二次函数中平行四边形通用解决方法
二次函数求平行四边形坐标
二次函数求平行四边形坐标要求解平行四边形的坐标,可以通过给定的条件和数学方法使用二次函数的知识进行求解。
首先,平行四边形是一个具有四个边平行的四边形。
我们可以通过给定的条件找出这个平行四边形的特征,并利用这些特征确定它的坐标。
平行四边形的特征:1.已知平行四边形的对角线相等。
2.已知平行四边形的边长与对角线的关系。
根据这些特征,我们可以推导出平行四边形的性质和关系。
首先考虑对角线相等的情况。
假设平行四边形的两个对角线交于点O,把对角线分别表示为AC和BD。
则根据对角线相等的特征,我们可以得到:OD=OC这说明点D和点C到点O的距离相等。
进一步,我们可以将平行四边形的四个顶点表示为坐标P(x1,y1),Q(x2,y2),R(x3,y3),S(x4,y4)。
根据上面的推导,我们可以得出以下关系:OP=OQ(平行四边形的对角线相等)OR=OS(平行四边形的对角线相等)PD=QC(根据OD=OC)RD=SC(根据OD=OC)下面来具体说明如何根据边长和对角线的关系确定平行四边形的坐标。
假设平行四边形的边长为a,对角线的长度为d。
由于要求解的是二次函数,我们可以将一个边看做x轴,另一个边看做y轴,这样我们可以将平行四边形转换成一个平面直角坐标系。
我们可以取平行四边形的一个顶点作为原点O(0,0),而另一个顶点的坐标为A(a,0)。
由于对角线相等,可以计算对角线的长度d:d^2=a^2+h^2,其中h是平行四边形的高。
我们可以根据这两个方程计算出h和d的值。
h=√(d^2-a^2)然后,我们可以根据已知条件和计算出的值,确定平行四边形的其他两个顶点的坐标。
假设B的坐标为(x,y),则根据平行四边形的特性,有:x^2+y^2=d^2(根据OB的长度)(x-a)^2+y^2=a^2+h^2(根据OA和OB的关系)解这两个方程可以得到B的坐标。
同样地,我们可以计算出C和D的坐标。
根据平行四边形的定义,平行四边形的边长和对角线的关系,我们就可以根据已知条件和数学方法求解平行四边形的坐标。
二次函数中平行四边形的通用解决方法
二次函数中平行四边形的通用解决方法要解决关于二次函数的平行四边形问题,我们需要了解二次函数的一般形式、平行四边形的性质以及如何将这两者结合起来解决问题。
首先,二次函数的一般形式可以写为f(x) = ax^2 + bx + c。
其中,a、b、c是常数,a不等于0。
接下来,我们需要了解平行四边形的性质。
平行四边形是一个有四个边,且对边平行的四边形。
根据平行四边形的性质,我们可以得到以下重要结论:1.对边平行:平行四边形的相对边是平行的,也就是说,如果ABCD是一个平行四边形,那么AB与CD平行,且AD与BC平行。
2.对角线互相平分:平行四边形的对角线互相平分,也就是说,对角线AC和BD相交于E,那么AE与CE的长度相等,BE与DE的长度也相等。
3.同底异位角相等:平行四边形的同底异位角相等,也就是说,对于平行四边形ABCD,∠A=∠C,且∠B=∠D。
现在我们来看一些具体问题,并探讨如何应用这些性质解决平行四边形问题。
问题1:已知二次函数f(x) = ax^2 + bx + c,其中a ≠ 0。
如何证明函数图像与y轴平行?解答:要证明函数图像与y轴平行,我们需要证明函数的导数为0。
导数表示了函数的斜率,如果导数为0,则对应的函数图像是水平的,即与y轴平行。
首先计算函数的导数f'(x) = 2ax + b。
要证明f'(x) = 0,我们可以解方程2ax + b = 0。
解这个方程可以得到x = -b/(2a)。
因此,当x=-b/(2a)时,函数的导数为0。
根据导数的意义,这意味着函数的图像与y轴平行。
问题2:已知二次函数f(x) = ax^2 + bx + c,其中a ≠ 0。
如何确定函数图像的顶点坐标?解答:要确定函数图像的顶点坐标,我们可以利用导数的信息。
对于二次函数来说,它的顶点坐标对应着导数为0的点。
首先计算函数的导数f'(x) = 2ax + b。
要求导数为0,我们可以解方程2ax + b = 0。
二次函数中平行四边形通用解决方法
二次函数中平行四边形通用解决方法要解决二次函数中的平行四边形问题,首先我们需要了解二次函数的一般形式以及平行四边形的定义。
二次函数的一般形式为:f(x) = ax^2 + bx + c其中,a,b,c是给定的实数。
平行四边形是指具有相同的边长和完全相等的内角的四边形。
这意味着平行四边形的对边是平行的,对边上的角度是相等的。
在求解二次函数中的平行四边形时,我们可以按照以下步骤进行:1.确定二次函数的一般形式。
根据题目所给的条件,确定函数的系数值a,b,c。
2.确定平行四边形的特点。
平行四边形的特点包括边长和内角的性质。
根据问题描述,确定平行四边形的边长和内角。
3.确定平行四边形的边长。
根据问题描述,可以使用勾股定理或其他几何方法来计算平行四边形的边长。
4.确定平行四边形的内角。
平行四边形的内角是相等的,可以使用三角函数或几何方法来计算平行四边形的内角。
5.绘制平行四边形的图形。
根据确定的边长和内角,绘制平行四边形的图形。
6.检验结果。
根据平行四边形的定义,检验所得图形是否满足平行四边形的特点,即对边是否平行,对角是否相等。
通过以上步骤,我们可以得到二次函数中平行四边形的通用解决方法。
下面,我们将通过一个具体的例子来演示这个过程。
例子:求解二次函数f(x)=2x^2-6x+4中的平行四边形。
解:根据给定的二次函数f(x)=2x^2-6x+4,我们可以确定函数的系数值为a=2,b=-6,c=4假设我们需要找到f(x)在x=1处的平行四边形。
第一步,确定二次函数的一般形式:f(x)=2x^2-6x+4第二步,确定平行四边形的特点:边长和内角相等。
第三步,确定平行四边形的边长:给定x=1,代入二次函数中,f(1)=2(1)^2-6(1)+4=2-6+4=0。
因此,平行四边形的边长为0。
第四步,确定平行四边形的内角:平行四边形的内角相等。
由于平行四边形的边长为0,我们可以认为结果是一个点,即平行四边形退化为一个点。
另辟蹊径解决二次函数中平行四边形存在性问题
另辟蹊径 解决二次函数中平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是近年来中考的热点, 其图形复杂,知识覆 盖面广,综合性较强,对学生分析问题和解决问题的能力要求高. 对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或 “平行四边形的对角线互相平分”来解决•由于先要画出草图,若考虑不周,很容易漏解•为此,笔者另辟蹊径,借 助探究平行四边形顶点坐标公式来解决这一类题.1两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式, 也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。
1.1线段中点坐标公式平面直角坐标系中,点 A 坐标为(x i ,y i ),点B 坐标为(X 2, y 2),则线段AB 的中点坐标为 (x i X 2 y iy 2)2' 23.1三个定点、一个动点,探究平行四边形的存在性问题1 例1已知抛物线y=x 2-2x+a (av 0)与y 轴相交于点 A,顶点为 M.直线y= - x-a 分别 与x 轴、y 轴相交于B 、C 两点,并且与直线 AM 相交于点N.(1) 填空:试用含a 的代数式分别表示点 M 与N 的坐标,贝U M ( ), N (); (2) 如图4,将厶NAC 沿y 轴翻折,若点N 的对应点N '恰好落在抛物线上,AN '与x证明如图1,设AB 中点P 的坐标为(X p ,y p ). 由 X P -X 1=X 2-X P ,得X 1 X 2X P =同理上y2,所以线段AB 的中点坐标为(2X 1 X 2 21.2平行四边形顶点坐标公式□ ABCD 的顶点坐标分别为 A(X A , y A )、B(X B , y B )、C( x c , y c )、D(X D , y D ),则:X A +X C =X B +X D ;y A +y c =y B +y D .证明: 如图2,连接AC 、BD ,相交于点E.•••点E 为AC 的中点, ••• E 点坐标为(,江上). 2 2 又•••点E 为BD 的中点, E 点坐标为(汇虽,叵旦).2 2二 X A +X C =X B +X D ; y A +y c =y B +y D .即平行四边形对角线两端点的横坐标、纵坐标之和分别相等. 2 一个基本事实,解题的预备知识如图3,已知不在同一直线上的三点 A 、B 、C,在平面内另找一个点 D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形•答案有三种:以 线的口ABCD 2,以BC 为对角线的D ABD 3C .3两类存在性问题解题策略例析与反思 AB 为对角线的 口ACBD 1,以AC 为对角2图轴交于点D ,连接CD ,求a 的值和四边形 ADCN 的面积;(3)在抛物线y=x 2-2x+a(av 0 )上是否存在一点 P,使得以P 、A 、C 、N 为顶点的四边 形是平行四边形?若存在,求出点 P 的坐标;若不存在,试说明理由•解:(1)M(1,a-1),N( 4a , - - a ) ; (2)a=-E ; S 四边形 ADCN = 189;3 34 16是平行四边形•坐标公式列方程(组)求解•这种题型由于三个定点构成的三条线段中哪条为对角线不清楚, 往往要以这三条线段分别为对角线分类,分三种情况讨论 3.2两个定点、两个动点,探究平行四边形存在性问题例2如图5,在平面直角坐标系中,抛物线 A(-1, 0), B(3,0), C(0 (1) 求该抛物线的表达式; (2) 点Q 在y 轴上,点P 在抛物线上,要使以点Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标•解:(1)易求抛物线的表达式为y= - x 2— x 1 ; 33(2)由题意知点Q 在y 轴上,设点Q 坐标为(0, t);点P 在抛物线上,(3)由已知条件易得 ①当以 AC 为对角线时, 4 1 c A(0, a)、C(0,-a)、N(_a,-_a).设 P( m, m 2-2m+a).3(解题时熟练推导出)-. (4)3由平行四边形顶点坐标公式,得:4 a m 3 1 2 _ a m 2m35 2 15 8,-5); 8②当以AN 为对角线时,4 0 a 3 1 a a3a m 22m52(不合题意, 15 8③当以CN 为对角线时,4 0 a 0 m3 1a a 3a m 2 2m - 2 3 8二 P2(-2, 78).5•••在抛物线上存在点Pq 5)和8P2(-17,7),使得以 P 、 A 、 C 、N 为顶点的四边形 反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点舍去图5设点P坐标为(m, 1 m2-m 1).3 3尽管点Q在y轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了.①当以AQ为对角线时,由四个顶点的横坐标公式得:-1+0 = 3+m ,•••m=-4,「. P i(-4, 7);②当以 BQ 为对角线时,得:-1+m=3+0,「. m=4, • P2(4, 5);3③当以 AB 为对角线时,得:-1+3=m+ 0,「. m=2, • P3( 2, -1).5综上,满足条件的点 P为P1(-4, 7)、P2(4,三)、P3(2, -1).3反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在x轴(y轴)或对称轴或某一定直线上•设出抛物线上的动点坐标,另一个动点若在x轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关的公式. 本例中点Q的纵坐标t没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的三条线段为对角线分类,分三种情况讨论例3如图6,在平面直角坐标系中,已知抛物线经过A(-4, 0), B(0, -4), C(2, 0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M 的横坐标为□,△ AMB的面积为S.求S关于m的函数关系式,并求出 S的最大值;(3)若点P是抛物线上的动点,点 Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.1解:(1 )易求抛物线的解析式为y= — x2+x-4;2(2) s=-m2-4m( -4<m<0) ; s 最大=4 (过程略);(3)尽管是直接写出点Q的坐标,这里也写出过程.由题意知0(0,0)、B(0, -4).1 由于点Q是直线y=-x上的动点,设 Q(s, -s),把Q看做定点;设 P(m, - m2+m-4).2①当以OQ 为对角线时,0 s 0 m,1 20 s 4 m m 42• S=-2 2.5.②当以BQ 为对角线时, 0 m 0 s 1 20 m m 44 s2 二 S l =-4, S 2= 0(舍).Q 3( -4, 4); ③当以OB 为对角线时, 0 0 s m 0 4 s —m 2m 42 s i = 4, s 2= 0(舍). …Q4(4, -4).综上,满足条件的点 Q 为 Q i (-2+2.、5 ,2-2、、5 )、Q 2(-2-2.、5 , 2+2... 5 )、Q 3(-4, 4)、 Q 4(4,-4).反思:该题中的点Q 是直线y=-x 上的动点,设动点Q 的坐标为(s ,-s ),把Q 看做定点, 就可根据平行四边形顶点坐标公式列方程组了 4问题总结这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的 动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类, 分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组) •这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适 用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想•- Q 1(-2+2 5,2-2 5 ), Q 2(-2-2 5,2+2 .5);图。
