人工智能第三章遗传算法、蚁群算法、粒子群算法PPT
粒子群优化算法与蚁群算法PPT

5
6
背景
对鸟群行为的模拟: Reynolds、Heppner和Grenader提出鸟群行为的 模拟。他们发现,鸟群在行进中会突然同步的改 变方向,散开或者聚集等。那么一定有某种潜在 的能力或规则保证了这些同步的行为。这些科学 家都认为上述行为是基于不可预知的鸟类社会行 为中的群体动态学。
粒子群优化算法的基本思想是通过群体中个体 之间的协作和信息共享来寻找最优解.
9
算法介绍
设想这样一个场景:一群鸟在随机的搜索食物。 在这个区域里只有一块食物,所有的鸟都不知道 食物在那。但是它们知道自己当前的位置距离食 物还有多远。
那么找到食物的最优策略是什么?
最简单有效的就是搜寻目前离食物最近的鸟的 周围区域。
在找到这两个最优值后,粒子通过下面的 公式来更新自己的速度和位置。
v k 1 i
vik
c1
rand
()
(
pbest
xik
)
c2
rand
()
(gbest
xik
) (1)式
xk 1 i
xik
vik 1
(2)式
在式(1)、(2)中,i=1,2,…,M,M是该群体中粒
子的总数
12
粒子就是通过自己的经验和同伴中最好的经验 来决定下一步的运动。
以上面两个公式为基础,形成了后来PSO 的标 准形式
15
算法介绍
1998年shi等人在进化计算的国际会议上
发表了一篇论文《A modified particle swarm
optimizer》对前面的公式(1)进行了修正。引 入惯性权重因子。
遗传算法与蚁群算法简介47页PPT

51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
ห้องสมุดไป่ตู้
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
人工智能第三章遗传算法、蚁群算法、粒子群算法

寻求一种能产生可行解的启发式规则,以找到一个最优解或近似 最优解。该方法的求解效率虽然比较高,但对每—个需要求解的 问题都必须找出其特有的启发式规则,这个启发式规则无通用性, 不适合于其他问题。
2021/4/17
9
(3)搜索算法。寻求一种搜索算法,该算法在可行解集合的一个 子集内进行搜索操作,以找到问题的最优解或近似最优解。该方 法虽然保证不了一定能够得到问题的最优解,但若适当地利用一 些启发知识,就可在近似解的质量和求解效率上达到—种较好的 平衡。
染色休X也称为个体X。
对于每一个个体X,要按照一定的规则确定出其适应度;个体 的适应度与其对应的个体表现型X的目标函数值相关联,X越 接近于目标函数的最优点,其适应度越大;反之,其适应度越 小。
遗传算法中,决策变量X组成了问题的解空间。对问题最优解 的搜索是通过对染色体X的搜索过程来进行的,从而由所有的 染色体X就组成了问题的搜索空间。
遗传算法属于一种自适应概率搜索技术,其选择、交叉、变异 等运算都是以一种概率的方式来进行的,从而增加了其搜索过 程的灵活性。
虽然这种概率特性也会使群体中产生—些适应度不高的个体,但 随着进化过程的进行,新的群体中总会更多地产生出许多优良的 个体,实践和理论都已证明了在—定条件下遗传算法总是以概率 1收敛于问题的最优解。
2021/4/17
8
求最优解或近似最优解的方法
(1)枚举法。
枚举出可行解集合内的所有可行解,以求出精确最优解。对于连 续函数,该方法要求先对其进行离散化处理,这样就有可能产生 离散误差而永远达不到最优解。另外,当枚举空间比较大时,该 方法的求解效率比较低,有时甚至在目前最先进的计算工具上都 无法求解。
当然,交叉概率和变异概率等参数也会影响算法的搜索效果和 搜索效率,所以如何选择遗传算法的参数在其应用中是一个比 较重要的问题。而另一方面,与其他一些算法相比遗传算法的 鲁20棒21/性4/17又会使得参数对其搜索效果的影响会尽可能地低。 20
蚁群算法最全集PPT课件

