结构力学第九章薄壁杆件扭转

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚周边假定对多闭室薄壁横截面仍然使用。据此, 各闭室具有相同的扭率,且等于杆件的扭率φ’。对于 图9-4所示的每一闭室,应用环流方程式(9-11),例 如对于第2室,有
第九章 薄壁杆件扭转
Torsion of Thin-Wall Bar
§9-1 概述
薄壁杆件是指横截面上壁的厚度较薄的杆件,其三 个尺度通常满足如下关系:
式中,t—壁厚;b—bl 截tt 面11的00最 大宽度(;9l-—1)杆长。
(a)
(b)
(c) 图9-1 (d)
(e)
(f)
薄壁截面视其壁厚中心线是否封闭而分为开口薄壁
§9-1 概述
§9-1 概述
§9-1 概述
§9-1 概述
§9-1 概述
如果薄壁杆件受到扭矩作用,由于存在支座或其他 约束,扭转时不能自由变形,则这种扭转称为约束扭 转。薄壁杆件约束扭转时,各横截面的翘曲程度是不 相同的,这将引起相邻两截面间纵向纤维的长度改变, 于是横截面上除了有扭转而引起的剪应力之外,还有 因翘曲而产生的正应力。由于翘曲正应力在横截面上 分布不均匀,就会导致薄壁杆件发生弯曲,并伴随产 生弯曲剪应力。这样,薄壁杆件约束扭转时,截面上 就存在二次剪应力。二次剪应力又将在截面上形成一 个附加扭矩,称之为二次扭矩,于是杆件截面上的扭 矩就等于自由扭转扭矩与二次扭矩之和。由此可见, 薄壁杆件约束扭转是比较复杂的。
可以认为,闭口薄壁杆件自由扭转时截面上的剪应
力τ沿壁厚是均匀分布的。记
q t
(9-6)
称q为剪流。现在来确定q沿截面的变化规律。图9-
3b所示的为一个变厚度单元,由于自由扭转时截面上
无正应力,即轴向力为零,所以有:
y
ads b h qds dA o
(图9-3) a
x tb
b
a
ta
b ds
dx
§9-2 薄壁杆件的自由扭转
§9-2 薄壁杆件的自有扭转
开口薄壁杆件自由扭转时的扭率计算公式如下:
Ms
GI t
(9-2)
式中,φ‘—杆件的扭率(单位长度上的扭角);
Ms—扭矩;G—剪切模量;It—截面扭转惯性矩(扭转
常数)。
I t
1 3
i
hi
t
3 i
(9-3)
式中,hi、ti—截面上第i个狭长矩形的高度(长边)
和厚度(ห้องสมุดไป่ตู้边)。若截面的壁厚中心线是一根曲线,
§9-2 薄壁杆件的自由扭转
q4
qn
d
c
q1
q2
q3
a
b(图9-4)
由式(9-8),可得每一闭室上的扭矩:
M s 2 Aiqi
(9-12)
式中,i=1、2、3、…,
§9-2 薄壁杆件的自由扭转
这些扭矩之和应等于整个截面上的扭矩Ms,即
n
Ms 2Aiqi
i 1
式中,Ai——第i个闭室壁厚中心线所围的面积。仅 由式(9-12)不能确定剪流qi(i=1、2、3、…n),还必 须利用变形协调条件才能确定剪流 qi。
§9-1 概述
薄壁杆件在实际工程上应用非常广泛。如桥梁工程 和海洋工程中的箱形、工字型和槽形梁等等。就船舶 结构来说,船体骨架一般有薄壁杆件组成;整个船体 梁也是一根薄壁杆件。
§9-2 薄壁杆件的自有扭转
1.开口薄壁杆件的自有扭转
开口薄壁杆件的截面可以看作由若干狭长矩形截面 所组成。利用狭长矩形截面的杆件自有扭转时的计算 公式和如下两个假定可导出薄壁杆件自有扭转的计算 公式。这两个假定是: (1)假定开口薄壁杆件自由扭转时,截面在其本身平 面内形状不变,即在边形过程中,截面在其本身平面 内的投影只作刚性平面运动。此即为刚周边假定; (2)假定薄壁杆件中面上无剪切变形。
4 A2 ds
t
式(9-9)中Ms用2qA代换,可得
(9-10)
q
ds t
2GA
上式称为环流方程式。
(9-11)
3.多闭室薄壁杆件的自有扭转
对于具有n个闭室的薄壁截面(图9-4),设在扭矩 Ms作用下各闭室的剪流为qi(i=1、2、3、…),并规 定这些剪流沿反时针方向为正,那么任意两相邻室公 共壁上的剪流为该两室剪流之差。
§9-2 薄壁杆件的自由扭转
沿整个截面积分可得总扭矩为:
M s 2qA
式中A——闭口截面壁厚中心线所围的总面积。从
而沿截面的剪流为:
q
t
Ms
2A
(9-8)
再来推导扭率和扭矩常数计算公式。若从薄壁杆件
中取出长度为dx的微段,其受扭矩Ms作用产生的扭
角为dφ,则扭矩所做的功为:
dW
1 2
M s d
截面(图9-1a,b,c)和闭口薄壁截面(图9-1d,e,f)
两类。闭口截面又分为单闭室(图9-1d,e)和多闭室
(图9-1f)两种。
§9-1 概述
除薄壁圆管外,薄壁杆件通常是非圆截面杆件。材 料力学中已经指出,非圆截面杆件在扭转变形后,杆 件的截面已不再保持为平面,而是变为曲面,这种现 象称为翘曲。

It
1 3
s1 t 3ds
0
式中,si—壁厚中心线的总长
(9-4)
§9-2 薄壁杆件的自有扭转
s
Mst It
(9-5)
式中,τs—截面上的扭矩剪应力(图9-2);t—壁 厚。
(图9-2)
式(9-5)表明,截面上最大剪应力将发生在壁厚 最大处的表面上。
§9-2 薄壁杆件的自由扭转
2.单闭室薄壁杆件的自有扭转
薄壁杆件扭转分为自由扭转和约束扭转两种。
如果一根等截面杆件仅在两端受到扭矩作用,并不 受任何约束,扭转时可以自由变形,则这种扭转就称 为自由扭转。非圆截面薄壁杆件自由扭转时,其横截 面虽将发生翘曲,但由于扭转不受阻碍,所以各横截 面的翘曲程度都相同。因此,杆件上平行于杆轴的直 线在变形后长度不变且仍为直线;杆件各横截面上没 有正应力而只有扭转引起的剪应力。
§9-2 薄壁杆件的自由扭转
微段扭转变性能为:
dV
dx
2
2G
tds
dx
1 2G
Ms 2 At
2 tds
dx
Ms 8GA2
ds t
由dW=dV,可得扭率:
d
dx
Ms 4GA2
ds t
(9-9)
比较式(9-9)与式(9-2),得单闭室截面的扭转 常数计算公式:
§9-2 薄壁杆件的自由扭转
It
btb ata dx 0

q btb ata (9-7)
上式说明剪流q沿截面为常数。据此,最大剪应力将发 生在壁厚最小处,这与开口薄壁杆件不同。
下面讨论如何计算剪流q。如图9-3a所示,剪流q 在微元ds上引起的力为qds,它绕o点的力矩为:
dMs hqds
ds所对的扇形面积为:
dA 1 hds 2
相关文档
最新文档