二次函数中平行四边形通用解决方法
•探究(1) 在图1中,已知线段AB , CD,其中点分别为E, F。
①若A (-1, 0), B (3, 0),贝U E点坐标为_____________ ;②若C (-2, 2), D (-2, -1),则F点坐标为______________ ;(2) 在图2中,已知线段AB的端点坐标为A (a, b), B ( c, d),求出图中AB中点D的坐标(用含a, b, c , d的代数式表示),并给出求解过程;•归纳无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A( a , b), B( c , d), AB中点为D( x , y)时,x= _________ , y= __________ (不必证明)•运用3在图2中,一次函数y=x-2与反比例函数 - 的图象交点为 A , B。
①求出交点A , B的坐标;②若以A , O , B , P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。
以二次函数为载体的平行四边形存在性问题是近年来中考的热点, 其图形复杂,知识覆 盖面广,综合性较强,对学生分析问题和解决问题的能力要求高. 对这类题,常规解法是先 画出平行四边形,再依据“平行四边形的一组对边平行且相等”或 “平行四边形的对角线互相平分”来解决•由于先要画出草图,若考虑不周,很容易漏解•为此,笔者另辟蹊径,借 助探究平行四边形顶点坐标公式来解决这一类题. 1两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式, 也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。
1.1线段中点坐标公式平面直角坐标系中,点 A 坐标为(x i ,yj ,点B 坐标为(X 2, y 2),则线段AB 的中点坐标为(x i +X 2 y i +y 2)2, 2.证明:如图1,设AB 中点P 的坐标为(x p ,y p ).由X P -X I =X 2-X P ,得X p =已 X2,同理2y p =Z y 2,所以线段AB 的中点坐标为(仝 竺,上 空).2 2 21.2平行四边形顶点坐标公式□ ABCD 的顶点坐标分别为 A(X A , y A )、B(X B , y B )、C(X c , y c )、D(X D ,y 。
专题6二次函数与平行四边形存在性问题(解析版)
专题6 二次函数与平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是中考的热点难点之一,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.解决抛物线中的平行四边形存在性问题,常用的结论和方法有:线段中点坐标公式、平行四边形顶点坐标公式、画平行四边形.1. 平面直角坐标系中,点 A 的坐标是11(,)x y ,点B 的坐标是22(,)x y ,则线段AB 的中点坐标是1212(,)22x x y y ++. 2. 平行四边形ABCD 的顶点坐标分别为(,)A A x y 、(,)B B x y 、(,)C C x y 、(,)D D x y ,则A C B D x x x x +=+,A CB D y y y y +=+.3.已知不在同一直线上的三点A、B、C,在平面内找到一个点D,使以A、B、C、D为顶点的四边形是平行四边形,有三种情况:【例1】(2020•甘孜州)如图,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0).(1)求抛物线的解析式;(2)若P为线段AB上一点,∠APO=∠ACB,求AP的长;(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可.(2)求出AB ,OA ,AC ,利用相似三角形的性质求解即可.(3)分两种情形:①P A 为平行四边形的边时,点M 的横坐标可以为±2,求出点M 的坐标即可解决问题.②当AP 为平行四边形的对角线时,点M ″的横坐标为﹣4,求出点M ″的坐标即可解决问题.【解析】(1)∵直线y =kx +3分别交y 轴于B ,令x =0,得到y =3,∴B (0,3)由题意抛物线经过B (0,3),C (1,0),∴{c =3−1+b +c =0, 解得,{b =−2c =3, ∴抛物线的解析式为y =﹣x 2﹣2x +3;(2)对于抛物线y =﹣x 2﹣2x +3,令y =0,解得x =﹣3或1,∴A (﹣3,0),∵B (0,3),C (1,0),∴OA =OB =3,OC =1,AB =3√2,∵∠APO =∠ACB ,∠P AO =∠CAB ,∴△P AO ∽△CAB ,∴AP AC =AO AB , ∴AP 4=3√2, ∴AP =2√2.(3)由(2)可知,P (﹣1,2),AP =2√2,①当AP 为平行四边形的边时,点N 的横坐标为2或﹣2,∴N (﹣2,3),N ′(2,﹣5),②当AP 为平行四边形的对角线时,点N ″的横坐标为﹣4,∴N ″(﹣4,﹣5),综上所述,满足条件的点N 的坐标为(﹣2,3)或(2,﹣5)或(﹣4,﹣5).【点评】本题考查二次函数综合题,考查了待定系数法,相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.【例2】(2020•天水)如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.【分析】(1)由题意得出方程组,解方程组即可;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,求出点B 的坐标为(4,0),由待定系数法求出直线BC 的函数表达式为y =−32x +6,则点D 的坐标为(m ,−34m 2+32m +6),点G 的坐标为(m ,−32m +6),求出S △BCD =−32m 2+6m =92,解方程即可;(3)求出点D 的坐标为(3,154),分三种情况,①当DB 为对角线时,证出DN ∥x 轴,则点D 与点N关于直线x =1对称,得出N (﹣1,154)求出BM =4,即可得出答案;②当DM 为对角线时,由①得N (﹣1,154),DN =4,由平行四边形的性质得出DN =BM =4,进而得出答案; ③当DN 为对角线时,点D 与点N 的纵坐标互为相反数,N (1+√14,−154)或N (1−√14,−154),再分两种情况解答即可.【解析】(1)由题意得:{−b 2a =14a −2b +c =0c =6, 解得:{ a =−34b =32c =6, ∴抛物线的函数表达式为:y =−34x 2+32x +6; (2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,如图1所示: ∵点A 的坐标为(﹣2,0),点C 的坐标为(0,6),∴OA =2,OC =6,∴S △AOC =12OA •OC =12×2×6=6,∴S △BCD =34S △AOC =34×6=92,当y =0时,−34x 2+32x +6=0,解得:x 1=﹣2,x 2=4,∴点B 的坐标为(4,0),设直线BC 的函数表达式为:y =kx +n ,则{0=4k +n 6=n, 解得:{k =−32n =6, ∴直线BC 的函数表达式为:y =−32x +6,∵点D 的横坐标为m (1<m <4),∴点D 的坐标为:(m ,−34m 2+32m +6),点G 的坐标为:(m ,−32m +6),∴DG =−34m 2+32m +6﹣(−32m +6)=−34m 2+3m ,CF =m ,BE =4﹣m ,∴S △BCD =S △CDG +S △BDG =12DG •CF +12DG •BE =12DG ×(CF +BE )=12×(−34m 2+3m )×(m +4﹣m )=−32m 2+6m ,∴−32m 2+6m =92,解得:m 1=1(不合题意舍去),m 2=3,∴m 的值为3;(3)由(2)得:m =3,−34m 2+32m +6=−34×32+32×3+6=154, ∴点D 的坐标为:(3,154), 分三种情况讨论:①当DB 为对角线时,如图2所示:∵四边形BDNM 是平行四边形,∴DN ∥BM ,∴DN ∥x 轴,∴点D 与点N 关于直线x =1对称,∴N (﹣1,154),∴DN =3﹣(﹣1)=4,∴BM =4,∵B (4,0),∴M (8,0);②当DM 为对角线时,如图3所示:由①得:N (﹣1,154),DN =4,∵四边形BDNM 是平行四边形,∴DN =BM =4,∵B (4,0),∴M (0,0);③当DN 为对角线时,∵四边形BDNM 是平行四边形,∴DM =BN ,DM ∥BN ,∴∠DMB =∠MBN ,∴点D 与点N 的纵坐标互为相反数,∵点D (3,154),∴点N 的纵坐标为:−154, 将y =−154代入y =−34x 2+32x +6中, 得:−34x 2+32x +6=−154, 解得:x 1=1+√14,x 2=1−√14,当x =1+√14时,如图4所示:则N (1+√14,−154), 分别过点D 、N 作x 轴的垂线,垂足分别为E 、Q ,在Rt △DEM 和Rt △NQB 中,{DM =BN DE =NQ, ∴Rt △DEM ≌Rt △NQB (HL ),∴BQ =EM ,∵BQ =1+√14−4=√14−3,∴EM=√14−3,∵E(3,0),∴M(√14,0);当x=1−√14时,如图5所示:则N(1−√14,−15 4),同理得点M(−√14,0);综上所述,点M的坐标为(8,0)或(0,0)或(√14,0)或(−√14,0).【点评】本题是二次函数综合题目,考查了待定系数法求函数的解析式、坐标与图形性质、平行四边形的性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度.【例3】(2020•青海)如图1(注:与图2完全相同)所示,抛物线y=−12x2+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)【分析】(1)用待定系数法解答便可;(2)求出抛物线与坐标轴的交点A、C坐标及抛物线顶点M的坐标,再将四边形ABMC的面积分为三角形的面积的和,进行计算便可;(3)分两种情况:AB为平行四边形的边;AB为平行四边形的对角线.分别解答便可.【解析】(1)把B (3,0)和D (﹣2,−52)代入抛物线的解析式得, {−92+3b +c =0−2−2b +c =−52, 解得,{b =1c =32, ∴抛物线的解析式为:y =−12x 2+x +32;(2)令x =0,得y =−12x 2+x +32=32, ∴C(0,32),令y =0,得y =−12x 2+x +32=0, 解得,x =﹣1,或x =3,∴A (﹣1,0),∵y =−12x 2+x +32=−12(x −1)2+2, ∴M (1,2),∴S 四边形ABMC =S △AOC +S △COM +S △MOB=12OA ⋅OC +12OC ⋅x M +12OB ⋅y M=12×1×32+12×32×1+12×3×2=92;(3)设Q (0,n ),①当AB 为平行四边形的边时,有AB ∥PQ ,AB =PQ , a ).P 点在Q 点左边时,则P (﹣4,n ),把P (﹣4,n )代入y =−12x 2+x +32,得n =−212,∴P (﹣4,−212); ②当AB 为平行四边形的边时,有AB ∥PQ ,AB =PQ , 当P 点在Q 点右边时,则P (4,n ), 把P (4,n )代入y =−12x 2+x +32,得 n =−52, ∴P (4,−52);③当AB 为平行四边形的对角线时,如图2,AB 与PQ 交于点E , 则E (1,0), ∵PE =QE , ∴P (2,﹣n ),把P (2,﹣n )代入y =−12x 2+x +32,得 ﹣n =32, ∴n =−32, ∴P (2,32).综上,满足条件的P 点坐标为:(﹣4,−212)或(4,−52)或(2,32).【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,四边形的面积计算,平行四边形的性质,第(2)题关键是把四边形分割成三角形进行解答,第(3)题关键是分情况讨论.【例4】(2020•玉林)如图,已知抛物线:y 1=﹣x 2﹣2x +3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C .(1)直接写出点A ,B ,C 的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P 为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.【分析】(1)令x=0或y1=0,解方程可得结论.(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H.,连接BD′,B′D′.构建方程组解决问题即可.