中职数学平面向量测试题
中职数学基础模块下册第七章平面向量单元测试(一)含参考答案
中职数学基础模块下册第七章平面向量单元测试(一)含参考答案一、单项选择题1.下列关于零向量的说法正确的是( )A .零向量的方向是确定的B .零向量的模等于0C .零向量与任意向量不平行,D .零向量表示为02.已知向量→a =(4,1),则其负向量是( )A .(-4,1)B .(4,-1)C .(-4,-1)D .(-1,-4)3.已知点A(0,4)和点B(3,5),则→AB =( )A. (0,4)B. (3,5)C. (4,0)D. (3,1)4.若向量→a =(2,-4),则→a 21=( ) A .(1,-2) B .(-2,1) C .(4,-8) D.(-8,4)5.化简=+-+-→→→→)2(2b a b a )(( ) A .→a 3 B. →0 C .0 D .2→b6.向量→a =(3,4),则→a =( )A.. 3 B .4 C. 5 D .67.已知→a =2,→b =3,<→a ,→b >=o 60。
,则→a →•b =( ) .A. 2 B . -2 C . 3 D .-38. 已知→a =(2,3),→b =(-1,5),且2→a -3→b =( )A.( 7,9)B.(4,-6)C. (2,5)D.(7,-9)9. 设→a =(-1,3),→b =(n ,2),且→a →⊥b ,则n =( )A. 6B. -6 C .32 D . -3210. 设→a =(2,1),→b =(x ,3),且→→b a //,则x =( )A.32 B. -23 C .-6 D . 611.已知→a =(-2,5),→b =(m ,13),且2→a -→b =(6,-3),则m =( )A. -10 B . 10 C .9 D .-912.下列各对向量中,共线的是( )A. →a =(1,2),→b =(2,1)B. →a =(1,2),→b =(2,4)C . →a =(2,3),→b =(3,-2) D. →a =(2,3),→b =(-3,-2)二、填空题13. →→→+-BD AC AB = 。
中专校平面向量测试题
第七章 平面向量 试卷班级 姓名 得分一.选择题(4分×10=40分):1.以下说法错误的是 ( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C. 平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是 ( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC3.已知a =(3,4),b =(5,12),a 与b 则夹角的余弦为 ( )A .6563 B .65 C .513 D .13 4.已知,a b 均为单位向量,它们的夹角为060,那么3a b += ( ) A .7 B .10 C .13 D .45.下面给出的关系式中正确的个数是( ) ① 00 =⋅a ② a b b a ⋅=⋅ ③22a a = ④)()(c b a c b a ⋅=⋅ ⑤b a b a ⋅≤⋅A .0B . 1C . 2D . 36.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )A .−→−AD =−→−BCB .−→−AD =2−→−BC C .−→−AD =-−→−BC D .−→−AD =-2−→−BC7.已知向量a ,b 满足1,4,a b ==且2a b ⋅=,则a 与b 的夹角为 ( )A .6πB .4πC .3πD .2π 8.若平面向量b 与向量)1,2(=a 平行,且52||=b ,则=b ( )A .)2,4(B .)2,4(--C .)3,6(-D .)2,4(或)2,4(--9.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是 ( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形10.若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B.C. 2或D. 2或10.二. 填空题(5分×4=20分):11.已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________.12.若),4,3(=AB A 点的坐标为(-2,-1),则B 点的坐标为 .13.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b . 14.已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是_________________.15.已知)1,2(=a 与)2,1(=b ,要使b t a +最小,则实数t 的值为___________.三、解答题(共90分)16.(12分)若(1,2),(2,3),(2,5)A B C -,试判断则△ABC 的形状.17.(12分)已知3a =,4b =,a 与b 的夹角为43π, (3)(2)a b a b -⋅+.18.(12分) 已知(1,2)a =,)2,3(-=b ,当k 为何值时,ka b +与3a b -垂直?19.(13分) 若(2,2)a =-,求与a 垂直的单位向量的坐标。
中职数学第7章《向量》单元检测试题及答案【基础模块下册】精选全文
可编辑修改精选全文完整版2020届中职数学第七章《平面向量》单元检测试题(满分100分,时间:90分钟)一.选择题(3分*10=30分)1、已知向量()()x b a ,1,4,2==→→,若→→⊥b a ,则=x ( )A 、21-B 、21C 、2D 、2-2、已知|||2,30|a b a b a b →→==︒+=与的夹角为,则|( )A 、2B 、5 D 、33、若A (1,2),B (-6,x ),C (-1,4)三点共线,则x =( )A 、-2B 、 9C 、 2D 、 -94、已知A (2,-3),B (0,5),则AB =( )A 、(2,-8)B 、(-2,8)C 、(2,2)D 、(0,0)5、下列各不等式中成立的是( )A 、a b b +>B 、a b b +>C 、a b a b +>-D 、a b a b +≤+6、若A (-1,2),B (3,4),P (x ,y ),且2AP PB =, 则P 点坐标为 ( )A. 48(,)33B. 14(,)33C. 4(,4)3D. 18(,)337、设向量a ,b 的长度分别为4和3,夹角为120度,则a b =( )A. -6B. 8、下列各组向量中共线的是( )A 、(2,3),(4,6)a b =-=B 、(1,2),(7,14)a b =-=C 、(2,3),(3,2)a b ==D 、(3,2),(6,4)a b =-=-9、已知向量()4,3=→AB ,点A 的坐标为()3,2-,则点B 的坐标是( )A 、()1,7--B 、()1,7C 、()7,1D 、()7,1--10. 已知向量a →、b →夹角是120︒,||13,||3,b |a b a +===则|( ) A. 5 B. 4 C. 3 D. 1二.填空题(4分*8=32分)11.若(1,3)a =- ,(1,1)b =-,则a b -为______________ 12.已知ABC ∆中,AB a =, BC b = 当a b >0时,ABC ∆为 _____三角形. 13.AB AC BC -+ =14.已知(2,1)a =,(1,3)b =,(8,9)c =,且c ma nb =+,则m =__,n=_____ 15.设a =(1,2),b =(-2,1),则b a 32+等于_____________ 16.设向量(1,),a m = 向量(2,3)b m =-,若a b ⊥,则m=_____________.17.已知向量1(1,2),(1,)2a b ==-,则32a b -=______. 18.已知向量a =(1,2),b =(2,-1),则︱2a +b ︱的值为 . 三、解答题(共计38分)19.(6分)若a ·b =5,丨a 丨b 丨,求<a ,b >20.(6分)已知2,23,3===⋅←→→→b a b a ,求<→a ,→b >0=⋅→→b a ,求向量→b 的坐标。