采用智能优化算法,如遗传算法、粒子群算法等,对算法参数进行 优化,以寻找最优参数组合,提高算法性能。
04
蚁群算法的实现流程
问题定义与参数设定
问题定义
明确待求解的问题,将其抽象为优化 问题,并确定问题的目标函数和约束 条件。
参数设定
根据问题的特性,设定蚁群算法的参 数,如蚂蚁数量、信息素挥发速度、 信息素更新方式等。
动态调整种群规模
根据搜索进程的需要,动态调整参与搜索的蚁群规模,以保持种群 的多样性和搜索的广泛性。
自适应调整参数
参数自适应调整策略
根据搜索进程中的反馈信息,动态调整算法参数,如信息素挥发速 度、蚂蚁数量、移动概率等。
参数动态调整规则
制定参数调整规则,如基于性能指标的增量调整、基于时间序列的 周期性调整等,以保持算法性能的稳定性和持续性。
06
蚁群算法的优缺点分析
优点
高效性
鲁棒性
蚁群算法在解决组合优化问题上表现出高 效性,尤其在处理大规模问题时。
蚁群算法对噪声和异常不敏感,具有较强 的鲁棒性。
并行性
全局搜索
蚁群算法具有天然的并行性,可以充分利 用多核处理器或分布式计算资源来提高求 解速度。
蚁群算法采用正反馈机制,能够实现从局 部最优到全局最优的有效搜索。
强化学习
将蚁群算法与强化学习相结合,利用强化学习中的奖励机制指导 蚁群搜索,提高算法的探索和利用能力。
THANKS
感谢观看
蚂蚁在移动过程中会不断释放新 的信息素,更新路径上的信息素 浓度。
蚂蚁在更新信息素时,会根据路 径上的信息素浓度和自身的状态 来决定释放的信息素增量。
搜索策略与最优解的形成
搜索策略
人工智能第三章遗传算法、蚁群算法、粒子群算法

件的解所组成的一个集合,叫做可行解集合。它们之间的关系
如图所示。 2020/10/6
6
可行解
X R
Hale Waihona Puke 基本空间 U2020/10/6
可行解集合
7
对于上述最优化问题,目标函数和约束条件种类繁多,有的是线 性的,有的是非线性的;有的是连续的,有的是离散的;有的是 单峰值的,有的是多峰值的。
随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全 精确地求出其最优解既不可能,也不现实,因而求出其近似最 优解或满意解是人们的主要着眼点之—。
生物的进化是以集团为主体的。与此相对应,遗传算法的运算对 象是由M个个体所组成的集合,称为群体。
与生物一代一代的自然进化过程相类似,遗传算法的运算过程也 是一个反复迭代的过程,第t代群体记做P(t),经过一代遗传和进 化后,得到第t+l代群体,它们也是由多个个体组成的集合,记做 P(t+1)。
这个群体不断地经过遗传和进化操作,并且每次都按照优胜劣 汰的规则将适应度较高的个体更多地遗传到下一代,这样最终 在群体中将会得到一个优良的个体X,它所对应的表现型X将达 到或接近于问题的最优解X*。
遗传算法是模拟生物在自然环境力的遗传和进化过程而形成的 一种自适应全局优化概率搜索算法。
它最早由美国密执安大学的Holland教授提出,起源于60年代 对自然和人工自适应系统的研究。
70年代De Jong基于遗传算法的思想在计算机上进行了大量的 纯数值函数优化计算实验。
在—系列研究工作的基础上,80年代由Goldberg进行归纳总结, 形成了遗传算法的基本框架。
2020/10/6
8
求最优解或近似最优解的方法
(1)枚举法。
蚁群算法ppt课件

