半导体三极管

合集下载

三极管

三极管

Q点的影响因素有很多,如电源波动、偏
置电阻的变化、管子的更换、元件的老化等等,
不过最主要的影响则是环境温度的变化。三极
管是一个对温度非常敏感的器件,随温度的变 化,三极管参数会受到影响,具体表现在以下 几个方面。
• 1.温度升高,三极管的反向电流增大
• 2.温度升高,三极管的电流放大系数β增大
• 3.温度升高,相同基极电流IB下,UBE减小,
2.2 共射放大电路
一、 放大的概念
电子学中放大的目的是将微弱的变化信号放大成
较大的信号。这里所讲的主要是电压放大电路。
电压放大电路可以用有输入口和输出口的四端网
络表示,如图。
ui
Au
uo
1、放大体现了信号对能量的控制作用,放大的信
号是变化量。
2、放大电路的负载所获得的随信号变化的能量要
比信号本身所给出的能量大得多,这个多出的
②电感视为短路
共射电路的直流通路
用图解法分析放大器的静态工作点
直流负载线 UCE=UCC–ICRC
U CC RC
ICQ
IC Q
IB UCE
与IB所决 定的那一 条输出特 性曲线的 交点就是 Q点
UCEQ UCC
2、动态分析
计算动态参数Au、Ri、Ro时必须依据交流通路。 交流通路:是指ui单独作用(UCC=0)时,电路 中交流分量流过的通路。 画交流通路时有两个要点:
有以下两种。
IC
IB A RB
V
mA C
B E
UBE
RC USC V
UC(1)输入特性曲线
它是指一定集电极和发射极电压UCE下,三极管 的基极电流IB与发射结电压UBE之间的关系曲线。实 验测得三极管的输入特性曲线如下图所示。

半导体三极管

半导体三极管

放大 截止 饱和 倒置
正向 反向 三极管饱和 反向时的管压降 反向 正向UCE被称作 正向
为三极管的 反向饱和压降
放大状态时有: IC=β IB+ICEO≈βIB
UCE=UCC-IC*Rc 减小Rb,IB增大; IC增大,UCE减小 集电结反偏电压减小。 饱和后,UCE≈0, IC=(UCC-UCES)/Rc IC≈UCC/Rc 饱和条件: IB>IC/β IB>(UCC-UCES)/βRc≈UCC/(β Rc)
半导体三极管
3.1 概述
半导体三极管,又称为双极结型晶体管(BJT)
c
N P N 集电极 集电结
NPN型 c b
PNP型
c b
b
基极
发射结
e
e
发射极
e
三极管的发射极的箭头方向, 代表三极管工作在放大,饱和 状态时,发射极电流(IE)的 实际方向。
半导体三极管的分类:
按材料分: 按结构分: 按使用频率分: 按功率分: 硅管、锗管 NPN、 PNP 低频管、高频管 小功率管 < 500 mW 中功率管 0.5 1 W 大功率管 > 1 W
NPN: 0.35V,0.3V,1V 1V
+VCC
-VCC
PNP: -0.2V,0V,-0.05V -0.05V -0.2V
PNP
0.35V
NPN
0.3V
0V
由引脚电压判断三极管管脚和工作状态
工作状态 发射结电压 集电结电压
放大 截止 饱和
正向 反向 正向
反向 反向 正向
1、无正向导通电压的处在截止状态 2、根据三个电位的集中程度判断是否饱和 3、如果饱和则先判断基极,再判断集电极和发射极 4、不饱和则看有没有两个电压差为正向导通电压 例1-5 NPN: (1) 1V,0.3V,3V (2) 0.3V,0.3V,1V (3)2V,5V,1V PNP: (1) -0.2V,0V,0V (2) -3V,-0.2V,0V (3)1V,1.2V,-2V

