核磁共振基本原理09 PPT课件

合集下载

光谱学-核磁共振课件(共86张PPT)

光谱学-核磁共振课件(共86张PPT)
第二页,共八十六页。
从核磁共振氢谱、核磁共振碳谱到核磁共振二维谱,从永久 磁铁仪器、电磁铁仪器到超导磁体仪器,从连续波仪器到脉冲付 里叶变换仪器,从低磁场仪器(40兆赫、60兆赫、80兆赫、90兆 赫、100兆赫)到高磁场仪器(200兆赫、300兆赫、400兆赫、500 兆赫、800兆赫、900兆赫),核磁共振技术正以迅猛发展之势日 新月异。核磁共振在有机化学、植物化学、药物化学、生物化学 (shēnɡ wù huà xué)和化学工业、石油工业、橡胶工业、食品工业、医药 工业等方面应用越来越广泛。
核磁共振 (NMR) (hé cí ɡònɡ zhèn)
Nuclear magnetic resonance(NMR)
第一页,共八十六页。
一. 简 介 1. 发展概况
核磁共振(NMR)是根据有磁矩的原子 核
(如1H、13C、19F、31P等),在磁场的作用下,能够
(nénggòu)产生能级间的跃迁的原理,而采用的一种新技 术。这种新技术自1946年发现,中经50年代末高分辨 核磁共振仪问世以来,现已有很大发展。
第十页,共八十六页。
核磁矩在外磁场方向(fāngxiàng)上的分量μz亦量子化:
z
Pz
mh 2
第十一页,共八十六页。
3、核的进动(jìn dònɡ)
将自旋核放在外磁场H0中时,自旋核的行为就像一 个在重力场中做旋转(xuánzhuǎn)的陀螺,即一方面自旋, 一方面由于磁场作用而围绕磁场方向旋转(xuánzhuǎn),这 种运动方式称为进动,又称为Larmor进动。其进动频 率称为Larmor频率υ0, υ0∞H0
低场
向左
向右 磁场强度
( 增大(zēnɡ dà))
( 减小)

核磁共振基本原理ppt课件

核磁共振基本原理ppt课件

exp
E exp kT
h
kT

磁场强度2.3488 T;25C;1H的共振频率与分配比:
共振频率

2
B0

2.68108 2.3488 100.00MHz
2 3.24
Ni Nj

e
xp
6.626 1034 1.38066
相互作用, 产生进动(拉莫进动)进动频率 0; 角速度0;
0 = 2 0 = H0 磁旋比; H0外磁场强度;
两种进动取向不同的氢核之间的能级差: E= H0 (磁矩)
09:33:13
6
三、核磁共振条件
condition of nuclear magnetic resonance
标样浓度(四甲基硅烷 TMS) : 1%; 溶剂:1H谱 四氯化碳,二硫化碳; 氘代溶剂:氯仿,丙酮、苯、二甲基亚砜的氘代物;
09:33:13
15
傅立叶变换核磁共振波谱仪
不是通过扫场或扫频产生共 振;
恒定磁场,施加全频脉冲, 产生共振,采集产生的感应电 流信号,经过傅立叶变换获得 一般核磁共振谱图。 (类似于一台多道仪)
共振条件: 0 = H0 / (2 ) (1)对于同一种核 ,磁旋比 为定值, H0变,射频频率变。 (2)不同原子核,磁旋比 不同,产生共振的条件不同,需要的磁场强度H0和 射频频率不同。
(3) 固定H0 ,改变(扫频) ,不同原子核在不同频率处发生共振(图)。 也可固定 ,改变H0 (扫场)。扫场方式应用较多。
condition of nuclear magnetic resonance 四、核磁共振波谱仪
nuclear magnetic resonance spectrometer