职高平面向量练习
平面向量练习题一.填空题1.BA CD DB AC +++等于________.2. ______OA OB CO BO +++=,______CE AC DE AD +--=。
3.若向量a =(3,2),b =(0,-1),则向量2b -a 的坐标是________.4.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若AB 与CD 共线,则x 的值等于________.5 已知向量1(3,2),(5,1),2OM ON MN =-=--则等于 二.选择题1.下面的量中哪一个不是向量A 力B 位移C 速度D 时间2.下列说法正确的是A.只有方向相同或者相反的向量是平行向量B.零向量的长度为零C.长度相等的两个向量是相等的向量D.共线向量是在同一条直线上的向量3.已知向量a = (-3 ,2 ) , b =(x, -4) , 若a//b ,则x=( )A 4B 5C 6D 74、已知(,3)(2,1)a x b x -=与共线,则( )。
A 、32B 、-32C 、6D 、-6 5、已知线段AB 的中点M 的坐标是(-1,1),点A 坐标(-3,1),则点B 的坐标为( )A 、(1,-3)B 、(-2,0)C 、(4,-4)D 、(-5,3)三:解答 1、如图,在正六边形ABCDEF 中,找出:(1)、与OA 相等的向量;(2)、与OA 相反的向量;(3)与OA 共线的向量。
2、已知平行四边形ABCD 中,A (-4,-2),B (2,-4),C (5,-1),则点D 的坐标为3.已知(1,2)a =,)2,3(-=b ,当k 为何值时,ka +b 与3a -b 平行?。
中职数学平面向量试卷
中职数学平面向量试卷一、选择题(每题3分,共30分)1. 下列物理量:质量;速度;位移;④力;⑤加速度;⑥路程;⑦密度;⑧功。
其中不是向量的有()A. 1个B. 2个C. 3个D. 4个。
2. 已知向量→a=(1,2),→b=(2, - 1),则→a+→b等于()A. (3,1)B. ( - 1,3)C. (1,1)D. ( - 3, - 1)3. 若向量→AB=(3,4),A点坐标为( - 2, - 1),则B点坐标为()A. (1,3)B. (5,5)C. (1,5)D. (5,3)4. 设向量→a=(x,1),→b=(4,x),若→a与→b共线且方向相同,则x = ()A. 2B. - 2C. ±2D. 0.5. 已知向量→a=(3, - 2),→b=( - 1,0),则3→a-2→b等于()A. (11, - 6)B. (7, - 6)C. ( - 7,6)D. ( - 11,6)6. 向量→a=( - 2,3)的模|→a|等于()A. √(13)B. √(5)C. √(11)D. √(10)7. 若→a=(1,2),→b=(m,1),且→a⊥→b,则m=()A. - 2B. -(1)/(2)C. (1)/(2)D. 2.8. 已知ABC中,→AB=→a,→AC=→b,则→BC等于()A. →a-→bB. →b-→aC. →a+→bD. -→a-→b9. 设向量→a与→b的夹角为θ,→a=(2, - 1),→b=(1,λ),若θ = 90^∘,则λ=()A. 2B. - 2C. (1)/(2)D. -(1)/(2)10. 对于向量→a,→b,c和实数λ,下列命题中真命题是()A. 若→a·→b=0,则→a=→0或→b=→0B. 若λ→a=→0,则λ = 0或→a=→0C. 若→a^2=→b^2,则→a=→b或→a=-→bD. 若→a·→b=→a·→c,则→b=→c二、填空题(每题4分,共20分)1. 已知向量→a=(3,m),→b=( - 1,2),若→a∥→b,则m=______。
平面向量单元检测题(高职对口升学考试数学复习专题)
平面向量单元检测题班级 姓名一、选择题:1、下列命题正确的是 ( )A .若0||=,则0=aB .若||||=,则b a =或b a -=C .若||,则||||=D .若=,则=-2、下列说法不正确的是( ) A )()a b b a R λλ⇔=∈与是平行向量 B )若||||a b a b =⨯,则是相等向量与b aC )若0a b =,则垂直与b aD )3、已知平行四边形ABCD 的三个顶点)1,2(-A 、)3,1(-B 、)4,3(C ,则顶点D 的坐标为( )A .)2,1(B .)2,2(C .)1,2(D .)2,2(--4、已知向量1(3,2),(5,1),2OM ON MN =-=--则等于 ( ) A .)1,8( B .)1,8(- C .)21,4(- D .)21,4(- 5、已知向量(3,1),(1,2),a b =-=-则23--的坐标是 ( )A .)1,7(B .)1,7(--C .)1,7(-D .)1,7(-6、已知(1,3),(,1),a b x =-=-且∥,则x 等于 ( )A .3B .3-C .31D .31- 7、设)0(||>=m m a ,与反向的单位向量是0b ,则用0b 表示为 ( )A .0b m a =B .0b m a -=C .01b m a =D .01b ma -= 8、已知点)2,1(--A 平移向量后变为)1,0`(A ,点)1,2(-B 平移向量后对应点`B 的坐标为( )A .)1,3(B .)3,1(C .)2,3(D .)3,2(9、D 、E 、F 分别为ABC ∆的边BC 、CA 、AB 上的中点,且=,=,下列命题中正确命题的个数是 ( ) ①12AD a b =--;②12BE a b =+;③1122CF a b =-+;④0AD BE CF ++=。
A .1个 B .2个 C .3个 D .4个10、已知A 、B 、C 三点共线,且)6,3(-A ,)2,5(-B ,若C 点的横坐标为6,则C 点的纵坐标为 ( )A .-13B .9C .-9D .1311、、是两个非零向量,222)(+=+是⊥的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件12、若),12,5(),4,3(==则与的夹角的余弦值为 ( )A .6563B .6533C .6533-D .6563- 13、若4,6m n ==,与的夹角是 135,则⋅等于 ( )A .12B .212C .212-D .12-14、点)4,3(-关于点)5,6(-B 的对称点是 ( )A .)5,3(-B .)29,0(C .)6,9(-D .)21,3(- 15、下列向量中,与)2,3(垂直的向量是 ( )A .)2,3(-B .)3,2(C .)6,4(-D .)2,3(- 16、在平行四边形ABCD 中,若AB AD AB AD +=-,则必有 ( )A .=B .=或=C .ABCD 是矩形 D .ABCD 是正方形17、已知平面内三点x C B A ⊥满足),7(),3,1(),2,2(,则x 的值为 ( )A .3B .6C .7D .9A .1B .1-C .1±D .019、已知2(2,1),(3,2),3A B AM AB --=,则点M 的坐标是 ( ) A .)21,21(-- B .)1,34(-- C .)0,31( D .)51,0(- 20、将向量x y 2sin =按向量(,1)6a π=-平移后的函数解析式是 ( ) A .1)32sin(++=πx y B .1)32sin(+-=πx y C .1)62sin(++=πx y D .1)62sin(+-=πx y 二、填空题 1、化简:--+=__________。