(3)观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.分别令y1和y2等于3或﹣3,解方程即可解决问题.【解析】(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y1=3,∴C(0,3).(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H,连接BD′.∵D′是抛物线的顶点,∴D′B=D′B′,D′(a,b),∵∠BD′B′=90°,D′H⊥BB′,∴BH=HB′,∴D′H=BH=HB′=b,∴a=1+b,又∵y2=﹣(x﹣a)2+b,经过B(1,0),∴b=(1﹣a)2,解得a=2或1(不合题意舍弃),b=1,∴B′(3,0),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.(3)如图2中,观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.对于y1=﹣x2﹣2x+3,令y1=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),令y1=﹣3,则x2+2x﹣6=0,解得x=﹣1±√7,可得P2(﹣1−√7,﹣3),P3(﹣1+√7,﹣3),对于y2=﹣x2+4x﹣3,令y2=3,方程无解,令y2=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1−√7,﹣3)或(﹣1+√7,﹣3)或(0,﹣3)或(4,﹣3).【点评】本题属于二次函数综合题,考查了二次函数的性质,平行四边形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建方程组解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.【例5】(2020•绵阳)如图,抛物线过点A (0,1)和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B (√3,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为4√33,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当△P AB 面积最大时,求点P 的坐标及△P AB 面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为y =−√33x +1,求出F 点的坐标,由平行四边形的性质得出﹣3a +1=163a ﹣8a +1﹣(−13),求出a 的值,则可得出答案; (2)设P (n ,﹣n 2+2√3n +1),作PP '⊥x 轴交AC 于点P ',则P '(n ,−√33n +1),得出PP '=﹣n 2+73√3n ,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出C (73√3,−43),设Q (√3,m ),分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可. 【解析】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0), ∵A (0,1),B (√3,0), 设直线AB 的解析式为y =kx +m , ∴{√3k +m =0m =1,解得{k =−√33m =1,∴直线AB 的解析式为y =−√33x +1,∵点F 的横坐标为4√33,∴F 点纵坐标为−√33×4√33+1=−13, ∴F 点的坐标为(43√3,−13), 又∵点A 在抛物线上, ∴c =1,对称轴为:x =−b2a =√3, ∴b =﹣2√3a ,∴解析式化为:y =ax 2﹣2√3ax +1, ∵四边形DBFE 为平行四边形. ∴BD =EF , ∴﹣3a +1=163a ﹣8a +1﹣(−13), 解得a =﹣1,∴抛物线的解析式为y =﹣x 2+2√3x +1;(2)设P (n ,﹣n 2+2√3n +1),作PP '⊥x 轴交AC 于点P ',则P '(n ,−√33n +1), ∴PP '=﹣n 2+73√3n ,S △ABP =12OB •PP '=−√32n 2+72n =−√32(n −76√3)2+4924√3, ∴当n =76√3时,△ABP 的面积最大为4924√3,此时P (76√3,4712). (3)∵{y =−√33x +1y =−x 2+2√3x +1,∴x =0或x =73√3, ∴C (73√3,−43), 设Q (√3,m ), ①当AQ 为对角线时, ∴R (−43√3,m +73),∵R 在抛物线y =−(x −√3)2+4上, ∴m +73=−(−43√3−√3)2+4,解得m =−443,∴Q (√3,−443),R (−43√3,−373); ②当AR 为对角线时, ∴R (103√3,m −73), ∵R 在抛物线y =−(x −√3)2+4上, ∴m −73=−(103√3−√3)2+4, 解得m =﹣10, ∴Q (√3,﹣10),R (103√3,−373).综上所述,Q (√3,−443),R (−43√3,−373);或Q (√3,﹣10),R (103√3,−373).【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键. 【例6】(2020•雅安)已知二次函数y =ax 2+2x +c (a ≠0)的图象与x 轴交于A 、B (1,0)两点,与y 轴交于点C (0,﹣3),(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,求点D 到直线AC 的距离取得最大值时点D 的坐标; (3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N ,使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).【分析】(1)利用待定系数法解决问题即可.(2)如图1中连接AD ,CD .由题意点D 到直线AC 的距离取得最大,推出此时△DAC 的面积最大.过点D 作x 轴的垂线交AC 于点G ,设点D 的坐标为(x ,x 2+2x ﹣3),则G (x ,﹣x ﹣3),推出DG =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x ﹣3﹣x 2﹣2x +3=﹣x 2﹣3x ,利用二次函数的性质求解即可. (3)分两种情形:OB 是平行四边形的边或对角线分别求解即可. 【解析】(1)把B (1,0),C (0,﹣3)代入y =ax 2+2x +c 则有{c =−3a +2+c =0,解得{a =1c =−3,∴二次函数的解析式为y =x 2+2x ﹣3,令y =0,得到x 2+2x ﹣3=0,解得x =﹣3或1, ∴A (﹣3,0).(2)如图1中连接AD ,CD . ∵点D 到直线AC 的距离取得最大, ∴此时△DAC 的面积最大, 设直线AC 解析式为:y =kx +b , ∵A (﹣3,0),C (0,﹣3), ∴{b =−3−3k +b =0, 解得,{k =−1b =−3,∴直线AC 的解析式为y =﹣x ﹣3,过点D 作x 轴的垂线交AC 于点G ,设点D 的坐标为(x ,x 2+2x ﹣3),则G(x,﹣x﹣3),∵点D在第三象限,∴DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴S△ACD=12•DG•OA=12(﹣x2﹣3x)×3=−32x2−92x=−32(x+32)2+278,∴当x=−32时,S最大=278,点D(−32,−154),∴点D到直线AC的距离取得最大时,D(−32,−154).(3)如图2中,当OB是平行四边形的边时,OB=MN=1,OB∥MN,可得N(﹣2,﹣3)或N′(0,﹣3),当OB为对角线时,点N″的横坐标为2,x=2时,y=4+4﹣3=5,∴N″(2,5).综上所述,满足条件的点N的坐标为(﹣2,﹣3)或(0,﹣3)或(2,5).【点评】本题考查待定系数法求二次函数解析式、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.1.(2020•齐齐哈尔)综合与探究在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线的解析式;(2)直线AB的函数解析式为y=x+4,点M的坐标为(﹣2,﹣2),cos∠ABO=√22;连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为(﹣2,2)或(0,4);(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、C 的坐标代入抛物线表达式即可求解;(2)点A (﹣4,0),OB =OA =4,故点B (0,4),即可求出AB 的表达式;OP 将△AOC 的面积分成1:2的两部分,则AP =13AC 或23AC ,即可求解;(3)△AMQ 的周长=AM +AQ +MQ =AM +A ′M 最小,即可求解; (4)分AC 是边、AC 是对角线两种情况,分别求解即可.【解析】(1)将点A 、C 的坐标代入抛物线表达式得:{12×16−4b +c =012×4+2b +c =6,解得{b =2c =0,故抛物线的表达式为:y =12x 2+2x ;(2)点A (﹣4,0),OB =OA =4,故点B (0,4), 设直线AB 的解析式为y =kx +4, 将点A 坐标代入得,﹣4k +4=0, ∴k =1.∴直线AB 的表达式为:y =x +4; 则∠ABO =45°,故cos ∠ABO =√22;对于y =12x 2+2x ,函数的对称轴为x =﹣2,故点M (﹣2,﹣2); OP 将△AOC 的面积分成1:2的两部分,则AP =13AC 或23AC ,则y P y C=13或23,即y P 6=13或23,解得:y P =2或4,故点P (﹣2,2)或(0,4); 故答案为:y =x +4;(﹣2,﹣2);√22;(﹣2,2)或(0,4);(3)△AMQ 的周长=AM +AQ +MQ =AM +A ′M 最小, 点A ′(4,0),设直线A ′M 的表达式为:y =kx +b ,则{4k +b =0−2k +b =−2,解得{k =13b =−43, 故直线A ′M 的表达式为:y =13x −43,令x=0,则y=−43,故点Q(0,−43);(4)存在,理由:设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),①当AC是边时,点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)向右平移6个单位向上平移6个单位得到点N(O),即0±6=m,0±6=n,解得:m=n=±6,故点N(6,6)或(﹣6,﹣6);②当AC是对角线时,由中点公式得:﹣4+2=m+0,6+0=n+0,解得:m=﹣2,n=6,故点N(﹣2,6);综上,点N的坐标为(6,6)或(﹣6,﹣6)或(﹣2,6).【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中(4),要注意分类求解,避免遗漏.2.(2020•平顶山二模)如图,已知二次函数y=−38x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=34x+3经过A、B两点.(1)求b、c的值.(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB于点D,求线段PD的最大值.(3)在(2)的结论下,连接CD,点Q是抛物线对称轴上的一动点,在抛物线上是否存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.【分析】(1)由直线AB 的解析式可求出点A ,B 的坐标,将A ,B 两点的坐标代入y =−38x 2+bx +c 可得出答案;(2)设点P (m ,−38m 2−34m +3),则D (m ,34m +3),可得出PD =−38m 2−32m ,由二次函数的性质可得出答案;(3)分类讨论,一是当CD 为平行四边形对角线时,二是当CD 为平行四边形一边时,利用中点坐标公式及平移规律即可求出点G 的坐标.【解析】(1)∵直线y =34x +3经过A 、B 两点. ∴当x =0时,y =3,当y =0时,x =﹣4,∴直线y =34x +3与坐标轴的交点坐标为A (﹣4,0),B (0,3).分别将x =0,y =3,x =﹣4,y =0代入y =−38x 2+bx +c 得,{c =30=−38×(−4)2−4b +c , 解得,b =−34,c =3,(2)由(1)得y =−38x 2−34x +3,设点P (m ,−38m 2−34m +3),则D (m ,34m +3),∴PD =−38m 2−34m +3−(34m +3)=−38m 2−32m =−38(m +2)2+32, ∴当m =﹣2时,PD 最大,最大值是32.(3)存在点G ,使得以C 、D 、G 、Q 为顶点的四边形是平行四边形,G 点的坐标为(1,158)或(3,−218)或(−5,−218); ∵y =−38x 2−34x +3, ∴y =0时,x =﹣4或x =2, ∴C (2,0),由(2)可知D (﹣2,32),抛物线的对称轴为x =﹣1,设G (n ,−38n 2−34n +3),Q (﹣1,p ),CD 与y 轴交于点E ,E 为CD 的中点, ①当CD 为对角线时, n +(﹣1)=0, ∴n =1, 此时G (1,158).