2 简化旳蚂蚁寻食过程
假设蚂蚁每经过一处所留下旳信息素为一种单位,则经过36个时间单位 后,全部开始一起出发旳蚂蚁都经过不同途径从D点取得了食物,此时ABD 旳路线来回了2趟,每一处旳信息素为4个单位,而 ACD旳路线来回了一趟, 每一处旳信息素为2个单位,其比值为2:1。
寻找食物旳过程继续进行,则按信息素旳指导,蚁群在ABD路线上增派一 只蚂蚁(共2只),而ACD路线上依然为一只蚂蚁。再经过36个时间单位后, 两条线路上旳信息素单位积累为12和4,比值为3:1。
8
2 简化旳蚂蚁寻食过程
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路线 ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个时间单位 行走一步,本图为经过9个时间单位时旳情形:走ABD旳蚂蚁到 达终点,而走ACD旳蚂蚁刚好走到C点,为二分之一旅程。
9
2 简化旳蚂蚁寻食过程
本图为从开始算起,经过18个时间单位时旳情形:走ABD旳蚂 蚁到达终点后得到食物又返回了起点A,而走ACD旳蚂蚁刚好走 到D点。
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而 ACD路线上依然为一只蚂蚁。再经过36个时间单位后,两条线路上旳信息素 单位积累为24和6,比值为4:1。
若继续进行,则按信息素旳指导,最终全部旳蚂蚁会放弃ACD路线,而都 选择ABD路线。这也就是前面所提到旳正反馈效应。
11
3 自然蚁群与人工蚁群算法
15
5 初始旳蚁群优化算法—基于图旳蚁群 系统(GBAS)
初始旳蚁群算法是基于图旳蚁群算法,graph-based
ant system,简称为GBAS,是由Gutjahr W J在2023年
旳Future Generation Computing Systems提出旳.
《蚁群算法介绍》课件

输出最优解和相关性能指标。
详细描述
这一步是将最优解和相关性能指标输出,以 便于对算法的性能进行分析和评估。
04
蚁群算法的性能分析
收敛性分析
收敛速度
蚁群算法在优化问题中的收敛速度取决于初始信息素分布、蚂蚁数量、迭代次数等因素 。
最优解质量
蚁群算法在某些问题上可能找到全局最优解,但在其他问题上可能只能找到近似最优解 。
VS
详细描述
这一步是生成初始解的过程,需要按照设 定的规则,将蚂蚁随机放置在解空间中, 并初始化每条路径上的信息素。
迭代优化
总结词
通过蚂蚁的移动和信息素的更新,不断优化 解的质量。
详细描述
这一步是蚁群算法的核心部分,通过模拟蚂 蚁的移动和信息素的更新机制,不断迭代优 化解的质量,最终找到最优解。
结果
多目标优化问题的蚁群算法
针对多目标优化问题,蚁群算法需要 进行相应的改进。
VS
多目标优化问题要求算法在满足多个 冲突目标的同时找到最优解。这需要 对蚁群算法进行相应的调整,以适应 多目标优化的特性。例如,可以通过 引入权重因子来平衡各个目标之间的 矛盾,或者采用非支配排序方法对解 进行分层处理,以便更好地处理多目 标优化问题。
蚁群算法的优化目标
寻找最短路径
蚁群算法的主要目标是找到起点到终 点之间的最短路径,这在实际应用中 可用于解决如旅行商问题、车辆路径 问题等优化问题。
平衡搜索与探索
蚁群算法需要在搜索和探索之间取得 平衡,以避免陷入局部最优解,提高 算法的全局搜索能力。
03
蚁群算法的实现步骤
问题建模
总结词
将实际问题抽象为蚁群算法能够解决的问题模型。
蚂蚁根据局部信息素浓度选择移动方向,倾向于选择信息素浓度较高的路径。
《蚁群算法》PPT