中职数学对口升学复习第七单元 平面向量检测题(师)
2021届中职数学对口升学总复习单元检测试题第七单元《平面向量》测试题一.选择题(本大题10小题,每小题3分,共30分)1.向量)5,4(b ),8,10(a =-=,则b a 与( C ) A.相等B. 平行C.垂直D.以上都不对2.下列结论错误的是( C )A. 零向量与任一非零向量平行B.平行向量一定是共线向量C.平行向量的方向相同D.零向量与单位向量的模不相等 3. 已知A (1,-1),B (0,3),则AB =( B )A.(1,-4)B.(-1,4)C.(1,2)D.(0,-3)4.=++CD DB BC ( B )A.0B. →C. ABD.AC25.→→b a 、都是单位向量,则下列各项中成立的是( D )A.→→→=-0b aB.1b a =⋅→→C.0b a =⋅→→D.→→=b a6.下列各不等式中成立的是( D )A.a b b +>B.a b b+>C.a b a b+>- D.a b a b +≤+7.若A (-1,2),B (3,4),P (x ,y ),且2AP PB =, 则P 点坐标为 ( D )A. 48(,)33B. 14(,)33C. 4(,4)3D. 18(,)338.平行四边形ABCD 中,若→→→→-=+AD AB AD AB 则必有( D )A.0=ADB.00==AD AB 或C.ABCD 是正方形D.ABCD 是矩形9.设向量a ,b 的长度分别为4和3,夹角为120度,则a b =( A )A. -6B. 6C.D.10.已知向量→→b a 、满足)2()(,2b ,1a →→→→→→-⊥+==b a b a ,则向量→→b a 、的夹角为( C )A.︒45B.︒60C.︒90D.︒120二.填空题(本大题8小题,每小题4分,共32分)1.平行四边形ABCD 四个顶点坐标A(5,7)、B(3,x)、C(2,3)、D(4,x),则x=2.向量→a =(1,3),→b =(-2,4),则=⋅→→b a3.向量→a =(4,16),→b =(x,-8),且→→b //a 则x= 4.计算→→→→+++BA CD DB AC →0 5.化简→→→→-+AB CD BD AC -= →0 6.→→→→⊥-==b a ),3,2(b ),,1(a m m ,则m= 7.=-⋅+==→→→→→→)b (a )b (a ),4,2(b ),3,2(a 8.=-=⋅==→→→→→→b -a ,3b a ,5b ,2a 则_____35____________.三.解答题(本大题6小题,共38分)1.(6分)已知→→→→-=-=b )1,5(b ),6,7(a a ,求.2.(6分)若a ·b =5,丨a 丨b 丨<a ,b > 3.(6求向量→b 的坐标。
(完整word版)职高数学第七章平面向量习题及答案(2).docx
第 7 章平面向量习题练习 7.1.11、填空题(1)只有大小,没有方向的量叫做;既有大小,又有方向的量叫做;(2)向量的大小叫做向量的,模为零的向量叫做,模为 1 的向量叫做;(3)方向相同或相反的两个非零向量互相,平行向量又叫,规定:与任何一个向量平行;(4)当向量 a 与向量 b 的模相等,且方向相同时,称向量 a 与向量 b;(5)与非零向量 a 的模相等,且方向相反的向量叫做向量 a 的;2、选择题(1)下列说法正确的是()A .若 |a|=0,则 a=0B.若 |a|=|b|,则 a=bC.若 |a|=|b|,则 a 与 b是平行向量D.若 a∥b,则 a=b(2)下列命题:①有向线段就是向量,向量就是有向线段;②向量 a 与向量 b 平行,则 a 与 b 的方向相同或uuur uuura∥ b, b∥c. 那么 a 相反;③向量 AB 与向量 CD 共线,则 A、 B、 C、D 四点共线;④如果∥c正确的命题个数为()A.1B.2C.3D.0参考答案:1、( 1)数量;向量( 2)模;零向量;单位向量(3)平行的向量;共线向量;零向量(4)相等( 5)负向量2、( 1) A ( 2) B练习 7.1.21、选择题(1)如右图所示,在平行四边行ABCD 中,下列结论错误的是()uuur uuur uuur uuur uuurA . AB=DCB . AD+AB=ACuuur uuur uuur uuur uuur r C. AB +AD=BD D. AD+CB=0uuur uuur uuur(2)化简: AB+BC CD =()D C A Buuur uuur uuur rA . AC B. AD C. BD D . 02、作图题:如图所示,已知向量 a 与 b,求 a+bba参考答案:1、( 1) C( 2) B2、方法一:三角形法则方法二:平行四边行法则ba+b a+bba a练习 7.1.31、填空题uuur r uuur r uuur uuur(1)在平行四边形 ABCD 中,若 AB=a , BD=b ,则 AB+CBuuur uuur uuur uur(2)化简 : OP QP PS SP;2、作图题:如图所示,已知向量 a 与 b,求 a- bba参考答案:r r uuur1、( 1)b ; a ( 2) OQ2、a- buuur uuur, AD -CD;ba练习 7.1.41、选择题(1)如图所示, D 是△ ABC 的边 AB 的中点,则向量ADB Cuuur CD 等于()uuur 1 uuuruuur 1 uuurA . BC+ BAB . BC+BA22uuur 1 uuuruuur 1 uuurC . BCBAD . BCBA2 2 uuur uuur uuuur(2)化简 PM PN MN 所得结果是( )uuuruuurruuuurA . MPB . NPC . 0D . MN2、化简题:( 1) 3( a - 2 b )-( 2 a + b );( 2) a - 2( a - 4 b )+ 3( 2a - b ).参考答案:1、( 1) B ( 2) C2、( 1) a - 7 b ( 2)5a +5 by练习 7.2.131、填空题:2(1)对任一个平面向量a ,都存在着一对有序实数b(x ,y ),使得 a=xi +yj 。
(完整版)中职学校《数学--平面向量》期中考试试卷
晋兴职校2013-2014学年(上)期中考试《数学》试卷(考试时间:90分钟,满分:100分,适用:12财1、2 班)一、 填空题:(2分/空,共32分) 1、向量是既有___________又有___________的量。
2、向量AB 的起点是________,终点是__________ 3、计算:=+CD AC _____________ =-AE AF ___________ 4、设O 为坐标原点,P (2,2),Q (3,4), 则=OP___________,=OQ ___________,=PQ ___________,5、已知矢量a =(2,3)和b =(3,2)则a 、b __________(填平行或不平行)6、a =(7,y ),b =(x ,-4),若a =b ,则x=____,y=______7、已知点A (1,0),B (0,2),C (—1,—2),则□ABCD 的顶点D 的坐标________8、 如右图,B 是线段AC 的中点,分别以图中 各点为起点和终点,最多可以写出________个 互不相等的非零向量。