②当CD 为边时,若点G 在点Q 上边,则n +4=﹣1,则n =﹣5,此时点G 的坐标为(﹣5,−218). 若点G 在点Q 上边,则﹣1+4=n ,则n =3,此时点G 的坐标为(3,−218).综合以上可得使得以C 、D 、G 、Q 为顶点的四边形是平行四边形的G 点的坐标为(1,158)或(3,−218)或(−5,−218);【点评】本题是二次函数综合题,考查了二次函数的有关性质、一次函数的性质、平行四边形的判定和性质,熟练掌握二次函数的性质是解题的关键.3.(2020•菏泽)如图,抛物线y =ax 2+bx ﹣6与x 轴相交于A ,B 两点,与y 轴相交于点C ,OA =2,OB =4,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD . (1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,当△BCD 的面积是92时,求△ABD 的面积;(3)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为一边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)根据OA =2,OB =4确定点A 和B 的坐标,代入抛物线的解析式列方程组解出即可; (2)如图1,过D 作DG ⊥x 轴于G ,交BC 于H ,利用待定系数法求直线BC 的解析式,设D (x ,34x 2−32x﹣6),则H (x ,32x ﹣6),表示DH 的长,根据△BCD 的面积是92,列方程可得x 的值,因为D 在对称轴的右侧,所以x =1不符合题意,舍去,利用三角形面积公式可得结论; (3)分两种情况:N 在x 轴的上方和下方,根据y =±154确定N 的坐标,并正确画图. 【解析】(1)∵OA =2,OB =4, ∴A (﹣2,0),B (4,0),把A (﹣2,0),B (4,0)代入抛物线y =ax 2+bx ﹣6中得:{4a −2b −6=016a +4b −6=0,∴抛物线的解析式为:y =34x 2−32x ﹣6;(2)如图1,过D 作DG ⊥x 轴于G ,交BC 于H ,当x =0时,y =﹣6, ∴C (0,﹣6),设BC 的解析式为:y =kx +n ,则{n =−64k +n =0,解得:{k =32n =−6, ∴BC 的解析式为:y =32x ﹣6,设D (x ,34x 2−32x ﹣6),则H (x ,32x ﹣6),∴DH =32x ﹣6﹣(34x 2−32x ﹣6)=−34x 2+3x ,∵△BCD 的面积是92,∴12DH ⋅OB =92,∴12×4×(−34x 2+3x)=92,解得:x =1或3,∵点D 在直线l 右侧的抛物线上, ∴D (3,−154),∴△ABD 的面积=12AB ⋅DG =12×6×154=454;(3)分两种情况:①如图2,N 在x 轴的上方时,四边形MNBD 是平行四边形,∵B (4,0),D (3,−154),且M 在x 轴上, ∴N 的纵坐标为154,当y =154时,即34x 2−32x ﹣6=154,解得:x =1+√14或1−√14, ∴N (1−√14,154)或(1+√14,154);②如图3,点N 在x 轴的下方时,四边形BDNM 是平行四边形,此时M 与O 重合,∴N(﹣1,−15 4);综上,点N的坐标为:(1−√14,154)或(1+√14,154)或(﹣1,−154).【点评】此题主要考查二次函数的综合问题,会求函数与坐标轴的交点,会利用待定系数法求函数解析式,会利用数形结合的思想解决平行四边形的问题,并结合方程思想解决问题.4.(2020•东莞市校级一模)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C (0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)设点M的坐标为(m,m2﹣2m﹣3),则点N(﹣m2+2m+2,m2﹣2m﹣3),则MN=﹣m2+m+2,进而求解;(3)分CD 为边、CD 为对角线两种情况,利用图象平移和中点公式求解即可. 【解析】(1)将点A 、C 的坐标代入抛物线表达式得{1−b +c =0c =−3,解得:{b =−2c =−3,故抛物线的表达式为:y =x 2﹣2x ﹣3①,将点A 的坐标代入直线L 的表达式得:0=﹣k ﹣1,解得:k =﹣1, 故直线L 的表达式为:y =﹣x ﹣1②;(2)设点M 的坐标为(m ,m 2﹣2m ﹣3), 点N 的纵坐标与点M 的纵坐标相同,将点N 的纵坐标代入y =﹣x ﹣1得:m 2﹣2m ﹣3=﹣x ﹣1, 解得:x =﹣m 2+2m +2,故点N (﹣m 2+2m +2,m 2﹣2m ﹣3), 则MN =﹣m 2+2m +2﹣m =﹣m 2+m +2,∵﹣1<0,故MN 有最大值,当m =−b2a =12时,MN 的最大值为94;(3)设点M (m ,n ),则n =m 2﹣2m ﹣3③,点M ′(s ,﹣s ﹣1), ①当CD 为边时,点C 向右平移2个单位得到D ,同样点M (M ′)向右平移2个单位得到M ′(M ), 即m ±2=s 且n =﹣s ﹣1④,联立③④并解得:m =0(舍去)或1或1±√172, 故点M 的坐标为(1,﹣4)或(1+√172,1−√172)或(1−√172,1+√172); ②当CD 为对角线时,由中点公式得:12(0+2)=12(m +s )且12(﹣3﹣3)=12(n ﹣s ﹣1)⑤,联立③⑤并解得:m =0(舍去)或﹣1,故点M (1,﹣4); 综上,点M 的坐标为(1,﹣4)或(1+√172,1−√172)或(1−√172,1+√172). 【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质等,其中(3),要注意分类求解,避免遗漏.【题组二】5.(2020•雁塔区校级二模)已知抛物线L :y =x 2+bx +c 经过点A (﹣1,0)和(1,﹣2)两点,抛物线L 关于原点O 的对称的为抛物线L ′,点A 的对应点为点A ′. (1)求抛物线L 和L ′的表达式;(2)是否在抛物线L 上存在一点P ,抛物线L ′上存在一点Q ,使得以AA ′为边,且以A 、A ′、P 、Q 为顶点的四边形是平行四边形?若存在,求出P 点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求抛物线L 解析式,由中心对称的性质可求抛物线L ′的表达式; (2)分两种情况讨论,由平行四边形的性质可求解.【解析】(1)∵抛物线L :y =x 2+bx +c 经过点A (﹣1,0)和(1,﹣2)两点, ∴{0=1−b +c −2=1+b +c , 解得:{b =−1c =−2,∴抛物线L 的解析式为:y =x 2﹣x ﹣2, ∵y =x 2﹣x ﹣2=(x −12)2−94, ∴顶点坐标为(12,−94),∵抛物线L 关于原点O 的对称的为抛物线L ′, ∴抛物线L ′的解析式为:y =﹣(x +12)2+94; (2)∵点A 关于原点O 对应点为点A ′, ∴点A '(1,0), ∴AA '=2,∵以AA ′为边,且以A 、A ′、P 、Q 为顶点的四边形是平行四边形, ∴PQ =AA '=2,PQ ∥AA ', 设点P (x ,x 2﹣x ﹣2), 当点P 在点Q 的左侧, ∴点Q 的横坐标为x +2, ∴x 2﹣x ﹣2=﹣(x +2+12)2+94, ∴x =﹣1,∴点P (﹣1,0)(不合题意舍去);当点P在点Q的右侧,∴点Q的横坐标为x﹣2,∴x2﹣x﹣2=﹣(x﹣2+12)2+94,∴x1=√2+1,x2=−√2+1,∴点P1(√2+1,√2),P2(−√2+1,−√2).【点评】本题是二次函数综合题,考查了二次函数的性质,中心对称的性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.6.(2020•怀化)如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标.(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标.(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)令抛物线解析式中x=0即可求出C点坐标,写出抛物线顶点式,即可求出顶点M坐标;(2)过N点作x轴的垂线交直线BC于Q点,设N(n,n2﹣2n﹣3),求出BC解析式,进而得到Q点坐标,最后根据S△BCN=S△NQC+S△NQB即可求解;(3)设D点坐标为(1,t),G点坐标为(m,m2﹣2m﹣3),然后分成①DG是对角线;②DB是对角线;③DC是对角线时三种情况进行讨论即可求解;(4)连接AC ,由CE =CB 可知∠EBC =∠E ,求出MC 的解析式,设P (x ,﹣x ﹣3),然后根据△PEO 相似△ABC ,分成EO BA=EP BC和EO BC=EP BA讨论即可求解.【解析】(1)令y =x 2﹣2x ﹣3中x =0,此时y =﹣3, 故C 点坐标为(0,﹣3), 又∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴抛物线的顶点M 的坐标为(1,﹣4);(2)过N 点作x 轴的垂线交直线BC 于Q 点,连接BN ,CN ,如图1所示: 令y =x 2﹣2x ﹣3=0, 解得:x =3或x =﹣1, ∴B (3,0),A (﹣1,0), 设直线BC 的解析式为:y =ax +b ,将C (0,﹣3),B (3,0)代入直线BC 的解析式得:{−3=b 0=3a +b ,解得:{a =1b =−3,∴直线BC 的解析式为:y =x ﹣3,设N 点坐标为(n ,n 2﹣2n ﹣3),故Q 点坐标为(n ,n ﹣3),其中0<n <3,则S △BCN =S △NQC +S △NQB =12⋅QN ⋅(x Q −x C )+12⋅QN ⋅(x B −x Q )=12⋅QN ⋅(x Q −x C +x B −x Q )=12⋅QN ⋅(x B −x C ),(其中x Q ,x C ,x B 分别表示Q ,C ,B 三点的横坐标),且QN =(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n ,x B ﹣x C =3,故S △BCN =12⋅(−n 2+3n)⋅3=−32n 2+92n =−32(n −32)2+278,其中0<n <3, 当n =32时,S △BCN 有最大值为278,此时点N 的坐标为(32,−154),(3)设D 点坐标为(1,t ),G 点坐标为(m ,m 2﹣2m ﹣3),且B (3,0),C (0,﹣3) 分情况讨论:①当DG 为对角线时,则另一对角线是BC ,由中点坐标公式可知:线段DG 的中点坐标为(x D +x G 2,y D +y G 2),即(1+m 2,t+m 2−2m−32),线段BC 的中点坐标为(x B +x C 2,y B +y C 2),即(3+02,0−32),此时DG 的中点与BC 的中点为同一个点,∴{1+m 2=32t+m 2−2m−32=−32,解得{m =2t =0, 经检验,此时四边形DCGB 为平行四边形,此时G 坐标为(2,﹣3);②当DB 为对角线时,则另一对角线是GC ,由中点坐标公式可知:线段DB 的中点坐标为(x D +x B 2,y D +y B 2),即(1+32,t+02), 线段GC 的中点坐标为(x G +x C 2,y G +y C 2),即(m+02,m 2−2m−3−32), 此时DB 的中点与GC 的中点为同一个点,∴{1+32=m+02t+02=m 2−2m−3−32,解得{m =4t =2, 经检验,此时四边形DCBG 为平行四边形,此时G 坐标为(4,5);③当DC 为对角线时,则另一对角线是GB ,由中点坐标公式可知:线段DC 的中点坐标为(x D +x C 2,y D +y C 2),即(1+02,t−32), 线段GB 的中点坐标为(x G +x B 2,y G +y B 2),即(m+32,m 2−2m−3+02), 此时DC 的中点与GB 的中点为同一个点,∴{1+02=m+32t−32=m 2−2m−3+02,解得{m =−2t =8, 经检验,此时四边形DGCB 为平行四边形,此时G 坐标为(﹣2,5);综上所述,G 点坐标存在,为(2,﹣3)或(4,5)或(﹣2,5);(4)连接AC ,OP ,如图2所示:设MC 的解析式为:y =kx +m ,将C (0,﹣3),M (1,﹣4)代入MC 的解析式得:{−3=m −4=k +m, 解得:{k =−1m =−3∴MC 的解析式为:y =﹣x ﹣3,令y =0,则x =﹣3,∴E 点坐标为(﹣3,0),∴OE =OB =3,且OC ⊥BE ,∴CE =CB ,∴∠CBE =∠E ,设P (x ,﹣x ﹣3),又∵P 点在线段EM 上,∴﹣3<x <1,则EP =√(x +3)2+(−x −3)2=√2(x +3),BC =√32+32=3√2,由题意知:△PEO 相似于△ABC ,分情况讨论:①△PEO ∽△CBA ,∴EOBA=EP BC , ∴34=√2(x+3)3√2, 解得x =−34,满足﹣3<x <1,此时P 的坐标为(−34,−94);②△PEO ∽△ABC ,∴EO BC =EP BA , ∴3√2=√2(x+3)4, 解得x =﹣1,满足﹣3<x <1,此时P 的坐标为(﹣1,﹣2).综上所述,P 点的坐标为(−34,−94)或(﹣1,﹣2).