =,PC PC =,PAC PBC ∴≅△△,所以,四边形APBC 面积12212PAC S S PA ==⨯⨯≥△. 故选:B. 【点睛】本题考查两切线围成的四边形面积最值的计算,考查分析问题和解决问题的能力,属于中等题.7.已知1F ,2F 是椭圆C :22214x yb+=的左、右焦点,离心率为12,点A 的坐标为3(1,)2,则12F AF ∠的平分线所在直线的斜率为( )A .2B .1C D【答案】A 【解析】 【分析】由题得:24a =,结合12e =得出椭圆方程,根据角平分线的性质,过点1F 作角平分线的对称点F ,由中点坐标公式求出1F F 的中点Q ,即可求得12F AF ∠的平分线所在直线的斜率. 【详解】由题可知:24a =,22224c a b b =-=-,已知12e =,则22224144c b e a -===,得出23b =,所以椭圆方程为:22143x y +=.焦点()11,0F -,()21,0F 而31,2A ⎛⎫⎪⎝⎭,即:2AF x ⊥轴.232AF =,又因为:1224AF AF a ===得152AF =, 设:12F AF ∠的角平分线所在直线为l , 则点1F 关于l 的对称的点为F ,所以:F 在2AF 的延长线上,但152AF AF ==,则21FF = 所以:()1,1F -设1F F 的中点为Q ,有10,2Q ⎛⎫- ⎪⎝⎭,得出AQ 所在直线的斜率3122210AQk ⎛⎫-- ⎪⎝⎭==-, 即12F AF ∠的平分线所在直线的斜率为2. 故选:A.【点睛】本题主要考查椭圆的标准方程,利用了椭圆的几何性质、离心率和角平分线的性质,以及中点坐标公式和斜率公式相结合.8.已知1F ,2F 分别为双曲线2222:1x y C a b-=的左,右焦点,过点2F 的直线与双曲线C 的右支交于A ,B 两点,设点(),H H H x y ,(,)G G G x y 分别为12AF F △,12BF F △的内心,若3H G y y =,则双曲线离心率的取值范围为( ) A .[2,)+∞ B .2]C .(1,2]D .(1,2)【答案】D 【解析】 【分析】结合图形,由双曲线的定义及内切圆的性质可得1212AF AF F F FF -=-,即H x a =,同理可得G x a =,从而可得12HG F F ⊥,再由3H G y y =,可得3FH FG =,设直线AB 的倾斜角为θ,在2Rt F FG △和2Rt F FH △中,分别将FH ,FG 用θ表示代入即可求出直线AB 的斜率,再结合直线AB 与双曲线右支交于两点,即可求出3ba<. 【详解】不妨设直线AB 的斜率大于0.如图:连接HG .2HF ,2GF ,设12AF F △的内切圆与三边分别切于点D ,E ,F ,则12121212()AF AF AD DF AE EF DF EF F F FF -=+-+=-=-,所以2()H H a c x c x =+--,即H x a =,同理可得G x a =,所以12HG F F ⊥, 设直线AB 的倾斜角为θ,在2Rt F FG △中,2tan ()tan22FG FF c a θθ==-,在2Rt F FH △中,2tan()tan 222FH FF c a πθπθ-⎛⎫==-⋅- ⎪⎝⎭,又3H G y y =,所以3FH FG =, 即()tan 3()tan 222c a c a πθθ⎛⎫--=-⎪⎝⎭,解得3tan 2θ=所以22tan2tan 31tan 2==-θθθAB 3由题意,直线AB 与双曲线右支交于两点,故3ba< 所以21(1,2)c b a a ⎛⎫=+ ⎪⎝⎭. 故选:D 【点睛】本题主要考查了结合平面几何知识求双曲线的离心率的取值范围,属于难题.二、多选题9.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26面ABCD 为矩形,23CD =Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为23C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【解析】 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A -,(0,0,32),6,23,0),(6,23,0)P C B ,因为点Q 是PD 的中点,所以632Q , 平面PAD 的一个法向量为(0,1,0)m =,632(23,2QC =,显然 m 与QC 不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,22PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则36022260n AQ x zn AC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos 3θ=,所以B 正确;三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V SOP --==⋅1116322=⨯⨯⨯=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD =,所以2222222a a ⎛++-=++ ⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点, 所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,x ,所以22362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =,所以正四面体的表面积为2342434x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.10.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC 6D .若点E 到平面11ACC A 的距离等于32EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【解析】 【分析】【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫ ⎪⎝⎭,,,002B a ⎛⎫ ⎪ ⎪⎝⎭,,,10B b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛⎫- ⎪⎝⎭,,,所以122a BC a b ⎛⎫=-- ⎪ ⎪⎝⎭,,,122a AB a b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即22202a b ⎫⎛⎫--+=⎪ ⎪⎪⎝⎭⎝⎭,解得2b a =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,00B a ⎛⎫ ⎪ ⎪⎝⎭,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,12a BC ⎛⎫=- ⎪ ⎪⎝⎭,因为2111cos ,6||||aBC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===-,所以异面直线1,BC DA 所成角的余弦值C 正确. 对于选项D ,设点E 在底面ABC 的射影为1E ,作1E F 垂直于AC ,垂足为F ,若点E 到平面11ACC A EB ,即有1E F EB =,又因为在1CE F ∆中,11E F C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用. 11.以下四个命题表述正确的是( )A .直线()()34330m x y m m ++-+=∈R 恒过定点()3,3--B .已知圆22:4C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点()1,2C .曲线22120C :x y x ++=与曲线222480C :x y x y m +--+=恰有三条公切线,则4m =D .圆224x y +=上存在4个点到直线:20l x y -+=的距离都等于1 【答案】BC 【解析】 【分析】根据直线与圆的相关知识对各选项逐个判断即可解出.直线恒过定点()3,3-,判断A 错误;求出直线方程()2402ym x y -+-=,判断直线AB 经过定点(1,2),B 正确;根据两圆外切,三条公切线,可得C 正确;根据圆心(0,0)到直线1:20x y -+=的距离等于1,判断D 错误. 【详解】对于A ,直线方程可化为(3)3430m x x y +++-=,令30x +=,则3430x y +-=,3x =-,3y =,所以直线恒过定点()3,3-,A 错误;对于B ,设点P 的坐标为(,)m n ,所以,142m n+=,以OP 为直径的圆的方程为220x y mx ny +--=,两圆的方程作差得直线AB 的方程为:4mx ny ,消去n 得,()2402ym x y -+-=,令02yx -=,240y -=,解得1x =,2y =,故直线AB 经过定点(1,2),B 正确; 对于C ,根据两圆有三条公切线,所以两圆外切,曲线2220C :x y x ++=化为标准式得,22(1)1x y ++=曲线222480C :x y x y m +--+=化为标准式得,22(2)(4)200x y m -+-=->所以,圆心距为5,因为有三条公切线,所以两圆外切,即15+,解得4m =,C 正确;对于D ,因为圆心(0,0)到直线1:0x y -=的距离等于1,所以直线与圆相交,而圆的半径为2,故到直线距离为1的两条直线,一条与圆相切,一条与圆相交,因此圆上有三个点到直线1:0x y -=的距离等于1,D 错误;故选:BC . 【点睛】本题主要考查直线系过定点的求法,以及直线与圆,圆与圆的位置关系的应用,属于中档题.12.已知点P 是双曲线22:1169x y E -=的右支上一点,12F F 双曲线E 的左、右焦点,12PF F △的面积为20,则下列说法正确的有( ) A .点P 的横坐标为203B .12PF F △的周长为803C .12F PF ∠小于3π D .12PF F △的内切圆半径为32【答案】ABCD 【解析】 【分析】在焦点三角形中利用1212211222tan 2P P F F PF F b Sc y r Cθ=⋅==⋅⋅三种表达形式,可判定ACD 选项正确,由两点间的距离公式表示2PF ,利用双曲线的定义表示1PF ,从而表示12PF F △的周长,即可判定B 选项正确. 【详解】因为双曲线22:1169x y E -=,所以5c ==又因为12112102022P P F P F Sc y y =⋅=⋅⋅=,所以4P y = 将其代入22:1169x y E -=得2241169x -=,即203x =,所以选项A 正确;所以P 的坐标为20,4⎛⎫± ⎪,由对称性可知213PF ==,由双曲线定义可知1213372833PF PF a =+=+= 所以1212133721038033PF F CPF PF c =++=++=,所以选项B 正确;因为122920tantan22PF F b Sθθ===,所以93tantan 22036θπ=<=, 即26θπ<,所以123F PF πθ∠=<,所以选项C 正确;因为1212180122320PF F PF F Sr C r =⋅⋅=⋅⋅=,所以32r =,所以选项D 正确.故选:ABCD 【点睛】本题考查双曲线的焦点三角形问题,主要涉及面积公式的变形应用和双曲线的定义使用,属于难题.三、填空题13.在y 轴上的截距为6-,且与y 轴的夹角为30的直线方程是__________. 【答案】36y x =-或36y x =--【解析】试题分析:因为与y 轴相交成30°角,所以直线的倾斜角为60120︒︒或,3-3或所以又与y 轴上的截距为-6,所以直线方程为36y x =-或36y x =--.考点:直线的方程14.数学家默拉在1765年提出定理,三角形的外心,重心,垂心(外心是三角形三条边的垂直平分线的交点重心是三角形三条中线的交点,垂心是三角形三条高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线,已知△ABC 的顶点(1,0),(0,3),B C AB AC -=,则△ABC 的欧拉线方程为____________________ 【答案】340x y +-=【分析】因为AB AC =,所以ABC ∆外心,重心,垂心都位于线段BC 的垂直平分线上,由两直线垂直斜率的关系以及两点的斜率公式得出线段BC 的垂直平分线的斜率,由中点坐标公式得出BC 的中点坐标,最后由点斜式写出方程. 【详解】因为AB AC =,所以ABC ∆外心,重心,垂心都位于线段BC 的垂直平分线上 设线段BC 的垂直平分线的斜率为k ,则1BC k k ⨯=-3030(1)BC k -==--,13k ∴=-又因为BC 的中点坐标为13,22⎛⎫-⎪⎝⎭ 所以△ABC 的欧拉线方程为311()232y x -=-+,即340x y +-= 故答案为:340x y +-= 【点睛】本题主要考查了两直线垂直斜率间的关系,中点坐标公式,点斜式写出直线方程,属于中档题. 15.如图,抛物线()2:20C y px p =>的焦点为F ,准线0l 与x 轴交于点M ,过M 点且斜率为k的直线l 与抛物线C 交于第一象限内的A ,B 两点,若54AM AF =,则cos AFB ∠=______.【答案】18【解析】 【分析】过点A 作0AE l ⊥,垂足为点E ,抛物线的定义知AE AF =,在Rt AME △中,利用题干条件和三角函数可得3tan 4MAE =∠,3sin 4AFN =∠,同理可得3sin 4BFx ∠=,由()cos cos 2AFB AFN π∠=-∠即可得出答案.如图所示,过点A 作0AE l ⊥,垂足为点E . 由抛物线的定义知AE AF =, 在Rt AME △中,∵54AM AF =,∴4cos 5MAE =∠, ∴3tan 4MAE =∠.过点A 作AN x ⊥轴,垂足为点N ,则3sin tan 4AN EM AF AF E N MAE A ∠∠====, 同理得3sin 4BFx ∠=,∴()21cos cos 22sin 18AFB AFN AFN π∠=-∠=∠-=. 故答案为:18【点睛】本题考查了抛物线的定义、直角三角形的边角关系、三角函数、直线的斜率等基础知识与基本技能方法的综合应用,属于中档题.16.已知1F ,2F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,以12F F 为直径的圆与双曲线在第一象限和第三象限的交点分别为M ,N ,设四边形12F NF M 的周长为p ,面积为S ,且满足232S p =,则该双曲线的离心率为______.【答案】62【解析】 【分析】本题首先可根据题意绘出图像并设出M 点坐标为()11,M x y ,然后通过圆与双曲线的对称性得出1212F F MF F NSS,再根据“点()11,M x y 即在圆上,也在双曲线上”联立方程组得出21b y c,然后根据图像以及232S p =可得22Sb 和8p b ,接下来利用双曲线定义得出12MF b a 以及22MF b a ,最后根据2221212MF MF F F 并通过化简求值即可得出结果。
高中数学必修一第一章单元测试卷及答案2套
高中数学必修一第一章单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个2.下列各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1(x ∈Z )与y =2x -1(x ∈Z )3.设M ={1,2,3},N ={e ,g ,h },从M 至N 的四种对应方式如下图所示,其中是从M 到N 的映射的是( )4.已知全集U =R ,集合A ={x |2x 2-3x -2=0},集合B ={x |x >1},则A ∩(∁U B )=( ) A .{2}B .{x |x ≤1} C.⎩⎨⎧⎭⎬⎫-12 D .{x |x ≤1或x =2}5.函数f (x )=x|x |的图象是( )6.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =1xD .y =x 2,x ∈0,1]7.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-72<f (-3)<f (4)B .f (-3)<f ⎝ ⎛⎭⎪⎫-72<f (4)C .f (4)<f (-3)<f ⎝ ⎛⎭⎪⎫-72D .f (4)<f ⎝ ⎛⎭⎪⎫-72<f (-3) 8.已知反比例函数y =k x的图象如图所示,则二次函数y =2kx 2-4x +k 2的图象大致为( )9.函数f (x )是定义在0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 10.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( )A .f (x )>0B .f (x )<0C .f (x )·f (-x )≤0D .f (x )-f (-x )>011.已知函数f (x )是定义在-5,5]上的偶函数,f (x )在0,5]上是单调函数,且f (-3)<f (1),则下列不等式中一定成立的是( )A .f (-1)<f (-3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)12.函数f (x )=ax 2-x +a +1在(-∞,2)上单调递减,则a 的取值范围是( )A .0,4]B .2,+∞) C.⎣⎢⎡⎦⎥⎤0,14 D.⎝ ⎛⎦⎥⎤0,14 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x 2+a +1x +ax为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数; ②定义域为{x ∈R |x ≠0}; ③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.18.(本小题满分12分)已知函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧3x +5x ≤0,x +50<x ≤1,-2x +8x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值; (2)画出这个函数的图象; (3)求f (x )的最大值.19.(本小题满分12分)已知函数f (x )是偶函数,且x ≤0时,f (x )=1+x1-x ,求:(1)f (5)的值; (2)f (x )=0时x 的值; (3)当x >0时f (x )的解析式.20.(本小题满分12分)已知函数f (x )=x +a x,且f (1)=10. (1)求a 的值;(2)判断f (x )的奇偶性,并证明你的结论;(3)函数在(3,+∞)上是增函数,还是减函数?并证明你的结论.21.(本小题满分12分)已知函数y =f (x )是二次函数,且f (0)=8,f (x +1)-f (x )=-2x +1. (1)求f (x )的解析式;(2)求证:f (x )在区间1,+∞)上是减函数.22.(本小题满分12分) 已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)当x ∈(-1,1)时判断函数f (x )的单调性,并证明; (3)解不等式f (2x -1)+f (x )<0.答案1.B 解析:P =M ∩N ={1,3},故P 的子集有22=4个,故选B.2.C 解析:A 中两个函数定义域不同;B 中y =x 2-1=|x |-1,所以两函数解析式不同;D 中两个函数解析式不同,故选C.解题技巧:判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.C 解析:A 选项中,元素3在N 中有两个元素与之对应,故不正确;同样B ,D 选项中集合M 中也有一个元素与集合N 中两个元素对应,故不正确;只有C 选项符合映射的定义.4.C 解析:A =⎩⎨⎧⎭⎬⎫-12,2,∁U B ={x |x ≤1},则A ∩(∁U B )=⎩⎨⎧⎭⎬⎫-12,故选C.5.C 解析:由于f (x )=x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,所以其图象为C.6.B 解析:A 选项是奇函数;B 选项为偶函数;C ,D 选项的定义域不关于原点对称,故为非奇非偶函数.7.D 解析:∵f (x )在(-∞,-2]上是增函数,且-4<-72<-3,∴f (4)=f (-4)<f ⎝ ⎛⎭⎪⎫-72<f (-3),故选D. 8.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k<0,排除C.9.D 解析:根据题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,解得12≤x <23,故选D.10.C 解析:f (x )为奇函数,当x <0时,-x >0, ∴f (x )=-f (-x )=-(-x -1)=x +1, ∴f (x )·f (-x )=-(x +1)2≤0.11.D 解析:易知f (x )在-5,0]上单调递增,在0,5]上单调递减,结合f (x )是偶函数可知,故选D.12.C 解析:由已知得,⎩⎪⎨⎪⎧a >0,12a≥2,∴0<a ≤14,当a =0时,f (x )=-x +1为减函数,符合题意,故选C.13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2. 14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A , ∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即x 2-a +1x +a -x =-x 2+a +1x +a x,∴(a +1)x =0对x ≠0恒成立, ∴a +1=0,a =-1. 16.y =x2或y =⎩⎪⎨⎪⎧1-x ,x >0,1+x ,x <0或y =-2x(答案不唯一)解析:可结合条件来列举,如:y =x2或y =⎩⎪⎨⎪⎧1-x ,x >01+x ,x <0或y =-2x.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:∵B ⊆A ,①当B =∅时,m +1≤2m -1, 解得m ≥2;②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得,m 的取值范围为{m |m ≥-1}. 18.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5, ∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π.∵-1<0,∴f (-1)=-3+5=2. (2)如图:在函数y =3x +5的图象上截取x ≤0的部分,在函数y =x +5的图象上截取0<x ≤1的部分,在函数y =-2x +8的图象上截取x >1的部分.图中实线组成的图形就是函数f (x )的图象.(3)由函数图象可知,当x =1时,f (x )的最大值为6. 19.