什么是三极管

什么是三极管

什么是三极管三极管,又被称为晶体管,是一种常见的电子元件。

它是一种半导体器件,能够用来放大电流、开关电路或作为电流稳定源。

三极管的结构和工作原理决定了它在电子电路中的重要性和广泛应用。

本文将详细介绍三极管的定义、结构、工作原理以及应用领域。

一、定义三极管是一种包含三个电极的半导体器件,通常由两种不同类型的半导体材料组成。

它的三个电极分别为基极、发射极和集电极。

三极管可用于控制电流流动,并在电子电路中实现信号放大功能。

二、结构三极管的结构由两种类型的半导体材料构成:P型半导体和N型半导体。

这两种材料的结合形成了两个 P-N 结,分别被称为基结和发射结。

其中,发射结夹在基结中间,集电极连接到基结,而发射极连接到发射结。

三、工作原理三极管的工作原理是通过调节基极电流控制集电极电流的大小。

当基极电流很小或者没有流过时,三极管处于截止状态,完全不导电。

当基极电流逐渐增大时,三极管进入放大区。

此时,三极管的集电极电流将正比于基极电流,且比基极电流大很多倍。

当基极电流进一步增大时,三极管会饱和,此时集电极电流不再随基极电流的增大而增大,达到饱和电流后保持不变。

四、应用领域由于三极管具有信号放大和电流控制的特点,因此在电子领域有广泛的应用。

以下是几个常见的三极管应用领域:1. 放大器: 三极管可以作为放大电路的关键元件,用于放大音频、视频等信号。

通过调节输入信号的电流,可以实现不同增益的放大效果。

2. 开关电路: 三极管可以用作开关电路的控制器。

在开关状态下,三极管可以让电流通过或者阻断,从而实现开关的功能。

3. 正反馈电路: 三极管可以用于正反馈电路的构建,从而实现自激振荡。

在振荡器、发射机等电子设备中都有广泛应用。

4. 电流稳定源: 三极管可以作为电流稳定源,提供一个稳定且可控的电流。

这在一些需要精确电流控制的电路中特别有用。

结论通过了解三极管的定义、结构、工作原理和应用领域,我们可以看到三极管在电子电路中的重要性和多功能性。

什么是三极管

什么是三极管

什么是三极管半导体三极管又称"晶体三极管"或"晶体管"。

具有三个电极,能起放大、振荡或开关等作用的半导体电子器件。

在半导体锗或硅的单晶上制备两个能相互影响的PN结,组成一个PNP(或NPN)结构。

中间的N区(或P区)叫基区,两边的区域叫发射区和集电区,这三部分各有一条电极引线,分别叫基极b、发射极e和集电极c。

结构与操作原理三极管的基本结构是两个反向连结的PN接面,如图1所示,可有PNP和NPN两种组合。

三个接出来的端点依序称为发射极(Emitter,E)、基极(Base,B)和集电极(Collector,C),名称来源和它们在三极管操作时的功能有关。

图中也显示出NPN与PNP三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极体的符号一致。

在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的P型区和N型区隔开。

三极管的电特性和两个PN接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓"正向活性区"(Forwardactive),在此区EB极间的pn接面维持在正向偏压,而BC极间的PN接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。

为一PNP三极管在此偏压区的示意图。

EB接面的空乏区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。

图片画的是没外加偏压,和偏压在正向活性区两种情形下,电洞和电子的电位能的分布图。

三极管和两个反向相接的PN二极管有什么差别呢?其间最大的不同部分就在于三极管的两个接面相当接近。

以上述之偏压在正向活性区之PNP三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。

当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。

第03章-半导体三极管及放大电路基础

第03章-半导体三极管及放大电路基础
VCC 、 VCC /Rc 2. 由直流负载线 VCE =VCC-ICRC 3. 得到Q点的参数IB 、IC 和VCE 。
退出
放大电路的动态图解分析
(1)交流负载线 1.从B点通过输出特性曲线上的Q点做一条直线,
其斜率为-1/R'L 。 2.R'L= RL∥Rc,
是交流负载电阻。
3.交流负载线是有 交流 输入信号时Q 点的运动轨迹。
退出
三极管电流分配
半导体三极管在工作时一定要加上适当的直流偏置电压。 在放大工作状态: 发射结加正向电压,集电结加反向电压。
退出
三极的工作原理
发射结加正偏时,从发射区将
有大量的电子向基区扩散,形成
的电流为IEN。 从基区向发射区也有空穴的扩
散运动,但其数量小,形成的电
流为IEP。(这是因为发射区的掺杂浓
Av Vo /Vi
A I / I
i
oi
Ap Po / Pi Vo Io /Vi Ii
退出
(2) 输入电阻 Ri
输入电阻是表明放大电路从信号源 吸取电流大小的参数,Ri大放大电路 从信号源吸取的电流小,反之则大。
Ri
Vi Ii
退出
(3) 输出电阻Ro
输出电阻是表明放大电路带负载的能力,
Ro大表明放大电路带负载的能力差,反之则强。
退出
双极型三极管的参数
参数 型号
PCM
I CM
mW mA
3AX31D 125 125
3BX31C 125 125
3CG101C 100 30
3DG123C 500 50
3DD101D 5A
5A
3DK100B 100 30
3DKG23 250W 30A

三极管百科

三极管百科

三极管三极管三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件.其作用是把微弱信号放大成辐值较大的电信号, 也用作无触点开关。

目录三极管的主要参数判断基极和三极管的类型测判三极管的口诀展开什么是三极管(也称晶体管)在中文含义里面只是对三个引脚的放大器件的统称,我们常说的三极管,可能是如图所示的几种器件,可以看到,虽然都叫三极管,其实在英文里[1]面的说法是千差万别的,三极管这个词汇其实也是中文特有的一个象形意义上的的词汇电子三极管Triode 这个是英汉字典里面“三极管”这个词汇的唯一英文翻译,这是和电子三极管最早出现有关系的,所以先入为主,也是真正意义上的三极管这个词最初所指的物品。