【点评】本题是二次函数综合题目,考查了二次函数的图象和性质、待定系数法求直线的解析式、平行四边形的性质、相似三角形的性质和判定、等腰三角形的判定与性质等知识;本题综合性较强,具有一定的难度,熟练掌握二次函数的图形和性质,学会用代数的方法求解几何问题.7.(2020•碑林区校级三模)在平面直角坐标系中,O为坐标原点,抛物线L:y=ax2﹣4ax(a>0)与x轴正半轴交于点A.抛物线L的顶点为M,对称轴与x轴交于点D.(1)求抛物线L的对称轴.(2)抛物线L:y=ax2﹣4ax关于x轴对称的抛物线记为L',抛物线L'的顶点为M',若以O、M、A、M'为顶点的四边形是正方形,求L'的表达式.(3)在(2)的条件下,点P在抛物线L上,且位于第四象限,点Q在抛物线L'上,是否存在点P、点Q使得以O、D、P、Q为顶点的四边形是平行四边形,若存在,求出点P坐标,若不存在,请说明理由.【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M,M′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【解析】(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=−−4a2a=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=1 2,∴抛物线L′的解析式为y=−12(x﹣2)2+2=−12x2+2x.(3)如图3中,由题意OD=2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,−12(m ﹣2)2+2(m ﹣2)]或[m +2,−12(m +2)2+2(m +2)],∵PQ ∥OD ,∴12m 2﹣2m =−12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =−12(m +2)2+2(m +2), 解得m =3±√3或1±√3,∴P (3+√3,√3)或(3−√3,−√3)或(1−√3,√3)和(1+√3,−√3),当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,−32),∵点P 在第四象限,∴满足条件的点P 的坐标为(3−√3,−√3)或(1+√3,−√3)或(1,−32).【点评】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.(2020•泰安二模)如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.【分析】(1)把已知点A 、B 代入抛物线y =ax 2+bx +4中即可求解;(2)将二次函数与方程、几何知识综合起来,先求点D 的坐标,再根据三角形全等证明∠PBC =∠DBC ,最后求出直线BP 解析式即可求出P 点坐标;(3)根据平行四边形的判定即可写出点M 的坐标.【解析】如图:(1)∵抛物线y =ax 2+bx +3(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点. ∴{a −b +4=016a +4b +4=0, 解得{a =−1b =3. ∴抛物线的解析式为y =﹣x 2+3x +4.(2)存在.理由如下:y =﹣x 2+3x +4=﹣(x ﹣1.5)2+6.25.∵点D (3,m )在第一象限的抛物线上,∴m =4,∴D (3,4),∵C (0,4)∵OC =OB ,∴∠OBC =∠OCB =45°.连接CD ,∴CD ∥x 轴,∴∠DCB =∠OBC =45°,∴∠DCB =∠OCB ,在y 轴上取点G ,使CG =CD =3,再延长BG 交抛物线于点P ,。
(完整版)二次函数中平行四边形通用解决方法
●探究(1)在图1中,已知线段AB,CD,其中点分别为E,F。
①若A(-1,0),B(3,0),则E点坐标为__________;②若C(-2,2),D(-2,-1),则F点坐标为__________;(2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程;●归纳无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=_________,y=___________;(不必证明)●运用在图2中,一次函数y=x-2与反比例函数的图象交点为A,B。
①求出交点A,B的坐标;②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。
图 2 图 3 图1以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题.1 两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。
1.1 线段中点坐标公式平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,221y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P =221x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +).1.2 平行四边形顶点坐标公式 □ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D .证明: 如图2,连接AC 、BD ,相交于点E .∵点E 为AC 的中点,∴E 点坐标为(2C A x x +,2C A y y +). 又∵点E 为BD 的中点, ∴E 点坐标为(2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D .即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.2 一个基本事实,解题的预备知识如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C .图43 两类存在性问题解题策略例析与反思3.1 三个定点、一个动点,探究平行四边形的存在性问题例1 已知抛物线y=x 2-2x+a (a <0)与y 轴相交于点A ,顶点为M .直线y=21x-a 分别与x 轴、y 轴相交于B 、C 两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M ( ), N ( );(2)如图4,将△NAC 沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连接CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线y=x 2-2x+a (a <0)上是否存在一点P ,使得以P 、A 、C 、N 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,试说明理由.解:(1)M (1,a-1),N (a 34,-a 31);(2)a=-49;S 四边形ADCN =16189; (3)由已知条件易得A (0,a )、C (0,-a )、N (a 34,-a 31).设P (m ,m 2-2m +a ). ①当以AC 为对角线时,由平行四边形顶点坐标公式(解题时熟练推导出),得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23134002,∴⎪⎪⎩⎪⎪⎨⎧-==81525a m . ∴P 1(25,-85); ②当以AN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧==81525a m (不合题意,舍去). ③当以CN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+=--+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧-=-=8321a m . ∴P 2(-21,87). ∴在抛物线上存在点P 1(25,-85)和P 2(-21,87),使得以P 、A 、C 、N 为顶点的四边形是平行四边形.反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解.这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论.图53.2 两个定点、两个动点,探究平行四边形存在性问题例2 如图5,在平面直角坐标系中,抛物线A (-1,0),B (3,0),C (0,-1)三点.(1)求该抛物线的表达式;(2)点Q 在y 轴上,点P 在抛物线上,要使以点Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标.解 :(1)易求抛物线的表达式为y=132312--x x ; (2)由题意知点Q 在y 轴上,设点Q 坐标为(0,t );点P 在抛物线上,设点P 坐标为(m ,132312--m m ). 尽管点Q 在y 轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了. ①当以AQ 为对角线时,由四个顶点的横坐标公式得:-1+0=3+m ,∴m=-4,∴P 1(-4,7);②当以BQ 为对角线时,得:-1+m=3+0,∴m=4,∴P 2(4,35); ③当以AB 为对角线时,得:-1+3=m+0,∴m=2,∴P 3(2,-1).综上,满足条件的点P 为P 1(-4,7)、P 2(4,35)、P 3(2,-1). 反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在x 轴(y 轴)或对称轴或某一定直线上.设出抛物线上的动点坐标,另一个动点若在x 轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y 轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关的公式.本例中点Q 的纵坐标t 没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的三条线段为对角线分类,分三种情况讨论.例3 如图6,在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.解:(1)易求抛物线的解析式为y=21x 2+x-4; (2)s=-m 2-4m (-4<m <0);s 最大=4(过程略);(3)尽管是直接写出点Q 的坐标,这里也写出过程.由题意知O (0,0)、B (0,-4). 由于点Q 是直线y=-x 上的动点,设Q (s ,-s ),把Q 看做定点;设P (m ,21m 2+m -4). ①当以OQ 为对角线时,⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s=-252±.∴Q 1(-2+52,2-52),Q 2(-2-52,2+52);②当以BQ 为对角线时,⎪⎩⎪⎨⎧--=-+++=+s m m s m 44210002 ∴s 1=-4,s 2=0(舍).∴Q 3(-4,4);③当以OB 为对角线时,⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s 1=4,s 2=0(舍).∴Q 4(4,-4).综上,满足条件的点Q 为Q 1(-2+52,2-52)、Q 2(-2-52,2+52)、Q 3(-4,4)、Q 4(4,-4).反思:该题中的点Q 是直线y =-x 上的动点,设动点Q 的坐标为(s ,-s ),把Q 看做定点,就可根据平行四边形顶点坐标公式列方程组了.4 问题总结这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类,分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组).这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想.如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO 上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标。
九年级数学上册复习专题17二次函数中平行四边形与等腰三角形存在性问题
专题17二次函数中平行四边形与等腰三角形存在性问题以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为1 两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。