解:(1)f (5)=f (-5)=1-51--5=-46=-23.(2)当x ≤0时,f (x )=0即为1+x1-x =0,∴x =-1,又f (1)=f (-1),∴f (x )=0时x =±1.(3)当x >0时,f (x )=f (-x )=1-x 1+x ,∴x >0时,f (x )=1-x1+x .20.解:(1)f (1)=1+a =10,∴a =9.(2)∵f (x )=x +9x ,∴f (-x )=-x +9-x =-⎝ ⎛⎭⎪⎫x +9x =-f (x ),∴f (x )是奇函数.(3)设x 2>x 1>3,f (x 2)-f (x 1)=x 2+9x 2-x 1-9x 1=(x 2-x 1)+⎝⎛⎭⎪⎫9x 2-9x1=(x 2-x 1)+9x 1-x 2x 1x 2=x 2-x 1x 1x 2-9x 1x 2,∵x 2>x 1>3,∴x 2-x 1>0,x 1x 2>9,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )=x +9x在(3,+∞)上为增函数.21.(1)解:设f (x )=ax 2+bx +c ,∴f (0)=c ,又f (0)=8,∴c =8. 又f (x +1)=a (x +1)2+b (x +1)+c , ∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c ]-(ax 2+bx +c ) =2ax +(a +b ).结合已知得2ax +(a +b )=-2x +1.∴⎩⎪⎨⎪⎧2a =-2,a +b =1.∴a =-1,b =2.∴f (x )=-x 2+2x +8. (2)证明:设任意的x 1,x 2∈1,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=(-x 21+2x 1+8)-(-x 22+2x 2+8) =(x 22-x 21)+2(x 1-x 2) =(x 2-x 1)(x 2+x 1-2). 又由假设知x 2-x 1>0, 而x 2>x 1≥1, ∴x 2+x 1-2>0,∴(x 2-x 1)(x 2+x 1-2)>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在区间1,+∞)上是减函数. 22.解:(1)由题意可知f (-x )=-f (x ), ∴-ax +b 1+x 2=-ax +b 1+x 2,∴b =0.∴f (x )=ax1+x2.∵f ⎝ ⎛⎭⎪⎫12=25,∴a =1. ∴f (x )=x1+x2.(2)f (x )在(-1,1)上为增函数. 证明如下:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x21-x 21+x 22=x 1-x 21-x 1x 21+x 211+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 1+x 21>0,1+x 22>0, ∴x 1-x 21-x 1x 21+x 211+x 22<0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在(-1,1)上为增函数.(3)∵f (2x -1)+f (x )<0,∴f (2x -1)<-f (x ), 又f (x )是定义在(-1,1)上的奇函数, ∴f (2x -1)<f (-x ), ∴⎩⎪⎨⎪⎧-1<2x -1<1,-1<-x <1,2x -1<-x ,∴0<x <13.∴不等式f (2x -1)+f (x )<0的解集为⎝ ⎛⎭⎪⎫0,13. 解题技巧:在求解抽象函数中参数的范围时,往往是利用函数的奇偶性与单调性将“f ”符号脱掉,转化为解关于参数不等式(组).测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x 2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,12.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1x ≥2,-x 2+3x x <2,则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( ) A .1 B .-1 C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,f x ,若f x <g x .则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( ) A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________. 15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集. (1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10}, (1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间0,1]上有最大值2,求实数a 的值.21.(本小题满分12分)已知函数f (x )的值满足f (x )>0(当x ≠0时),对任意实数x ,y 都有f (xy )=f (x )·f (y ),且f (-1)=1,f (27)=9,当0<x <1时,f (x )∈(0,1).(1)求f (1)的值,判断f (x )的奇偶性并证明; (2)判断f (x )在(0,+∞)上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求a 的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+a x(x ≠0). (1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.答案1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0.∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf x 2fx +3=x ,f (x )=3x c -2x =cx2x +3,得c =-3. 6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34>0,∴f (a2-a +1)≤f ⎝ ⎛⎭⎪⎫34. 解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1). 又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1); 令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.16.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1,即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0,∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下: 任取x 1,x 2∈3,5]且x 1<x 2. ∵ f (x )=2x -1x +1=2x +1-3x +1=2-3x +1,∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3x 1-x 2x 1+1x 2+1,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴ f (x )在3,5]上为增函数. (2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=32, f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a . ①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2, 即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2, 即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾. 综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数. (2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2.∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数. (3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3, ∴9=f (3)]3,∴f (3)=39, ∵f (a +1)≤39,∴f (a +1)≤f (3), ∵a ≥0,∴a +1≤3,即a ≤2, 综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ). ∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x(x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 21+1x 1-⎝⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫x 1+x 2-1x 1x 2,由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。
高中数学练习题 2019-2020学年人教B新版高一(上)模块数学试卷(必修1) -有答案
2019-2020学年人教B新版高一(上)模块数学试卷(必修1)一.选择题(每小题5分,共50分)A .30°B .60°C .120°D .150°1.(5分)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sinC =23sinB ,则A 等于( )√√A .99B .66C .144D .2972.(5分)等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和S 9等于( )A .30B .25C .20D .153.(5分)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A .1,2,3B .2,3,1C .2,3,2D .3,2,14.(5分)下列程序运行的结果是( )A .11B .5C .-8D .-115.(5分)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .k >4?B .k >5?C .k >6?D .k >7?6.(5分)某程序框图如图所示,若输出的S =57,则判断框内为( )二.填空题(每小题5分,共25分)三.解答题(共-75分16题13分,17题13分,18题13分,19题12分,20题12分,21题12分)A .79B .87C .1920D .787.(5分)若两个等差数列{a n }、{b n }的前n 项和分别为A n 、B n ,且满足A nB n =4n +25n −5,则a 5+a 13b 5+b 13的值为( )A .x >3B .0<x <2C .3<x <2D .3<x ≤28.(5分)已知△ABC 中,a 、b 分别是角A 、B 所对的边,且a =x (x >0),b =2,A =60°,若三角形有两解,则x 的取值范围是( )√√√A .49B .29C .23D .139.(5分)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .-2B .0C .1D .210.(5分)若实数x ,y 满足不等式组V Y Y W Y Y X x −2≤0y −1≤0x +2y −a ≥0,目标函数t =x -2y 的最大值为2,则实数a 的值是( )11.(5分)从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是 .12.(5分)已知a ,b 为正数,且满足2<a +2b <4,那么3a -b 的取值范围是 .13.(5分)函数y =x 2+3x 2+2的最小值是.设x 、y ∈R +且1x +9y =1,则x +y 的最小值为 .√14.(5分)设x ,y 满足约束条件V Y Y W Y Y X 3x −y −6≤0x −y +2≥0x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的值是最大值为12,则2a +3b 的最小值为 .15.(5分)等差数列{a n }中,a 11a 10<-1,且其前n 项和S n 有最小值,以下命题正确的是 .①公差d >0; ②{a n }为递减数列; ③S 1,S 2…S 19都小于零,S 20,S 21…都大于零;④n =19时,S n 最小;⑤n =10时,S n 最小.16.(13分)已知等差数列{a n}满足a3=7,a5+a7=26.{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=-1a n2−1(n∈N*),求数列{b n}的前n项和T n.17.(13分)已知a∈R,解不等式xx−1>a+1.18.(13分)现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A1被选中的概率;(Ⅱ)求B1和C1不全被选中的概率.19.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=920υυ2+3υ+1600(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?20.(12分)数列{a n}的首项a1=1,前n项和S n与a n之间满足a n=2S2n2S n−1(n≥2).(1)求证:数列{1S n}是等差数列;(2)设存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1对一切n∈N*都成立,求k的最大值.√21.(12分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记b n=1a n+1a n+2,求数列{b n}的前n项S n,并证明S n+23T n−1=1.22.已知数列{a n}中,a1=1,na n+1=2(a1+a2+…+a n)(n∈N*).(1)求a2,a3,a4;(2)求数列{a n}的通项a n;(3)设数列{b n}满足b1=12,b n+1=1a kb n2+b n,求证:b n<1(n≤k).。
2012-2013学年高中数学 模块测试1 新人教A版必修1
必修1模块测试1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)一、选择题1.设集合A ={1,3},集合B ={1,2,4,5},则集合A ∪B =( )A .{1,3,1,2,4,5}B .{1}C .{1,2,3,4,5}D .{2,3,4,5}[答案] C[解析] A∪B={1,2,3,4,5},故选C . 2.化简(27125)-13 的结果是( )A .35B .53C .3D .5[答案] B[解析] (27125)-13 =(35)3×(-13)=(35)-1=53,故选B . 3.若幂函数f(x)=x a在(0,+∞)上是增函数,则( )A .a>0B .a<0C .a =0D .不能确定[答案] A[解析] 当a>0时,f(x)=x a在(0,+∞)上递增,选A . 4.与y =|x|为同一函数的是( )A .y =(x)2B .y =x 2C .y =⎩⎪⎨⎪⎧x ,x>0-x ,x<0 D .y =a log a x[答案] B[解析] y =x 2=|x|,故选B .5.设f(x)=3x+3x -8,用二分法求方程3x+3x -8=0在x∈(1,2)内近似解的过程中,计算得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定[答案] B[解析] ∵f(1.25)f(1.5)<0,∴根在(1.25,1.5)内,故选B . 6.下列各式错误的是( )A .30.8>30.7B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1D .lg 1.6>lg 1.4[答案] C[解析] y =0.75x为减函数,∴0.75-0.1>0.750.1,故选C .7.已知f(x)=ax 7-bx 5+cx 3+2,且f(-5)=m ,则f(5)+f(-5)的值为( )A .4B .0C .2mD .-m +4[答案] A[解析] f(-5)=a×(-5)7-b×(-5)5+c×(-5)3+2=-a×57+b×55-c×53+2,f(5)=a×57-b×55+c×53+2,∴f(5)+f(-5)=4,故选A .8.函数y =log 0.6(6+x -x 2)的单调增区间是( )A .(-∞,12] B .[12,+∞) C .(-2,12]D .[12,3)[答案] D[解析] 设y =log 0.6t ,t =6+x -x 2,y =log 0.6(6+x -x 2)增区间即为t =6+x -x 2的减区间且t>0,故为(12,3),故选D .9.函数y =-1x -1+1的图象是下列图象中的( )[答案]A[解析]由于x≠1,否定C、D,当x=0时,y=2,否定B,故选A.10.定义集合A、B的一种运算:A*B={x|x=x1+x2,其中x1∈A,x2∈B},若A={1,2,3},B={1,2},则A*B中的所有元素数字之和为( )A.9 B.14C.18 D.21[答案]B[解析]A*B={2,3,4,5},2+3+4+5=14,选B.11.已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:那么函数f(x)A.(-∞,1) B.(1,2)C.(2,3) D.(3,+∞)[答案] C[解析]f(2)f(3)<0,∴在(2,3)内有零点,故选C.12.某研究小组在一项实验中获得一组关于y、t之间的数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y与t之间关系( )A .y =2tB .y =2t 2C .y =t 3D .y =log 2t[答案] D[解析] 由点(2,1),(4,2),(8,4),故选D.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.函数y =log 3x 的定义域为______________.(用区间表示) [答案] [1,+∞)[解析] log 3x ≥0,即x ≥1定义域为[1,+∞).14.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤22x ,x >2,则f (2)=________;若f (x 0)=8,则x 0=________.[答案] 0 4[解析] f (2)=22-4=0,当x 0>2时,2x 0=8,∴x 0=4, 当0≤x 0≤2时,x 20-4=8,∴x 0=±23(舍),∴x 0=4.15.函数y =f (x )与y =a x(a >0且a ≠1)互为反函数,且f (2)=1,则a =________. [答案] 2[解析] f (2)=log a 2,log a 2=1,.∴a =2. 16.已知f (x )是定义在[-2,0)∪(0,2]上的奇函数,当x >0时,f (x )的图象如右图所示,那么f (x )的值域是________.[答案] [-3,-2)∪(2,3][解析] 当x >0时,f (x )∈(2,3],当x <0时,f (x )∈[-3,-2), 故值域为[-3,-2)∪(2,3].三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)计算: (1)2-12 +-122+12-1-1-50;(2)log 225·log 3116·log 519.[解析] (1)原式=2-12 +12+12-1- 1=2-12 +2-12 +2+1-1 =2·2-12 + 2 =2+2=2 2(2)原式=log 252·log 32-4·log 53-2=2lg5lg2·-4lg2lg3·-2lg3lg5=16.18.(本小题满分12分)已知集合A ={x |x ≤a +3},B ={x |x <-1或x >5}. (1)若a =-2,求A ∩∁R B ; (2)若A ⊆B ,求a 的取值范围.[解析] (1)当a =-2时,集合A ={x |x ≤1},∁R B ={x |-1≤x ≤5}∴A ∩∁R B ={x |-1≤x ≤1}(2)∵A ={x |x ≤a +3},B ={x |x <-1或x >5}A ⊆B∴a +3<-1 ∴a <-4.19.(本小题满分12分)已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调减函数. [解析] (1)a =-1,f (x )=x 2-2x +2.对称轴x =1,f (x )min =f (1)=1,f (x )max =f (-5)=37 ∴f (x )max =37,f (x )min =1(2)对称轴x =-a ,当-a ≥5时,f (x )在[-5,5]上单调减函数, ∴a ≤-5.20.(本小题满分12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图)(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?[解析] (1)设f (x )=k 1x ,g (x )=k 1x 所以f (1)=18=k 1,g (1)=12=k 2即f (x )=18x (x ≥0),g (x )=12x (x ≥0)(2)设投资债券类产品x 万元,则股票类投资为(20-x )万元.依题意得:y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20)令t =20-x (0≤t ≤25). 则y =20-t 28+12t =-18(t -2)2+3所以当t =2,即x =16万元时,收益最大,y max =3万元. 21.(本小题满分12分)已知f (x )=1x-2.(1)求f (x )的定义域;(2)证明函数f (x )=1x-2在(0,+∞)上是减函数.[解析] (1)解:f (x )的定义域是{x ∈R |x ≠0};(2)证明:设x 1,x 2是(0,+∞)上的两个任意实数,且 x 1<x 2,则Δx =x 1-x 2<0, Δy =f (x 1)-f (x 2)=1x 1-2-(1x 2-2)=1x 1-1x 2=x 2-x 1x 1x 2.因为x 2-x 1=-Δx >0,x 1x 2>0,所以Δy >0. 因此f (x )=1x-2是(0,+∞)上的减函数.22.(本小题满分12分)设函数f (x )=|x 2-4x -5|,g (x )=k . (1)在区间[-2,6]上画出函数f (x )的图象; (2)若函数f (x )与g (x )有3个交点,求k 的值; (3)试分析函数φ(x )=|x 2-4x -5|-k 的零点个数. [解析] (1)f (x )=|x 2-4x -5|=⎩⎪⎨⎪⎧x 2-4-5 -2≤x ≤-1或5≤x ≤6-x 2-4x -5 -1≤x ≤5如下图.(2)∵函数f (x )与g (x )有3个交点∴由(1)的图可知此时g (x )的图象经过y =-(x 2-4x -5)的最高点 即g (x )=k =4·-1·5-424·-1=9,∴k =9.(3)∵函数φ(x )=|x 2-4x -5|-k 的零点个数 等于函数f (x )与g (x )的交点个数 又∵g (x )的图象是一条与x 轴平行的直线∴由(1)的图可知k =0或k >9时,函数φ(x )=|x 2-4x -5|-k 的零点个数为2个 0<k <9时,函数φ(x )=|x 2-4x -5|-k 的零点个数为4个;k =9时,函数φ(x )=|x 2-4x -5|-k 的零点个 数为3个; k <0时,函数φ(x )=|x 2-4x -5|-k 的零点个数为0个.。