Thank you so much for your time,and have a nice day.
可选路径较少,使种群陷入局部最优。
信息素重要程度因子
蚂蚁选择以前已经走过的路可能性较大, 会使蚁群的搜索范围减小容易过早的收
容易使随机搜索性减弱。
敛,使种群陷入局部最优。
启发函数重要程度因子 虽然收敛速度加快,但是易陷入局部最优
蚁群易陷入纯粹的随机搜索,很难找到 最优解
信息素挥发因子
各路径上信息素含量差别较小,收敛速 信息素挥发较快,容易导致较优路径被排除 度降低
2.并行的算法
每只蚂蚁搜索的过程彼此独立,仅通过信 息激素进行通信。 在问题空间的多点同时开始进行独立的解 搜索,不仅增加了算法的可靠性,也使得算 法具有较强的全局搜索能力。
3
蚁群算法的基本步骤
1)初始化参数;2)构建解空间;3)更新信息素;4)判断终止与迭代。
3 蚁群算法的基本步骤
优化问题与蚂蚁寻找食物的关系
0.04
0.04
0.92 到城市1 到城市3 到城市5
3.3 更 新 信 息 素
蚂蚁访问完所有城市之后,进行信息素的更新。信息素的更新包括挥发和蚂蚁的产生,由以下 公式决定:
第 t+1 次 循 环 后 城 市 i 到 城市j上的信息素含量
信息素残留系数=1-信息素挥发因子
ij (t 1) (1 ) ij (t) ij , (0 1)
2.2 蚁 群 算 法 的 特 点
1.自组织的算法
自组织:组织力或组织指令是来自于系 统的内部。 在抽象意义上讲,自组织就是在没有外 界作用下使得系统嫡减小的过程(即是 系统从无序到有序的变化过程)。
蚁群算法GBASPPT课件

• 引言 • 蚁群算法的基本原理 • 蚁群算法的改进与优化 • 蚁群算法与其他算法的比较 • 蚁群算法的实例分析 • 结论与展望
01
引言
什么是蚁群算法
总结词
简述蚁群算法的定义和模拟对象。
详细描述
蚁群算法是一种模拟自然界中蚂蚁觅食行为的优化算法,通过模拟蚂蚁在寻找 食物过程中的行为,利用正反馈机制,寻找问题的最优解。
信息素的更新
蚂蚁在移动过程中会释放新的信息素 ,增加路径上的信息素浓度。信息素 浓度越高,表示该路径越被推荐,吸 引更多蚂蚁选择。
蚂蚁的移动规则
01
02
03
随机移动
蚂蚁在移动过程中有一定 的随机性,避免陷入局部 最优解。
避免重复路径
蚂蚁会尽量避免重复已经 走过的路径,以探索新的 解空间。
路径选择
蚂蚁根据信息素浓度和启 发式信息(如距离、方向 等)来选择移动路径。
启发式信息的引入
启发式信息
在蚁群算法中引入启发式信息,可以指导蚂蚁的移动方向, 提高算法的搜索效率。常见的启发式信息包括距离、方向、 障碍物等。
启发式信息的作用
启发式信息可以帮助蚂蚁快速找到目标点,避免陷入局部最 优解,提高全局搜索能力。同时,启发式信息还可以指导蚂 蚁在搜索过程中进行路径选择和调整,提高算法的稳定性和 可靠性。
蚂蚁数量和迭代次数的选择
蚂蚁数量和迭代次数的作 用
蚂蚁数量和迭代次数是蚁群算法的两个重要 参数,它们决定了算法的搜索能力和效率。 蚂蚁数量决定了算法中参与搜索的蚂蚁数量 ,而迭代次数决定了算法的搜索深度。
选择蚂蚁数量和迭代次数 的方法
选择合适的蚂蚁数量和迭代次数是蚁群算法 的关键。可以根据问题的规模和复杂度来确 定蚂蚁数量和迭代次数。一般来说,蚂蚁数 量不宜过多或过少,而迭代次数则应足够深 ,以保证算法能够找到最优解。同时,也可 以根据算法的实际运行情况,动态调整蚂蚁
《蚁群算法》课件