1.1 线段中点坐标公式平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),则线段AB的中点坐标为(221xx+,221yy+).证明如图1,设AB中点P的坐标为(x P,y P).由x P-x1=x2-x P,得x P=221xx+,同理y P=221yy+,所以线段AB的中点坐标为(221xx+,221yy+).1.2 平行四边形顶点坐标公式□ABCD的顶点坐标分别为A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D),则:x A+x C=x B+x D;y A+y C=y B+y D.证明:如图2,连接AC、BD,相交于点E.∵点E为AC的中点,∴E点坐标为(2CAxx+,2CAyy+).又∵点E为BD的中点,∴E点坐标为(2DBxx+,2DByy+).∴x A+x C=x B+x D;y A+y C=y B+y D.总结即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.图42.1 三个定点、一个动点,探究平行四边形的存在性问题题目例1 已知抛物线y=x 2-2x+a (a <0)与y 轴相交于点A ,顶点为M .直线y=21x -a 分别与x 轴、y 轴相交于B 、C 两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M ( ), N ( ); (2)如图4,将△NAC 沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连接CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线y=x 2-2x+a (a <0)上是否存在一点P ,使得以P 、A 、C 、N 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,试说明理由.解答解:(1)M (1,a -1),N (a 34,-a 31);(2)a=-49;S 四边形ADCN =16189;(3)由已知条件易得A (0,a )、C (0,-a )、N (a 34,-a 31).设P (m ,m 2-2m +a ). ①当以AC 为对角线时,由平行四边形顶点坐标公式(解题时熟练推导出),得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+am m a a a m a 23134002,∴⎪⎪⎩⎪⎪⎨⎧-==81525a m . ∴P 1(25,-85); ②当以AN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+am m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧==81525a m (不合题意,舍去). ③当以CN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+=--+=+am m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧-=-=8321a m . ∴P 2(-21,87). ∴在抛物线上存在点P 1(25,-85)和P 2(-21,87),使得以P 、A 、C 、N 为顶点的四边形是平行四边形.反思 已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解.这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论.解 :(1)易求抛物线的表达式为y=132312--x x ; (2)由题意知点Q 在y 轴上,设点Q 坐标为(0,t );点P 在抛物线上, 设点P 坐标为(m,132312--m m ).尽管点Q 在y 轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了.①当以AQ 为对角线时,由四个顶点的横坐标公式得:-1+0=3+m , ∴m=-4,∴P 1(-4,7);②当以BQ 为对角线时,得:-1+m=3+0,∴m=4,∴P 2(4,35); ③当以AB 为对角线时,得:-1+3=m+0,∴m=2,∴P 3(2,-1). 综上,满足条件的点P 为P 1(-4,7)、P 2(4,35)、P 3(2,-1).这种题型往往特殊,一个动点在抛物线上,另一个动点在x 轴(y 轴)或对称轴或某一定直线上.设图6题目例3 如图6,在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.解答解:(1)易求抛物线的解析式为y=21x 2+x -4; (2)s=-m 2-4m (-4<m <0);s 最大=4(过程略);(3)尽管是直接写出点Q 的坐标,这里也写出过程.由题意知O (0,0)、B (0,-4). 由于点Q 是直线y=-x 上的动点,设Q (s ,-s ),把Q 看做定点;设P (m ,21m 2+m -4). ①当以OQ 为对角线时, ⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s=-252±.∴Q 1(-2+52,2-52),Q 2(-2-52,2+52);②当以BQ 为对角线时, ⎪⎩⎪⎨⎧--=-+++=+s m m s m 44210002 ∴s 1=-4,s 2=0(舍). ∴Q 3(-4,4);③当以OB 为对角线时, ⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s 1=4,s 2=0(舍). ∴Q 4(4,-4).综上,满足条件的点Q 为Q 1(-2+52,2-52)、Q 2(-2-52,2+52)、Q 3(-4,4)、Q 4(4,-4).反思该题中的点Q 是直线y =-x 上的动点,设动点Q 的坐标为(s ,-s ),把Q 看做定点,就可根据平行四边形顶点坐标公式列方程组了.4 问题总结这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类,分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组).这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想.1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1(0)和点B与y轴交于点C(0(3),抛物线的对称轴与x轴交于点D((1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M(N同时停止运动,问点M(N运动到何处时,△MNB面积最大,试求出最大面积.3.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A((1(0((B(3(0)两点,与y轴相交于点C(0((3(((1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.4.如图,抛物线y=ax 2+bx+2交x 轴于点A(-3,0)和点B(1,0),交y 轴于点C (1)求这个抛物线的函数表达式.(2)点D 的坐标为(-1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且∠MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.5.已知:如图,抛物线y =ax 2+bx +3与坐标轴分别交于点A ,B (﹣3,0),C (1,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线解析式;(2)当点P 运动到什么位置时,△P AB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE ∥x 轴交抛物线于点E ,连接DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求点P 的坐标;若不存在,说明理由.6.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使(POB 与(POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且(ABQ 为直角三角形,求点Q 的坐标.7.如图1,抛物线y=ax 2+2x+c 与x 轴交于A((4(0((B(1(0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C(D((1)求直线和抛物线的表达式;(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E(F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M(N 的坐标;若不存在,请说明理由.8.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得(CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得(AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.9.如图,已知抛物线y=(14x 2(12x+2与x 轴交于A(B 两点,与y 轴交于点C (1)求点A(B(C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,求以A(B(E(F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M ,使得(ACM 是等腰三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A ((1(0((B (4(0((C (0((4)三点,点P 是直线BC 下方抛物线上一动点. (1)求这个二次函数的解析式;(2)是否存在点P ,使△POC 是以OC 为底边的等腰三角形?若存在,求出P 点坐标;若不存在,请说明理由; (3)动点P 运动到什么位置时,△PBC 面积最大,求出此时P 点坐标和△PBC 的最大面积.11.如图,在平面直角坐标系中,抛物线2y ax bx c =++(a≠0)与y 轴交与点C (0,3),与x 轴交于A 、B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x=1. (1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设(MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使(MBN 为直角三角形?若存在,求出t 值;若不存在,请说明理由.12.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标; (3)点M 也是直线l 上的动点,且(MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.1.如图,已知抛物线y=ax 2+bx +c (a ≠0)经过点A (3,0),B (﹣1,0),C (0,﹣3). (1)求该抛物线的解析式;(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.2.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标. 3.综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC( (1)求抛物线的函数表达式; (2)(BCD 的面积等于(AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.4.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.5.如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y kx n =+与y 轴交于点C ,与抛物线2y x bx c =-++的另一个交点为D ,已知(1,0)(5,6)A D --,,P 点为抛物线2y x bx c =++﹣上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作PE ∥x 轴交直线l 于点E ,作//PF y 轴交直线l 于点F ,求PE PF +的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.6.如图,已知抛物线y=12x2+bx+c与直线AB:y=12x+12相交于点A(1,0)和B(t,52),直线AB交y轴于点C.(1)求抛物线的解析式及其对称轴;(2)点D是x轴上的一个动点,连接BD、CD,请问△BCD的周长是否存在最小值?若存在,请求出点D的坐标,并求出周长最小值;若不存在,请说明理由.(3)设点M是抛物线对称轴上一点,点N在抛物线上,以点A、B、M、N为顶点的四边形是否可能为矩形?若能,请求出点M的坐标,若不能,请说明理由.7.如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△P AB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式.(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.9.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.10.如图,抛物线经过A(﹣1,0),B(5,0),C(0,52)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.。
(独家整理)二次函数中平行四边形存在性问题
一、回顾中点坐标公式
1.线段的中点公式
平面直角坐标系中,点A坐标为(x1,y1),点B坐标为
x1 + x2 y1 + y2 , ). (x2,y2),则线段AB的中点P的坐标为 ( 2 2
例1 如图,已知点A (-2,1),
B (4,3),则线段AB的中点P
(1,2) 的坐标是________.