高中数学模块综合评价(一)新人教版必修1
高中数学模块综合评价(一)新人教版必修1(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求) 1.已知集合M={x|0<x<3},N={x|1<x<4},则M∩N=( )B.{x|0<x<4}A.{x|1<x<3}D.{x|0<x<1}C.{x|3<x<4}解析:M∩N={x|0<x<3}∩{x|1<x<4}={x|1<x<3}.答案:A 2.设集合A={x|1<x<2},B={x|x<a}.若A⊆B,则a的范围是( )A.a≥1B.a≤1D.a≤2C.a≥2解析:在数轴上作出两个集合所在的区间,可知满足A⊆B的a≥2.答案:C 3.已知幂函数f(x)=xa的图象过点(4,2),若f(m)=3,则实数m的值为( )A.B.±C.±9D.9解析:依题意有2=4a,得a=,所以f(x)=x,当f(m)=m=3时,m=9.答案:D4.设a=log3,b=,c=2,则( )B.c<b<aA.a<b<cD.b<a<cC.c<a<b解析:数形结合,画出三个函数的图象.由图象可知a<0,0<b<1,c>1,因此a<b<c.答案:A 5.已知A∩{-1,0,1}={0,1},且A∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A共有( )A.2个 B.4个 C.6个 D.8个解析:因为A∩{-1,0,1}={0,1},所以0,1∈A且-1∉A.又因为A∪{-2,0,2}={-2,0,1,2},所以1∈A且至多-2,0,2∈A.故0,1∈A且至多-2,2∈A,所以满足条件的A只能为{0,1},{0,1,-2},{0,1,2},{0,1,2,-2},共有4个.答案:B 6.已知集合A={x|y=},B={y|y=x2+1},则A∩B=( )B.[-1,1]A.∅D.[1,+∞)C.[-1,+∞)解析:A={x|y=}={x|x≥-1},B={y|y=x2+1}={y|y≥1}.所以A∩B=[1,+∞).答案:D 7.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0,x1+x2>0,则( )A.f(-x1)>f(-x2)。
高一数学必修一第一章测试题及答案
高中数学必修1检测题一、选择题: 每小题5分, 12个小题共60分 1. 已知全集 )等于 ( )A. {2, 4, 6}B. {1, 3, 5}C. {2, 4, 5}D. {2, 5}2.已知集合 , 则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A. 1个B. 2个C. 3个D. 4个3.若 能构成映射, 下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A.1个B.2个C.3个D.4个4、如果函数 在区间 上单调递减, 则实数 的取值范围是( ) A. B. C. D. 5.下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A.①② B.①③ C.③④ D.①④A. (-1, 0)B. (0, 1)C. (1, 2)D. (2, 3)7. 若 ( )A. B. C. D.8、 若定义运算 , 则函数 的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R 9. 函数 上的最大值与最小值的和为3, 则 ( ) A. B. 2 C. 4 D.10.下列函数中,在 上为增函数的是... )A. B、A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型12.下列所给4个图象中, 与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久, 发现自己把作业本忘在家里了, 于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶, 只是在途中遇到一次交通堵塞, 耽搁了一些时间; (3)我出发后, 心情轻松, 缓缓行进, 后来为了赶时间开始加速。
步步高高中数学 必修 1 章末检测(三)
章末检测(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列函数①y =lg x ;②y =2x ;③y =x 2;④y =|x |-1,其中有2个零点的函数是( ) A.①② B.③④ C.②③ D.④答案 D解析 分别作出这四个函数的图象(图略),其中④y =|x |-1的图象与x 轴有两个交点,即有2个零点,故选D.2.函数y =(x -1)(x 2-2x -3)的零点为( ) A.1,2,3 B.1,-1,3 C.1,-1,-3 D.无零点 答案 B解析 令y =0,即(x -1)(x 2-2x -3)=0,解得x 1=1,x 2=-1,x 3=3.故选B. 3.设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( ) A.1 B.2 C.3 D.4 答案 A解析 在同一坐标系中分别画出函数y 1=|x 2-3|和y 2=a 的图象,如图所示.可知方程解的个数为0,2,3或4,不可能有1个解.4.已知函数f (x )=2x +14x -5,则f (x )的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案 C解析 f (0)=20-5<0,f (1)=21+14-5<0,f (2)=22+12-5<0,f (3)=8+34-5>0,f (4)>0,则有f (2)·f (3)<0.故选C.5.若函数f (x )=a log 2x +a ·4x +3在区间⎝⎛⎭⎫12,1上有零点,则实数a 的取值范围是( ) A.a <-3B.-32<a <-34C.-3<a <-34D.-32<a <-12答案 C解析 ∵函数y =log 2x ,y =4x 在其定义域上单调递增,∴函数f (x )=a log 2x +a ·4x +3在区间⎝⎛⎭⎫12,1上单调且连续,∴由零点存在性定理可得f ⎝⎛⎭⎫12·f (1)<0,即(-a +2a +3)(4a +3)<0,解得-3<a <-34.6.某企业2017年12月份的产值是这年1月份产值的P 倍,则该企业2017年度产值的月平均增长率为( ) A.P P -1 B.11P -1C.11PD.P -111答案 B解析 设1月份产值为a ,增长率为x ,则aP =a (1+x )11,∴x =11P -1.7.已知在x 克a %的盐水中,加入y 克b %(a ≠b )的盐水,浓度变为c %,将y 表示成x 的函数关系式为( ) A.y =c -a c -b xB.y =c -a b -c xC.y =c -b c -a xD.y =b -c c -ax答案 B解析 根据配制前后溶质不变,有等式a %x +b %y =c %(x +y ),即ax +by =cx +cy ,故y =c -ab -c x .8.下列函数中,在某个区间(x 0,+∞)内随x 增大而增长速度最快的是( ) A.y =2 017ln x B.y =x 2 017 C.y =e x2 017D.y =2 017·2x答案 C解析 当x >x 0时,指数型函数增长速度呈“爆炸式”增长,又e>2,∴增长速度最快的是y =e x 2 017.9.今有一组数据,如下表所示:A.指数函数B.反比例函数C.一次函数D.二次函数答案 C解析由表中数据知随着自变量每增加1,函数值约增加2,所以一次函数最接近地表示这组数据满足的规律.10.有浓度为90%的溶液100 g,从中倒出10 g后再倒入10 g水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.301 0,lg 3=0.477 1)() A.19 B.20 C.21 D.22答案 C解析操作次数为n时的浓度为(910)n+1,由(910)n+1<10%,得n+1>-1lg910=-12lg 3-1≈21.8,∴n≥21.11.用二分法判断方程2x3+3x-3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421 875,0.6253=0.244 14)()A.0.25B.0.375C.0.635D.0.825答案 C解析令f(x)=2x3+3x-3,f(0)<0,f(1)>0,f(0.5)<0,f(0.75)>0,f(0.625)<0,∴方程2x3+3x-3=0的根在区间(0.625,0.75)内,∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.12.我国股市中对股票的股价实行涨停、跌停制度,即每天的股价最大的涨幅或跌幅均为10%.某股票在连续四个交易日中前两日每天涨停,后两日每天跌停,则该股票现在的股价相对于四天前的涨跌情况是()A.跌1.99%B.涨1.99%C.跌0.99%D.涨0.99%答案 A解析设四天前股价为a,则现在的股价为a×1.12×0.92=0.980 1a,跌1.99%.二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =x 2与函数y =x ln x 在区间(1,+∞)上增长较快的一个是________. 答案 y =x 2解析 y =x 2=x ·x ,y =x ·ln x ,其中y =x 比y =ln x 在(1,+∞)上增长较快,也可取特殊值验证.14.若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 答案 0<b <2解析 由函数f (x )=|2x -2|-b 有两个零点可得|2x -2|=b 有两个不等的根,从而可得函数y =|2x -2|与函数y =b 的图象有两个交点,结合函数的图象可得0<b <2.故答案为0<b <2.15.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是________. 答案 (-2,2)解析 因为函数f (x )是定义在R 上的偶函数且一个零点是2,则还有一个零点为-2.又函数f (x )在(-∞,0]上是减函数,则f (x )<0的x 的取值范围是(-2,2).16.已知函数f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=⎩⎪⎨⎪⎧f (x ),x >0,f (-x ),x <0.给出下列四个命题:①F (x )=|f (x )|;②函数F (x )是偶函数;③当a <0时,若0<m <n <1,则有F (m )-F (n )<0成立;④当a >0时,函数y =F (x )-2有4个零点.其中真命题的序号是________. 答案 ②③④解析 易知F (x )=f (|x |),故F (x )=|f (x )|不正确;②∵F (x )=f (|x |),∴F (-x )=F (x ),∴函数F (x )是偶函数;③当a <0时,若0<m <n <1,则F (m )-F (n )=-a log 2m +1-(-a log 2n +1)=a (log 2n -log 2m )<0;④当a >0时,F (x )=2可化为f (|x |)=2,即a |log 2|x ||+1=2,即|log 2|x ||=1a ,故|x |=21a 或|x |=2-1a ,故函数y =F (x )-2有4个零点,故②③④正确. 三、解答题(本大题共6小题,共70分)17.(10分)讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由. 解 令f (x )=4x 3+x -15,∵y =4x 3和y =x 在[1,2]上都为增函数, ∴f (x )=4x 3+x -15在[1,2]上为增函数, ∵f (1)=4+1-15=-10<0, f (2)=4×8+2-15=19>0,∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解.18.(12分)截至2017年底,已知某市人口数为80万,若今后能将人口年平均增长率控制在1%,经过x 年后,此市人口数为y (万). (1)求y 与x 的函数关系y =f (x ); (2)求函数y =f (x )的定义域;(3)判断函数f (x )是增函数还是减函数?解 (1)由题设条件知,经过x 年后此市人口总数为 80(1+1%)x (万), ∴y =f (x )=80(1+1%)x .(2)∵此问题以年作为单位时间, ∴此函数的定义域是N *.(3)y =f (x )=80(1+1%)x 是指数型函数, ∵1+1%>1,∴y =80(1+1%)x 是增函数.19.(12分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A 万元,则超出部分按2log 5(A +1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记奖金总额为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数表达式;(2)如果业务员老张获得5.5万元的奖金,那么他的销售利润是多少万元?解 (1)由题意,得y =⎩⎪⎨⎪⎧0.1x ,0<x ≤15,1.5+2log 5(x -14),x >15.(2)∵x ∈(0,15]时,0.1x ≤1.5, 又y =5.5>1.5,∴x >15,∴1.5+2log 5(x -14)=5.5,解得x =39. 答 老张的销售利润是39万元.20.(12分)已知函数f (x )=mx 2-3x +1的零点至少有一个大于0,求实数m 的取值范围. 解 ①当m =0时,由f (x )=0得x =13,符合题意,②当m ≠0时,(ⅰ)由Δ=9-4m =0,得m =94,令f (x )=0解得x =23,符合题意;(ⅱ)Δ>0,即9-4m >0时,m <94.设f (x )=0的两根为x 1、x 2且x 1<x 2,若0<m <94,则x 1+x 2=3m >0,x 1·x 2=1m>0,即x 1>0,x 2>0,符合题意, 若m <0,则x 1+x 2=3m <0,x 1·x 2=1m<0,即x 1<0,x 2>0,符合题意,综上m ≤94,即m 的取值范围为⎝⎛⎦⎤-∞,94. 21.(12分)对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b ,设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R ),恰有三个互不相等的实数根x 1,x 2,x 3,求x 1x 2x 3的取值范围.解 当x ≤0,即2x -1≤x -1时,则f (x )=(2x -1)*(x -1)=(2x -1)2-(2x -1)(x -1)=2x 2-x ,当x >0,即2x -1>x -1时,则f (x )=(2x -1)*(x -1)=(x -1)2-(2x -1)(x -1)=-x 2+x ,画出大致图象如图,可知当m ∈⎝⎛⎭⎫0,14时,f (x )=m 恰有三个互不相等的实数根x 1,x 2,x 3,其中x 2,x 3是方程-x 2+x -m =0的根,x 1是方程2x 2-x -m =0的一个根,则x 2x 3=m ,x 1=1-1+8m 4,所以x 1x 2x 3=-m (1+8m -1)4,显然,该式随m 的增大而减小, 因此,当m =0时,(x 1x 2x 3)max =0; 当m =14时,(x 1x 2x 3)min =1-316.由以上可知x 1x 2x 3的取值范围为⎝⎛⎭⎪⎫1-316,0.22.(12分)一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用m (1≤m ≤4且m ∈R )个单位的药剂,药剂在血液中的含量y (克)随着时间x (小时)变化的函数关系式近似为y =m ·f (x ),其中f (x )=⎩⎨⎧104+x,0≤x <6,4-x2,6≤x ≤8.(1)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时?(2)若病人第一次服用2个单位的药剂,6个小时后再服用m 个单位的药剂,要使接下来的2个小时中能够持续有效治疗,试求m 的最小值.解 (1)因为m =3,所以y =⎩⎨⎧304+x ,0≤x <6,12-3x2,6≤x ≤8.当0≤x <6时,由304+x ≥2,解得x ≤11,此时0≤x <6;当6≤x ≤8时,由12-3x2≥2,解得x ≤203,此时6≤x ≤203.综上所述,0≤x ≤203.故若一次服用3个单位的药剂,则有效治疗的时间可达203小时.(2)方法一 当6≤x ≤8时,y =2×⎝⎛⎭⎫4-12x +m ⎣⎡⎦⎤104+(x -6)=8-x +10m x -2,因为8-x +10m x -2≥2对6≤x ≤8恒成立,即m ≥x 2-8x +1210对6≤x ≤8恒成立,等价于m ≥⎝⎛⎭⎫x 2-8x +1210max (6≤x ≤8).令g (x )=x 2-8x +1210,则函数g (x )=(x -4)2-410在[6,8]上是单调递增函数,当x =8时,函数g (x )=x 2-8x +1210取得最大值为65,所以m ≥65,所以所求m 的最小值为65.方法二 当6≤x ≤8时,y =2×⎝⎛⎭⎫4-12x +m ⎣⎡⎦⎤104+(x -6)=8-x +10m x -2,注意到y 1=8-x 及y 2=10m x -2(1≤m ≤4且m ∈R )均关于x 在[6,8]上单调递减,则y =8-x +10mx -2关于x 在[6,8]上单调递减,故y ≥8-8+10m 8-2=5m 3,由5m 3≥2得m ≥65,所以所求m 的最小值为65.。
人教A版(2019)高中数学必修第一册第三章函数概念与性质单元检测试卷
《第三章 函数的概念与性质》检测试卷一、单选题(每小题5分,共40分)1.设A ={x |0≤x ≤2},B ={y |1≤y ≤2},能表示集合A 到集合B 的函数关系的是( )2.函数f (x )=1+x +1x的定义域是( )A.[-1,+∞) B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R3.若函数f (x )满足f (x )=x +3x +2,则f (x )在[1,+∞)上的值域为( ) A .(-∞,1] B .⎝ ⎛⎦⎥⎤0,43 C .⎝ ⎛⎦⎥⎤-∞,43D .⎝ ⎛⎦⎥⎤1,43 4.函数y =4xx 2+1的图象大致为( )5.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .126.(2020·菏泽高一检测)下列函数中,既是定义在R 上的偶函数,又在区间(-∞,0)上单调递增的是( ) A .y =-x 2+1 B .y =x 2+1 C .y =x +1D .y =-x 37.(2021·合肥高一检测)设奇函数f (x )在[-3,3]上是减函数,且f (3)=-3,若不等式f (x )<2t +1对所有的x ∈[-3,3]都成立,则t 的取值范围是( ) A.[-1,1]B .(1,+∞)C .(-∞,1)D .(-∞,1)∪(1,+∞)8.某品种鲜花进货价5元/枝,据市场调查,当销售价格(x 元/枝)在x ∈[5,15]时,每天售出该鲜花枝数p (x )=500x -4,若想每天获得的利润最多,则销售价格应定为____元.( ) A .9 B .11 C .13 D .15二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分) 9.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)210.设奇函数f (x )在(0,+∞)上单调递增,且f (3)=0,则下列选项中属于不等式f (x )-f (-x )2>0的解集的是( ) A .(-∞,-3) B .(-3,0) C .(0,3)D .(3,+∞)11.关于函数f (x )=xx -1,下列结论正确的是( ) A .f (x )的图象过原点 B .f (x )是奇函数C .f (x )在区间(1,+∞)上单调递减D .f (x )是定义域上的增函数12.已知狄利克雷函数f (x )=⎩⎪⎨⎪⎧1,x 是有理数0,x 是无理数 ,则下列结论正确的是( )A .f (x )的值域为[0,1]B .f (x )定义域为RC .f (x +1)=f (x )D .f (x )是奇函数三、填空题(每小题5分,共20分)13.幂函数f (x )=x n的图象过点(2,8)且f (a -1)<1,则a 的取值范围是______.14.对于每个实数x ,设f (x )取y =2x -1,y =-2x +3两个函数中的最小值,则f (x )的最大值是______. 15.已知函数f (x -1)=x 2+(2a -2)x +3-2a .(1)若函数f (x )在区间[-5,5]上为单调函数,则实数a 的取值范围为________; (2)若f (x )在区间[-5,5]上的最小值为-1,则a 的值为______.16.某单位计划建造的三个相同的矩形饲养场(如图所示),现有总长为1的围墙材料,则每个矩形的长、宽之比为______时,围出的饲养场的总面积最大.四、解答题(共70分)17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2.(1)求f (f (3 ))的值;(2)若f (a )=3,求a 的值. 18.(12分)已知函数f (x )=2x5x +5.(1)求f ⎝ ⎛⎭⎪⎫12 +f (2)的值; (2)求f ⎝⎛⎭⎪⎫12 020 +f ⎝ ⎛⎭⎪⎫12 019 +…+f ⎝ ⎛⎭⎪⎫12 +f (1)+f (2)+…+f (2 019)+f (2 020)的值.19.(12分)大气中的温度随着高度的上升而降低,根据实测的结果上升到12 km 为止,温度的降低大体上与升高的距离成正比,在12 km 以上温度一定,保持在-55℃.(1)当地球表面大气的温度是a ℃时,在x km 的上空为y ℃,求a ,x ,y 间的函数关系式; (2)问当地表的温度是29℃时,3 km 上空的温度是多少?20.(12分)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2+ax +3-2a . (1)求f (x )的解析式;(2)若f (x )是R 上的单调函数,求实数a 的取值范围.21.