9、20.设a 表示东北风340m/s ,则-a 表示_________ 10、已知向量a =(1,2),b =(-3,4),则a -b =_________________ 二、选择题:(3分/题,共36分) 1.下例说法正确的是( )A .路程是向量 B. 向量没有方向C.共线向量一定是在同一直线上 D .量向是即有大小又有方向的量 2.下列四组量中,全都是向量的一组是( ):A.质量、速度B.温度、位移C.速度、位移D.质量、温度 3.关于零向量,下列说法正确的是( )A.模为零,没有方向B.模为零,方向不确定C.模不为零,没有方向D. 模不为零,方向不确定 4. 向量包含的要素是( )A.大小和起点B.方向和起点C.大小和方向D.大小、方向和起点 5. 两个向量相等是指它们的( )A. 方向相同B.长度相等C.长度相等,方向相同D. 内积相等 6.向量的模一定是( )A.实数B.有理数C.非负实数D.正数.7.一动点由A 点移到B 点。
中职数学基础模块下册《平面向量的运算》 练习题
平面向量一、知识要点(平面向量的线性运算): 1、平面向量的加法运算:三角形法则与平行四边形法则, 2、平面向量的减法运算:三角形法则, 3、实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa=,4、几何与向量综合时常出现的向量内容归纳如下:(1)给出与相交,等于已知过的中点;(2)给出,等于已知是的中点;(3)给出,等于已知A 、B 与PQ 的中点三点共线;(4) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.(5)给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。
(6)给出,等于已知是的平分线。
(7)在平行四边形中,给出,等于已知是菱形;(8)在平行四边形中,给出,等于已知是矩形;例题精选:例1.如图,正六边形ABCDEF 中,BA CD EF ++=(A )0(B )BE (C )AD (D )CFCBA 答案:D例2.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________。
4/3练习题:1.在△ABC 中, =a , =b,则等于A.a +bB.-a +(-ba -bD.b -a2.O 为平行四边形ABCD 平面上的点,设=a , =b , =c , =d ,则 A.a +b +c +d =0 B.a -b +c -da +b -c -d =0 D.a -b -c +d =03.设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B.0PC PA += C.0PB PC += D.0PA PB PC ++=4..如图1, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+= C .0AD CE CF +-= D .0BD BE FC --=5.ABC ∆中,点D 在AB 上,CD 平分ACB ∠.若a CB =,b CA =,1a =,2b =,则=( ) (A )1233a b +(B )2133a b + (C )3455a b + (D )4355a b + 答案:B, B , B, A, B.二、知识要点(平面向量的坐标运算):设),(),,(2211y x b y x a ==,(1)=±b a __________, =a λ___________________.(2)b a 与共线的充要条件:___________,__________, b a与垂直的充要条件:_______________._______________. (3)a 向量的摸:a =____________.(4) 2121y y x x b a +=∙ ,a ⋅b = |a ||b |c os θ ,cos θ =||||b a b a ⋅ ,22a a =. 例题精选:例3.在正三角形ABC 中,D 是BC 上的点,若3,1AB BD ==,则AB AD ⋅= . 解:()AB AD AB AC CD AB AC AB CD ⋅=⋅+=⋅+⋅915cos60cos60322AB AC AB CD =+=+=. 练习题:1.已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为.2.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A.60° B .30° C.135° D.45°3.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |=, |a -b |=4.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-365.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 6.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=7.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量k a-b 垂直,则k=_____________.8.a ,b 为平面向量,已知a =(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于 (A )865 (B )865- (C )1665 (D )1665-9.在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则________AD BE ⋅=。
中职平面向量测试卷
平面向量测试试卷姓名: 班级:选择题(每题3分)1、关于零向量,下列说法错误的是 ( )A.零向量的模为零B.零向量的方向不存在C .零向量与任意向量共线 D.数乘零向量等于零向量2、化简 (AC⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )−(AD ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )−(AB ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ )的结果为 ( ) A.AB⃗⃗⃗⃗⃗ B. BC ⃗⃗⃗⃗⃗ C. CD ⃗⃗⃗⃗⃗ D. BA ⃗⃗⃗⃗⃗ 3、下列等式中,正确的个数是 ( )○1 a +b ⃗ =b ⃗ +a ;○2a -b ⃗ =b ⃗ -a ; ○30⃗ -a =a ○4a +(-a ) =0⃗ ; ○5-(-a )= aA.5B.4C.3D.24、在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e -D .)35(2112e e - 5.化简)]24()82(21[31b a b a --+的结果是( ) A .b a -2 B .a b -2 C .a b - D .b a -6、已知a =(3,1),b ⃗ =(-2,5),则3a -2b⃗ = ( ) A.