目
CONTENCT
录
• 蚁群算法简介 • 蚁群算法的基本原理 • 蚁群算法的实现过程 • 蚁群算法的改进策略 • 蚁群算法的性能评价 • 蚁群算法的应用案例
01
蚁群算法简介
蚁群算法的基本概念
蚁群算法是一种模拟自然界中蚂蚁觅食行为的优化 算法,通过模拟蚂蚁的信息素传递机制来寻找最优 解。
02
蚁群算法的基本原理
信息素的挥发与更新
信息素挥发与更新是蚁群算法中一个重要的过程,它影响着蚂蚁 的移动和信息传递。
在蚁群算法中,信息素是蚂蚁之间传递的一种化学物质,用于标 识路径的优劣。信息素会随着时间的推移而挥发,同时蚂蚁在移 动过程中会释放新的信息素。挥发和更新的过程是动态的,影响 着蚂蚁对路径的选择。
要点一
总结词
信息素更新规则是蚁群算法中的重要环节,通过改进信息 素更新规则,可以提高算法的性能。
要点二
详细描述
在蚁群算法中,信息素更新规则决定了蚂蚁在移动过程中 如何更新信息素。改进信息素更新规则可以提高算法的全 局搜索能力和局部搜索能力。例如,可以采用动态调整策 略,根据蚂蚁的移动路径和状态动态调整信息素的更新量 ,或者采用自适应策略,根据问题的特性和求解结果自适 应地调整信息素更新规则,以提高算法的性能。
详细描述
在蚁群算法中,信息素挥发速度决定了信息素消散的快慢。较慢的挥发速度可以使信息素积累,有利于增强算法 的全局搜索能力;较快的挥发速度则有利于算法的局部搜索。通过调整信息素的挥发速度,可以在全局搜索和局 部搜索之间取得平衡,提高算法的效率和稳定性。
蚂蚁数量与移动规则的调整
总结词
蚂蚁数量和移动规则是蚁群算法中的重要参数,通过调整这些参数,可以改善算法的性 能。
人工智能_第三章_遗传算法、蚁群算法、粒子群算法

(2)染色体是由基因及其有规律的排列所构成的,遗传和进化过 程发生在染色体上。
(3)生物的繁殖过程是由其基因的复制过程来完成的:
(4)通过同源染色体之间的交叉或染色体的变异会产生新的物种, 使生物呈现新的性状。
(5)对环境适应性好的基因或染色体经常比适应性差的基因或染 色体有更多的机会遗传到下一代。
(2)启发式算法。
寻求一种能产生可行解的启发式规则,以找到一个最优解或近似 最优解。该方法的求解效率虽然比较高,但对每—个需要求解的 问题都必须找出其特有的启发式规则,这个启发式规则无通用性, 不适合于其他问题。
30.06.2020
9
(3)搜索算法。寻求一种搜索算法,该算法在可行解集合的一个 子集内进行搜索操作,以找到问题的最优解或近似最优解。该方 法虽然保证不了一定能够得到问题的最优解,但若适当地利用一 些启发知识,就可在近似解的质量和求解效率上达到—种较好的 平衡。
这个群体不断地经过遗传和进化操作,并且每次都按照优胜劣
汰的规则将适应度较高的个体更多地遗传到下一代,这样最终 在群体中将会得到一个优良的个体X,它所对应的表现型X将达 到或接近于问题的最优解X*。
生物的进化过程主要是通过染色体之间的交叉和变异来完成的,
遗传算法中最优解的搜索过程也模仿生物的这个进化过程,使用 所谓的遗传算子(genetic operators)作用于群体P(t)中,进行下述遗 传操作,从而得到新一代群体P(t+1)。
遗传算法属于一种自适应概率搜索技术,其选择、交叉、变异 等运算都是以一种概率的方式来进行的,从而增加了其搜索过 程的灵活性。
虽然这种概率特性也会使群体中产生—些适应度不高的个体,但 随着进化过程的进行,新的群体中总会更多地产生出许多优良的 个体,实践和理论都已证明了在—定条件下遗传算法总是以概率 1收敛于问题的最优解。
遗传算法 蚁群算法 粒子群算法

遗传算法蚁群算法粒子群算法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!智能算法比较与应用探讨随着人工智能技术的发展,各种智能算法在解决复杂问题中展现出了强大的能力。
蚁群算法简述PPT课件