其余的那些被中文里叫做三极管的东西,实际翻译的时候是绝对不可以翻译成Triode的,否则就麻烦大咯,严谨的说,在英文里面根本就没有三个脚的管子这样一个词汇!!!电子三极管Triode (俗称电子管的一种)双极型晶体管BJT (Bipolar Junction Transistor)J型场效应管Junction gate FET(Field Effect Transistor)金属氧化物半导体场效应晶体管MOS FET ( Metal OxideSemi-Conductor Field Effect Transistor)英文全称V型槽场效应管VMOS (Vertical Metal Oxide Semiconductor )注:这三者看上去都是场效应管,其实结构千差万别J型场效应管金属氧化物半导体场效应晶体管V沟道场效应管是单极(Unipolar)结构的,是和双极(Bipolar)是对应的,所以也可以统称为单极晶体管(Unipolar Junction Transistor)其中J型场效应管是非绝缘型场效应管,MOS FET 和VMOS都是绝缘型的场效应管VMOS是在MOS的基础上改进的一种大电流,高放大倍数(跨道)新型功率晶体管,区别就是使用了V型槽,使MOS管的放大系数和工作电流大幅提升,但是同时也大幅增加了MOS的输入电容,是MOS管的一种大功率改经型产品,但是结构上已经与传统的MOS发生了巨大的差异。

3 三极管

3 三极管
IB/mA IC/mA
0 0 0.02 0.7 0.03 1.11 0.04 1.48 0.06 2.75 0.08 2.8 0.1 3.5 0.12 3.6 0.14 3.6
IE/mA
0
0.72
1.14
1.52
2.82
2.88
3.6
3.72
3.74
(2)观察与分析IB 、IC、两者之间的电流关系? 实验表明: 放大状态
在三极管型号命名方法中,涉及到材料、 结构、功率等(P126) 如3DG6、2DW7
(a) 小功率管 (b) 小功率管 (c) 大功率管 (d) 中功率管
常用三极管引脚按一定顺序排列,例 如C90系列的三极管,平面朝向自己时, 从左到右分别是ebc排列
三、半导体三极管分类
(1) 按材料 Si管 Ge管
(2) 按排列顺序
NPN管
PNP管
(3) 按功率: 小、大、中功率管 (4) 按工作频率 : 低频管、高频管 (5) 按用途分: 普通放大三极管、开关三极管
• 集电区c掺杂浓度低于发射区,且面积大;
这些特点使BJT不同于 两个单独的PN结,而呈 现出极间电流放大作用。
二、半导体三极管的电流分配和放大原理 实验电路接线图
输出 回路
输入 回路
三极管电流关系的一组典型实验数据
IB/mA IC/mA
0 0 0.02 0.7 0.03 1.11 0.04 1.48 0.06 2.75 0.08 2.8 0.1 3.5 0.12 3.6 0.14 3.6
三种工作状态的应用
在模拟电路中,BJT工作在放大区;(线性放大小 信号) 在数字电路中,BJT工作在截止区、饱和区(做 数字开关)。
数字开关:

3.1,三极管

3.1,三极管
+ ic IB +ib B
mA
vi
RB
+ –
A
+ + vBE vCE +
RL
输入回路 输出回路 – – – + EB 共发射极放大电路

EC
发射极是输入回路、输出回路的公共端
3.1.3 BJT的特性曲线
本节介绍共发射极接法三极管的特性曲线,即 输入特性曲线—— iB=f(vBE) vCE=const 输出特性曲线—— iC=f(vCE) iB=const
(3) 与的关系


1


1
3.1.3 BJT的特性曲线
即管子各电极电压与电流的关系曲线,是管子 内部载流子运动的外部表现,反映了晶体管的性能, 是分析电路放大信号的依据。
为什么要研究特性曲线: 1)直观地分析管子的工作状态 2)合理地选择偏置电路的参数,设计性能良好的 电路 重点讨论应用最广泛的共发射极接法的特性曲线
三.三极管特性曲线及工作状态(重点)
1.BJT放大电路三个 电流关系 ?
IE =IC+IB
2.BJT的输入、输出特性曲线?
3.BJT工作状态如何判断?
IC IB
I E 1 )I B (
uCE = 0V uCE 1V
uBE /V
3.1 双极型半导体三极管
3.1.1 双极型半导体三极管的结构 3.1.2 双极型半导体三极管电流的分配 与控制 3.1.3 双极型半导体三极管的电流关系 3.1.4 双极型半导体三极管的特性曲线 3.1.5 半导体三极管的参数 3.1.6 半导体三极管的型号
截止
反偏 反偏
放大
正偏 反偏

1-2_半导体三极管

1-2_半导体三极管

场效应型半导体三极管仅由一种载流子参与导电,是一种VCCS器件。

载流子参与导电是种器件半导体三极管是具有电流放大功能的元件频率:功率:材料:类型:1.2.1 三极管的结构及工作原理1.2.2 三极管的基本特性极管的基本特性1.2.3 三极管的主要参数及电路模型123三极管的主要参数及电路模型侧称为发射区,电极称为一侧称为发射区,电极称为e-b间的PN结称为发射结(Je)c-b间的PN结称为集电结(Jc)中间部分称为基区,连上电极称为基极,用B或b表示(Base);示向。