(2, 7) B.(13, -7) C.(2, -7) D.(13, 13)7、已知向量OA ⃗⃗⃗⃗⃗ =(1,2), OB⃗⃗⃗⃗⃗ =(4,6),则AB ⃗⃗⃗⃗⃗ = ( ) A. (-3, -4) B.(3, 4) C.(-4, -3) D.(5, 8)8、已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为 ( )A .(1,5)或(5,-5)B .(1,5)或(-3,-5)C .(5,-5)或(-3,-5)D .(1,5)或(-3,-5)或(5,-5)9、已知向量a =(-3, 3),下列向量中与a 不平行的是 ( )A.(2, 6)B.(1, -3)C.(-2, 6)D.(2, 6)10、若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为 ( ) A .103 B .-103 C .102D .10 填空题(每题3分)1、化简(1)AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ = ; (2) AB ⃗⃗⃗⃗⃗ -CD ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ = ; 2、若 a 表示“向西走3米”,则 -a 表示 ,|a | = ;3、已知a =(2, -1),b ⃗ =(x , 2),c =(3, y ),若a //b ⃗ //c ,则x= ,y= ;4、若a ∙b ⃗ =-4, |a |=√2, |b ⃗ |=2√2, 则<a , b⃗ >= ; 5、已知A (-3,6),B (3,-6),则AB⃗⃗⃗⃗⃗ = ,|BA ⃗⃗⃗⃗⃗ |= ; 6.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 .7.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是8.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= .解答题9、如图,已知向量a ,作出a +b ⃗ , a -b ⃗ ,3a (保留作图痕迹)(6分)10、已知A (7,2),B (2,2),C (3,4),求AB⃗⃗⃗⃗⃗ ∙AC ⃗⃗⃗⃗⃗ (5分)11、已知平行四边形ABCD 的三个顶点A (-3,0),B (1,-2),C (5,2),求顶点D 的坐标(5分)12、已知三角形ABC 中,点A (4,-2),B (0, 2),C (-2,0),试判断三角形ABC 的形状 (10分)13.已知2||=a 3||=b ,b a 与的夹角为60o ,b a c 35+=,b k a d +=3,当实数k 为何值时,⑴c ∥d ⑵d c ⊥(20分)。
中职数学基础模块(下册)《数列与平面向量》习题
2024-2025学年度第一学期《数学》期中考试试卷(本卷满分120分,时间90分钟) 班级: 姓名: 分数:一、选择题(本大题共15小题,每小题4分,共60分) 1.设点O 是正方形ABCD 的中心,则下列结论错误的是( ) A.B. C.共线 D.2.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图).则第7个三角形数是( )A.27B.28C.29D.303.化简OP→+PQ →+PS →+SP →的结果等于( ) A .QP → B .OQ→ C .SP → D .SQ→ 4.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .65.若A (3,1),B (2,-1),则BA →的坐标是( )A.(-2,-1)B.(2,1)C.(1,2)D.(-1,-2)6.已知数列3,9,15,…,3(2n -1),…那么81是它的第几项( )A .12B .13C .14D .157.等比数列{a n }中,a 1=4,a 2=8,则公比等于( )A .1B .2C .4D .88.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( )A .π6B .π4C .π3D .π29.在等比数列{a n }中,a 2 016=8a 2 015,则公比q 的值为( )A .2B .3C .4D .810.已知向量a =(2,4),b =(-1,1),则2a -b =( )A .(5,7)B .(5,9)C .(3,7)D .(3,9)11.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27 12.下列数列为等比数列的是( ). A .2,22,222,… B.1a ,1a 2,1a3,… C .s -1,(s -1)2,(s -1)3,… D .0,0,0,…13.已知向量a =(1,2),b =(2,x ),且a·b =-1,则x 的值等于( )。
(完整版)平面向量试卷(中职)
《平面向量》试卷班级 姓名 学号 一、选择题(每小题3分)1、以下四个量中为向量的是 ( ) ⑴速度 ⑵温度 ⑶位移 ⑷力 A .⑴⑵⑶ B .⑴⑶⑷ C .⑴⑵⑷ D .⑵⑶⑷2、若四边形ABCD 是平行四边形,则下列各对向量为相等向量的是 ( ) A .AB 与AD B .AB 与BC C .BC 与AD D .AB 与CD3、平行四边形ABCD 中,===AC b AD a AB 则,, ( ) A .b a + B .b a - C .b a +- D .b a --4、如图,设===AB b OB a OA 则,, ( )A .b a +B .b a -C .b a +-D .b a -- 5、D 是=∆AD BC ABC 边的中点,则中 ( )A .AC AB 2121+ B .AC AB 2121- C .AC AB 2121+-D .AC AB 2121--6、已知A (-1,3),AB (6,-2),则点B 的坐标为 ( ) A .(5,1) B .(-5,-1) C .(-7,5) D .(7,-5)7、已知向量)3,2(-a 与)1,1(-b ,则b a -2的坐标为 ( )A .)5,3(-B .)7,5(-C . )7,3(-D .)5,5(- 8、已知向量)2,3(-a 与向量),6(λb 共线,则λ的值为 ( ) A .1 B .-1 C .4 D .-49、设A (2,-1),B (1,3),则向量AB 的坐标为 ( ) A .(-1,4) B .( 1,-4) C .(3,2) D .(-3,-2) 10、平面上两点A (5,6),B (-3,4),若AC =CB ,则点C 的坐标为 ( )A .(-1,-5)B .( 1,5)C .(5,1)D . (-5,1)二、填空题(每小格2分)1、=+ED AE =-AD AB =++CA BC AB 。
2、若向量a 表示“向东走8米”、b 表示“向南走8米”,则a +b 表示“ ”。
中职数学基础模块下册第七章《平面向量》单元检测试题及参考答案