②点B与点P相对 ③点B与点Q相对 0+m= 0+a -4+ 0.5m2+m-4 = 0-a 0+a= 0+m -4-a= 0+ 0.5m2+m-4
a = - 2? 2 5
a1= -4
a2= 0(舍)
几何画板演示
Q1 (- 2 + 2 5, 2 - 2 5), Q2 ( - 2 - 2 5, 2 + 2 5), Q3 ( - 4, 4), Q4 (4, - 4)
例2. 如图,平面直角坐标中,y = - 0.25x2 + x与x轴相交于点B (4,0),点Q在 抛物线的对称轴上,点P在抛物线上,且以点O、B、Q、D为顶点的四边形
是平行四边形,写出相应的点P的坐标. 已知B (4,0),O(0,0) ,设Q (2, a),P(m, -0.25m2+m).
①点B与点O相对 ②点B与点Q相对 ③点B与点P相对 4+0= 2+m 4+2= 0+m 4+m= 0+2 m= 2 m= 6 m=-2
①点B与点O相对 4+0= 2+m m= 2
0+0= a-0.25m2+m
4+2= 0+m 0+ a = 0-0.25m2+m 4+m= 0+2 0-0.25m2+m= 0+a
二次函数与平行四边形有关的问题(解析版)
二次函数与平行四边形有关的问题【典例1】已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.【答案】(1)yx2﹣2x﹣3;(2)满足条件的点E的坐标为(0,3)、(0,﹣10)、(0,﹣310)、(0,﹣43);(3)存在,P(﹣2,0)、Q(2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).【解析】【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.【详解】解:(1)∵抛物线的顶点为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∴a=1,∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴B(3,0),A(﹣1,0),令x=0,则y=﹣3,∴C(0,﹣3),∴AC,设点E(0,m),则AE CE=|m+3|,∵△ACE是等腰三角形,∴①当AC=AE∴m=3或m=﹣3(点C的纵坐标,舍去),∴E(3,0),②当AC=CE=|m+3|,∴m=﹣3∴E(0,﹣)或(0,﹣3),③当AE=CE|m+3|,∴m=﹣43,∴E(0,﹣43),即满足条件的点E的坐标为(0,3)、(0,﹣)、(0,﹣3)、(0,﹣43);(3)如图,存在,∵D(1,﹣4),∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∴点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∴t =1+22或t =1﹣22, ∴Q (1+22,4)或(1﹣22,4),分别过点D ,Q 作x 轴的垂线,垂足分别为F ,G ,∵抛物线y =x 2﹣2x ﹣3与x 轴的右边的交点B 的坐标为(3,0),且D (1,﹣4), ∴FB =PG =3﹣1=2,∴点P 的横坐标为(1+22)﹣2=﹣1+22或(1﹣22)﹣2=﹣1﹣22, 即P (﹣1+22,0)、Q (1+22,4)或P (﹣1﹣22,0)、Q (1﹣22,4).【典例2】如图,抛物线2y x bx c =-++与直线122y x =+交于,C D 两点,其中点C 在y 轴上,点D 的坐标为7(3,)2。
二次函数与平行四边形存在性问题专题讲义(对点法——一招制胜)
向右平移6个单位长度向上平移2个单位长度二次函数与平行四边形存在性问题专题讲义一、知识链接:点P(x,y)的平移方式平移后点的坐标规律沿x轴平移向右平移a个单位长度(x+a,y)左右平移,横坐标左减右加,纵坐标不变向左平移a个单位长度(x-a,y)沿y轴平移向上平移b 个单位长度(x,y+b)上下平移,横坐标不变,纵坐标上加下减向下平移b 个单位长度(x,y-b)例1:如下图,线段AB平移得到线段BA'',已知A(-2,2),B(-3,-1)B'(3,1)则:点A'的坐标是例2.在平行四边形ABCD中,其中已知A (-1,0),B (1,-2), C (3,1),则D点坐标?二、知识迁移例3:如图,在平面直角坐标系中,▱ABCD的顶点坐标分别为()11,yxA、()22,yxB、()33,yxC、()44,yxD,已知其中任意3个顶点的坐标,如何确定第4个顶点的坐标?∵AB∥CD,AB=CD∴边CD可看成由边BA向右、向上平移n个单位长度得到三、对点法即:平面直角坐标系中,平行四边形两组相对顶点的横坐标之和相等,纵坐标之和也相等.①若点A与点B相对,则点D与点C相对②若点A与点D相对,则点B与点C相对③若点A与点C相对,则点B与点D相对四、典型例题学习例4.如图,平面直角坐标系中,已知A(-1,0),B(1,-2),C(3,1)点D是平面内一动点,若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是五、小试牛刀1.抛物线中的平行四边形存在性问题(“三定一动”)例5.已知,抛物线2x y 2++-=x 与x 轴的交点为A 、B,与y 轴的交点为C,点M 是平面内一点,判断有几个位置能使以点M 、A 、B 、C 为顶点的四边形是平行四边形,请写出相应的坐标.思路点拨:先求出A (-1,0)B (2,0)C (0,2)设点M (x,y )①点A 与点B 相对⎩⎨⎧+=++=+-y x 200021 ∴⎩⎨⎧-==21y x②点A 与点C 相对⎩⎨⎧+=++=+-y x 020201 ∴⎩⎨⎧=-=23y x③点A 与点M 相对⎩⎨⎧+=++=+-200021y x ∴⎩⎨⎧==23y x∴ M (1,-2)或(-3,2)或(3,2)2.抛物线中的平行四边形存在性问题(“两定两动”)例6.如图,平面直角坐标系中,x x +-=241y 与x 轴相交于点B(4,0),点Q 在抛物线的对称轴上,点P 在抛物线上,且以点O 、B 、Q 、P 为顶点的四边形是平行四边形,写出相应的点P 的坐标.思路点拨:此题与上一题方法一样,但需设出两动点坐标设点P (m ,m m +-241), Q(2,a)下面请您自己列出方程并解答:变式题:1.如图,平面直角坐标系中,421y 2-+=x x 与y 轴相交于点B(0,-4),点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,写出相应的点Q 的坐标.变试题:2.如图,平面直角坐标中,32x y 2--=x 与x 轴相交于点A(-1,0),点C 的坐标是(2,-3),点P 抛物线上的动点,点Q 是x 轴上的动点,判断有几个位置能使以点A 、C 、P 、Q 为顶点的四边形为平行四边形,写出相应的点Q 的坐标.六、方法分享二次函数综合问题中,平行四边形的存在性问题,无论是“三定一动”,还是“两定两动”,甚至是“四动”问题,能够一招制胜的方法就是“对点法”,需要分三种情况,得出三个方程组求解。
二次函数中平行四边形通用与解决方法
二次函数中平行四边形通用与解决方法平行四边形是一种特殊的四边形,具有两组相对平行的边和相等的内角。
在二次函数中,我们可以通过确定二次函数的相关参数,来绘制出平行四边形。
一、二次函数的一般形式在二次函数中,一般形式可以表示为:$y = ax^2 + bx + c$其中,a表示二次函数的开口方向和大小,正数表示开口向上,负数表示开口向下;b表示二次函数的平移,正数表示向右平移,负数表示向左平移;c表示二次函数的平移,正数表示向上平移,负数表示向下平移。
二、平行四边形的定义平行四边形是指具有两组相对平行的边和相等的内角的四边形。
在二次函数图像中,我们可以通过调整参数来使函数图像具有平行四边形的特征。
三、绘制平行四边形的步骤1.确定平行四边形的基础线段平行四边形的相对平行边为基础线段。
通过确定基础线段的两个端点,可以确定平行四边形的位置。
2.确定平行四边形的高度平行四边形的高度决定了函数图像在y轴上的平移。
通过调整参数c的值可以改变二次函数的平移,从而确定平行四边形的高度。
3.确定平行四边形的宽度平行四边形的宽度是基础线段在x轴上的长度。
通过调整参数a和b的值可以改变二次函数的开口方向和大小,从而确定平行四边形的宽度。
4.绘制函数图像根据确定的基础线段、高度和宽度,我们可以得到平行四边形对应的二次函数图像。
使用坐标轴绘制出函数图像,可以得到平行四边形的形状。
四、解决方法1.已知平行四边形的形状,求解对应的二次函数表达式如果已知平行四边形的形状,可以通过观察其特征来确定对应的二次函数表达式。
根据平行四边形的基础线段、高度和宽度确定参数a、b和c的值,从而得到二次函数的表达式。
2.已知二次函数的表达式,求解对应平行四边形的形状如果已知二次函数的表达式,可以通过分析参数a、b和c的值来确定对应平行四边形的形状。
根据参数a的正负确定开口方向,根据参数b和c的值确定平移和缩放,从而确定平行四边形的形状。
3.图形推导法通过观察二次函数图像的特征,可以推导出对应平行四边形的形状。
二次函数中平行四边形与解决方法
二次函数中平行四边形与解决方法平行四边形是一个具有两对相对平行且相等长度的边的四边形。
二次函数是一个变量的平方的系数为非零的多项式。
在二次函数中,我们可以通过将函数转化为标准或一般形式来找到平行四边形的解决方法。
一、标准形式的二次函数标准形式的二次函数可以表示为 f(x) = ax^2 + bx + c,其中a、b和c都是实数且a不等于0。
通过这种形式,我们可以很容易地确定二次函数的顶点和x轴的交点。
要找到平行四边形的解决方法,我们可以首先计算二次函数的顶点坐标。
函数的顶点坐标可以通过公式x=-b/2a和y=f(x)来计算。
这对应于二次函数图像的顶点的横纵坐标。
然后,我们可以根据横坐标上的两个不同点来确定平行四边形的两条平行边。
这些点可以通过将x值替换为不同的值并计算出相应的y值得到。
最后,我们可以使用顶点坐标和平行边确定平行四边形的其他两条边。
根据平行四边形的性质,我们可以确定这两条边的长度等于顶点到平行边的垂直距离。
二、一般形式的二次函数一般形式的二次函数可以表示为 f(x) = ax^2 + bx + c,其中a、b和c都是实数且a不等于0。