(12分)已知函数f (x )的定义域为(-2,0)∪(0,2),当x ∈(0,2)时,函数f (x )=ax -1x -2. (1)若a =0,利用定义研究f (x )在区间(0,2)上的单调性; (2)若f (x )是偶函数,求f (x )的解析式.22.(12分)已知定义在R 上的奇函数f (x ),当x <0时,f (x )=xx -1. (1)求函数f (x )的解析式; (2)画出函数f (x )在R 上的图象;(3)解关于x 的不等式f (ax 2-x )>f (ax -1)(其中a ∈R ).答案解析一、单选题(每小题5分,共40分)1.设A ={x |0≤x ≤2},B ={y |1≤y ≤2},能表示集合A 到集合B 的函数关系的是( )分析选D.A 不是函数(一个x 对应两个y ),排除;B 中y ∈[0,2],不是集合A 到集合B 的函数关系,排除;C 不是函数(x =1时对应两个函数值),排除;D 符合要求. 2.函数f (x )=1+x +1x的定义域是( )A.[-1,+∞) B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R分析选C.要使函数有意义,需满足⎩⎪⎨⎪⎧1+x ≥0,x ≠0, 即x ≥-1且x ≠0.3.若函数f (x )满足f (x )=x +3x +2,则f (x )在[1,+∞)上的值域为( ) A .(-∞,1] B .⎝ ⎛⎦⎥⎤0,43 C .⎝ ⎛⎦⎥⎤-∞,43D .⎝ ⎛⎦⎥⎤1,43 分析选D.f (x )=x +3x +2 =1+1x +2, 因为y =1x +2在[1,+∞)上单调递减, 所以y =1x +2 ∈⎝ ⎛⎦⎥⎤0,13 . 所以1+1x +2 ∈⎝ ⎛⎦⎥⎤1,43 , 所以f (x )在[1,+∞)上的值域为⎝ ⎛⎦⎥⎤1,43 . 4.函数y =4xx 2+1的图象大致为( )分析选A.函数y=4xx2+1的定义域为实数集R,关于原点对称,函数y=f(x)=4xx2+1,则f(-x)=-4xx2+1=-f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B.5.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )A.-1 B.1 C.6 D.12分析选C.由题意知当-2≤x≤1时,f(x)=x-2;当1<x≤2时,f(x)=x3-2,又因为f(x)=x-2,f(x)=x3-2在定义域上都为增函数,所以f(x)的最大值为f(2)=23-2=6. 6.(2020·菏泽高一检测)下列函数中,既是定义在R上的偶函数,又在区间(-∞,0)上单调递增的是( ) A.y=-x2+1 B.y=x2+1C.y=x+1 D.y=-x3分析选A.A,f(-x)=-(-x)2+1=-x2+1=f(x),则f(x)是偶函数,函数在(-∞,0)上是增函数,满足条件;B,f(-x)=(-x)2+1=x2+1=f(x),则f(x)是偶函数,函数在(-∞,0)上是减函数,不满足条件;C,f(-x)=-x+1≠x+1=f(x),则f(x)不是偶函数,不满足条件;D.f(-x)=-(-x)3=x3=-f(x),则f(x)是奇函数,函数在(-∞,0)上是减函数,不满足条件.7.(2021·合肥高一检测)设奇函数f(x)在[-3,3]上是减函数,且f(3)=-3,若不等式f(x)<2t+1对所有的x∈[-3,3]都成立,则t的取值范围是( )A.[-1,1] B.(1,+∞)C.(-∞,1) D.(-∞,1)∪(1,+∞)分析选B.因为奇函数f(x)在[-3,3]上是减函数,且f(3)=-3,所以f(x)max=f(-3)=3,若不等式f(x)<2t+1对所有的x∈[-3,3]都成立,则3<2t+1,解得t>1.8.某品种鲜花进货价5元/枝,据市场调查,当销售价格(x元/枝)在x∈[5,15]时,每天售出该鲜花枝数p(x)=500x-4,若想每天获得的利润最多,则销售价格应定为____元.( )A .9B .11C .13D .15 分析选D.设每天的利润为y 元, 则y =(x -5)·500x -4 =500⎝ ⎛⎭⎪⎫1-1x -4 ,5≤x ≤15,显然此函数是增函数,故当x =15时,y 取得最大值.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分) 9.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)2分析选BD.令t =2x -1,则x =t +12.f (t )=4⎝ ⎛⎭⎪⎫t +12 2=(t +1)2,故f (x )=(x +1)2,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确. 10.设奇函数f (x )在(0,+∞)上单调递增,且f (3)=0,则下列选项中属于不等式f (x )-f (-x )2>0的解集的是( ) A .(-∞,-3) B .(-3,0) C .(0,3)D .(3,+∞)分析选BD.因为f (x )为奇函数且f (3)=0, 所以f (-3)=-f (3)=0,因为f (x )在(0,+∞)上单调递增,故f (x )在(-∞,0)上单调递增,所以f (x )-f (-x )2=f (x )>0,当x >0时,x >3;当x <0时,-3<x <0, 故不等式的解集为(-3,0)∪(3,+∞). 11.关于函数f (x )=xx -1,下列结论正确的是( )A .f (x )的图象过原点B .f (x )是奇函数C .f (x )在区间(1,+∞)上单调递减D .f (x )是定义域上的增函数 分析选AC.函数f (x )=xx -1=x -1+1x -1 =1+1x -1,f (0)=0,A 正确; 图象关于(1,1)点对称,B 错误;在(-∞,1),(1,+∞)上是减函数,整个定义域上不是减函数,故C 正确,D 错误.12.已知狄利克雷函数f (x )=⎩⎪⎨⎪⎧1,x 是有理数0,x 是无理数 ,则下列结论正确的是( )A .f (x )的值域为[0,1]B .f (x )定义域为RC .f (x +1)=f (x )D .f (x )是奇函数分析选BC.根据分段函数的定义域为每段函数的并集可知,函数的定义域为全体有理数与无理数的并集即R ,故函数的定义域为R ,故B 正确;值域为{1,0},故A 错误; 当x 为有理数时,x +1也为有理数, 则f (x +1)=f (x )=1,当x 为无理数时,x +1也为无理数,则f (x +1)=f (x )=0,从而有f (x +1)=f (x ),故C 正确;当x 为有理数时,f (x )=1,f (-x )=1,不满足f (-x )=-f (x ),故D 错误. 三、填空题(每小题5分,共20分)13.幂函数f (x )=x n的图象过点(2,8)且f (a -1)<1,则a 的取值范围是______. 分析因为幂函数f (x )=x n的图象过点(2,8), 所以2n =8,所以n =3,所以幂函数f (x )=x 3,因为f (a -1)<1,所以(a -1)3<1,所以a -1<1,所以a <2. 答案:(-∞,2)14.对于每个实数x ,设f (x )取y =2x -1,y =-2x +3两个函数中的最小值,则f (x )的最大值是______. 分析因为f (x )取y =2x -1,y =-2x +3两个函数中的最小值, 故函数f (x )的图象如图中加粗线条所示:由图易得f (x )的最大值是1. 答案:115.已知函数f (x -1)=x 2+(2a -2)x +3-2a .(1)若函数f (x )在区间[-5,5]上为单调函数,则实数a 的取值范围为________; (2)若f (x )在区间[-5,5]上的最小值为-1,则a 的值为______.分析令x -1=t ,则x =t +1,f (t )=(t +1)2+(2a -2)·(t +1)+3-2a =t 2+2at +2, 所以f (x )=x 2+2ax +2.(1)因为f (x )图象的对称轴为x =-a ,由题意知-a ≤-5或-a ≥5,解得a ≤-5或a ≥5. 故实数a 的取值范围为(-∞,-5]∪[5,+∞). (2)当a >5时,f (x )最小值=f (-5)=27-10a =-1, 解得a =145(舍去);当-5≤a ≤5时,f (x )最小值=f (-a )=-a 2+2=-1,解得a =±3 ; 当a <-5时,f (x )最小值=f (5)=27+10a =-1, 解得a =-145 (舍去).综上a =±3 .答案:(1)(-∞,-5]∪[5,+∞) (2)±316.某单位计划建造的三个相同的矩形饲养场(如图所示),现有总长为1的围墙材料,则每个矩形的长、宽之比为______时,围出的饲养场的总面积最大.分析如图所示,设一个矩形饲养场的长为AB =x ,宽为AD =y ,则4x +6y =1,所以y =16 (1-4x ),则饲养场的总面积S =3xy =12 x (1-4x )=-2⎝ ⎛⎭⎪⎫x -18 2+132 , 故当x =18 ,y =112,即长、宽之比为18 ∶112=3∶2时,饲养场的总面积最大.答案:3∶2四、解答题(共70分)17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2.(1)求f (f (3 ))的值;(2)若f (a )=3,求a 的值. 分析(1)因为-1<3 <2,所以f (3 )=(3 )2=3. 又因为3≥2,所以f (f (3 ))=f (3)=2×3=6. (2)当a ≤-1时,f (a )=a +2. 又因为f (a )=3,所以a =1(舍去); 当-1<a <2时,f (a )=a 2.又因为f (a )=3,所以a =±3 ,其中负值舍去, 所以a =3 ; 当a ≥2时,f (a )=2a .又因为f (a )=3,所以a =32 (舍去).综上所述a =3 .18.(12分)已知函数f (x )=2x5x +5.(1)求f ⎝ ⎛⎭⎪⎫12 +f (2)的值; (2)求f ⎝⎛⎭⎪⎫12 020 +f ⎝ ⎛⎭⎪⎫12 019 +…+f ⎝ ⎛⎭⎪⎫12 +f (1)+f (2)+…+f (2 019)+f (2 020)的值.分析(1)因为函数f (x )=2x5x +5. 所以f ⎝ ⎛⎭⎪⎫12 +f (2)=2×125×12+5 +2×25×2+5 =25 . (2)因为函数f (x )=2x5x +5. 所以f (x )+f ⎝ ⎛⎭⎪⎫1x =2x 5x +5 +2x 5x+5=2x 5x +5 +25x +5 =25 ,所以f ⎝⎛⎭⎪⎫12 020 +f ⎝ ⎛⎭⎪⎫12 019 +…+f ⎝ ⎛⎭⎪⎫12 +f (1)+f (2)+…+f (2 019)+f (2 020)=2 019×25 +25+5 =4 0395. 19.(12分)大气中的温度随着高度的上升而降低,根据实测的结果上升到12 km 为止,温度的降低大体上与升高的距离成正比,在12 km 以上温度一定,保持在-55℃.(1)当地球表面大气的温度是a ℃时,在x km 的上空为y ℃,求a ,x ,y 间的函数关系式; (2)问当地表的温度是29℃时,3 km 上空的温度是多少?分析(1)由题设知,可设y -a =kx (0≤x ≤12,k <0),即y =a +kx .依题意,当x =12时,y =-55, 所以-55=a +12k ,解得k =-55+a12 .所以当0≤x ≤12时,y =a -x12(55+a )(0≤x ≤12).又当x >12时,y =-55.所以所求的函数关系式为y =⎩⎪⎨⎪⎧a -x 12(55+a ),(0≤x ≤12),-55,(x >12).(2)当a =29,x =3时,y =29-312 (55+29)=8,即3 km 上空的温度为8℃.20.(12分)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2+ax +3-2a . (1)求f (x )的解析式;(2)若f (x )是R 上的单调函数,求实数a 的取值范围.分析(1)根据题意,因为函数f (x )是定义在R 上的奇函数,所以f (0)=0, 当x <0时,-x >0,则f (-x )=(-x )2+a (-x )+3-2a =x 2-ax +3-2a =-f (x ),所以f (x )=-x 2+ax -3+2a (x <0),所以f (x )=⎩⎪⎨⎪⎧x 2+ax +3-2a ,x >00,x =0-x 2+ax -3+2a ,x <0.(2)若f (x )是R 上的单调函数,且f (0)=0, 则实数a 满足⎩⎪⎨⎪⎧3-2a ≥0-a 2≤0 ,解得0≤a ≤32 ,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,32 . 21.(12分)已知函数f (x )的定义域为(-2,0)∪(0,2),当x ∈(0,2)时,函数f (x )=ax -1x -2.(1)若a =0,利用定义研究f (x )在区间(0,2)上的单调性;(2)若f (x )是偶函数,求f (x )的解析式.分析(1)当a =0时,f (x )=12-x, 设x 1,x 2∈(0,2)且x 1<x 2,则f (x 1)-f (x 2)=12-x 1 -12-x 2 =x 1-x 2(2-x 1)(2-x 2), 因为x 1,x 2∈(0,2)且x 1<x 2,所以x 1-x 2<0,2-x 1>0,2-x 2>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )=12-x在区间(0,2)上单调递增. (2)令x ∈(-2,0),则-x ∈(0,2),所以f (-x )=a -x -1-x -2 =1x +2 -a x, 因为f (x )是偶函数,所以f (x )=f (-x )=1x +2 -a x,所以函数 f (x )在(-2,0)∪(0,2)上的解析式为:f (x )=⎩⎪⎨⎪⎧a x -1x -2,0<x <21x +2-a x ,-2<x <0. 22.(12分)已知定义在R 上的奇函数f (x ),当x <0时,f (x )=x x -1 . (1)求函数f (x )的解析式;(2)画出函数f (x )在R 上的图象;(3)解关于x 的不等式f (ax 2-x )>f (ax -1)(其中a ∈R ). 分析(1)令x >0,则-x <0,依题意得f (-x )=-x -x -1 =x x +1, 所以f (x )=-f (-x )=-xx +1 (x >0),又f (0)=0, 所以f (x )=⎩⎪⎨⎪⎧xx -1,x <00,x =0-x x +1,x >0. (2)图象如图所示.(3)解关于x 的不等式f (ax 2-x )>f (ax -1), 由图象可知,函数f (x )在R 上单调递减, 所以所求不等式等价于ax 2-x <ax -1,即ax 2-(a +1)x +1<0,即(ax -1)(x -1)<0, 当a =0时,解得x >1;当0<a <1时,解得1<x <1a ;当a =1时,解得x ∈∅;当a >1时,解得1a <x <1;当a <0时,解得x >1或x <1a .。
2021新教材人教版高中数学A版必修第一册模块练习题--5.1.1 任意角
第五章三角函数5.1任意角和弧度制5.1.1任意角基础过关练题组一对任意角概念的理解1.将射线OM绕端点O按逆时针方向旋转120°所得的角为()A.120°B.-120°C.60°D.240°2.已知角α在平面直角坐标系中如图所示,其中射线OA与y轴正半轴的夹角为30°,则α的值为()A.-480°B.-240°C.150°D.480°3.从13:00到14:00,时针转过的角为,分针转过的角为.题组二终边相同的角与区域角4.(2020北京通州高一上期末)在0°~360°范围内,与-80°角终边相同的角是()A.80°B.100°C.240°D.280°5.设α=-300°,则与α终边相同的角的集合为()A.{α|α=k·360°+300°,k∈Z}B.{α|α=k·360°+60°,k∈Z}C.{α|α=k·360°+30°,k∈Z}D.{α|α=k·360°-60°,k∈Z}6.角α与角β的终边关于y轴对称,则α与β的关系为()A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z7.与-2020°角终边相同的最小正角是.8.已知射线OA,OB如图.(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.9.已知角θ的7倍角的终边与角θ的终边重合,且0°<θ<360°,求满足条件的角θ的集合.题组三象限角的判定10.-361°角的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限11.下列命题正确的是()A.终边在x轴的非正半轴上的角是零角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k·360°(k∈Z),则α与β的终边相同12.设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限角},D={θ|θ为小于90°的正角},则下列等式中成立的是()A.A=BB.B=CC.A=CD.A=D13.若α是第四象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角14.(多选)下列四个命题是真命题的有()A.-75°角是第四象限角B.225°角是第三象限角C.575°角是第二象限角D.-315°角是第一象限角15.若α=k·360°+45°,k∈Z,则α是第象限角.2能力提升练题组一对任意角概念的理解1.()若α与β的终边互为反向延长线,则有()A.α=β+180°B.α=β-180°C.α=-βD.α=β+(2k+1)·180°,k∈Z2.(多选)()下列条件中,能使α和β的终边关于y轴对称的是()A.α+β=90°B.α+β=180°C.α+β=k·360°+90°(k∈Z)D.α+β=(2k+1)·180°(k∈Z)题组二终边相同的角与区域角3.(2020河南光山第二高级中学高一期末,)与角-390°终边相同的最小正角是()A.-30°B.30°C.60°D.330°4.()终边在直线y=-x上的所有角的集合是()A.{α|α=k·360°+135°,k∈Z}B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z}D.{α|α=k·180°-45°,k∈Z}5.()集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角所表示的范围(阴影部分)是()6.()如果角α与x+45°的终边相同,角β与x-45°的终边相同,那么α与β的关系是()A.α+β=0°B.α-β=0°C.α+β=k·360°(k∈Z)D.α-β=k·360°+90°(k∈Z)7.()若角α满足180°<α<360°,角5α与α有相同的始边与终边,则角α=.8.()写出如图所示的阴影部分(包括边界)的角α的范围.题组三象限角的判定9.(2020四川宜宾高一期中,)2019°角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角的终边所在10.(多选)(2020重庆高一上月考,)设α是第三象限角,则α2的象限可能是(易错)A.第一象限B.第二象限C.第三象限D.第四象限11.()已知集合{α|α=k·90°+45°,k∈Z}.(1)该集合中有几种终边不相同的角?(2)该集合中有几个在-360°~360°范围内的角?(3)写出该集合中的第三象限角.12.()半径为1的圆的圆心位于坐标原点,点P从点A(1,0)出发,以逆时针方向匀速沿圆周旋转,已知点P在1s内转过的角度为θ(0°<θ<180°),经过2s到达第三象限,经过14s后又回到了出发点A处,求θ.答案全解全析基础过关练1.A按逆时针方向旋转形成的角是正角,所以射线OM绕端点O按逆时针方向旋转120°所得的角为120°.2.D由角α按逆时针方向旋转,可知α为正角.又旋转量为480°,∴α=480°.3.答案-30°;-360°解析经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.4.D与-80°角终边相同的角可表示成α=k·360°-80°,k∈Z,令k=1,得α=280°,故选D.5.B因为α=-300°=-360°+60°,所以角α的终边与60°角的终边相同,故选B.6.B解法一(特值法):令α=30°,β=150°,则α+β=180°.解法二(直接法):因为角α与角β的终边关于y轴对称,所以β=180°-α+k·360°,k∈Z,即α+β=k·360°+180°,k∈Z.7.答案140°解析与-2020°角终边相同的角的集合为{β|β=-2020°+k·360°,k∈Z},当k=6时,得到与-2020°角终边相同的最小正角,即β=-2020°+6×360°=140°.8.解析(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)的角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.9.解析由题意知,7θ=θ+k·360°,k∈Z,即6θ=k·360°,k∈Z,∴θ=k·60°,k∈Z,由0°<θ<360°,得0°<k·60°<360°,k∈Z,∴0<k<6,k∈Z,即k=1,2,3,4,5,∴角θ的集合为{60°,120°,180°,240°,300°}.10.D因为-361°角的终边和-1°角的终边相同,所以它的终边落在第四象限,故选D.11.D终边在x轴的非正半轴上的角为k·360°+180°,k∈Z,零角为0°,所以A错误;480°角为第二象限角,但不是钝角,所以B错误;285°角为第四象限角,但不是负角,所以C错误;D正确.故选D.12.D直接根据角的分类进行求解,容易得到答案.13.C因为α是第四象限角,则角α应满足:k·360°-90°<α<k·360°,k∈Z,所以-k·360°<-α<-k·360°+90°,k∈Z,则-k·360°+180°<180°-α<-k·360°+270°,k∈Z,当k=0时,180°<180°-α<270°,故180°-α为第三象限角.14.ABD-75°=-360°+285°是第四象限角;225°=180°+45°是第三象限角;575°=360°+215°是第三象限角;-315°=-360°+45°是第一象限角,故A,B,D为真命题.15.答案一或三解析 ∵α=k ·360°+45°,k ∈Z,∴α2=k ·180°+22.5°,k ∈Z. 当k 为偶数,即k=2n,n ∈Z 时,α2=n ·360°+22.5°,n ∈Z,∴α2为第一象限角; 当k 为奇数,即k=2n+1,n ∈Z 时,α2=n ·360°+202.5°,n ∈Z,∴α2为第三象限角. 综上,α2是第一或第三象限角.能力提升练1.D α与β的终边互为反向延长线,则两角的终边相差180°的奇数倍,可得α=β+(2k+1)·180°,k ∈Z.2.BD 假设α,β为0°~180°内的角,如图所示,因为α,β的终边关于y 轴对称,所以α+β=180°,所以B 满足条件;结合终边相同的角的概念,可得α+β=k ·360°+180°=(2k+1)·180°(k ∈Z),所以D 满足条件,A 、C 都不满足条件.3.D 依题意,-390°+360°=-30°,-30°+360°=330°,故选D.4.D 直线y=-x 如图所示,由图可知,终边落在直线y=-x 上的所有角的集合是{α|α=k ·180°-45°,k ∈Z},故选D.5.C 依题意可知选C.6.D 由题意知α=(x+45°)+k 1·360°(k 1∈Z ),β=(x -45°)+k 2·360°(k 2∈Z),∴α-β=(k 1-k 2)·360°+90°=k ·360°+90°(k ∈Z). 7.答案 270° 解析 ∵角5α与α具有相同的始边与终边,∴5α=k ·360°+α,k ∈Z,得4α=k ·360°,k ∈Z,∴α=k ·90°,k ∈Z. 又180°<α<360°,∴α=270°.8.解析 (1)因为与45°角终边相同的角可写成45°+k ·360°,k ∈Z 的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k ·360°,k ∈Z 的形式,所以题图(1)中阴影部分的角α的范围可表示为{α|-150°+k ·360°≤α≤45°+k ·360°,k ∈Z}. (2)因为与45°角终边相同的角可写成45°+k ·360°,k ∈Z 的形式,与360°-60°=300°角终边相同的角可写成300°+k ·360°,k ∈Z 的形式,所以题图(2)中阴影部分的角α的范围为{α|45°+k ·360°≤α≤300°+k ·360°,k ∈Z}. 9.C 由题意,可知2 019°=360°×5+219°,所以2 019°角和219°角终边相同,又219°角是第三象限角,所以2 019°角是第三象限角,故选C.10.BD 解法一:如图所示,作各个象限的角平分线,标号Ⅲ所在的区域即为α2所在的区域,故选BD. 解法二:由α是第三象限角得180°+k ·360°<α<270°+k ·360°,k ∈Z, ∴90°+k · 180°<α2<135°+k ·180°,k ∈Z, 当k 为偶数时,设k=2n(n ∈Z),则90°+n ·360°<α2<135°+n ·360°(n ∈Z),∴α2为第二象限角; 当k 为奇数时,设k=2n+1(n ∈Z),则270°+n ·360°<α2<315°+n ·360°(n ∈Z), ∴α2为第四象限角. ∴α2为第二或第四象限角,故选BD. 易错警示 对象限角的运算,要将“周期”化为360°再进行判断,当“周期”是360°的约数时,要对整数k 进行分类讨论,解题时要防止遗漏导致错误.11.解析 (1)由k=4n,4n+1,4n+2,4n+3(n ∈Z),知在给定的角的集合中终边不相同的角共有四种.(2)由-360°≤k ·90°+45°<360°,得-92≤k<72. 又k ∈Z,故k=-4,-3,-2,-1,0,1,2,3.所以在给定的角的集合中在-360°~360°范围内的角共有8个.(3)给定的角的集合中第三象限角为k ·360°+225°,k ∈Z. 12.解析 ∵0°<θ<180°,且k ·360°+180°<2θ<k ·360°+270°,k ∈Z,∴一定有k=0,于是90°<θ<135°.又∵14θ=n ·360°(n ∈Z),∴θ=n ·180°7,n ∈Z,从而90°<n ·180°7<135°,n ∈Z,∴72<n<214,n ∈Z,∴n=4或5.当n=4时,θ=(7207)°;当n=5时,θ=(9007)°.。