核磁共振成像原理ppt课件

核磁共振成像原理ppt课件
•对磁共振而言,检测的生物体信息是磁共振信号
加快磁共振成像时间的途径
回波平面序列
•使成像时间由常规的扫描序列的秒级提高到了亚秒 级;30ms之内采集一幅完整的图像,使每秒获取的图 像达到20幅 ; •心脏电影 成为可能并进入临床; •从原理上讲,EPI应归属于GRE类序列,但现在已自 成体系了 ; •分为梯度回波EPI 和自旋回波EPI ; •梯度的转换速度要达到今天常规梯度的4倍,梯度的 幅值也需提出1倍。这样的梯度就是前面所说的振荡 梯度,而振荡梯度的代价是高昂的。
50
9.3
驰豫过程的综合表示(三种运动的综 合过程)
磁化矢量的进 动
纵向磁化的逐 渐增大过程
横向磁化的逐 渐减小过程
磁共振信号的获取与傅立叶变换
• 如果在垂直于XY平面,加一个接收线圈, 会接收到什么信号?
FID
补充说明3点
•组织的弛豫时间是组织的一种固有属性,与 组织的密度类似,在场强和环境确定后其时 间是一个确定不变的值;
14N 1
3.08
99.63 10mM
19F 1/2 40.05
100
10mM
23Na 3/2 11.26
100
80mM
31P 1/2 39K 3/2
17.23 1.99
100
10mM
93.1 45mM
相對靈敏 度
1
3×10-3 2×10-7 9×10-5 1×10-3 4×10-5 1×10-4
• 如果此时去掉RF脉冲,质子将会恢复到 原来状态,当然恢复有一个时间过程, 这个过程就叫弛豫过程。
横向弛豫过程t2弛豫过程用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感a射频结束瞬间纵向磁化为零横向磁化最大b反平行质子释放能量跃迁回平衡态纵向磁化逐渐增大c最后回归原始状态纵向磁化恢复到最大用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感a射频结束瞬间横向磁化达到最大进动相位一致bc内部小磁场的不均匀性使得进动相位分散横向磁化矢量逐渐减小用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感纵向恢复时间t1是由于被激发的反平行于静磁场的质子恢复到平行状态所以纵向磁化增大

核磁共振基本原理课件

核磁共振基本原理课件

化学分析
核磁共振波谱法在化学领域中用于分 析物质的化学结构和组成,通过测量 原子核的共振频率来推断分子结构。
核磁共振的重要性
01
02
03
科学研究
核磁共振为科学研究提供 了强有力的工具,帮助科 学家深入了解物质的微观 结构和动态行为。
医学诊断
核磁共振成像技术在医学 诊断中具有重要价值,能 够提高疾病诊断的准确性 和可靠性。
冲宽度等参数。
启动核磁共振谱仪,进 行实验操作,记录数据。
对采集的数据进行预处 理、解析和可视化。
数据解析与处理
01
02
03
04
傅里叶变换
将时间域信号转换为频率域信 号,便于分析不同化学环境的
核自旋。
参数标定
根据已知化合物或标准样品, 标定实验参数,提高分析准确
性。
信号解析
通过化学位移、耦合常数等信 息,解析出分子结构信息。
工业应用
在工业领域,核磁共振技 术可用于产品质量控制、 生产过程监控以及新材料 的研发等。
02 核磁共振的基本原理
原子核的磁性
原子核具有磁性
原子核中的质子和中子具有自旋,从 而产生磁矩。不同原子核的磁矩大小 和方向不同,这决定了它们在磁场中 的行为。
磁矩的表示
磁矩的大小与原子核中的质子数和中子 数相关,通常用希腊字母μ表示。不同 原子核的μ值不同,决定了它们在磁场 中的共振频率。
核磁共振基本原理课件
contents
目录
• 引言 • 核磁共振的基本原理 • 核磁共振的实验技术 • 核磁共振的应用实例 • 核磁共振的未来发展
01 引言
核磁共振的发现
核磁共振的发现
1946年,美国科学家F.Bloch和E.M.Purcell因各自独立发现了核磁共振现象, 共同获得了诺贝尔物理学奖。这一发现为后来的核磁共振技术发展奠定了基础。