中职数学第七章《平面向量》单元检测试题(满分100分,时间:90分钟).选择题(3分*10=30分)A. -12B.12C. -3D. 35、下列各不等式中成立的是( )A 、a+b〉b B、a+b”b C、a+b>a — b D、a+b 兰冋+|b6、若A(-1 ,2),B(3, 4),P(x ,y),且2AP=PB,则P点坐标为()A. (4,8)B. (〔,4)C. (4,4)D.(-,-)3 3 3 3 3 3 37、设向量a, b的长度分别为4和3,夹角为120度,则a& =()A. -6B. 6C. -12 .3D. 12 .38、已知向量AB =13,4,点A的坐标为-2,3 ,则点B的坐标是()A、-7,-1 B 、7,1 C 、1,7 D 、-1,-79、已知向量a h[2,4,b=]1, x ,若 a —b,则x 二()1 1A B 、一C 、2 D 、- 22 210、已知向量 a = (1,m) , b = (m,2),若 a // b,贝卩m=()A. 一、、2B. 、2C. - ,2 或,2D. 0二.填空题(4分*8=32分)11. 若< = ( — 1,3) ______________________________________ , 6 = (1,—1),贝y F—b 为12. 已知也ABC中,A B爲,B C=6当a^>0时,AABC为_____ 三角形.13. AB —AC BC = _____14. 已知< = (2,1), b = (1,3) , c = (8,9) 且 c = ma + nb 贝卩m= __,n= ____5 515. 设a= (1, 2), b= (-2 , 1),则2a+3b 等于_________________16. 设向量a=(1, m),向量 b = (2, m-3),若 a 丄b,贝S m= __________ .17. 已知向量;=(1,2), b = (-1,1),则3<—2b= _______ .218. 已知向量a=( 1,2), b=(2, -1),贝,2a+b丨的值为______________ .三.解答题(共计38分)19. (6 分)若 a • b=5,丨 a 丨=,10 ,| b 丨=.5,求<a , b >20. ( 6 分)已知 a b = 3, a = 3 .. 2, b = 2,求V a , b >21. ( 8分)已知a,b是平面上两个不共线的非零向量,且a=(4,-3) , 1且a b =0,求向量b的坐标。
中职数学基础模块下册《平面向量的运算》 练习题
平面向量一、知识要点(平面向量的线性运算): 1、平面向量的加法运算:三角形法则与平行四边形法则, 2、平面向量的减法运算:三角形法则, 3、实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa=,4、几何与向量综合时常出现的向量内容归纳如下:(1)给出与相交,等于已知过的中点;(2)给出,等于已知是的中点;(3)给出,等于已知A 、B 与PQ 的中点三点共线;(4) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.(5)给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。
(6)给出,等于已知是的平分线。
(7)在平行四边形中,给出,等于已知是菱形;(8)在平行四边形中,给出,等于已知是矩形;例题精选:例1.如图,正六边形ABCDEF 中,BA CD EF ++=(A )0(B )BE (C )AD (D )CFCBA 答案:D例2.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________。
4/3练习题:1.在△ABC 中, =a , =b,则等于A.a +bB.-a +(-ba -bD.b -a2.O 为平行四边形ABCD 平面上的点,设=a , =b , =c , =d ,则 A.a +b +c +d =0 B.a -b +c -da +b -c -d =0 D.a -b -c +d =03.设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B.0PC PA += C.0PB PC += D.0PA PB PC ++=4..如图1, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+= C .0AD CE CF +-= D .0BD BE FC --=5.ABC ∆中,点D 在AB 上,CD 平分ACB ∠.若a CB =,b CA =,1a =,2b =,则=( ) (A )1233a b +(B )2133a b + (C )3455a b + (D )4355a b + 答案:B, B , B, A, B.二、知识要点(平面向量的坐标运算):设),(),,(2211y x b y x a ==,(1)=±b a __________, =a λ___________________.(2)b a 与共线的充要条件:___________,__________, b a与垂直的充要条件:_______________._______________. (3)a 向量的摸:a =____________.(4) 2121y y x x b a +=∙ ,a ⋅b = |a ||b |c os θ ,cos θ =||||b a b a ⋅ ,22a a =. 例题精选:例3.在正三角形ABC 中,D 是BC 上的点,若3,1AB BD ==,则AB AD ⋅= . 解:()AB AD AB AC CD AB AC AB CD ⋅=⋅+=⋅+⋅915cos60cos60322AB AC AB CD =+=+=. 练习题:1.已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为.2.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A.60° B .30° C.135° D.45°3.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |=, |a -b |=4.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-365.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 6.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=7.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量k a-b 垂直,则k=_____________.8.a ,b 为平面向量,已知a =(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于 (A )865 (B )865- (C )1665 (D )1665-9.在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则________AD BE ⋅=。
专题07 平面向量-【中职专用】河南省近十年对口高考数学真题分类汇编(解析版)