2021新教材人教版高中数学A版必修第一册模块练习题--4.5.3 函数模型的应用
4.5.3 函数模型的应用基础过关练题组一 利用已知函数模型解决问题1.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)={√x<a,√a≥a(a,c 为常数).已知该工人组装第4件产品用时30分钟,组装第a 件产品用时5分钟,那么c 和a 的值分别是( ) A.75,25 B.75,16 C.60,144 D.60,162.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与时间x(年)近似满足关系式:y=alog 3(x+2),观测发现2019年冬(作为第1年)有越冬白鹤3 000只,估计到2025年冬越冬白鹤有( ) A.4 000只 B.5 000只 C.6 000只 D.7 000只3.某商品专营部每天的房租、人员工资等固定成本为300元,已知该商品的进价为3元/件,并规定其销售价格不低于商品进价,且不高于12元/件.该商品日均销售量y(件)与销售单价x(元)的关系如图所示. (1)试求y 关于x 的函数解析式;(2)当销售单价定为多少元时,该商品每天的利润最大?4.某企业生产的新产品必须先靠广告打开销路,该产品广告效益应该是产品的销售额与广告费之间的差,如果销售额与广告费的算术平方根成正比,那么根据对市场的抽样调查发现:每投入100万元的广告费,所得的销售额是1000万元.问:该企业投入多少广告费才能获得最大的广告效益?题组二建立函数模型解决问题5.(2020山东烟台高一上期末)某商家准备在2020年春节来临前连续两次对某一商品的销售价格进行提价且每次提价10%,然后在春节活动期间连续两次对该商品进行降价且每次降价10%,则该商品的最终售价与原来的价格相比()A.略有降低B.略有提高C.相等D.无法确定6.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.p+q2B.(p+1)(q+1)-12C.√pqD.√(1+p)(1+q)-17.某工厂2019年生产某产品2万件,计划从2020年开始每年比上一年增产20%,则这家工厂生产这种产品的年产量超过6万件的起始年份是(参考数据:lg2≈0.3010,lg3≈0.4771)()A.2023年B.2024年C.2025年D.2026年8.大气温度y(℃)随着距地面的高度x(km)的增加而降低,到高空11km 处为止,在更高的上空气温几乎不变.设地面温度为22℃,每上升1km 大气温度大约降低6℃,则y与x的函数关系式为.9.(2020河北唐山一中高一上期中)某工厂生产过程中产生的废气必须经过过滤后才能排放,已知在过滤过程中,废气中的污染物含量p(单位:毫克/升)与过滤时间t(单位:小时)之间的关系为p(t)=p0e-kt(式中的e为自然对数的底数,p0为污染物的初始含量).过滤1小时后检测,发现污染物的含量减少了15.(1)求函数关系式p(t);(2)要使污染物的含量不超过初始值的11 000,至少还需过滤几个小时?(参考数据:lg2≈0.3)题组三拟合函数模型解决问题10.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()x 1.99234 5.15 6.126y 1.517 4.04187.51218.01(x2-1)A.y=2x-2B.y=12C.y=log2xD.y=lo g1x211.现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为拟合模型较好.12.为减少空气污染,某市鼓励居民用电(减少粉尘),并采用分段计费的方法计算电费.当每个家庭月用电量不超过100千瓦时时,按每千瓦时0.57元计算;当月用电量超过100千瓦时时,其中的100千瓦时仍按原标准收费,超过的部分按每千瓦时0.5元计算.(1)设月用电x千瓦时时,应交电费y元,写出y关于x的函数关系式;(2)若某家庭一月份用电120千瓦时,则应交电费多少元?(3)若某家庭第一季度缴纳电费的情况如下表:月份1月2月3月合计交费金额(元)766345.6184.6则这个家庭第一季度共用电多少千瓦时?13.下表是某款车的车速与刹车后的停车距离的一组数据,试分别就y=a·e kx,y=ax n,y=ax2+bx+c三种函数关系建立数学模型,并探讨最佳模拟,根据最佳模拟求车速为120km/h时刹车后的停车距离.车速(km/h)1015304050停车距离(m)47121825车速(km/h)60708090100停车距离(m)3443546680能力提升练题组一 利用已知函数模型解决问题 1.()某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=2kx+m (k,m 为常数).若该食品在0 ℃的保鲜时间是64小时,在18 ℃的保鲜时间是16小时,则该食品在36 ℃的保鲜时间是( ) A.4小时 B.8小时 C.16小时 D.32小时 2.(2019山西太原五中高一月考,)国家规定某行业征税如下:年收入在280万元及以下的税率为p%,超过280万元的部分按(p+2)%征税.有一公司的实际缴税比例为(p+0.25)%,则该公司的年收入是( ) A.560万元 B.420万元 C.350万元 D.320万元 3.(2020山东泰安一中高一上期中,)山东新旧动能转换综合试验区是党的十九大后获批的首个区域性国家发展战略综合试验区,也是中国第一个以新旧动能转换为主题的区域发展战略综合试验区.泰安某高新技术企业决定抓住发展机遇,加快企业发展.已知该企业的年固定成本为500万元,每生产设备x(x>0)台,需另投入成本y 1万元.若年产量不足80台,则y 1=12x 2+40x;若年产量不小于80台,则y 1=101x+8 100x-2 180.每台设备售价为100万元,通过市场分析,该企业生产的设备能全部售完.(1)写出年利润y(万元)关于年产量x(台)的关系式;(2)当年产量为多少台时,该企业所获利润最大?题组二建立函数模型解决问题4.(2019湖南醴陵一中高一上期中,)某种放射性元素,每年在前一年的基础上按相同比例衰减,100年后只剩原来的一半,现有这种元素1克,3年后剩下()A.0.015克B.(1-0.5%)3克100克C.0.925克D.√0.1255.(2019辽宁沈阳五校协作体高一期中,)为了落实国务院“提速降费”的要求,某市移动公司欲下调移动用户消费资费.已知该公司共有移动用户10万人,人均月消费50元.经测算,若人均月消费下降x%,则万人.用户人数会增加x8(1)若要保证该公司月总收入不减少,试求x的取值范围;(2)为了布局“5G网络”,该公司拟定投入资金进行5G网络基站建设,投入资金方式为每位用户月消费中固定划出2元进入基站建设资金,若使该公司总盈利最大,试求x的值.(总盈利资金=总收入资金-总投入资金)6.()国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,飞机票价格为900元/张;若旅行团人数多于30人,则给予优惠:每多1人,每张飞机票价格就减少10元,直到达到规定人数75人为止.旅行团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)旅行团人数为多少时,旅行社可获得最大利润?题组三拟合函数模型解决问题7.(2020北京人大附中高一上期中,)如图是吴老师散步时所走的离家距离(y)与行走时间(x)之间的函数关系的图象,若用黑点表示吴老师家的位置,则吴老师散步行走的路线可能是()8.(2020河北石家庄二中高一上月考,)如图①是某公共汽车线路收支差额y元与乘客量x的图象.图①图②图③由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的方案,根据图①上点A、点B以及射线AB上的点的实际意义,用文字说明图②方案是,图③方案是.9.(2020辽宁大连高一上期中,)某纪念章从2019年10月1日起开始上市,通过市场调查,得到该纪念章每枚的市场价(单位:y元)与上市时间(单位:x天)的数据如下:上市时间x天41036市场价y元905190(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①y=ax+b;②+b.y=ax2+bx+c;③y=ax(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.10.(2019江西赣州十四县(市)高一上期中联考,)中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近70%,居全球首位.中国又属赣州钨矿资源最为丰富,其素有“世界钨都”之称.某科研单位在研发钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值与这种新合金材料的含量x(单位:克)的关系为:当0≤x<6时,y是x的二次函数;当x≥6时,y=(13)x-t.测得数据如表(部分).x(单位:克)0129…y074319…(1)求y关于x的函数关系式y=f(x);(2)求函数f(x)的最大值.答案全解全析 基础过关练1.C 显然a>4,则由题意可得{√4=30,√a=5,解得{c =60,a =144,故选C.2.C 当x=1时,由3 000=alog 3(1+2)得a=3 000,所以到2025年冬,即第7年,y=3 000×log 3(7+2)=6 000.故选C.3.解析 (1)由题图可知该商品日均销售量y(件)与销售单价x(元)满足一次函数关系,于是设y=kx+b(k ≠0). ∵点(3,600),(5,500)在其图象上, ∴{3k +b =600,5k +b =500,解得{k =-50,b =750, ∴y=-50x+750(3≤x ≤12).(2)设该商品每天的利润为w 元.由题意知w=(-50x+750)(x-3)-300, 整理得w=-50(x 2-18x+51)=-50[(x-9)2-30].∵x ∈[3,12],∴当x=9时,w 取得最大值,最大值为1 500. 故当销售单价定为9元时,该商品每天的利润最大.4.解析 设广告费为x 万元时,广告效益为y 万元,销售额为t 万元.由题意可设t=k √x (k>0),则y=t-x=k √x -x.∵当x=100时,t=1 000,∴1 000=10k,解得k=100, ∴t=100√x ,∴y=100√x -x.令√x =m,则m ≥0,y=100m-m 2=-(m-50)2+2 500, ∴当m=50,即x=2 500时,y 取得最大值,为2 500.∴该企业投入2 500万元广告费时,能获得最大的广告效益. 5.A 设这种商品的原价为a,则两次提价后的价格为a(1+10%)2=1.12·a,又进行两次降价后的价格为1.12·a(1-10%)2=(1+0.1)2(1-0.1)2·a=0.992a<a,因此最终售价与原来的价格相比略有降低,故选A. 6.D 设年平均增长率为x,则有(1+p)(1+q)=(1+x)2,解得x=√(1+p)(1+q)-1.7.D 设从2019年起,再过n 年这家工厂生产这种产品的年产量超过6万件,根据题意,得2(1+20%)n >6,即1.2n >3,两边取对数,得nlg 1.2>lg 3,∴n>lg3lg1.2=lg3lg3-1+2lg2≈6.03,又n 为整数,∴n 的最小值为7,又2 019+7=2 026,∴从2026年开始这家工厂生产这种产品的年产量超过6万件.故选D.8.答案 y={22-6x(0<x ≤11)-44(x >11)解析 根据题意得函数关系式为y={22-6x(0<x ≤11),-44(x >11).9.解析 (1)根据题意,得45p 0=p 0e -k ,∴e -k =45,∴p(t)=p 0(45)t.(2)由p(t)=p 0(45)t≤11 000p 0,得(45)t≤10-3,两边取对数并整理得t(1-3lg2)≥3,∴t ≥30.因此,至少还需过滤30个小时.10.B 由题中表格可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大得越来越快,分析选项可知B 符合,故选B. 11.答案 甲解析 对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型较好. 12.解析 (1)由题意得,当0≤x ≤100时,y=0.57x; 当x>100时,y=100×0.57+(x-100)×0.5=0.5x+7, 则y 关于x 的函数关系式为 y={0.57x,0≤x ≤100,0.5x +7,x >100.(2)由x=120>100,得y=67,即应交电费67元. (3)1月用电:因为76>0.57×100=57,所以x>100,由0.5x+7=76得x=138; 2月用电:因为63>0.57×100=57,所以x>100,由0.5x+7=63得x=112; 3月用电:因为45.6<0.57×100=57,所以0≤x ≤100,由0.57x=45.6得x=80,则138+112+80=330(千瓦时),即第一季度共用电330千瓦时. 13.解析 若以y=a ·e kx 为模拟函数,将(10,4),(40,18)代入函数关系式,得{a ·e 10k =4,a ·e 40k=18,解得{k ≈0.050 136,a ≈2.422 8.∴y=2.422 8e 0.050 136x .以此函数关系式计算车速为90 km/h,100 km/h 时,停车距离分别为220.8 m,364.5 m,与实际数据相比,误差较大.若以y=a ·x n 为模拟函数,将(10,4),(40,18)代入函数关系式,得{a ·10n =4,a ·40n =18,解得{n ≈1.085,a ≈0.328 9. ∴y=0.328 9x 1.085.以此函数关系式计算车速为90 km/h,100 km/h 时,停车距离分别为43.39 m,48.65 m,与实际情况误差也较大.若以y=ax 2+bx+c 为模拟函数,将(10,4),(40,18),(60,34)代入函数关系式,得{a ·102+b ·10+c =4,a ·402+b ·40+c =18,a ·602+b ·60+c =34,解得{a =1150,b =215,c =2.∴y=1150x 2+215x+2.以此函数关系式计算车速为90 km/h,100 km/h 时,停车距离分别为68 m,82 m,与前两个相比,它比较符合实际情况.当x=120时,y=114,即当车速为120 km/h 时,停车距离为114 m.能力提升练1.A 依题意得{2m =64,218k+m =16,解得{m =6,k =-19, ∴y=2-19x+6.当x=36时,y=2-19×36+6=22=4(时),故选A.2.D 设该公司的年收入为a 万元,则280p%+(a-280)(p+2)%=a(p+0.25)%, 解得a=280×22-0.25=320.3.解析 (1)当0<x<80时,y=100x-(12x 2+40x)-500=-12x 2+60x-500; 当x ≥80时,y=100x-101x+8 100x-2 180-500=1 680-(x +8 100x).所以当0<x<80时,y=-12x 2+60x-500;当x ≥80时,y=1 680-(x +8 100x).(2)当0<x<80时,y=-12(x-60)2+1 300,当x=60时,y 取得最大值,最大值为1 300.当x ≥80时,y=1 680-(x +8 100x)≤1 680-2√x ·8 100x=1 500,当且仅当x=8 100x,即x=90时,y 取得最大值,最大值为1 500.所以当年产量为90台时,该企业所获利润最大,最大利润为1 500万元. 4.D 设每年减少的比例为x,因此1克这种放射性元素,经过100年后剩余1×(1-x)100克,依题意得(1-x)100=0.5,所以x=1-√0.5100. 3年后剩余为(1-x)3,将x 的值代入,得结果为√0.125100,故选D. 5.解析 (1)根据题意,设该公司的总收入为W 万元, 则W=50(10+x8)(1-x100),0<x<100.若该公司月总收入不减少,则有50·(10+x8)(1-x100)≥10×50,解得0<x ≤20.(2)设该公司总盈利为y 万元,则y=50(10+x8)(1-x100)-210+x8=-x 216+x+480,0<x<100,结合二次函数的性质分析可得,当x=8时,该公司的总盈利最大. 6.解析 (1)设旅行团人数为x,飞机票价格为y 元/张, 则y={900,0<x ≤30,x ∈N *,900-10(x -30),30<x ≤75,x ∈N *, 即y={900,0<x ≤30,x ∈N *,1 200-10x,30<x ≤75,x ∈N *.(2)设旅行社获利S 元,则S={900x -15 000,0<x ≤30,x ∈N *,x(1 200-10x)-15 000,30<x ≤75,x ∈N *,即S={900x -15 000,0<x ≤30,x ∈N *,-10(x -60)2+21 000,30<x ≤75,x ∈N *.因为S=900x-15 000在区间(0,30]上单调递增,所以当x=30时,S 取最大值12 000,又因为S=-10(x-60)2+21 000在区间(30,60]上单调递增,在(60,75]上单调递减,所以当x=60时,S 取最大值21 000.故旅行团人数为60时,旅行社可获得最大利润.7.D 根据题中图象可知在第一段时间吴老师离家的距离随着时间的增加而增加,第二段时间吴老师离家的距离随着时间的增加不变,第三段时间吴老师离家的距离随着时间的增加而减少,最后回到始点位置,对比各选项可知,只有选项D 正确,故选D. 8.答案 降低成本,票价不变;增加票价解析 由题图①知,点A 表示无人乘车时,收支差额为-20元,即运行成本为20元;点B 表示10人乘车,收支平衡,收支差额为0.线段AB 上的点表示亏损,AB 延长线上的点表示盈利.题图②与题图①相比,一次函数的一次项系数不变,图象与y 轴负半轴的交点上移,故题图②表示降低成本,票价不变,题图③与题图①相比,一次项系数增大,图象与y 轴负半轴的交点不变,故题图③表示增加票价,故答案为降低成本,票价不变;增加票价.9.解析 (1)∵随着时间x 的增加,y 的值先减后增,而所给的三个函数中y=ax+b 和y=ax +b 显然都是单调函数,不满足题意,∴选择y=ax 2+bx+c.(2)把点(4,90),(10,51),(36,90)代入y=ax 2+bx+c 中, 得{16a +4b +c =90,100a +10b +c =51,1 296a +36b +c =90,解得{a =14,b =-10,c =126. ∴y=14x 2-10x+126=14(x-20)2+26,∴当x=20时,y 有最小值,且y min =26.故当纪念章上市20天时,该纪念章的市场价最低,最低市场价为26元. 10.解析 (1)当0≤x<6时,由题意,设f(x)=ax 2+bx+c(a ≠0),由题中表格数据可得{f(0)=c =0,f(1)=a +b +c =74,f(2)=4a +2b +c =3,解得{a =-14,b =2,c =0.所以当0≤x<6时, f(x)=-14x 2+2x.当x ≥6时, f(x)=(13)x -t,由题中表格数据可得,f(9)=(13)9-t =19,解得t=7,所以当x ≥6时,f(x)=(13)x -7.综上,f(x)={-14x 2+2x,0≤x <6,(13)x -7,x ≥6.(2)当0≤x<6时, f(x)=-14x 2+2x=-14(x-4)2+4,所以当x=4时,函数f(x)取得最大值,为4; 当x ≥6时,f(x)=(13)x -7单调递减,所以f(x)的最大值为f(6)=(13)6-7=3,因为4>3,所以函数f(x)的最大值为4.。
高中人教A版数学必修1单元测试:创优单元测评 (模块检测卷)AB卷 Word版含解析