2.蚁群算法的特征
基本蚁群算法流程图(详细)
1. 在初始状态下,一群蚂蚁外出,此时没有信息素,那 么各自会随机的选择一条路径。 2. 在下一个状态,每只蚂蚁到达了不同的点,从初始点 到这些点之间留下了信息素,蚂蚁继续走,已经到达目 标的蚂蚁开始返回,与此同时,下一批蚂蚁出动,它们 都会按照各条路径上信息素的多少选择路线(selection), 更倾向于选择信息素多的路径走(当然也有随机性)。 3. 又到了再下一个状态,刚刚没有蚂蚁经过的路线上的 信息素不同程度的挥发掉了(evaporation),而刚刚经过 了蚂蚁的路线信息素增强(reinforcement)。然后又出动 一批蚂蚁,重复第2个步骤。 每个状态到下一个状态的变化称为一次迭代,在迭代多 次过后,就会有某一条路径上的信息素明显多于其它路 径,这通常就是一条最优路径。
蚂蚁在运动过程中,能够在它所经过的路径 上留下一种称之为外激素(pheromone)的物质进 行信息传递,而且蚂蚁在运动过程中能够感知这 种物质,并以此指导自己的运动方向,因此由大 量蚂蚁组成的蚁群集体行为便表现出一种信息正 反馈现象:某一路径上走过的蚂蚁越多,则后来 者选择该路径的概率就越大。
4
1.蚁群算法的提出
ACO),又称蚂蚁算法——一种用来在图中 寻找优化路径的机率型算法。
它由Marco Dorigo于1992年在他的博士 论文“Ant system: optimization by a colony of cooperating agents”中提出,其 灵感来源于蚂蚁在寻找食物过程中发现路径的 行为。最早用于解决著名的旅行商问题(TSP , traveling salesman problem)。
式中,Q表示蚂蚁循环一周,且在一定程度上影响算法收敛速度的信息 素总量;Lk表示本次循环中,蚂蚁k所走路段的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于每一个个体X,要按照一定的规则确定出其适应度;个体 的适应度与其对应的个体表现型X的目标函数值相关联,X越 接近于目标函数的最优点,其适应度越大;反之,其适应度越 小。
遗传算法中,决策变量X组成了问题的解空间。对问题最优解 的搜索是通过对染色体X的搜索过程来进行的,从而由所有的 染色体X就组成了问题的搜索空间。
根据不同的情况,这里的等位基因可以是一组整数,也可以是 某一范围内的实数值,或者是纯粹的一个记号。
最简单的等位基因是由0和l这两个整数组成的。相应的染色体 就可表示为一个二进制符号串。
14.10.2020
11
这种编码所形成的排列形式X是个体的基因型,与它对应的x值是 个体的表现型。
通常个体的表现型和其基因型是一一对应的,但有时也允许基因 型和表现型是多对一的关系。
14.10.2020
6
14.10.2020
可行解
X R
ห้องสมุดไป่ตู้
基本空间 U
可行解集合
7
对于上述最优化问题,目标函数和约束条件种类繁多,有的是线 性的,有的是非线性的;有的是连续的,有的是离散的;有的是 单峰值的,有的是多峰值的。
随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全 精确地求出其最优解既不可能,也不现实,因而求出其近似最 优解或满意解是人们的主要着眼点之—。
14.10.2020
8
求最优解或近似最优解的方法
(1)枚举法。
枚举出可行解集合内的所有可行解,以求出精确最优解。对于连 续函数,该方法要求先对其进行离散化处理,这样就有可能产生 离散误差而永远达不到最优解。另外,当枚举空间比较大时,该 方法的求解效率比较低,有时甚至在目前最先进的计算工具上都 无法求解。
(2)启发式算法。
寻求一种能产生可行解的启发式规则,以找到一个最优解或近似 最优解。该方法的求解效率虽然比较高,但对每—个需要求解的 问题都必须找出其特有的启发式规则,这个启发式规则无通用性, 不适合于其他问题。
14.10.2020
9