集电结反偏集电结反偏,有平衡少子的漂移运动形成的反向电流。

CBO基区空穴向发射区的扩散可忽略扩散可忽略。

进入P 区的电进入P子少部分与基区的空穴复合,形成电流IBN数扩散到集电结。

3、三极管的电流分配关系I B定义:发射极直流电流放大倍数βICCEO忽略如输入电压变化,则会导致在流在定义:流放大倍数流放大倍数:的态信号时的(1)三极管放大电路的02.03 三极管的三种组态0203三极管的三种组态后达到集电极的电子电流的比值。

所以三极管的基本特性由基本特性曲线刻画,即各电极电压与电流的关系曲线,是其内部载流子运动的外部表现为什么要研究特性曲线:好的电路1. 输入特性曲线①死区②非线性区③线性区可以用解释即u CE 对i 的影响,可以用三极管的内部反馈作用解释,即:结和发射结的两个性曲线。

(反偏状态,可以将发射区注入基区的绝大多数非平衡少子收集到集电区,且基区复合减少,明显增大,特性曲线将向右稍微移动一些。

输出特性曲线=0V时,因集电极无收集作用,i C=0。

当uCEu稍增大时,发射结虽处于正向电压之下,但集电当稍增大时发射结虽处于正向电压之下但集电增加到使集电结反偏电压较大时如u增加到使集电结反偏电压较大时,如CEu CE ≥1V≥0.7Vu07BE运动到集电结的电子基本上都可以被集电再增区收集,此后uCE电流没有明加,电流也没有明显的增加,特性曲线进轴基本平行的入与uCE区域(这与输入特性曲增大而右移的共发射极接法输出特性曲线线随uCE饱和区的下方此时发射结反偏集电结反偏的下方。

三极管的基本知识

三极管的基本知识

三极管的基本知识概念:半导体三极管也称双极型晶体管,晶体三极管,简称三极管,是一种电流控制电流的半导体器件。

作用:把微弱信号放大成辐值较大的电信号, 作无触点开关。

三极管工作原理半导体电子器件,有两个PN结组成,可以对电流起放大作用,有3个引脚,晶体三极管分别为集电极(c),基极(b),发射极(e),有PNP和NPN型两种,以材料分有硅材料和锗材料两种,两者除了电源极性不同外,其工作原理都是相同的。

三极管的三种工作状态截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。

饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。

三极管的这种状态我们称之为饱和导通状态。

主要参数特征频率f T当f= f T时,三极管完全失去电流放大功能.如果工作频率f大于f T,电路将不正常工作.工作电压/电流用这个参数可以指定该管的电压电流使用范围.h FE电流放大倍数.V CEO集电极发射极反向击穿电压,表示临界饱和时的饱和电压.P CM最大允许耗散功率.晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。

为了便于比较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。

名称共发射极电路共集电极电路(射极输出器)共基极电路输入阻抗中(几百欧~几千欧)大(几十千欧以上)小(几欧~几十欧)输出阻抗中(几千欧~几十千欧)小(几欧~几十欧)大(几十千欧~几百千欧)电压放大倍数大小(小于1并接近于1)大电流放大倍数大(几十)大(几十)小(小于1并接近于1)功率放大倍数大(约30~40分贝)小(约10分贝)中(约15~20分贝)频率特性高频差好好应用多级放大器中间级低频放大输入级、输出级或作阻抗匹配用高频或宽频带电路及恒流源电路应用NPN型三极管相当于常闭型水龙头,在没有用力打开水闸时,水龙头是关着的,NPN型三极管在基极(b)没有电压或接地时,集电极(c)到发射极(e)是关掉的,处于断路状态。

三极管

三极管

1.3.4 T的主要参数 的主要参数
一、直数 β 2. 共基直流电流放大系数 直流电流放大系数 α 3. 极间反向电流
___
___
___
IC β ≈ IB ___ IC α ≈ IE
I CBO I CEO
I CBO — e极开路时 结的反向饱和电流 极开路时c结的反向饱和电流 极开路时
E
ICEO = (1 + β ) ICBO
二、交流参数 交流参数
1. 共射交流电流放大系数 2. 共基交流电流放大系数 交流电流放大系数 3. 特征频率
∆iC β≈ ∆iB
∆iC α≈ ∆iE
数值下降到1的信号频率称为 使 β 数值下降到 的信号频率称为 特征频率
例:UCE=6V时:IB = 40 µA, IC =1.5 mA; 时 ; IB = 60 µA, IC =2.3 mA。求共射极放大电路的直 。 流放大倍数和交流放大倍数
4 3 2 1
IC(mA ) 此区域中U 100µA 此区域中 CE<UBE, µ 集电结正偏, 集电结正偏, βIB>IC,UCE≈0.3V 80µA µ , 饱和区。 称为饱和区 称为饱和区。 60µA µ 40µA µ 20µA µ IB=0 12 UCE(V)
3
6
9
IC(mA ) 4 3 2 1 3 6 9
2011-10-13
1.3.1 结构与符号(Structures and Circuit Symbol)
一、结构 两种: 两种 NPN PNP
发射区 集电区
三极: 三极 e(Emitter) :发射极 b(Base) :基极 c(Collector):集电极 三区: 三区 e,b,c 特点:b区薄 e区掺杂多 c区面积大 两节: 两节 Je,Jc