核磁共振基本原理-PPT课件

核磁共振基本原理-PPT课件
核磁共振
一 核磁共振现象
核——原子核 磁——磁场 核磁共振(NMR)——原子核在磁场中
的响应 为什么原子核在磁场中会发生响应呢? (核有磁性)
(一)核有磁性
核由质子和中子组成; 质子带正电,中子不带电; 所以,原子核带正电的。 另外,有些核具有内秉角动量(自旋)。 奇数核子 奇数原子序数,偶数核子 因而核有磁性。

Mz是以1/T1的
速率按指数恢复 到Z方向的初值。
t T 1
M t)M 1 e ) z( 0(
2 横向弛豫/T2
非平衡态磁化矢量的水
平分量Mxy衰减至零 的过程 弛豫速率1/T2 弛豫时间T2 磁化矢量进动相位从有 序分布趋向无规则分布, 自旋体系内部相互作用, 自旋与晶格不交换能量, 又称自旋-自旋弛豫。

(1)射频脉冲法

用一个90度射频脉冲使原来沿 静磁场方向的磁化矢量扳转90度, 然后进行磁测井仪器 采用此种方法)
(2)预极化法
在稳定磁场B0的垂直方向上加一较强的预极化 磁场Bp,由于极化磁场很强,最初沿稳定磁场建 立起来的平衡态磁化强度M0会发生偏转而沿总 场的方向取向。(Mp) 如果极化时间足够长,Bp>>B0,所以Mp近似 与M0方向垂直。这时突然撤去Bp,因时间很短, Mp绕B0进动(w0),由于驰豫,在进动的同时, 纵向分量恢复到平衡态的M0,而横向分量将按 有效横向驰豫时间T2*确定的速率衰减。
2 自旋回波法
现代核磁信号的测量采用(CMR,MRIL,MREx) CPMG脉冲

(90 )x (180 )y ECHO (180 )y ECHO 测量过程:极化-扳倒 - 失相 - 重聚 - 测量 -再失相-再重聚-再测量 ...

《核磁共振》PPT课件.ppt

《核磁共振》PPT课件.ppt
时间表示;T2 气、液的T2与其T1相似,约为1秒;
固体试样中的各核的相对位置比较固定,利于自旋-自旋间的能量交换,T2很小, 弛豫过程的速度很快,一般为10-4~10-5秒。
弛豫时间虽然有T1、T2之分,但对于一个自旋核来说,它在高能态所停 留的平均时间只取决于T1、T2中较小的一个。因T2很小,似乎应该采用 固体试样,但由于共振吸收峰的宽度与T成反比,所以,固体试样的共振 吸收峰很宽。为得到高分辨的图谱,且自旋-自旋弛豫并非为有效弛豫, 因此,仍通常采用液体试样。
z
pz
hm 2
核磁矩的能级
EZH 2hmH
*
(二) 磁性原子核在外磁场中的行为特性
1、自旋取向与核磁能级
无外加磁场时,核磁矩的取向是任意的,自旋能级相同; 有外加磁场时,核磁矩共有2I+1个取向,用磁量子数(m
)表示每一种取向 m=I,I-1,I-2 … -I+1,-I 核磁矩在外磁场空间的取向不是任意的,是量子化的, 不同
高能态核寿命的量度。 T1取决于样品中磁核的运动,样品流动性降低时,T1增
大。气、液(溶液)体的T1较小,一般在1秒至几秒左右; 固体或粘度大的液体,T1很大,可达数十、数百甚至上千 秒。 因此,在测定核磁共振波谱时,通常采用液体试样。
*
2) 自旋-自旋驰豫(横向驰豫)
指两个进动频率相同而进动取向不同(即能级不同)的性核, 在一定距离内,发生能量交换而改变各自的自旋取向。交换能量 后,高、低能态的核数目未变,总能量未变(能量只是在磁核之 间转移),所以也称为横向弛豫。
取向具有不同自旋能级, 这种现象称为能级分裂.
*
当置于外磁场H0中时,相对于外磁场,有(2I+1)种 取向: m为磁量子数,取值范围:I,I-1,…,-I, 共(2I+1)种取向。