(3)搜索算法。寻求一种搜索算法,该算法在可行解集合的一个 子集内进行搜索操作,以找到问题的最优解或近似最优解。该方 法虽然保证不了一定能够得到问题的最优解,但若适当地利用一 些启发知识,就可在近似解的质量和求解效率上达到—种较好的 平衡。
这个群体不断地经过遗传和进化操作,并且每次都按照优胜劣
汰的规则将适应度较高的个体更多地遗传到下一代,这样最终 在群体中将会得到一个优良的个体X,它所对应的表现型X将达 到或接近于问题的最优解X*。
生物的进化过程主要是通过染色体之间的交叉和变异来完成的,
遗传算法中最优解的搜索过程也模仿生物的这个进化过程,使用 所谓的遗传算子(genetic operators)作用于群体P(t)中,进行下述遗 传操作,从而得到新一代群体P(t+1)。
第三章
遗传算法、蚁群算法与 粒子群算法
14.10.2020
1
3.1 遗传算法
14.10.2020
2
生物在自然界中的生存繁衍,显示出了其对自然环境的优异自 适应能力。受其启发,人们致力于对生物各种生存特性的机理 研究和行为模拟,为人工自适应系统的设计和开发提供了广阔 的前景。
遗传算法(Genetic Algorithm,简称GA)就是这种生物行为的计算 机模拟中令人瞩目的重要成果。
基于对生物遗传和进化过程的计算机模拟,遗传算法使得各种 人工系统具有优良的自适应能力和优化能力。
遗传算法所借鉴的生物学基础就是生物的遗传和进化。
14.10.2020
3
虽然人们还未完全揭开遗传与进化的奥秘,既没有完全掌握其机 制,也不完全清楚染色体编码和译码过程的细节,更不完全了解 其控制方式,但遗传与进化的以下几个特点却为人们所共识:
14.10.2020
14.10.2020
5
一、遗传算法概要
对于一个求函数最大值的优化问题(求函数最小值也类同),— 般可描述为下述数学规划模型:
max
s.t .
f (X) XR RU
式中,X x1 x2 xnT为决策变量,f(X)为目标函数,后两个
式子为约束条件,U是基本空间,R是U的一个子集。
满足约束条件的解X称为可行解,集合R表示由所有满足约束条 件的解所组成的一个集合,叫做可行解集合。它们之间的关系 如图所示。
而遗传算法为解决这类问题提供了一个有效的途径和通用框架, 开创了一种新的全局优化搜索算法。
14.10.2020
10
遗传算法中,将n维决策向量 X x1 x2 xnT用n个记号Xi (n=
l,2,,n)所组成的符号串X来表示:
X X 1 X 2 X n X x 1 x 2 x n T
把每一个Xi看作一个遗传基因,它的所有可能取值称为等位基因, 这样,X就可看做是由n个遗传基因所组成的一个染色体。 —般情况下,染色体的长度n是固定的,但对一些问题n也可以是 变化的。
14.10.2020
12
生物的进化是以集团为主体的。与此相对应,遗传算法的运算对 象是由M个个体所组成的集合,称为群体。
与生物一代一代的自然进化过程相类似,遗传算法的运算过程也 是一个反复迭代的过程,第t代群体记做P(t),经过一代遗传和进 化后,得到第t+l代群体,它们也是由多个个体组成的集合,记做 P(t+1)。
(1)生物的所有遗传信息都包含在其染色休中,染色体决定了生 物的性状。
(2)染色体是由基因及其有规律的排列所构成的,遗传和进化过 程发生在染色体上。
(3)生物的繁殖过程是由其基因的复制过程来完成的:
(4)通过同源染色体之间的交叉或染色体的变异会产生新的物种, 使生物呈现新的性状。
(5)对环境适应性好的基因或染色体经常比适应性差的基因或染 色体有更多的机会遗传到下一代。
14.10.2020
4
遗传算法是模拟生物在自然环境力的遗传和进化过程而形成的 一种自适应全局优化概率搜索算法。
它最早由美国密执安大学的Holland教授提出,起源于60年代对 自然和人工自适应系统的研究。
70年代De Jong基于遗传算法的思想在计算机上进行了大量的纯 数值函数优化计算实验。
在—系列研究工作的基础上,80年代由Goldberg进行归纳总结, 形成了遗传算法的基本框架。