半导体三极管的参数

半导体三极管的参数

半导体三极管的参数摘要:一、半导体三极管的基本结构和种类二、半导体三极管的主要极限参数三、半导体三极管的电性能参数及其意义四、半导体三极管的应用和型号正文:一、半导体三极管的基本结构和种类半导体三极管,顾名思义,具有三个电极,由两个PN 结构组成,共用的一个电极成为三极管的基极(用字母b 表示)。

其他的两个电极成为集电极(用字母c 表示)和发射极(用字母e 表示)。

由于不同的组合方式,形成了一种是npn 型的三极管,另一种是pnp 型的三极管。

二、半导体三极管的主要极限参数半导体三极管的主要极限参数包括以下几个:1.集电极最大允许电流icm:半导体三极管允许通过的最大电流即为icm。

当集电极电流ic 增大到一定程度时,值便会明显下降,这时三极管不至于烧坏,但已不宜使用。

因此,规定值下降到额定值的2/3 时所对应的集电极电流为集电极最大电流icm。

2.集电极最大允许耗散功率pcm:集电极耗散功率实际上是集电极电流ic 和集电极电压uce 的乘积。

三、半导体三极管的电性能参数及其意义半导体三极管的电性能参数包括以下几个:1.VCEO--集电极- 发射结饱和电压:表示集电极和发射极之间的电压达到最大值时,三极管的电流不再增加,此时的电压即为集电极- 发射结饱和电压。