专题07平面向量1.(2021年河南对口高考)已知向量(2,3)a =- ,向量(,6)b x =- ,若a b ⊥,则x 的值为()A.4B.4- C.9D.9-【答案】D【解析】若a b ⊥ ,则0a b ⋅=,23(6)0x -+⨯-=,9x =-,故选D.2.(2021年河南对口高考)已知a ,b 是单位向量,夹角为60︒,则a b +=.【答案】【解析】因为a ,b是单位向量,夹角为60︒,所以a b +== 3.(2021年河南对口)已知向量()1,3m = ,(1,1)n =-,则||m n -= ()AB .C .4D .8【答案】B【解析】因为()1,3m = ,()1,1n =-,则(2,2)m n -= ,所以||m n -== B .4.(2020年河南对口高考)已知向量(2,1)a =- ,(3,4)b =- ,则a 与a b +的夹角为()A.4πB.3π C.2π D.34π【答案】D【解析】a == (2)31(4)10a b ⋅=-⨯+⨯-=- ,2()5a a b a a b +=+⋅=-,a b +=()cos 2a a b a a bθ+==-+,所以夹角为34π,故选D.5.(2020年河南对口高考)已知向量(1,2)a = ,(3,)b k =- ,a b,则=k .【答案】6-【解析】因为a b,所以1230k ⨯+⨯=,6k =-,故答案为6-.6.(2020年河南对口)已知向量a ,b 满足2a = ,1a b ⋅= ,且a 与b的夹角为60︒,则b 的值为.【答案】1【解析】由题意可知,1cos 60212a b a b b ⋅=⋅︒=⋅= ,解得1b = ,故答案为1.7.(2019年河南对口高考)已知(2,1)A ,(1,3)B -,(3,4)C ,则AB AC ⋅=()A.4-B.4C.3- D.3【答案】D【解析】(3,2)AB =- ,(1,3)AC = ,31233AB AC ⋅=-⨯+⨯=,故选D.8.(2019年河南对口高考)若向量(1,2)a = ,(3,1)b =- ,则()()a b a b ⋅-=.【答案】(4,1)--【解析】1(3)211a b ⋅=⨯-+⨯=- ,(4,1)a b -= ,所以()()(4,1)a b a b ⋅-=--,故答案为:(4,1)--.9.(2019年河南对口)已知向量a ,b的夹角为60°,1a = ,2b = ,则2a b -= ()A .1B .CD .2【答案】D【解析】∵向量a ,b的夹角为60°,且1a = ,2b = ,∴12cos601a b ⋅=⨯⨯︒= ,∴22a b -= ,故选D .10.(2018年河南对口高考)下列命题中,正确的是()A.若→→=b a ,则→→=ba B.若→→=b a ,则→a 与→b 是平行向量C.若→→>b a ,则→→>ba D.若→→≠b a ,则向量→a 与→b 不共线【答案】B【解析】向量相等包含两层含义,一个是方向相同,一个是大小相等,两个向量是不能比较大小的,只有向量的模长可以比较大小,所以应选B.11.(2018年河南对口高考)若向量)1,2(-=→a ,)3,1(=→b ,→→→+=b a c 2,则=→c .【答案】(0,7)【解析】2(2,1)(2,6)(0,7)c a b →→→=+=-+=,故答案为:(0,7).12.(2018年河南对口)已知平面向量()2,1a =,()1,1b =-r ,若a b λ- 与a b + 垂直,则λ=.【答案】2【解析】()()()()()2210a b a b a b a b a a b b λλλλ-⊥+⇒-⋅+=+-⋅-= ,因为()2,1a = ,()1,1b =-r ,所以25a =,22b = ,1a b ⋅= ,所以()5120l l +--=,解得2λ=,故答案为2.13.(2017年河南对口高考)“向量0a b +=”是a b“”=A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】两向量相加为零向量,说明两向量是相反向量,模的大小相等方向相反,所以0a b +=能推出a b =,但a b=推不出0a b +=,故选A.14.(2017年河南对口高考)已知()()1,3,2,1A B AB,则--=.【答案】5【解析】(3,4)AB =-- ,5AB ==,故答案为:5.15.(2017年河南对口)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,已知3cos 5A =.(1)若ABC ∆的面积为3,求AB AC的值;(2)设2sin ,1,cos ,cos 22B B m n B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭ ,且//m n ,求cos C 的值.【答案】(1)92;(2)10【解析】解:(1)因为3cos 5A =,所以4sin 5A =,则12||||sin ||||325ABC S AB AC A AB AC ∆=== ,即15||||2AB AC = ,又3cos 5||||AB ACA AB AC ==,所以92AB AC = .(2)因为//m n ,所以2sin cos cos 22B B B =,即sin cos B B =,所以4B π=,所以cos cos()cos cos sin sin 10C A B A B A B =-+=-+=.16.(2016年河南对口高考)设向量(2,1)AB = ,(1,)AC a = ,且AB AC ⊥,则a 的值是()A.12B.12-C.2-D.2【答案】D【解析】因为(2,1)AB = ,(1,)AC a = ,且AB AC ⊥ ,所以20AB AC a ⋅=+=,2a =-,故选D.17.(2016年河南对口)已知向量(1,1),(1,3)a b =-=- ,则(2)a a b ⋅+=r r r()A .0B .1C .1-D .2【答案】A【解析】由题意,向量(1,1),(1,3)a b =-=- ,可得22,1(1)(1)34a a b =⋅=⨯-+-⨯=-,所以2(2)22240a a b a a b ⋅+=+⋅=⨯-=,故选A .18.(2016年河南对口)已知向量()1,2AB =- ,()2,AC x = ,若AB AC ⊥,则BC =.【解析】()1,2BC AC AB x =-=+ ,AB AC ⊥ ,220AB AC x ∴⋅=-= ,解得:1x =,()1,3BC ∴=,BC ∴= .19.(2015年河南对口高考)若向量()2,1=a ,()1,1-=b ,则2a b +等于()A.()3,3B.()3,3-C.()3,3-D.()3,3--【答案】D【解析】2(2,4)(1,1)(3,3)a b +=+-=,故选D.20.(2015年河南对口高考)已知向量()0,3=a ,()1,1-=b,则=.【答案】2【解析】3a ==,b == ,3(1)013a b ⋅=⨯-+⨯=-,2cos ,2a b a b a b⋅===-,故答案为:22.21.(2015年河南对口高考)已知()()()0,3,3,2,2,1C B A ,求证:AC AB ⊥.【答案】证明见解析【解析】证明:因为(1,1)AB = ,(2,2)AC =- ,12120AB AC ⋅=⨯-⨯= ,所以AB AC ⊥,即AC AB ⊥.22.(2014年河南对口高考)已知向量(3,1)a - =,(1,2)b -- =,(1,1)c - =,则a b c ++ 模长等于()A .5B .4C .3D .2【答案】A【解析】(3,4)a b c ++=-,5a b c ++= ,故选A.23.(2014年河南对口高考)向量a 的模为3,向量b 的模为2,二者的夹角为60,则二者的内积等于.【答案】3【解析】因为3a = ,2b = ,,60a b =︒ ,所以cos ,32cos 603a b a b a b ⋅==⨯︒=,故答案为:3.24.(2014年河南对口高考)下列命题中,正确的是()A .若a ∥b ,则a 与b方向相同或相反B .若a ∥b ,b ∥c ,则a ∥cC .若两个单位向量互相平行,则这两个单位向量相等D .若a b = ,b c = ,则a c= 【答案】D【解析】由于零向量的方向是任意的,取0a =,则对于任意向量b ,都有a ∥b ,知A 错;取0b = ,则对于任意向量a ,c 都有a ∥b ,b ∥c ,但得不到a ∥c,知B 错;两个单位向量互相平行,方向可能相反,知C 错;由两向量相等的概念知D 正确,故选D .25.