高中同步创优单元测评A 卷数学班级:________姓名:________得分:________创优单元测评(模块检测卷)名师原创·基础卷](时间:120分钟满分:150分)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a 的值为()A.0B.1C.2D.42.若函数y=f(x)的定义域是0,2],则函数g(x)=f(2x)x-1的定义域是()A.0,1] B.0,1)C.0,1)∪(1,4] D.(0,1)3.下列各组函数中,表示同一函数的是()A.y=x2和y=(x)2B.y=lg(x2-1)和y=lg(x+1)+lg(x-1)C.y=log a x2和y=2log a xD.y=x和y=log a a x4.如果lg x=lg a+3lg b-5lg c,那么()A .x =ab 3c 5 B .x =3ab5c C .x =a +3b -5cD .x =a +b 3-c 35.已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a 6.若f (x )=1log 12(2x +1),则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫12,+∞ D .(0,+∞) 7.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)8.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2-2D .y =log 12x9.当x <0时,a x >1成立,其中a >0且a ≠1,则不等式log a x >0的解集是( )A .{x |x >0}B .{x |x >1}C .{x |0<x <1}D .{x |0<x <a }10.设P ,Q 是两个非空集合,定义集合间的一种运算“⊙”:P ⊙Q ={x |x ∈P ∪Q ,且x ∉P ∩Q },如果P ={y |y =4-x 2},Q ={y |y =4x ,x >0},则P ⊙Q =( )A .0,1]∪(4,+∞)B .0,1]∪(2,+∞)C .1,4]D .(4,+∞)11.已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如下图所示,则函数g (x )=a x +b 的图象是( )12.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝⎛⎭⎪⎫log 213=( )A .7 B.103 C .-4 D.43第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知幂函数y =f (x )的图象经过点(2,2),那么f (9)=________.14.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=________.15.已知函数f (x ),g (x )分别由下表给出:x 1 2 3 f (x )131则不等式fg (x )]>gf (x )]的解为________.16.直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |3≤3x ≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围.18.(本小题满分12分)定义在(-1,1)上的函数f (x )满足:①对任意x ,y ∈(-1,1)都有f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ;②f (x )在(-1,1)上是单调函数;③f ⎝ ⎛⎭⎪⎫12=1. (1)求f (0)的值; (2)证明:f (x )为奇函数;(3)解不等式f (2x -1)<1.19.(本小题满分12分) 已知函数f (x )=x 2+ax (x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.20.(本小题满分12分)已知二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)当x ∈-1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.21.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧2-⎝ ⎛⎭⎪⎫13x,x ≤0,12x 2-x +1,x >0.(1)请在直角坐标系中画出函数f (x )的图象,并写出该函数的单调区间;(2)若函数g (x )=f (x )-m 恰有3个不同零点,求实数m 的取值范围.22.(本小题满分12分)某专营店经销某商品,当售价不高于10元时,每天能销售100件;当售价高于10元时,每提高1元,销量减少3件.若该专营店每日费用支出为500元,用x 表示该商品定价,y 表示该专营店一天的净收入(除去每日的费用支出后的收入).(1)把y 表示成x 的函数;(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.详解答案 创优单元测评 (模块检测卷) 名师原创·基础卷]1.D 解析:∵A ∪B ={0,1,2,a ,a 2},又∵A ∪B ={0,1,2,4,16},∴⎩⎪⎨⎪⎧a =4,a 2=16,即a =4.否则有⎩⎪⎨⎪⎧a =16,a 2=4矛盾. 2.B 解析:由题意,得⎩⎪⎨⎪⎧0≤2x ≤2,x ≠1,∴0≤x <1.3.D 解析:要表示同一函数必须定义域、对应法则一致,A ,B ,C 中的定义域不同,故选D.4.A 解析:∵lg x =lg a +3lg b -5lg c ,∴lg x =lg a +lg b 3-lg c 5=lg ab3c 5,即x =ab 3c 5.5.A 解析:b =⎝ ⎛⎭⎪⎫12-0.8=20.8<a =21.2,c =2log 52=log 54<log 55=1<b=20.8,所以c <b <a .6.A 解析:要使函数f (x )=1log 12(2x +1)的解析式有意义,自变量x 需满足:log 12(2x +1)>0,2x +1>0,则0<2x +1<1,解得-12<x <0.7.B 解析:∵f (-1)=12-3<0,f (0)=1>0,∴f (-1)·f (0)<0. 又函数f (x )在(-1,0)上是连续的,故f (x )的零点所在的一个区间为(-1,0).8.A 解析:∵y =x -1是奇函数,y =log 12x 不具有奇偶性,故排除B ,D ,又函数y =x 2-2在区间(0,+∞)上是单调递增函数,故排除C ,故选A.9.C 解析:由x <0时,a x >1可知0<a <1,故y =log a x 在(0,+∞)上为减函数,∴log a x >0=log a 1,∴0<x <1,故不等式log a x >0的解集为{x |0<x <1}.10.B 解析:P =0,2],Q =(1,+∞),∴P ⊙Q =0,1]∪(2,+∞).11.A 解析:由函数f (x )的图象可知0<a <1,b <-1,故函数g (x )=a x +b (0<a <1,b <-1)可以看作把y =a x 的图象向下平移|b |个单位,且g (x )是单调递减函数,又g (0)=a 0+b =1+b <0,故选A.12.C 解析:∵f (x )是奇函数, ∴f ⎝⎛⎭⎪⎫log 213=f (-log 23)=-f (log 23).又log 23>0,且x >0时,f (x )=2x +1,故f (log 23)=2log 23+1=3+1=4, ∴f ⎝ ⎛⎭⎪⎫log 213=-4. 13.3 解析:设y =f (x )=x α(α是常数),则2=2α,解得α=12,所以f (x )=x 12,则f (9)=9 12=3.14.-2 解析:∵x =-2<0,∴f (-2)=10-2=1100>0, ∴f (10-2)=lg 10-2=-2,即f (f (-2))=-2.15.x =2 解析:∵f (x ),g (x )的定义域都是{1,2,3},∴当x =1时,fg (1)]=f (3)=1,gf (1)]=g (1)=3,此时不等式不成立;当x =2时,f g (2)]=f (2)=3,gf (2)]=g (3)=1,此时不等式成立; 当x =3时,f g (3)]=f (1)=1,gf (3)]=g (1)=3, 此时不等式不成立. 因此不等式的解为x =2.16.⎝ ⎛⎭⎪⎫1,54 解析:y =⎩⎪⎨⎪⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0, 作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a <54.解题技巧:数形结合的思想的运用. 17.解:(1)A ={x |3≤3x ≤27}={x |1≤x ≤3}, B ={x |log 2x >1}={x |x >2},A ∩B ={x |2<x ≤3}, (∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}, (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3;综合①②,可得a 的取值范围是(-∞,3].18.(1)解:取x =y =0,则f (0)+f (0)=f (0),所以f (0)=0. (2)证明:定义域(-1,1)关于原点对称,令y =-x ∈(-1,1),则f (x )+f (-x )=f ⎝ ⎛⎭⎪⎫x -x 1-x 2=f (0)=0,所以f (-x )=-f (x ),则f (x )在x ∈(-1,1)上为奇函数.(3)解:∵f (0)=0,f ⎝ ⎛⎭⎪⎫12=1,∴f (x )是在(-1,1)上的单调增函数,∴不等式可化为⎩⎨⎧-1<2x -1<1,2x -1<12,∴⎩⎨⎧0<x <1,x <34,∴0<x <34,∴不等式的解集为⎝ ⎛⎭⎪⎫0,34. 19.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ),函数是偶函数. 当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R ),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1). ∴函数f (x )既不是奇函数也不是偶函数. (2)若f (1)=2,即1+a =2,解得a =1, 这时f (x )=x 2+1x .任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 21+1x 1-⎝ ⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2-1x 1x 2.由于x 1≥2,x 2≥2,且x 1<x 2, ∴x 1-x 2<0,x 1+x 2>1x 1x 2,∴f (x 1)<f (x 2),故f (x )在2,+∞)上是单调递增函数. 20.解:(1)设f (x )=ax 2+bx +c (a ≠0),由题意可知,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x , c =1.整理,得2ax +a +b =2x , ∴⎩⎪⎨⎪⎧a =1,b =-1,c =1,∴f (x )=x 2-x +1.(2)当x ∈-1,1]时,f (x )>2x +m 恒成立,即x 2-3x +1>m 恒成立; 令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54,x ∈-1,1],则g (x )min =g (1)=-1,∴m <-1. 21.解:(1)函数f (x )的图象如下图.函数f (x )的单调递减区间是(0,1); 单调递增区间是(-∞,0)及(1,+∞). (2)作出直线y =m ,函数g (x )=f (x )-m 恰有3个不同零点等价于函数y =m 与函数f (x )的图象恰有三个不同公共点.由函数f (x )=⎩⎪⎨⎪⎧2-⎝ ⎛⎭⎪⎫13x,x ≤0,12x 2-x +1,x >0的图象易知m ∈⎝ ⎛⎭⎪⎫12,1. 解题技巧:方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.22.解:(1)由题意可得,y =⎩⎪⎨⎪⎧100x -500,0<x ≤10,x ∈N *,[100-3(x -10)]·x -500,x >10,x ∈N *, ∴y =⎩⎪⎨⎪⎧100x -500,0<x ≤10,x ∈N *,-3x 2+130x -500,x >10,x ∈N *. (2)当0<x ≤10时,y =100x -500为增函数.∴当x =10时,y max =500. 当x >10时,y =-3x 2+130x -500 =-3⎝⎛⎭⎪⎫x -6532+2 7253,∴当x =653时,y max =2 7253. 又∵x ∈N *,∴当x =22时,y 取得最大值,y max =908. 又908>500,∴当该商品定价为22元时,净收入最大,最大为908元.高中同步创优单元测评B 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (模块检测卷) 名校好题·能力卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =A ∪B ={x ∈N |0≤x ≤8},A ∩(∁U B )={1,3,5,7},则集合B =( )A .{0,2,4}B .{0,2,4,6}C .{0,2,4,6,8}D .{0,1,2,3,4}2.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )·f (y )”的是( )A .幂函数B .对数函数C .指数函数D .一次函数3.下列各函数中,表示同一函数的是( ) A .y =x 与y =log a a x (a >0且a ≠1) B .y =x 2-1x -1与y =x +1C .y =x 2-1与y =x -1D .y =lg x 与y =12lg x 24.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x 的图象是( )5.已知a =log 135,b =3 15,c =⎝ ⎛⎭⎪⎫150.3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .a <c <bD .b <c <a6.下列函数中既是偶函数,又在(0,+∞)上是单调递增函数的是( )A .y =-x 2+1B .y =|x |+1C .y =log 2x +1D .y =x 37.函数f (x )=2x +log 3x -1的零点所在的区间是( ) A.⎝ ⎛⎭⎪⎫0,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,34 D.⎝ ⎛⎭⎪⎫34,1 8.已知函数f (x )=-x 5-3x 3-5x +3,若f (a )+f (a -2)>6,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,3)C .(1,+∞)D .(3,+∞) 9.函数y =log 2(x 2-3x +2)的递减区间是( )A .(-∞,1)B .(2,+∞) C.⎝ ⎛⎭⎪⎫-∞,32 D.⎝ ⎛⎭⎪⎫32,+∞ 10.设函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4 B .3 C .2 D .111.如图,平面图形中阴影部分面积S 是h (h ∈0,H ])的函数,则该函数的图象大致是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12 B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13 C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点________.14.已知函数f (x )是定义在R 上的奇函数,且在区间0,+∞)上是单调减函数,若f (2x +1)+f (1)<0,则x 的取值范围是________.15.设a 为常数且a <0,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +a 2x -2.若f (x )≥a +1对一切x ≥0都成立,则a 的取值范围为________.16.下列命题中:①若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1; ②已知函数y =f (3x )的定义域为-1,1],则函数y =f (x )的定义域为(-∞,0];③函数y =11-x 在(-∞,0)上是增函数;④方程2|x |=log 2(x +2)+1的实根的个数是2.所有正确命题的序号是____________(请将所有正确命题的序号都填上).三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分) 计算下列各式的值: (1)(-0.1)0+32×2 23+⎝ ⎛⎭⎪⎫14-12;(2)log 327+lg 25+lg 4.18.(本小题满分12分)已知幂函数f (x )=(m 2-m -1)x -5m -3在(0,+∞)上是增函数,又g (x )=log a 1-mx x -1(a >1,a ≠0).(1)求函数g (x )的解析式;(2)当x ∈(t ,a )时,g (x )的值域为(1,+∞),试求a 与t 的值.19.(本小题满分12分)已知函数f (x )=1+1x -x α(α∈R ),且f (3)=-53. (1)求α的值; (2)求函数f (x )的零点;(3)判断f (x )在(-∞,0)上的单调性,并给予证明.20.(本小题满分12分)已知函数f (x )=ax +b x 2+1为定义在R 上的奇函数,且f (1)=12.(1)求函数f (x )的解析式;(2)判断并证明函数f (x )在(-1,0)上的单调性.21.(本小题满分12分)函数f (x )=12(a x +a -x )(a >0,且a ≠1)的图象经过点⎝⎛⎭⎪⎫2,419.(1)求f (x )的解析式;(2)证明:f (x )在0,+∞)上是增函数.22.(本小题满分12分)某网店经营的一种消费品的进价为每件12元,周销售量p(件)与销售价格x(元)的关系如图中折线所示,每周各项开支合计为20元.(1)写出周销售量p(件)与销售价格x(元)的函数关系式;(2)写出周利润y(元)与销售价格x(元)的函数关系式;(3)当该消费品销售价格为多少元时,周利润最大?并求出最大周利润.详解答案 创优单元测评 (模块检测卷) 名校好题·能力卷]1.C 解析:因为集合U =A ∪B ={0,1,2,3,4,5,6,7,8},又B ∪∁U B =U ,所以A =∁U B ={1,3,5,7},所以B ={0,2,4,6,8}.2.C 解析:f (x )f (y )=a x a y =a x +y =f (x +y ).3.A 解析:要表示同一函数必须定义域、对应法则一致,B ,D 中的定义域不同,C 中的对应法则不同.故选A.4.A 解析:根据题意得f (x )=1⊕2x =⎩⎪⎨⎪⎧2x ,x <0,1,x ≥0.5.C 解析:a =log 135<0,b =315>1,0<c =⎝ ⎛⎭⎪⎫150.3<1.6.B 解析:函数y =-x 2+1为偶函数,在区间(0,+∞)上为减函数,y =log 2x +1为非奇非偶函数,函数y =x 3为奇函数.故选B.7.C 解析:∵f ⎝ ⎛⎭⎪⎫12=log 312<0,f ⎝ ⎛⎭⎪⎫34=log 3334>0, ∴f ⎝ ⎛⎭⎪⎫12·f ⎝ ⎛⎭⎪⎫34<0. 又函数f (x )在⎝ ⎛⎭⎪⎫12,34上是连续的,故f (x )的零点所在的区间为⎝ ⎛⎭⎪⎫12,34. 8.A 解析:设F (x )=f (x )-3=-x 5-3x 3-5x ,则F (x )为奇函数,且在R 上为单调减函数,f (a )+f (a -2)>6等价于f (a -2)-3>-f (a )+3=-f (a )-3],即F (a -2)>-F (a )=F (-a ),所以a -2<-a ,即a <1,故选A.9.A 解析:由x 2-3x +2>0,得x <1或x >2,底数是2,所以在(-∞,1)上递减.故选A.10.B 解析:当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.11.D 解析:由图中可知,S 随着h 的增加而减少,并且减小的趋势在减小,当h =H 2时,阴影部分的面积小于整个半圆面积的一半.故选D.12.C 解析:由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>⎪⎪⎪⎪⎪⎪13-1>⎪⎪⎪⎪⎪⎪12-1,∴f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2). 解题技巧:由f (2a -x )=f (x )知f (x )的图象关于直线x =a 对称.13.(1,2) 解析:当x -1=0,即x =1时,y =2.∴函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点(1,2).14.(-1,+∞) 解析:f (2x +1)+f (1)<0,f (2x +1)<-f (1)=f (-1).由于f (x )是奇函数,在区间0,+∞)上是单调减函数.所以在定义域上是减函数,故2x +1>-1,x ∈(-1,+∞).15.(-∞,-1] 解析:当x =0时,f (x )=0,则0≥a +1,解得a ≤-1,当x >0时,-x <0,f (-x )=-x +a 2-x-2,则f (x )=-f (-x )=x +a 2x +2,由函数的图象或增减性可知,当x =a 2=|a |=-a 时,有f (x )min=-2a +2,所以-2a +2≥a +1,解得a ≤13,又a <0,所以a <0.综上所述:a ≤-1.16.③④ 解析:对于①,k =0也符合题意;对于②,y =f (x )的定义域应该是3-1,3];对于③,画出y =11-x的图象或利用定义可判定y =11-x在(-∞,0)上是增函数;对于④,在同一坐标系中作出y =2|x |,y =log 2(x +2)+1的图象,由图可知有两个交点.故方程的实根的个数为2.18.解:(1)∵f (x )是幂函数,且在(0,+∞)上是增函数,∴⎩⎪⎨⎪⎧m 2-m -1=1,-5m -3>0,解得m =-1, ∴g (x )=log a x +1x -1. (2)由x +1x -1>0可解得x <-1或x >1, ∴g (x )的定义域是(-∞,-1)∪(1,+∞).又a >1,x ∈(t ,a ),可得t ≥1,设x 1,x 2∈(1,+∞),且x 1<x 2,于是x 2-x 1>0,x 1-1>0,x 2-1>0, ∴x 1+1x 1-1-x 2+1x 2-1=2(x 2-x 1)(x 1-1)(x 2-1)>0, ∴x 1+1x 1-1>x 2+1x 2-1.由a >1,有log a x 1+1x 1-1>log a x 2+1x 2-1,即g (x )在(1,+∞)上是减函数. 又g (x )的值域是(1,+∞),∴⎩⎪⎨⎪⎧t =1,g (a )=1,得g (a )=log a a +1a -1=1,可化为a +1a -1=a , 解得a =1±2,∵a >1,∴a =1+2,综上,a =1+2,t =1.19.解:(1)由f (3)=-53,得1+13-3α=-53,解得α=1.(2)由(1),得f (x )=1+1x -x .令f (x )=0,即1+1x -x =0,也就是x 2-x -1x=0, 解得x =1±52.经检验,x =1±52是1+1x -x =0的根,所以函数f (x )的零点为1±52.(3)函数f (x )=1+1x -x 在(-∞,0)上是单调减函数.证明如下:设x 1,x 2∈(-∞,0),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1+1x 1-x 1-⎝ ⎛⎭⎪⎫1+1x 2-x 2=(x 2-x 1)⎝ ⎛⎭⎪⎫1x 1x 2+1. 因为x 1<x 2<0,所以x 2-x 1>0,x 1x 2>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )=1+1x -x 在(-∞,0)上是单调减函数. 20.解:(1)由题意得⎩⎨⎧ f (0)=0,f (1)=12,解得a =1,b =0,所以f (x )=x x 2+1. (2)函数f (x )在(-1,0)上单调递增,证明如下:任取x 1,x 2∈(-1,0),且x 1<x 2,f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 2x 21-x 2(x 21+1)(x 22+1)=(1-x 1x 2)(x 1-x 2)(x 21+1)(x 22+1)<0,即f (x 1)<f (x 2).所以函数f (x )在(-1,0)上单调递增.21.(1)解:∵ f (x )的图象经过点⎝⎛⎭⎪⎫2,419, ∴ 12(a 2+a -2)=419,即9a 4-82a 2+9=0,解得a 2=9或a 2=19.∵ a >0,且a ≠1,∴ a =3或a =13.当a =3时,f (x )=12(3x +3-x );当a =13时,f (x )=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫13-x =12(3x +3-x ). ∴ 所求解析式为f (x )=12(3x +3-x ).22.解:(1)由A (12,26),B (20,10)可知线段AB 的方程为p =-2x+50,12≤x ≤20,由B (20,10),C (28,2)可知线段BC 的方程为p =-x +30,20<x ≤28, ∴p =⎩⎪⎨⎪⎧ -2x +50,12≤x ≤20,-x +30,20<x ≤28.(2)当12≤x ≤20时,y =(x -12)(-2x +50)-20=-2x 2+74x -620;当20<x ≤28时,y =(x -12)(-x +30)-20=-x 2+42x -380.∴y =⎩⎪⎨⎪⎧ -2x 2+74x -620,12≤x ≤20,-x 2+42x -380,20<x ≤28.(3)当12≤x ≤20时,y =-2⎝ ⎛⎭⎪⎫x -3722+1292.故当x =372时,y 取得最大值1292.当20<x ≤28时,y =-(x -21)2+61,故当x =21时,y 取得最大值为61.∵1292=64.5>61,∴当该消费品销售价格为18.5元时,周利润最大,最大周利润为64.5元.。