2.ICBO--集电结反向饱和电流:表示当集电极和发射极之间的电压为负时,三极管的电流不再减小,此时的电流即为集电结反向饱和电流。

四、半导体三极管的应用和型号半导体三极管主要用于电流放大和开关作用,广泛应用于各种电子电路和设备中。

由于不同的型号和生产厂家,三极管的性能和参数可能会有所不同。

常见的三极管型号有2SC33740(或2SC3374B),蓝箭电子、江苏长江电子等。

半导体集成电路三极管工作原理

半导体集成电路三极管工作原理

半导体集成电路中的三极管是一种可以控制电流的有源器件,它通过在其两个PN结上施加电压来控制第三个电极的电流。

其工作原理具体如下:
1.结构特点:三极管通常由两个PN结组合而成,有三个电极,分别是集电极(Collector)、基极(Base)和发射极(Emitter)。

根据这些电极的掺杂类型,三极管可以分为NPN型和PNP型两种主要类型。

2.放大状态:当三极管的发射结正偏 即P区连接正电压,N区连接负电压),而集电结反偏 即集电极相对于基极有更高的电位)时,三极管进入放大状态。

在这种状态下,小的基极电流可以控制较大的集电极电流,从而实现电流的放大。

3.截止状态:如果两个PN结都是反偏的,那么三极管处于截止状态,此时各电极之间的电流几乎为零,集电极和发射极互不相通。

4.开关作用:三极管还可以作为开关使用。

当基极电流足够大时,三极管导通,相当于开关闭合;当基极电流为零或很小时,三极管截止,相当于开关断开。

5.工作方式:三极管的基本工作方式是利用基极电流来控制集电极电流。

在放大电路中,输入信号通常作用于基极,而输出信号则从集电极取出。

6.材料分类:三极管可以根据所用材料分为锗管和硅管,其中硅NPN和锗PNP是使用最广泛的两种类型。

它们的工作原理主要是利用半导体材料的特性进行电流的收集和控制。

7.电流增益:三极管的一个重要特性是电流增益,即基极电流对集电极电流的控制能力。

这个增益通常远大于1,意味着可以通过较小的基极电流来控制较大的集电极电流。

综上所述,三极管在半导体集成电路中发挥着至关重要的作用,不仅可以放大信号,还可以作为开关使用,是电子电路设计中不可或缺的基本组件。

第三节三极管

第三节三极管

国家标准对半导体器件型号的命名举例如下: 国家标准对半导体器件型号的命名举例如下:
3DG110B
用字母表示同一型号中的不同规格 用数字表示同种器件型号的序号 用字母表示器件的种类 用字母表示材料 三极管
第二位: 锗 第二位:A锗PNP管、B锗NPN管、 管 锗 管 C硅PNP管、D硅NPN管 硅 管 硅 管 第三位: 低频小功率管 低频小功率管、 低频大功率管 低频大功率管、 第三位:X低频小功率管、D低频大功率管、 G高频小功率管、A高频大功率管、K开关管 高频小功率管、 高频大功率管 高频大功率管、 开关管 高频小功率管
BJT是由两个 结组成的。 是由两个PN结组成的 是由两个 结组成的。
一.BJT的结构 的结构
NPN型
发射结 集电结
PNP型
发射结 集电结
e 发射极
N
-
P
N
c
集电极
e 发射极
P
-
N
P
c
集电极
发射区 基区 集电区
发射区 基区 集电区
基极
基极
b
eb
-
-
c
b
符号: 符号
eb
-
-
c
三极管的结构特点: 三极管的结构特点 >>集电区掺杂浓度 (1)发射区的掺杂浓度>>集电区掺杂浓度。 )发射区的掺杂浓度>>集电区掺杂浓度。 (2)基区要制造得很薄且浓度很低。 )基区要制造得很薄且浓度很低。
(2)输出特性曲线 iC=f(uCE) iB=const 输出特性曲线
现以i 一条线加以说明。 现以 B=60uA一条线加以说明。 一条线加以说明 (1)当uCE=0 V时,iC=0。 ) 时 。 (2) uCE ↑ → Ic ↑ 。 ) (3) 当uCE >1V后,收 )

半导体三极管的参数

半导体三极管的参数

半导体三极管的主要参数有以下几个:1. 集电极最大允许电流(ICM):半导体三极管允许通过的最大电流。

当集电极电流IC 增大到一定程度时,三极管的电流放大系数会明显下降,此时三极管尚可使用,但已不宜继续加大电流。

因此,规定IC 下降到额定值的2/3 时所对应的集电极电流为集电极最大电流ICM。

2. 集电极最大允许耗散功率(PCM):集电极耗散功率实际上是集电极电流IC 和集电极电压UC 的乘积。

这是三极管能够正常工作的最大功耗,超过这个功耗值三极管可能会过热损坏。

3. 电流放大系数(hFE):也称为电流增益,是指三极管输出电流与输入电流之比。

电流放大系数越大,说明三极管的放大能力越强。

4. 带宽(fT):三极管在工作状态下,输出信号的频率响应受到限制,这个限制频率称为带宽。

带宽反映了三极管响应速度的快慢,带宽越宽,响应速度越快。

5. 输入阻抗(Zi):三极管输入端的阻抗,影响三极管对输入信号的吸收能力。

输入阻抗越大,吸收能力越强。

6. 输出阻抗(Zo):三极管输出端的阻抗,影响三极管驱动外部负载的能力。

输出阻抗越小,驱动能力越强。

7. 极性:半导体三极管有npn 型和pnp 型两种极性,分别由n 型半导体基底、p 型半导体基底和n 型半导体构成。

8. 温度系数:三极管的性能参数(如电流放大系数、带宽等)随温度的变化而变化的程度。

9. 饱和电压(Vceo):当三极管的集电极电流IC 增大到一定程度时,集电极与发射极之间的电压达到峰值,此电压称为饱和电压。

10. 开启电压(Vge):当三极管的基极电压Vb 大于开启电压时,三极管开始导通。

11. 关闭电压(Vce):当三极管的基极电压Vb 小于关闭电压时,三极管截止。

第四讲--半导体三极管

第四讲--半导体三极管

ICBO << IC
时, 可将其忽略,则

IC IE
三个极的电流乊间满足节点电流定律,即 得 整理化简,得
IE IC IB
I C ( I C I B ) I CBO
IC

1
IB
1 1
I CBO I B (1 ) I CBO
其中


1
Rb
一般可达 0.95 ~ 0.99 只与管子的结构尺寸和掺杂 浓度有关,与外加电压无关。 一般 = 0.90.99 。
为电流放大系数。它
IEp
e IEn
e
3、三极管的电流分配关系
IC = ICn + ICBO IE = ICn +IBn+IEp=IEn+IEp

I Cn IE
I C I Cn I CBO I E I CBO
因此,三极管也可以理解为受控电流源
三、三极管的特性曲线
特性曲线是选用三极管的主要依据,可从半导体器件手册查得;或用晶体管 特性图示仪测量。
实验室:三极管共射特性曲线测试电路
IC
mA
Rc
输入特性:
I B f ( U BE )
U CE 常 数
Rb VBB
IB
A

+
c UCE 输出 UCE 回路 V e
ΔI C ΔI B





1
ΔI C ΔI E
1
三极管不二极管丌同乊处
三极管不二极管丌同之处:
三极管具有电流放大作用。
放大有两层含义:

半导体三极管概述

半导体三极管概述

4. 结电容
结电容是指PN结在结两端电压作用下形成的电容效应。 结电容主要由两部分组成:一是PN结在正向电压作用下, 扩散电流的变化形成的电容效应,称之为扩散电容,通常记 作 ,它与通过PN结的扩散电流的大小成正比例;二是PN 结在反向电压作用下,电场的变化形成的电容效应,称之为 势垒电容,通常记作 ,它与作用在PN结两侧的反向电压 的大小成反比例。结电容是造成三极管产生频率响应的主要 原因,也是影响三极管开关速度的主要原因。
实验如图,把三极管接成二个电路,基极电路和集 电极电路,发射极是公共端,这种接法称为三极管 的共发射极接法。以NPN管为例,发射结加正向电压, 集电极加反向电压,三极管才能起放大作用。
IC
mA
IB
+
A
RB
+ V UBE
V UCE
+ EC