(2013年河南对口高考)已知向量(3,2)a =- ,(1,1)b =- ,则32a b +等于()A .(7,4)-B .(7,4)C .(7,4)--D .(7,4)-【答案】D【解析】32(9,6)(2,2)(7,4)a b +=-+-=-,故选D.26.(2013年河南对口高考)若向量(1,3)a =- 与向量(2,)b m =平行,则m =.【答案】6-【解析】因为向量(1,3)a =- 与向量(2,)b m =平行,所以1230m ⨯+⨯=,6m =-,故答案为:6-.27.(2013年河南对口高考)已知(1,2)a =- ,(2,1)b =- ,证明:4cos ,5a b = .【答案】证明见解析【解析】证明:a ==,b ==(1)(2)214a b ⋅=-⨯-+⨯= ,所以4cos ,5a ba b a b⋅===,得证.28.(2012年河南对口高考)已知向量(1,2)a = ,(2,1)b =- ,则a ,b之间的位置关系为()A .平行B .不平行也不垂直C .垂直D .以上都不对【答案】C【解析】因为(1,2)a = ,(2,1)b =- ,1(2)210a b ⋅=⨯-+⨯= ,所以a b ⊥,故选C.29.(2012年河南对口高考)已知两点()3,4A -和()1,1B ,则AB =.【答案】5【解析】因为()3,4A -和()1,1B ,所以(4,3)AB =-,5AB == ,故答案为:5.30.(2012年河南对口)已知向量a ,b 满足||1a =,||b = ()a a b ⊥- ,则a 与b 的夹角是.【答案】4π【解析】由()a a b ⊥- ,得2()0a a b a a b ⋅-=-⋅= ,所以21a b a ⋅==,所以cos ,2a b a b a b ⋅==⋅,所以,4a b π= ,故答案为4π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职业中专第二学年上期
月考试题
姓名:___________ 成绩:___________
一、选择题(15*4=60分)
1、已知数列{n a }的通项公式是25n a n =-,那么2n a =( )。
A 、25n -
B 、45n -
C 、210n -
D 、410n -
2、等差数列7
5
,3,,2,22----…的第1n +项为( )。
A 、1
(7)2n - B 、1
(4)2n - C 、42n - D 、72n
-
3、在等比数列{n a }中,已知252,6a a ==,则8a =( )。
A 、10
B 、12
C 、
18 D 、24
4、矩形ABCD 中,3,1,AB BC AB BC BD ==++=u u u r u u u r u u u r u u u r u u u r 则( )。
A 、2
B 、0
C 、4
D 、5、,,ABC AB AC BC AB AC ∆u u u r u u u r u u u r u u u r u u u r 中,取为平面的一个基,则向量在基下的坐标为(
) A 、(1,-1) B 、(-1,1) C 、(1,1) D 、(-1,-1
)
6、设13(1,1),(1,1),,22a b c a b c -=-r r r r
r
r 则的坐标为( )。
A 、(1,-2)
B 、(-1,2)
C 、(1,2)
D 、(-1,-2)
7、已知(,3)(2,1)a x b x -=r r 与共线,则( )。
A 、3
2 B 、-3
2 C 、6 D 、-6
8、已知平行四边形ABCD 中,A (-4,-2),B (2,-4),C (5,-1),则点D 的坐标为(
) A 、(1,-1) B 、(-1,1) C 、(11,-3) D 、(-11,3)
9、已知线段AB 的中点M 的坐标是(-1,1),点A 坐标(-3,1),则点B 的坐标为(
)
A 、(1,-3)
B 、(-2,0)
C 、(4,-4)
D 、(-5,3)
10、设向量'(2,1),a a -r r 点P(-1,3)在决定的平移下的象P 的坐标为( )。
A 、(-1,-2)
B 、(1,2)
C 、(-3,4)
D 、(3,-4)
11、函数2(1,3)y x a =-r 的图像在决定的平移下的象的函数解析式为( )。
A 、2(1)3y x =++
B 、2(1)3y x =+-
C 、2(1)3y x =-+
D 、2(1)3y x =--
12、已知3,2,.3,a b a b a b ===-r r r r r r 则<,>=( )。
A 、3π
B 、32π
C 、6π
D 、6
5π 13、已知点A (-1,8),B (2,4),则AB =( )。
A 、5
B 、25
C 、13 D
14、已知下列各对向量的直角坐标,相互不垂直的向量对是( )。
A
、11),(,22a b r r B 、(3,4),(3,4)a b -r r C 、(2,0),(0,1)a b -r r D 、
(2,4),(2,1)a b -r r 15、下面给出的是向量的直角坐标,其中不是单位向量的是( )。
A 、(cos α,sin α)
B 、1122⎛⎫ ⎪⎝⎭, C
、122⎛⎫ ⎪
⎪⎝⎭
, D 、3455⎛⎫- ⎪⎝⎭, 二、填空题(5*4=20分) 16、______OA OB CO BO +++=u u u r u u u r u u u r u u u r ,______CE AC DE AD +--=u u u r u u u r u u u r u u u r 。
17、三角形ABC 的三个顶点坐标分别为A (3,2),B (-5,-2),C (5,-4),则三角形三条边AB ,AC ,BC 的中点坐标分别为________,________,________。
18、知向量'(1,2),P a a -r r 若点P 在决定的平移下的象P(-2,3),那么点坐标是______。
19、直角坐标系12;,(2,3),(2,5),______O e e OP OQ PQ ⎡⎤-⎣⎦u r u u r u u u r u u u r u u u r 中,已知则的坐标为。
(2,1),(1,3),.______,______,______,cos ,______,,______a b a b a b a b a b ===<>=<>=r r r r r r r r r r 20、已知则。
三、解答题(70分)
21、作图:画出和向量,a b a b +-r r r r 差向量,并写出作图步骤。
22、如图,在正六边形ABCDEF 中,找出:
(1),与OA u u u r 相等的向量;
(2),与OA u u u r 相反的向量;
(3)与OA u u u r 共线的向量。
23、设AD ,BE ,CF 是三角形ABC 的三条中线, (1),,,;AB AC AD BE CF u u u r u u u r u u u r u u u r u u u r 用、
表示 (2),求.AD BE CF ++u u u r u u u r u u u r
,,0(1),.(2),,a b c a b c a b a b ++=<>
r r r r r r r r r r r 24、设向量都是单位向量,且,求
25、用向量的方法证明:菱形的两条对角线互相垂直。
26、已知三角形ABC 三个顶点的坐标分别为A (-2,3),B(1,2),C(5,4),求:
(1),,BA BC u u u r u u u r 向量的坐标;
(2),B ;
(3),AC 边的中线长。