磁共振成像基本原理PPT课件

磁共振成像基本原理PPT课件

射频脉冲与磁化矢量
射频脉冲
向样品发射特定频率的射频脉冲,使磁化矢量发生旋 转。
磁化矢量旋转
射频脉冲使磁化矢量从一个静息态旋转到另一态,产 生能量变化。
信号的产生
磁化矢量回到静息态时释放能量,被探测器接收并转 换为可测信号。
信号的接收与处理
接收线圈
环绕在样品周围的接收线圈用于接收磁共振信号。
信号处理
超高场强磁共振成像
超高场强磁共振成像技术使用大于或等于7 特斯拉(T)的磁场进行成像。超高场强设 备在图像质量和分辨率方面具有显著优势, 能够提供更深入的生理和病理信息,有助于 疾病的早期诊断和精准治疗。
功能与分子影像学在技术利用磁场变化 来研究大脑和其他器官的功能活动。通过测 量血液氧合状态的变化,fMRI可以揭示大脑 在执行特定任务时的活动模式。此外,fMRI 还可以用于研究其他器官的功能和疾病进程。
射频电磁场安全
射频电磁场是磁共振成像过程中产生的另一种能量形式, 需要确保其强度符合国际和国家安全标准,避免对患者的 健康造成潜在影响。
热安全
在磁共振成像过程中,设备会向人体发射射频脉冲,这些 脉冲会产生热量。因此,需要监测和限制患者的体温升高, 确保热安全。
磁共振成像质量控制
01
图像分辨率
图像分辨率是磁共振成像质量的重要指标之一。为了获得高质量的图像,
参数优化
根据不同的扫描目标和需求,优化扫描序列中的参数,如磁场强度、射频脉冲的频率和持续时间等,以提高图像 质量和分辨率。
04
磁共振成像设备
磁体系统
01
02
03
磁体类型
超导磁体、永磁磁体和常 导磁体等。
磁场强度
磁场强度决定了成像质量, 通常在0.5-3.0特斯拉之间。

《MRI基本原理》课件

《MRI基本原理》课件
《MRI基本原理》PPT课 件
MRI(磁共振成像)是一种非侵入性的医学成像技术,利用核磁共振原理来 观察人体内部组织结构和功能。
MRI的基本原理
1 磁共振现象
物质中的原子核在强磁场作用下发生共振现象。
2 核磁共振原理
核磁共振利用原子核的自旋和磁矩来获取图像信息。
3 MRI的物理基础
通过梯度磁场和脉冲序列对核磁共振信号进行探测和编码。
3 对患者的限制
部分人群如心脏起搏器患者不能接受MRI检查。
MRI的未来
MRI技术的发展趋势
MRI技术不断发展,未来可能 实现更高的分辨率和更短的扫 描时间。
MRI在医疗领域的前景
MRI将继续在临床诊断和治疗 中发挥重要作用,改善医疗水 平。
MRI在科学研究中的作用
MRI技术可用于研究大脑功能、 心脏病理和神经退化等科学领 域。
科学上的应用
MRI被用于研究人体生理和病理过程,以及大脑功能和结构的探索。
工业上的应用
MRI技术在材料科学和非破坏性测试中起着重要作用,如检测材料缺陷和分析材料结构。
MRI的局限性
1 对金属的敏感性
MRI无法应用于患有金属假体或金属植入物的患者。
2 对运动的敏感性
患者在拍摄过程中需保持静止,运动会导致图像模糊。
总结
1 MRI的优点
MRI提供非侵入性、高 分辨率的图像,适用于 检查不同器官和病理。
2 MRI的局限性
MRI在金属、运动和部 分人群方面存在限制, 需谨慎应用。
3 MRI的未来发展前景
MRI技术将不断发展, 有望提供更准确、便捷 的医学成像服务。
MRI的成像技术
1
MRI的成像过程
通过对人体施加磁场、射频脉冲和梯度磁场的控制,获取详细的图像信息。