+– –

EB
三极管电流测量数据
IB(mA) IC(mA) IE(mA)
五. 三极管的工作状态
三极管的工作状态主要由三极管的二个PN结各自所承 受的偏置电压的大小和极性所决定的。三极管有二个PN结, 而每一个偏置电压又有二种可能的极性,即正向偏置和反向
偏置,因此,可构成三极管的三种工作状态:饱和、放 大、截止。
单极型三极管
双极型三极管是利用基极小电流去控制集电极较大电流 的电流控制型器件,因工作时两种载流子同时参与导电而称 之为双极型。单极型三极管因工作时只有多数载流子一种载 流子参与导电,因此称为单极型三极管;单极型三极管是利 用输入电压产生的电场效应控制输出电流的电压控制型器件 。
把基极电流的微小变化
能够引起集电极电流较大变
C
化的特性称为晶体管的电流 放大作用。

半导体三极管及其应用

半导体三极管及其应用

器件的种类
材料 三极管
第二位:A锗PNP管、B锗NPN管、 C硅PNP管、D硅NPN管
第三位:X低频小功率管、D低频大功率管、 G高频小功率管、A高频大功率管、K开关管
表示晶体管特性的数据称为晶体管的参数,晶体 管的参数也是设计电路、选用晶体管的依据。
1、特性参数: 表明三极管的使用性能
1) 电流放大系数
为什么要研究特性曲线: 1)直观地分析管子的工作状态 2)合理地选择偏置电路的参数,设计性能良好的
电路
讨论共发射极接法的特性曲线
IC
mA
IB
+
A
+
RB
V UBE
+ 输– 入回–路
V UCE
+ EC


EB 共发射极电路
测量三极管特性的实验线路
1、输入特性
输入特性是指三极管输入回路中,加在基极和发射
2.3 1.5 0.06 0.04
40
12 UCE(V)
在以后的计算中,一般作近似处理: = 。
2) 极间反向电流
a 集-基极反向饱和电流 ICBO ICBO的下标CB代表集电极和基极, O是Open的字头,代表第三个电极E开路。 它相当于集电结的反向饱和电流。
ICBO
– A +
EC
ICBO是由少数载流子的 漂移运动所形成的电流,
深度饱和时,
2
40A
UCE =UCES 饱和电压
1 O3
6
9
20A IB=0 12 UCE(V)
硅管UCES 0.3V, 锗管UCES 0.1V。
临界饱和时: uCE = uBE
五、半导体三极管的型号和主要参数