2021新教材人教版高中数学A版必修第一册模块练习题--4.2.2 指数函数的图象和性质
4.2.2指数函数的图象和性质基础过关练题组一指数函数的图象特征1.(2020山西大学附中高一上期中)在同一坐标系中,函数y=ax+a与y=a x的图象大致是()2.(2020北京丰台高一上期中联考)函数y=(12)|x|的图象是()3.(2020湖南衡阳八中高一上期中)设a,b,c,d均大于0,且均不等于1,y=a x,y=b x,y=c x,y=d x在同一坐标系中的图象如图,则a,b,c,d的大小顺序为()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d4.(2020山西长治二中高一上期中)函数f(x)=a x-2+1(a>0,且a ≠1)的图象恒过定点( ) A.(2,2) B.(2,1) C.(3,1) D.(3,2)5.已知函数f(x)=ax,g(x)=(1a)x(a>0,且a ≠1), f(-1)=12.(1)求f(x)和g(x)的函数解析式;(2)在同一坐标系中画出函数f(x)和g(x)的图象; (3)若f(x)<g(x),请直接写出x 的取值范围.题组二 指数函数的单调性及其应用 6.方程4x -3×2x +2=0的解构成的集合为( ) A.{0} B.{1} C.{0,1} D.{1,2}7.(2020山东师大附中高一上第一次学分认定考试)设y1=40.9,y2=80.61,y3=(12)-1.5,则()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y18.(2020广东湛江一中高一上第一次大考)若f(x)=-x2+2ax与g(x)=(a+1)1-x在区间[1,2]上都是减函数,则a的取值范围是()A.(12,1] B.(0,12]C.[0,1]D.(0,1]9.若不等式2x2+1≤(14)x-2的解集是函数y=2x的定义域,则函数y=2x的值域是()A.[18,2) B.[18,2]C.(-∞,18] D.[2,+∞)10.(2020广东珠海高一上期末)已知函数f(x)满足f(x+1)的定义域是[0,31),则f(2x)的定义域是()A.[1,32)B.[-1,30)C.[0,5)D.(-∞,30]11.(2020甘肃兰州一中高一月考)函数y=(12)8-2x-x2的单调递增区间为.12.(2020浙江嘉兴一中高一上期中)已知集合A={x|12≤2x-4< 4},B={x|x2-11x+18<0}.(1)求∁R(A∩B);(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.题组三指数函数性质的综合应用13.(2020浙江温州十五校联合体高一上期中联考)函数f(x)=√x+12x-1的定义域为()A.[-1,0)∪(0,+∞)B.(-1,+∞)C.[-1,+∞)D.(0,+∞)14.已知函数f(x)=3x-(13)x,则f(x)是()A.奇函数,且在R上是增函数B.偶函数,且在R上是增函数C.奇函数,且在R上是减函数D.偶函数,且在R上是减函数15.(2019湖南醴陵一中高一上期中)函数f(x)=13x+1+a是奇函数,则实数a的值是()A.0B.12C.-12D.116.已知a>0,且a≠1,若函数f(x)=2a x-4在区间[-1,2]上的最大值为10,则a=.17.(2020浙江杭州高级中学高一上期末)函数y=(14)-|x|+1的单调递增区间为;奇偶性为(填“奇函数”“偶函数”或“非奇非偶函数”).18.(2020山东泰安一中高一上期中)已知函数f(x)=a+22x-1.(1)求函数f(x)的定义域;(2)若f(x)为奇函数,求a的值,并求f(x)的值域.能力提升练题组一指数函数的图象特征1.(2020福建厦外高一上期中,)已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()2.(2020陕西西安中学高一上期中,)已知实数a,b满足等式2019a=2 020b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有()A.1个B.2个C.3个D.4个3.(2020河北唐山一中高一上期中,)若函数y=(12)|1-x|+m的图象与x轴有公共点,则m的取值范围是.题组二指数函数的单调性及其应用4.(2020湖南长郡中学高一上模块检测,)已知a=√0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a5.()函数f(x)=-a2x-1+5a x-8(a>0,且a≠1)在[2,+∞)上单调递减,则实数a 的取值范围为(易错)A.(0,1)∪[52,+∞) B.[45,1)∪(1,+∞) C.(0,1)∪(1,52] D.(1,52]6.()若函数f(x)=√2x 2+2ax -a -1的定义域为R,则实数a 的取值范围是 .7.(2020黑龙江大庆实验中学高一上月考,)已知函数f(x)=ba x (其中a,b 为常数,a>0,且a ≠1)的图象经过A(1,6),B(2,18)两点.若不等式(2a )x +(1b )x-m ≥0在x ∈(-∞,1]上恒成立,则实数m 的最大值为 .8.(2020福建福州八县(市)一中高一上期末联考,)已知定义在R 上的偶函数f(x)满足:当x ≥0时, f(x)=2x +a 2x , f(1)=52. (1)求实数a 的值;(2)用定义法证明f(x)在(0,+∞)上是增函数; (3)求函数f(x)在[-1,2]上的值域.题组三 指数函数性质的综合应用 9.(2020安徽安庆高一上期末,)某数学课外兴趣小组对函数f(x)=2|x-1|的图象与性质进行了探究,得到下列四条结论:①函数f(x)的值域为(0,+∞);②函数f(x)在区间[0,+∞)上单调递增;③函数f(x)的图象关于直线x=1对称;④函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点.则其中正确结论的个数为(深度解析)A.1B.2C.3D.410.(2020浙江温州十五校联合体高一上期中联考,)已知a>0,设函数f(x)=2 019x+1+32 019x+1(x∈[-a,a])的最大值为M,最小值为N,那么M+N=()A.2025B.2022C.2020D.201911.(2020浙江浙北G2高一上期中联考,)已知实数a>0,定义域为R的函数f(x)=3xa +a3x是偶函数.(1)求实数a的值;(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;(3)是否存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立?若存在,求出m的取值范围;若不存在,请说明理由.答案全解全析 基础过关练1.B 函数y=ax+a 的图象经过(-1,0)和(0,a)两点,选项D 错误;在图A 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得0<a<1,选项A 错误;在图B 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得a>1,选项B 正确;在图C 中,由指数函数y=a x 的图象得0<a<1,由y=ax+a 的图象得a>1,选项C 错误.故选B.2.D y=(12)|x|={(12)x,x ≥0,2x ,x <0.因此,当x ≥0时,y=(12)|x|的图象与y=(12)x的图象相同;当x<0时,y=(12)|x|的图象与y=2x 的图象相同,故选D. 3.C 作出直线x=1,如图所示.直线x=1与四个函数图象的交点从下到上依次为(1,b),(1,a),(1,d),(1,c),因此a,b,c,d 的大小顺序是b<a<d<c,故选C. 4.A ∵a 0=1,∴令x-2=0,得y=a 0+1=2, ∴x=2时,y=2,因此函数f(x)的图象恒过定点(2,2),故选A. 5.解析 (1)因为f(-1)=a -1=1a =12,所以a=2,所以f(x)=2x,g(x)=(12)x.(2)在同一坐标系中画出函数f(x)和g(x)的图象如图所示:(3)由图象知,当f(x)<g(x)时,x 的取值范围是{x|x<0}.6.C 令2x =t,则4x =(2x )2=t 2,原方程可化为t 2-3t+2=0,解得t=1或t=2. 当t=1时,2x =1=20,解得x=0, 当t=2时,2x =2=21,解得x=1.因此原方程的解构成的集合为{0,1}. 故选C.7.B 由题意知,y 1=40.9=22×0.9=21.8,y 2=80.61=23×0.61=21.83,y 3=(12)-1.5=21.5,∵y=2x 在R 上是增函数,∴y 2>y 1>y 3.故选B.8.D 由f(x)=-x 2+2ax=-(x-a)2+a 2在区间[1,2]上是减函数得a ≤1;由g(x)=(a+1)1-x=(1a+1)x -1在区间[1,2]上是减函数得0<1a+1<1,因此a+1>1,解得a>0.因此a 的取值范围是(0,1],故选D. 9.B 由2x 2+1≤(14)x -2得2x 2+1≤2-2x+4,即x 2+1≤-2x+4,解得-3≤x ≤1,∴函数y=2x 的定义域为[-3,1].由于函数y=2x 在R 上单调递增,故当x=-3时取得最小值18,当x=1时取得最大值2,所以函数的值域为[18,2].故选B.10.C ∵f(x+1)的定义域是[0,31),即0≤x<31,∴1≤x+1<32,∴f(x)的定义域是[1,32),∴f(2x )有意义必须满足20=1≤2x <32=25,∴0≤x<5. 11.答案 [-1,+∞)解析 设t=8-2x-x 2,则y=(12)t,易知y=(12)t在R 上单调递减,又知t=8-2x-x 2在(-∞,-1]上单调递增,在[-1,+∞)上单调递减, 所以由y=(12)t与t=8-2x-x 2复合而成的函数y=(12)8-2x -x 2的单调递增区间为[-1,+∞).12.解析 由12≤2x-4<4得2-1≤2x-4<22,∴-1≤x-4<2,即3≤x<6,∴A=[3,6).由x 2-11x+18<0得2<x<9,∴B=(2,9).(1)∵A=[3,6),B=(2,9), ∴A ∩B=[3,6),∴∁R (A ∩B)=(-∞,3)∪[6,+∞).(2)由C ⊆B 得{a ≥2,a +1≤9,解得2≤a ≤8,故实数a 的取值集合为{a|2≤a ≤8}.13.A 依题意得{x +1≥0,2x -1≠0,即{x ≥-1,x ≠0.故函数f(x)的定义域为[-1,0)∪(0,+∞),故选A.14.A 由题知x ∈R,且f(-x)=3-x-(13)-x=(13)x-3x =-f(x),所以f(x)是奇函数;又y=3x是增函数,且y=(13)x是减函数,所以f(x)=3x-(13)x是R 上的增函数,故选A. 15.C 函数f(x)=13x +1+a 的定义域为R,且f(x)是奇函数,因此f(0)=0,即130+1+a=0,解得a=-12.此时f(x)=13x +1-12=1-3x2(3x +1)符合题意,故选C.16.答案 √7或17解析 若a>1,则函数y=a x 在区间[-1,2]上是单调递增的,当x=2时, f(x)取得最大值,则f(2)=2a 2-4=10,即a 2=7,又a>1,所以a=√7. 若0<a<1,则函数y=a x 在区间[-1,2]上是单调递减的, 当x=-1时, f(x)取得最大值,则f(-1)=2a -1-4=10,所以a=17.综上所述,a 的值为√7或17.17.答案 [0,+∞);偶函数 解析 设u=-|x|+1,则y=(14)u.易知u=-|x|+1的单调递减区间为[0,+∞),y=(14)u是减函数,∴y=(14)-|x|+1的单调递增区间为[0,+∞).∵f(-x)=(14)-|-x|+1=(14)-|x|+1=f(x),∴f(x)是偶函数.18.解析 (1)由2x -1≠0,可得x ≠0, ∴函数f(x)的定义域为{x|x ≠0}. (2)∵f(x)为奇函数,∴f(-x)=-f(x). 又∵f(-x)=a+22-x -1=a+2×2x 1-2x=a-2(2x -1)+22x -1=(a-2)-22x -1,-f(x)=-a-22x -1,∴a-2=-a,解得a=1. 因此f(x)=1+22x -1.∴当x>0时,2x -1>0,f(x)>1; 当x<0时,-1<2x -1<0,f(x)<-1. ∴f(x)的值域为(-∞,-1)∪(1,+∞).能力提升练1.A 由函数f(x)的图象知,b<-1<0<a<1. ∴g(x)=a x +b 的图象是单调递减的.又g(0)=a 0+b=1+b<0,∴图象与y 轴交于负半轴,故选A.2.B 在同一平面直角坐标系中作出y=2 019x 与y=2 020x 的图象如图所示.设2 020b =2 019a =t, 当t>1时,0<b<a,①正确; 当t=1时,a=b=0,⑤正确;当0<t<1时,a<b<0,②正确,③④不成立. 故选B.3.答案 [-1,0) 解析 作出函数g(x)=(12)|1-x|={(12)x -1,x ≥1,2x -1,x <1的图象如图所示.由图象可知0<g(x)≤1,则m<g(x)+m ≤1+m,即m<f(x)≤1+m, 要使函数y=(12)|1-x|+m 的图象与x 轴有公共点,则{1+m ≥0,m <0,解得-1≤m<0. 故答案为[-1,0). 4.A a=√0.3=0.30.5.∵f(x)=0.3x 在R 上单调递减, ∴0.30.5<0.30.2<0.30⇒a<c<1. 又b=20.3>20=1,∴a<c<b,故选A.5.A 设y=f(x)=-1a ·a 2x +5a x -8,令a x =u(u>0),则y=-1a u 2+5u-8=-1a (u -5a2)2+25a4-8(u>0).∴y=-1au 2+5u-8在(0,5a2]上单调递增,在[5a2,+∞)上单调递减.①当0<a<1时,u=a x 是减函数, ∵x ≥2,∴0<u ≤a 2<5a2,此时y=-1au 2+5u-8是增函数,从而f(x)是减函数,符合题意. ②当a>1时,u=a x 是增函数, ∵x ≥2,∴u ≥a 2,由f(x)在[2,+∞)上单调递减,得a 2≥5a2,又a>0,∴a ≥52,即当a ≥52时,f(x)是减函数.综上所述,实数a 的取值范围是(0,1)∪[52,+∞),故选A.易错警示 解决与指数函数有关的复合函数的单调性问题时,一要注意底数的取值对单调性的影响,必要时进行分类讨论;二要注意中间变量的取值范围. 6.答案 [-1,0] 解析 依题意得2x2+2ax -a-1≥0恒成立,即x 2+2ax-a ≥0恒成立.∴Δ=4a 2+4a ≤0,解得-1≤a ≤0, 故实数a 的取值范围是[-1,0]. 7.答案 76解析 由已知可得{ba =6,ba 2=18,解得{a =3,b =2,则不等式(23)x+(12)x-m ≥0在x ∈(-∞,1]上恒成立,设g(x)=(23)x+(12)x-m,显然函数g(x)=(23)x+(12)x-m 在(-∞,1]上单调递减,∴g(x)≥g(1)=23+12-m=76-m,故76-m ≥0,即m ≤76,∴实数m 的最大值为76.8.解析 (1)由题意得f(1)=2+a 2=52,∴a=1.(2)证明:由(1)知a=1,∴f(x)=2x +12x ,任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 1)-f(x 2)=(2x 1+12x 1)-(2x 2+12x 2)=(2x 1-2x 2)+2x 2-2x 12x 1·2x 2=(2x 1-2x 2)·(2x 1+x 2-1)2x 1+x 2.∵0<x 1<x 2,∴1<2x 1<2x 2,2x 1+x 2>1, ∴f(x 1)-f(x 2)<0,∴f(x 1)<f(x 2),∴f(x)在(0,+∞)上是增函数.(3)易得f(0)=2, f(2)=174, f(-1)=52, f(x)在[-1,0]上为减函数,在[0,2]上为增函数,∴f(x)的值域为[2,174].9.B 函数f(x)的值域为[1,+∞),①错误;函数f(x)在区间[0,1)上单调递减,在[1,+∞)上单调递增,②错误;函数f(x)的图象关于直线x=1对称,③正确;因为y=-a 2≤0,所以函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点,④正确.正确结论的个数为2,故选B.解题模板 研究指数型复合函数的性质,借助图象是常见的手段,画出简图很多问题可迎刃而解. 10.B f(x)=2 019x+1+2 019-2 0162 019x +1=2 019-2 0161+2 019x,∴f(-x)=2 019-2 0161+2 019-x=2 019-2 016×2 019x 2 019x +1.因此f(x)+f(-x) =4 038-2 016(11+2 019x+2 019x2 019x +1)=4 038-2 016=2 022. 又f(x)在[-a,a]上是增函数,∴M+N=f(a)+f(-a)=2 022,故选B.11.解析 (1)定义域为R 的函数f(x)=3xa+a3x 是偶函数,则f(-x)=f(x)恒成立,即3-xa+a3-x =3xa+a 3x ,故(1a-a)(3x -3-x )=0恒成立.因为3x -3-x 不可能恒为0,所以当1a-a=0时,f(-x)=f(x)恒成立,而a>0,所以a=1.(2)函数f(x)=3x +13x 在(0,+∞)上单调递增,证明如下:设任取x 1,x 2∈(0,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=(3x 1+13x 1)-(3x 2+13x 2)=(3x 1-3x 2)+(13x 1-13x 2)=(3x 1-3x 2)+3x 2-3x 13x 1·3x 2=(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2.因为0<x 1<x 2,所以3x 1<3x 2,3x 1>1,3x 2>1, 所以(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2<0,即f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 故函数f(x)=3x +13x 在(0,+∞)上单调递增.(3)不存在.理由如下:由(2)知函数f(x)在(0,+∞)上单调递增,而函数f(x)是偶函数,则函数f(x)在(-∞,0)上单调递减.若存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立,则|t-2|<|2t-m|恒成立,即(t-2)2<(2t-m)2,即3t2-(4m-4)t+m2-4>0对任意的t∈R恒成立,则Δ=[-(4m-4)]2-12(m2-4)<0,得到(m-4)2<0,故m∈⌀,所以不存在.。
高中数学模块素养测评卷二新人教A版必修第一册