磁共振的原理与结构ppt课件

磁共振的原理与结构ppt课件

(五〕核磁共振现象
2 、进动的质子相位一 致,做同步同速运动, 使得在横轴方向上的 磁化矢量得以叠加, 并产生一个新的横向 磁 化 矢 量 , RF 脉 冲 的 强度越大,持续时间 越长,横向进动偏转 的角度就越大。
(六〕核磁共振弛豫
当质子系统达到饱和状态后,停止RF 磁场后,激励过程结束。随后,吸收能 量跃迁到高能级的质子将释放吸收的能 量,很快回到外加磁场原先排列的平衡
MRI扫描机基本结构示意图
(一)主磁体系统
主磁体是MRI系统的核心部分 之一,其功能是提供使原子核定 向所必须的静磁场。 应用于临床医疗的MRI磁体强 度多为0.15-2.0T(特斯拉)。
1、磁体主要性能指标
•磁场强度:
场强越高,MR信号越强,影像信噪比越大
•磁场均匀度:
决定了图像的空间分辨率和信噪比
(二)外磁场对原子核自旋的影响
当外部施加一个恒定磁场后,则质子 沿外加磁场方向排列,产生净磁化。
1.低能级--自旋方向 与磁场方向一致 2.高能级--自旋方向 与磁场方向相反
(二)外磁场对原子核自旋的影响
在外磁场作用下,低能级的质子数目 要多于高能级的质子,在大量原子分布 的情况下,原子在不同能级上分布的数 目与温度与外磁场强度有关。
下肢血管造影MRA 三维重建图像
四、磁共振图像
2、磁体类型
GE Signa CV/i 1.5T 超导型MR机
2、磁体类型
匀场线圈:
任何磁体都不会产生绝对均匀的磁 场,所以还要加上一组匀场线圈,一 般由铌钛合金制成,置于磁体中心, 梯度线圈外,在安装时由工程师设定调 整,可将磁场均匀性提高100倍以上。
MRI扫描机基本结构示意图
MRI扫描机

磁共振成像(MRI)的基本原理PPT演示课件

磁共振成像(MRI)的基本原理PPT演示课件
磁共振成像(MRI)的基本原理 Magnetic Resonance Imaging
同济医科大学附属协和医院MR室 刘定西
1
磁共振现象的发现及发展
1924年pauli在进行电在子波谱 试验中发现了许多原子核象带电的 自旋粒子一样具有角动量和磁动量。
1946年美国物理学家Block和 Purcell分别测出了在均匀物质中磁 共振的能量吸收,进一步证实了核 自旋的存在,并为此获得了1952年 诺贝尔物理学奖。
• 影响M的因素:静磁场强度、温度、自 旋密度(单位体积的自旋数)。
• 纵向磁化:平行于磁场方向的磁化矢量 • 横向磁化:垂直于磁场方向的磁化矢量
30
31
磁共振成像中的坐标系统
Z
Y X
32
第四节 核磁共振现象
• 单摆共振 • 核磁共振
33
单摆共振的条件
• 系统与激发源的固有频率相同 • 系统吸收能量内能增加
10
3
11
净自旋
• 原子核的运动:自旋 • 净自旋:具有自旋磁动量的自旋。 • 零自旋/非零自旋:净自旋为零/净自旋不
为零 • 净自旋产生的条件:奇数质子和/或奇数中
子 • 净自旋的意义:是磁共振信号来源的基
础。 • 自旋系统:磁场中所有自旋的集合。
12
1H的原子核结构及特性
1H原子核仅有一个质子,无中子。 其磁化敏感度高,在人体的自然 丰 富度很高,是很好的磁共振靶核。
21
M1
M2
22
Z
M0 B1 X
Y
23
24
自旋在磁场中的运动
• 进动(旋进):自旋轴绕磁场方 向的圆周运动。遵循 lamor 定理, w=rB0
• 影响进动频率的因素:磁场强度。 • 进动的方向:上旋态与下旋态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mz是以1/T1的 速率按指数恢复 到Z方向的初值。
t
M z (t) M0 (1 e )T1
2 横向弛豫/T2
非平衡态磁化矢量的水 平分量Mxy衰减至零 的过程
弛豫速率1/T2
弛豫时间T2
磁化矢量进动相位从有 序分布趋向无规则分布, 自旋体系内部相互作用, 自旋与晶格不交换能量, 又称自旋-自旋弛豫。
自由感应衰减法所使用的静 磁场B0都是采用的大地地磁场, 因而产生的信号很弱。
2பைடு நூலகம்自旋回波法
现代核磁信号的测量采用(CMR,MRIL,MREx) CPMG脉冲
(90)x
(180) y ECHO
(180) y ECHO 测量过程:极化-扳倒 - 失相 - 重聚 - 测量
-再失相-再重聚-再测量 ...
进动频率 (Larmor频率)
0 B0
(四)静磁场作用整个自旋系统
整个自旋系统被磁化 产生宏观磁化量 M0
(M0的变化过程 是核磁测井观测对 象)
(五)垂直方向上施加交变磁场
在垂直B0方向上加交 变磁场,频率 ω=ω0=γB0 发生核磁共振吸收现 象。也就是 M被扳倒。
90脉冲,M扳倒90