半导体二极管三极管

半导体二极管三极管

例 1 的图
[例 1] 图中通过稳压管的电流 IZ 等于多少?R 是限流电阻,
其值是否合适?
[解]
IZ12 .6 0 1 130 2 A510 3A5m A
IZ < IZM ,电阻值合适。
9.4 半导体三极管
9.4.1 基本结构 BE
二氧化硅保护膜
E 铟球
N 型硅 P 型硅 N 型硅
C
(a) 平面型
发射极与集电极之间如同一个开关的断开,其间电阻很大, 可见,晶体管除了有放大作用外,还有开关作用。
晶体管的三种工作状态如下图所示
IB
UBC
<
0
IC +
+
+
UCE
UBE > 0
(a)放大
IB
=
0
+
+
UBC
<
IC
0
+ E
IB
UBC >
0IC
+
U CC RC
+
+
UCE 0
IB/m
0
A
0.10
0.02 0.04 0.06 0.08
IC/m < 0.001 0.70 1.50 2.30 3.10
A
3.95
结论IAE/:m((12))
< I0E.00I1C0I.B72 1符.5合4 基2尔.3霍6 夫3定.1律8 4IC.0和5 IE 比 IB 大得多。从第三列和第四列的数据可得
(3)当 IB = 0(将基极开路)时,IC = ICEO,表中 ICEO <
0.001 mA = 1 A。
(4)要使晶体管起放大作用,发射结必须正向偏置,发射区 才可向基区发射电子;而集电结必须反向偏置,集电区才可收 集从发射区发射过来的电子。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. IB=0, IC=ICEO
4.要使晶体管放大,发射结必须正偏,集电结必须 反偏。
(1-6)
二. 电流放大原理
基区空穴
C
向发射区
的扩散可
忽略。
B
N
P
进少入部分P区与的R基B电区子的
空穴复合,形成
电流IBE ,EB多数
扩散到集电结。
IBE
N
E IE
发射结正 偏,发射 区电子不 断向基区 扩散,形 成发射极
1
20A
IB=0
3 6 9 12 UCE(V)
(1-14)
输出特性三个区的特点:
(1)放大区:发射结正偏,集电结反偏。
(2)
即: IC=IB , 且 IC = IB
(2) 饱和区:发射结正偏,集电结正偏。
即:UCEUBE , IB>IC,UCE0.3V
(3) 截止区: UBE< 死区电压, IB=0 , IC=ICEO 0
ICBO A
ICBO是集 电结反偏 由少子的 漂移形成 的反向电 流,受温 度的变化 影响。
(1-18)
3. 集-射极反向截止电流ICEO
集电结反 偏有ICBO
B
ICEO= IBE+ICBO
C
ICBO IBE N
P
ICEO受温度影响 很大,当温度上
升时,ICEO增加 很快,所以IC也 相应增加。三极
管的温度特性较
差。
IBE
N
根据放大关系,
ICBO进入N E
区,形成
由于IBE的存 在,必有电流
IBE。
IBE。
(1-19)
4.集电极最大电流ICM
集电极电流IC上升会导致三极管的值的下降, 当值下降到正常值的三分之二时的集电极电
流即为ICM。
5.集-射极反向击穿电压
当集---射极之间的电压UCE超过一定的数值 时,三极管就会被击穿。手册上给出的数值是 25C、基极开路时的击穿电压U(BR)CEO。
C IC B
IB E
IE
NPN型三极管
C IC B
IB E
IE
PNP型三极管
(1-4)
15.5.2 电流分配和放大原理
一. 一个实验 IB
IC mA
A
RB
V UBE
EC V UCE
EB
(1-5)
结论:
1. IE=IC+IB
2. IC Δ IC 1 IB Δ IB IC Δ IC 常数 IB Δ IB
B
I ICBO CE N
P
EC
IB
IBE
N
RB
EB
E IE
(1-9)
ICE与IBE之比称为电流放大倍数
βICEICICBO IC IBE IBICBOIB
(1-10)
15.5.3 特性曲线
一.输入特性
UCE =0.5V
UCE=0V IB(A)
80
UCE 1V
60
死区电 压,硅管
40
0.5V,锗 20
15.5 半导体三极管
15.5.1 基本结构
C NPN型
集电极
集电极 C PNP型
N
B
P
基极
N
P
B
N
基极
P
E
发射极
E
发射极
(1-1)
集电区: 面积较大
B
基极
C 集电极
N P N
E
发射极
基区:较薄, 掺杂浓度低
发射区:掺 杂浓度较高
(1-2)
C 集电极
集电结
N
B
P
基极
N
发射结
E
发射极
(1-3)
符号
IC IB
(1-16)
例:UCE=6V时:IB = 40 A, IC =1.5 mA; IB = 60 A, IC =2.3 mA。
___ IIC B 01..05437.5
IC 2.31.5 40
IB 0.06 0.04
在工程计算中,一般作近似处理: =
(1-17)2.集-基极反向截电流ICBO管0.1V。
工作压降: 硅管 UBE0.6~0.7V,锗管 UBE0.2~0.3V。
0.4 0.8 UBE(V)
(1-11)
二、输出特性
此区域满4 足IC=IB 称为线性3 区(放大 区)。 2
IC(mA )
1
36
当UCE大于一 定 IC只的1与0数0I值BA有时关,, IC=8I0B。A
60A 40A
(1-15)
三、主要参数
___
1. 电流放大倍数
前面的电路中,三极管的发射极是输入输出的
公共点,称为共射接法,相应地还有共基、共
集接法。共射直流电流放大倍数:
___
IC
IB
工作于动态的三极管,真正的信号是叠加在
直流上的交流信号。基极电流的变化量为IB,
相应的集电极电流变化为IC,则交流电流放
大倍数为:
20A IB=0 9 12 UCE(V)
(1-12)
4
IC(mA
) 此区域中UC1E00UBAE,
集电结正偏,
3
IB>IC,UCE800.3VA 称为饱和区。
60A
2
40A
1
20A
IB=0
3 6 9 12 UCE(V)
(1-13)
IC(mA ) 4 3
2
此1区00域A中 :
I,UB=B80E0<,ICA死=I区CEO 电压60,A称为 截止40区A。
(1-20)
6. 集电极最大允许功耗PCM
• 集电极电流IC 流过三极管,
所发出的功率 为:
IC ICM
PC =ICUCE
• 必定导致结温 上升,所以PC 有限制。
PCPCM
安全工作区
ICUCE=PCM
U(BR)CEO
UCE
(1-21)
电子技术 模拟电路部分
第15章 结束
(1-22)
电流EICE。
(1-7)
集电结反偏,少
子形成的反向电
流ICBO。
B
RB EB
IC=ICE+ICBOICE
C
从基区扩
散来的电
I ICBO CE N
子作为集 电结的少
P 子 进, 入漂 集E移 电C
IBE
N 结而被收
E IE
集,形成 ICE。
(1-8)
IC=ICE+ICBO ICE C
IB=IBE-ICBOIBE
相关文档
最新文档