模块素养测评卷(二)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={x∈N|0<x<8},A={1,2,3},B={3,4,5,6},则下列结论错误的是( )A.A∩B={3} B.A∪B={1,2,3,4,5,6}C.∁U A={4,5,6,7,8} D.∁U B={1,2,7}2.函数f(x)=1x+2+1-x的定义域为( )A.[-2,1] B.(-2,1] C.(0,1] D.(1,+∞)3.毛主席的诗句“坐地日行八万里”描写的是赤道上的人即使坐在地上不动,也会因为地球自转而每天行八万里路程.已知我国四个南极科考站之一的昆仑站距离地球南极点约 1050 km,把南极附近的地球表面看作平面,则地球每自转π3rad,昆仑站运动的路程约为( )A.2 200 kmB.1 650 kmC.1 100 kmD.550 km4.设a=20.6,b=20.5,c=0.50.6,则( )A.a<b<c B.b<a<cC.b<c<a D.c<b<a5.已知点P(3,-4)是角α的终边上一点,则sin α-cos α=( )A .-75B .-15C .15D .756.“log2x >log 2y ”是“1x<1y”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.若函数f (x )=2x+3x +a 在区间(0,1)内存在零点,则实数a 的取值范围是( ) A .(-∞,-5) B .(-5,-1) C .(0,5) D .(1,+∞)8.已知函数f (x )满足f (sin x )=cos 2x +cos2x ,则f (sin x -cos x )=( ) A .3sin 2x -1 B .1-3sin 2x C .3cos 2x -1 D .1-3cos 2x二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列函数为偶函数的是( ) A .y =x 3B .y =cos 2xC .y =ln 1+x 1-xD .y =ln (1+x )+ln (1-x )10.关于函数f (x )=tan (x 2-π3),下列说法正确的是( )A .f (x )的最小正周期为2πB .f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+5π6,k ∈Z C .f (x )的图象的对称中心为(k π+2π3,0),k ∈Z D .f (x )在区间(0,π)上单调递增11.下列说法正确的是( )A .若x ,y >0,满足x +y =2,则2x+2y的最大值为4 B .若x <12,则函数y =2x +12x -1的最小值为3C .若x ,y >0,满足x +y +xy =3,则x +y 的最小值为2D .函数y =1sin 2x +4cos 2x的最小值为912.已知函数f (x )=|lg x |,若a >b >c ,且f (c )>f (a )>f (b ),则( ) A .a >1 B .b >1 C .0<c <1 D .0<ac <1三、填空题(本题共4小题,每小题5分,共20分.)13.幂函数f (x )的图象过点(3,3),则f (8)=________. 14.已知函数f (x )=⎩⎪⎨⎪⎧π6x ,x 是有理数,sin x ,x 是无理数.则f (f (13))=________.15.Sigmoid 函数是一个在生物学、计算机神经网络等领域常用的函数模型,其解析式为S (x )=11+e -x ,则此函数在R 上________(填“单调递增”“单调递减”或“不单调”),值域为________.16.已知f (x )是定义在R 上的奇函数且以6为周期,若f (2)=0,则f (x )在区间(0,10)内至少有________个零点.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知函数f (x )=a x(a >0且a ≠1)的图象经过点(2,9), (1)求实数a 的值;(2)若f (2x -1)<3,求实数x 的取值范围.18.(本小题满分12分)已知α是第三象限角,且sin α=-35,(1)求cos (π2+α)·cos (2π-α)·tan (α-π)sin (α-3π)·tan (-π-α)的值;(2)求sin (2α+π3)的值.19.(本小题满分12分)某同学用“五点法”画函数f (x )=A sin (ωx +φ)(ω>0,|φ|<π2)在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)当x∈R时,求使f(x)≤1成立的x的取值集合.20.(本小题满分12分)已知函数f(x)=log2(1+x),g(x)=log211-x,(1)设函数h(x)=f(x)+g(x),判断函数h(x)的奇偶性,并说明理由;(2)∀x∈(-1,1),用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},求函数M(x)的解析式.21.(本小题满分12分)已知函数f(x)=A sin (ωx+φ)+b(A>0,ω>0,|φ|<π)的部分图象如图所示.(1)求f(x)的解析式;(2)把f (x )图象上所有点的横坐标缩小到原来的12,再向左平移5π24个单位长度,向下平移1个单位长度,得到g (x )的图象,求g (x )的单调区间.22.(本小题满分12分)已知函数f (x )是定义在R 上的奇函数, (1)当x <0时,f (x )=x (x -1),求当x >0时,f (x )的解析式; (2)若f (x )在(-∞,0]上单调递增,①判断函数f (x )在(0,+∞)上的单调性,并用定义证明你的判断;②若f (-2x 2+x )+f (-2x 2-k )<0对一切实数x 都成立,求实数k 的取值范围.模块素养测评卷(二)1.答案:C解析:因为集合U ={x ∈N |0<x <8}={1,2,3,4,5,6,7},A ={1,2,3},B ={3,4,5,6},所以A ∩B ={3},A ∪B ={1,2,3,4,5,6},∁U A ={4,5,6,7},∁U B ={1,2,7}.2.答案:B解析:要使函数f (x )=1x +2+1-x 有意义,则⎩⎪⎨⎪⎧x +2>01-x ≥0,解得-2<x ≤1, 则函数f (x )的定义域为(-2,1]. 3.答案:C解析:因为昆仑站距离地球南极点约1 050 km ,地球每自转π3 rad ,所以由弧长公式得:l =1 050×π3≈1 100.4.答案:D解析:由题, c =0.50.6=(12)0.6=2-0.6,对于指数函数y =2x可知在R 上单调递增,因为-0.6<0.5<0.6, 所以2-0.6<20.5<20.6,即c <b <a .5.答案:A解析:由三角函数的定义可得 sin α-cos α=-432+(-4)2-332+(-4)2=-75. 6.答案:C解析:log 2x >log 2y ⇔x >y >0, 1x<1y⇔x >y >0⇔x >y >0,因此“log 2x >log 2y ”是“1x <1y”的充分必要条件.7.答案:B解析:函数f (x )=2x+3x +a 在区间(0,1)内存在零点,且函数在定义域内单调递增, 由零点存在性定理知f (0)·f (1)<0, 即(1+a )(5+a )<0,解得-5<a <-1, 所以实数a 的取值范围是(-5,-1). 8.答案:A解析:∵f (sin x )=cos 2x +cos2x =1-sin 2x +1-2sin 2x =2-3sin 2x , ∴f (x )=2-3x 2,∴f (sin x -cos x )=2-3×(sin x -cos x )2=2-3×(1-2sin x cos x )=-1+6sin x cos x =-1+3sin 2x . 9.答案:BD解析:A 选项定义域为R ,又f (-x )+f (x )=(-x )3+x 3=0,故A 选项为奇函数;C 选项定义域为(-1,1),又f (-x )+f (x )=ln 1+x 1-x +ln 1-x1+x =ln 1=0,故C 选项为奇函数;故AC 选项不对;B 选项定义域为R ,f (-x )=cos (-x )=cos x =f (x ),故B 为偶函数;D 选项定义域为(-1,1),f (x )=ln (1+x )+ln (1-x ),f (-x )=ln (1-x )+ln (1+x ),于是f (x )=f (-x ),D 选项为偶函数.10.答案:ACD解析:函数f (x )的最小正周期为T =π12=2π,A 对;由x 2-π3≠k π+π2(k ∈Z ),解得x ≠2k π+5π3(k ∈Z ), 故函数f (x )的定义域为{x |x ≠2k π+5π3,k ∈Z },B 错;由x 2-π3=k π2(k ∈Z ),解得x =k π+2π3(k ∈Z ), 所以,函数f (x )图象的对称中心为(k π+2π3,0)(k ∈Z ),C 对;当0<x <π时,-π3<x 2-π3<π6,故函数f (x )在区间(0,π)上单调递增,D 对. 11.答案:CD解析:若x ,y >0,x +y =2,则2x+2y≥22x +y=2×2=4,当且仅当x =y =1时等号成立,没有最大值,故A 错误;若x <12,即2x -1<0,则函数y =2x -1+12x -1+1≤-2(2x -1)12x -1+1=-1,当且仅当x =0等号成立,故B 错误;若x ,y >0,xy =3-(x+y )≤(x +y )24,所以(x +y )2+4(x +y )-12≥0,所以(x +y +6)(x +y -2)≥0,所以x +y ≥2,(当且仅当x =y =1时取等),所以x +y 的最小值为2.故C 正确;y =1sin 2x +4cos 2x=(sin 2x +cos 2x )(1sin 2x +4cos 2x )=5+cos 2x sin 2x +4sin 2xcos 2x≥5+2cos 2x sin 2x ·4sin 2xcos 2x=9,当且仅当2sin 2x =cos 2x 时等号成立,故D 正确.12.答案:ACD解析:f (x )=⎩⎪⎨⎪⎧-lg x ,0<x <1lg x ,x ≥1,定义域为(0,+∞),在(0,1)上单调递减,在(1,+∞)上单调递增,因为a >b >c ,且f (c )>f (a )>f (b ),结合函数图象可知,0<c <1,且a >1,b 则可能大于1,也可能大于0小于1,故AC 正确,B 错误;其中-lgc >lg a ,则lg c +lg a =lg ac <0,故0<ac <1,D 正确.13.答案:2 2解析:由f (x )为幂函数,则可设f (x )=x α, 又函数f (x )的图象过点(3,3), 则3α=3,则α=12,即f (x )=x 12,则f (8)=812=2 2. 14.答案:12解析:因为函数f (x )=⎩⎪⎨⎪⎧π6x ,x 是有理数,sin x ,x 是无理数.所以f (f (13))=f (13π6)=sin (13π6)=sin (2π+π6)=sin π6=12.15.答案:单调递增 (0,1)解析:∵S (x )=11+e -x =11+1ex=e xe x +1=1-1e x +1,定义域为R , ∀x 1,x 2∈R ,且x 1<x 2,则S (x 1)-S (x 2)=1-1e x 1+1-(1-1e x 2+1)=e x 1-e x 2(e x 1+1)(e x 2+1),∵x 1<x 2,∴0<e x 1<e x 2,e x 1+1>0,e x 2+1>0,e x 1-e x 2<0, ∴S (x 1)-S (x 2)<0,即S (x 1)<S (x 2), 所以函数S (x )=11+e -x 在R 上单调递增;又e x>0,所以e x+1>1,0<1e x +1<1,-1<-1e x+1<0,0<1-1e x +1<1,即S (x )∈(0,1). 16.答案:6解析:因为f (x )是定义在R 上的奇函数且以6为周期, 所以f (x )=-f (-x ),f (x )=f (x +6),即f (-x )+f (x +6)=0,所以f (x )的图象关于(3,0)对称,且f (3)=0, 则f (9)=0,又f (0)=0,f (6)=0, 又f (2)=0,所以f (8)=0,f (-2)=0,f (4)=0, 所以f (x )在区间(0,10)内至少有6个零点. 17.解析:(1)依题意a >0且a ≠1,f (2)=a 2=9⇒a =3.(2)∵f (x )=3x在R 上是增函数, 且f (2x -1)<3=f (1), ∴2x -1<1, ∴x <1,∴所求x 的取值范围是(-∞,1).18.解析:(1)由α是第三象限角,且sin α=-35,得cos α=-45.原式=(-sin α)·cos α·tan α(-sin α)(-tan α)=-cos α=45.(2)因为sin 2α=2sin αcos α=2425,cos 2α=1-2sin 2α=725,所以sin (2α+π3)=sin 2αcos π3+cos 2αsin π3=12sin 2α+32cos 2α=24+7350. 19.解析:(1)表中数据补充完整为:f (x )=2sin (3x -6).(2)由2sin (3x -π6)≤1,可得sin (3x -π6)≤12,所以2k π-7π6≤3x -π6≤2k π+π6,解得23k π-π3≤x ≤23k π+π9,k ∈Z ,所以使f (x )≤1成立的x 的取值集合为[23k π-π3,23k π+π9],k ∈Z .20.解析:(1)h (x )=log 2(1+x )+log 211-x=log 2(1+x )-log 2(1-x ), h (x )的定义域为(-1,1),h (-x )=log 2(1-x )-log 2(1+x )=-h (x ),所以h (x )是奇函数.(2)f (x )-g (x )=log 2(1+x )-log 211-x=log 2[(1+x )(1-x )]=log 2(1-x 2)≤log 21=0,所以当x ∈(-1,1)时,f (x )≤g (x ),所以M (x )=max{f (x ),g (x )}=g (x )=log 211-x ,x ∈(-1,1).21.解析:(1)由图可知A +b =3,-A +b =-1,所以A =2,b =1.又T 2=5π12+π12=π2,所以T =π, 因为ω>0,所以ω=2πT=2.因为f (5π12)=2sin (5π6+φ)+1=3,所以5π6+φ=π2+2k π(k ∈Z ),即φ=-π3+2k π(k ∈Z ),又|φ|<π,得φ=-π3,所以f (x )=2sin (2x -π3)+1.(2)由题意得g (x )=2sin (4x +π2)=2cos 4x ,由2k π≤4x ≤π+2k π(k ∈Z ),得k π2≤x ≤π4+k π2(k ∈Z ), 故g (x )的单调递减区间为[k π2,π4+k π2](k ∈Z ), 由π+2k π≤4x ≤2π+2k π(k ∈Z ), 得π4+k π2≤x ≤π2+k π2(k ∈Z ), 故g (x )的单调递增区间为[π4+k π2,π2+k π2](k ∈Z ). 22.解析:(1)当x >0时,-x <0,f (-x )=-x (-x -1), 因为函数f (x )是定义在R 上的奇函数,11 所以f (-x )=-f (x ),故-f (x )=-x (-x -1),所以当x >0时,f (x )=-x (x +1).(2)①f (x )在(0,+∞)上单调递增,理由如下:因为f (x )在(-∞,0]上单调递增,所以对任意x 1,x 2∈(-∞,0),且x 1<x 2时,有f (x 1)<f (x 2),则-x 1,-x 2∈(0,+∞),且-x 1>-x 2,因为函数f (x )是定义在R 上的奇函数,则f (x 1)=-f (-x 1),f (x 2)=-f (-x 2),故-f (-x 1)<-f (-x 2),即f (-x 1)>f (-x 2),故函数f (x )在(0,+∞)上单调递增;②因为函数f (x )是定义在R 上的奇函数,且f (x )在(-∞,0]上单调递增,可得函数f (x )在R 上单调递增,又f (-2x 2+x )<-f (-2x 2-k ),则f (-2x 2+x )<f (2x 2+k ),因为f (x )在R 上单调递增,故-2x 2+x <2x 2+k 恒成立,即k >-4x 2+x =-4(x -18)2+116,所以实数k 的取值范围为(116,+∞).E -2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1模块检测张平 山东省滕州市教学研究室一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 函数3()3log f x x x =-+的定义域是A .()0,3B .[0,)+∞C .[3,)+∞D .]3,(-∞ 2. 已知全集{}1,2,3,4,5,6,7,8U =,集合{}1,3,4,6,8A =,{}2,4,5,6B =, 则图中阴影部分所表示的集合是A. {}4,6B. {}2,5C. {}2,4,5,6D. {}1,3,8 3. 计算232aa的结果为A. 32a B. 16a C. 56a D. 65a 4. 若()2212f x x x +=-,则()2f 的值为A. 34-B. 34C. 0D. 1 5. 下列函数中,定义域和值域不同的是A. 12y x = B.1y x -= C. 13y x = D.2y x =6. 已知lg3,lg5,a b ==则用,a b 表示5log 60为 A.2a b b +- B. a b b - C. 21a b b -+ D. 21a bb++ 7. 设()2f x x bx c =++,且)3()1(f f =-,则A.)1()1(->>f c fB. )1()1(-<<f c fC. (1))1(f f c >->D.)1()1(f f c <-< 8. 下列四个函数中,在R 上是减函数的为A. 2y x = B. 2log y x =- C. 21y x =+ D. 53xy -⎛⎫= ⎪⎝⎭9. 四赛车比赛,它们跑过的路程()f x 和时间x 的函数关系式分别是()21f x x =,()24f x x =,()32log (1)f x x =+,()4 1.121x f x =-,假如一直比赛下去,则跑在最前面的赛车的路程函数为A. ()21f x x =B. ()24f x x =C. ()32log (1)f x x =+D. ()4 1.121x f x =-10. 已知()f x 是定义在R 上的奇函数,当0x >时,()2f x x =-,那么不等式()0f x < 的解集是 A. ()2,0- B. ()0,2 C. ()(),20,2-∞- D. ()()2,00,2-11. 定义运算:,,,.a ab a b b a b ≤⎧*=⎨>⎩ 则函数()12x f x =*的图象大致为A. B. C. D. 12. 若函数)(x f y =在区间[],a b 上的图象为连续不断的一条曲线,则下列说法正确的是A. 若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c fB. 若0)()(<b f a f ,存在且只存在一个实数),(b a c ∈使得0)(=c fC. 若0)()(>b f a f ,有可能存在实数),(b a c ∈使得0)(=c fD .若0)()(<b f a f ,有可能不存在实数),(b a c ∈使得0)(=c f 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上. 13. 已知全集U =R ,集合{}{}|,|12,A x x a B x x =<=<<且()UAB =R ,则实数a 的取值范围是 .14. 若函数()f x =1221,2,, 2.x x xx --<⎧⎪⎨⎪≥⎩ 则()4f f =⎡⎤⎣⎦ .15. 已知幂函数()f x 的图象过点3,3⎛ ⎝⎭,则()3f 与()f π的大小关系为 .16. 若2336,ab==则11a b+的值为 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)(Ⅰ)求值:()7522lg 2lg3log 4211lg36lg 22++⨯-;(Ⅱ)化简:1211133442436x x y x y ---⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.18.(本小题满分12分)如图,动点P 在边长为1的正方形ABCD 上运动,点M 为CD 的中点,当点P 沿A B C M →→→运动时,点P 经过的路程设为x ,APM ∆面积为()f x ,求()f x 的解析式.19.(本小题满分12分)已知全集U =R ,集合2{|29},{8}A x x B x x =<<=≥. (Ⅰ)求AB ;()UB A ;(Ⅱ)已知集合{|2},C x a x a =<<+若C B ⊆,求实数a 的取值范围. 20.(本小题满分12分)某企业在2008年对某产品的投入成本为1元/件,出厂价为1.2元/件.年销售量为10000件.2009年为适应市场需求,提高产品档次,每件产品投入成本增加的比例为()01,x x <<出厂价相应提高的比例为0.75x ,同时预计销售量增加的比例为0.8x .(Ⅰ)写出2009年预计的年利润y 与投入成本增加的比例x 的关系式; (Ⅱ)为使2009年的年利润比2008年有所增加,则x 应在什么范围内? (III )为使2009年的年利润达到最大,求x 的值. 21.(本小题满分12分) 已知函数()22log log ,424x x f x x ⎛⎫⎛⎫⎤=∈ ⎪ ⎪⎦⎝⎭⎝⎭.求该函数的最大值与最小值,并求取得最值时x 的值.22.(本小题满分14分)已知函数()224,0,4,0.x x x x f x x x x x ⎧++>⎪⎪=⎨-+⎪-<⎪⎩(Ⅰ)判断()f x 的奇偶性,并加以证明;(Ⅱ)讨论()f x 在()0,+∞上的单调性,并证明你的结论.参 考 答 案一、选择题1.C2. B3. C4. A5. D6. A7. B8. D9. D 10. C 11. A 12. C 二、填空题13. 2a ≥ 14. 0 15. ()3f >()f π 16.12三、解答题 17. 解:(Ⅰ)原式 = 20 ;(Ⅱ)原式1322xy ==18. 解: 当01x <≤时,()1122xf x x =⨯⨯=; 当12x <≤时,()()()11111311112222224xf x x x -⎛⎫=+⨯-⨯⨯--⨯⨯-= ⎪⎝⎭ 当522x <≤时,()15521224x f x x -⎛⎫=-⨯= ⎪⎝⎭.所以(),01,23,12,4525,2.42xx xf x x xx ⎧<≤⎪⎪-⎪=<≤⎨⎪-⎪<≤⎪⎩19. 解:由28x x x ≥⇒≥≤-所以(),22,B ⎡=-∞-+∞⎣.(Ⅰ))22,9A B ⎡=⎣; ([)(),229,UBA ⎤=-∞-+∞⎦;(Ⅱ)由(),2,C a a =+(),22,B ⎡=-∞-+∞⎣,若C B ⊆,则2aa +≤-≥即2a a ≤--≥ 20. 解:(Ⅰ)()()()1.210.7511000010.8y x x x =+-+⨯+⎡⎤⎣⎦ 28006002000x x =-++, (01x <<).(Ⅱ)为使2009年的年利润比2008年有所增加,则()1.2110000,0 1.y x ⎧>-⨯⎨<<⎩即28006000,0 1.x x x ⎧-+>⎨<<⎩解之得304x <<(III )2234225800600200080082y x x x ⎛⎫=-++=--+ ⎪⎝⎭,所以当38x =时,年利润达到最大值. 21. 解: ()()()22222log 1log 2(log )3log 2f x x x x x =--=-+,令2log t x = ,由x ⎤∈⎦,知1,22t ⎡⎤∈⎢⎥⎣⎦,则()223132,24h t t t t ⎛⎫=-+=-- ⎪⎝⎭()h t 在13,22⎡⎤⎢⎥⎣⎦上单调递减,在3,22⎡⎤⎢⎥⎣⎦上单调递增,所以当31,222t ⎡⎤=∈⎢⎥⎣⎦时,322x ==,()f x 有最小值14-.当12t =时,122x ==()34f x = ,当2t =时,4x =,()0f x = ,所以当x =, ()f x 有最大值34.22. 解:(Ⅰ)()f x 为偶函数.当0x >时,0,x -<则()24x x f x x++=,()22()()44x x x x f x x x ---+++-=-=-,所以()()f x f x =-;当0x <时,0,x ->则()24x x f x x-+=-,()22()()44x x x x f x x x-+-+-+-==--,所以()()f x f x =-;综上所述,对于0x ≠,都有()()f x f x =-,所以()f x 为偶函数.(Ⅱ)()f x 在(]0,2上单调递减,在()2,+∞上单调递增.任取()1212,0,,x x x x ∈+∞<,()()()()211221124x x x x f x f x x x ---=,因为()1212,0,,x x x x ∈+∞<,所以12210,0x x x x >->,所以,当2112212,40,()()0x x x x f x f x >>->->时,21()()f x f x >, 当21122120,40,()()0,x x x x f x f x ≥>>-<-<时21()()f x f x <, 所以()f x 在(]0,2上单调递减,在()2,+∞上单调递增.试题评价:本套试题针对高一学生的思维水平,设计题目注重基础,注重引领学生对数学基本思想方法的感性认识,如数形结合,分类讨论,转化与化归等;由于学生刚开始高中数学的学习,所以题目较为基础,特别注重了重点知识的考查..题目的来源有的是对课本题目的加工改造,有的是对成题的再创造.。