180脉 冲,M扳倒
核磁共振
一 核磁共振现象
核——原子核 磁——磁场 核磁共振(NMR)——原子核在磁场中 的响应 为什么原子核在磁场中会发生响应呢? (核有磁性)
(一)核有磁性
核由质子和中子组成; 质子带正电,中子不带电; 所以,原子核带正电的。 另外,有些核具有内秉角动量(自旋)。 奇数核子 奇数原子序数,偶数核子 因而核有磁性。
如果极化时间足够长,Bp>>B0,所以Mp近似 与M0方向垂直。这时突然撤去Bp,因时间很短, Mp绕B0进动(w0),由于驰豫,在进动的同时, 纵向分量恢复到平衡态的M0,而横向分量将按 有效横向驰豫时间T2*确定的速率衰减。
Mp
M p0
exp( t T2*
)
1 T2*
1 T2
B0 2
这时在垂直于B0方向上探测,在接收 线圈中可以观测到一个频率为W0变化的自 由进动信号。(俄罗斯现代核磁测井仪器 采用此种方法)
磁矩
描述磁场强度与方向的矢量
P
P自旋旋磁角比动,量 每; 个核都有一特定的值。
有正有负,核磁矩的方向与其有关。
(二)没有外磁场作用
单个磁矩随机取向; 系统宏观上没有磁性。
(三)静磁场作用单个自旋
要受力矩作用, 表现:
(1)原子核吸 收能量,磁矩取 向变化(极化);
(2)磁矩绕静磁 场B0 静动(与陀 螺在重力场中发生 进动类似)。
横向弛豫按指 数衰减
t
M M 0e T2
二 核磁共振测井
(一)核磁共振信号测量 (二)核磁共振测井仪 (三)核磁共振测井过程与特点
(一)核磁共振信号测量
1.自由感应衰减法 2.自旋回波法 3.反转恢复法(测T1)
1.自由感应衰减法
自由感应衰减的核心是利用某种方法 使与静磁场B0平行的核磁化强度M0扳 转90度以激发自由进动信号。 (1)射频脉冲法 (2)预极化法
180度
(六)交变磁场作用后—弛豫
磁化矢量朝B0 方向恢复,使核 自旋系统从非平 衡分布恢复到平 衡分布。 纵向弛豫T1 横向弛豫T2
1 纵向弛豫/T1
非平衡态磁化矢量的 纵向分量恢复到初始 磁化矢量M0的过程
弛豫速率1/T1
弛豫时间T1
磁能级粒子数发生变 化,自旋体系能量也 要发生变化,自旋与 晶格交换能量,又称 自旋-晶格弛豫。
(1)射频脉冲法
用一个90度射频脉冲使原来沿 静磁场方向的磁化矢量扳转90度, 然后进行观测,得到的信号即是 自由感应衰减信号(或FID信号) (早期的斯仑贝谢核磁测井仪器 采用此种方法)
(2)预极化法
在稳定磁场B0的垂直方向上加一较强的预极化 磁场Bp,由于极化磁场很强,最初沿稳定磁场建 立起来的平衡态磁化强度M0会发生偏转而沿总 场的方向取向。(Mp)
相关文档
最新文档