通过这种形式,我们可以很容易地确定二次函数的根和顶点。
要找到平行四边形的解决方法,我们可以首先求解二次函数的根。
根可以通过将函数设置为0,然后使用求根公式或配方法来计算。
根对应于二次函数图像与x轴的交点。
然后,我们可以根据根来确定平行四边形的顶点。
顶点的横坐标为根的平均值,即x=(x1+x2)/2,其中x1和x2是根。
纵坐标可以通过将横坐标代入二次函数中计算得到,即y=f(x)。
接下来,我们可以通过将顶点坐标代入二次函数中,计算出对应的y 值,从而得到平行四边形的两条平行边。
最后,我们可以根据平行四边形的性质,使用顶点坐标和平行边确定另外两条边的长度。
三、实例示范为了更好地理解如何使用二次函数来解决平行四边形问题,我们来看一个具体的示例。
假设我们有一个二次函数f(x)=2x^2-4x+3、首先,我们可以将它转化为标准形式,以便更容易找到顶点和根。
二次函数存在性问题(菱形、平行四边形、矩形)
今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。
二次函数中构造平行四边形的解决策略
二次函数中构造平行四边形的解决策略作者:杨少辉来源:《新课程·中旬》2019年第02期摘要:二次函数中构造平行四边形问题是中考的热点,也是教学的难点。
所以,在初中数学教学中,教师要引导学生掌握解决这类问题的科学的、高效的策略,从而形成学生良好的解题习惯,并提高学生的解题正确率,以实现有效的数学教学。
关键词:初中数学;二次函数;平行四边形;解决策略平行四边形的知识内容比较简单,二次函数只要掌握其基本性质和图像的画法也不算复杂,但是一旦二者相结合,就难免给学生解题造成困扰。
只要学生对平行四边形的性质、判定定理掌握稍有偏差,或者学习二次函数时没有理解透彻,那么在解决“二次函数中平行四边形存在性问题”时可以说是阻碍重重。
所以,在解决这类问题时,教师首先要保证学生将平行四边形、二次函数的基础知识熟稔于心。
然后在此基础上再从解题步骤、解题方法等方面出发给予学生科学的指导,这样才能提高学生的解题能力。
故而,本文将从以下几点出发阐述二次函数中构造平行四边形的解决策略。
一、扎实基础,做好解题准备在数学学习中,基础知识是解决问题的必要工具,也是解题思路的切入点。
比如在面对二次函数中平行四边形存在性问题时,学生首先要掌握二次函数的基本性质,可以根据函数画出图像,或者根据图像将函数补充完整。
另外,学生还要清楚平行四边形的基础知识,要明确在二次函数图像中怎样才能构造平行四边形。
所以,在解决二次函数中平行四边形存在性问题时,教师首先要引领学生理清关于平行四边形和二次函数的基础知识,然后再对此类问题进行深入的探究。
正所谓“工欲善其事,必先利其器”,只有先掌握基础知识,掌握解题的基本工具,才有望成功地解决问题。
例如:为了帮助学生在解决二次函数中构造平行四边形的问题时能快速找到切入点,并能准确地分析题目,我以设疑的形式引领学生复习关于平行四边形和二次函数的基础知识。
比如:(1)平行四边形有什么性质?(2)平行四边形的判定定理有哪些?(3)写出二次函数的一般式和顶点式,并表示出顶点坐标、对称轴以及增减性……然后我让学生将以上问题的答案整理到一张白纸上,以备解题之用。
二次函数中的平行四边形问题-新版.docx
学习过程一、复习预习(一)利用待定系数法求抛物线解析式的三种常用形式:(1)【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解;(2)【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解;(3)【交点式】已知抛物线与轴的交点的坐标时,通常设解析式为 。
(二)抛物线上两个点A (x 1,y ),B (x 2,y )之间的关系: (1)如果两点关于对称轴对称,则有对称轴2x 21x x +=;(2)两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P ,则由勾股定理可得:221221)()(y y x x PQ -+-=练一练:已知A (0,5)和B (-2,3),则AB = 。
(3)中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫⎝⎛++222121y y ,x x 。
练一练:已知A (0,5)和B (-2,3),则线段AB 的中点坐标是(4)如图:PG ∥X 轴,QG ∥Y 轴,P 点的横坐标为 ,G 点的横坐标为 ,纵坐标为 ,Q 点的纵坐标为 ,则线段PG= ,QG= 。
(三)求三角形的面积:(1)直接用面积公式计算;(2)割补法;(3)铅垂高法;如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:S△ABC=1 2 ah(四)二次函数中三角形面积、周长的存在性问题解题思路:(1)如果是一个三角形面积为一个三角形面积的多少倍,则分别表示出每个三角形的面积去求解;如果是一个三角形面积为固定值,则用含有未知数的式子去表示面积去求解;如果是三角形周长最小,则做对称点去求解;如果是三角形面积最大,则划归为二次函数最值问题去求解。
二次函数动点平行四边形问题方法
二次函数动点平行四边形问题方法
解决二次函数中的动点平行四边形问题,可以按照以下步骤进行:
1. 确定二次函数的表达式:首先需要确定二次函数的表达式,可以根据已知的顶点坐标或一般式来求解。
2. 确定动点的坐标:根据平行四边形的性质,动点的坐标可以通过平移来得到。
可以先确定平行四边形的一个顶点坐标,然后通过平移得到其他顶点的坐标。
3. 求解平行四边形的面积:根据平行四边形的性质,可以计算出每个三角形的面积,然后将它们相加得到平行四边形的面积。
4. 求解平行四边形的周长:可以根据平行四边形的性质,通过计算相邻两边之和来得到平行四边形的周长。
例如,如果二次函数的表达式为y=x^2-2x+1,动点A的坐标为(0,1),B点的坐标为(2,1),C点的坐标为(1,0),求平行四边形ABCD的面积和周长。
首先,可以画出函数的图像和三个点的位置,然后根据平行四边形的性质,得到D点的坐标为(3,1)。
然后,可以计算出三角形ABC的面积为1/2,三角形ABD的面积为1/2,所以平行四边形ABCD的面积为1。
最后,可以计算出平行四边形ABCD的周长为4。
通过这种方法,可以解决二次函数中动点平行四边形的问题。
二次函数中构造平行四边形的解决策略
课程篇二次函数中构造平行四边形的解决策略杨少辉(汉中市实验中学,陕西汉中)平行四边形的知识内容比较简单,二次函数只要掌握其基本性质和图像的画法也不算复杂,但是一旦二者相结合,就难免给学生解题造成困扰。
只要学生对平行四边形的性质、判定定理掌握稍有偏差,或者学习二次函数时没有理解透彻,那么在解决“二次函数中平行四边形存在性问题”时可以说是阻碍重重。
所以,在解决这类问题时,教师首先要保证学生将平行四边形、二次函数的基础知识熟稔于心。
然后在此基础上再从解题步骤、解题方法等方面出发给予学生科学的指导,这样才能提高学生的解题能力。
故而,本文将从以下几点出发阐述二次函数中构造平行四边形的解决策略。
一、扎实基础,做好解题准备在数学学习中,基础知识是解决问题的必要工具,也是解题思路的切入点。
比如在面对二次函数中平行四边形存在性问题时,学生首先要掌握二次函数的基本性质,可以根据函数画出图像,或者根据图像将函数补充完整。
另外,学生还要清楚平行四边形的基础知识,要明确在二次函数图像中怎样才能构造平行四边形。
所以,在解决二次函数中平行四边形存在性问题时,教师首先要引领学生理清关于平行四边形和二次函数的基础知识,然后再对此类问题进行深入的探究。
正所谓“工欲善其事,必先利其器”,只有先掌握基础知识,掌握解题的基本工具,才有望成功地解决问题。
例如:为了帮助学生在解决二次函数中构造平行四边形的问题时能快速找到切入点,并能准确地分析题目,我以设疑的形式引领学生复习关于平行四边形和二次函数的基础知识。
比如:(1)平行四边形有什么性质?(2)平行四边形的判定定理有哪些?(3)写出二次函数的一般式和顶点式,并表示出顶点坐标、对称轴以及增减性……然后我让学生将以上问题的答案整理到一张白纸上,以备解题之用。
通过这一过程,学生对平行四边形和二次函数的相关知识将会有更清晰、更深刻的认识,从而容易抓住解题的切入点,这是在解决二次函数中平行四边形存在性问题之前必要走好的一步。
人教版初三数学上册二次函数中的平行四边形存在性问题两定两动型.doc
二次函数中的平行四边形存在性问题(两定两动型)教学设计旬阳县城关一中黄涛目标:1、通过典型例题及其变式训练,进一步巩固二次函数中的平行四边形及特殊平行四边形存在性问题的解题思路和方法,体会数形结合和分类讨论思想的应用过程。
2 、通过本节课的学习,感受一题多解的过程及方法,提高学生分析问题和解决问题的能力。
重点:解决平行四边形存在性问题的一般方法及思路。
难点:根据条件求平行四边形的顶点中动点坐标的求解。
过程:一、典型例题如图,抛物线经过A(﹣1,0),B(5,0),C(0, 5)三点.2(1)求抛物线的解析式;(2)点M为x 轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.问题1:如何用待定系数法确定适当的解析式形式?①抛物线上已知三点,可用一般式y=ax2+bx+c;②因为在已知的三点中,A、B两点为抛物线与x 轴交点,则可用交点式y=a(x-x 1)(x-x 2) 。
问题2:如何借助一定的方法通过画图的方式找到M、N点?先确认已知点A、C,连接A C,根据四边形顶点的无序性利用分类讨论思想分别以AC为边和以AC 为对角线两种情况进行作图讨论,作图依据平行四边形对边平行且相等的性质进行。
问题3:通过怎样的方法和手段获取点N的坐标?可利用以下四种方法或依据得出符合条件点N的坐标。
①依据对称性求点N坐标②利用三角形全等及数形结合思想求点N坐标③依据平行四边形对边平行且相等利用平移求点N坐标④依据抛物线解析式设点N坐标为(m,12m 2﹣2m﹣52),利用数形结合思想借助N点与C 点纵坐标相等的原则列得绝对值方程,将所有符合条件的点N 及其坐标完全覆盖得解,注意取舍(这是本题最简方法)。
解:(1)解法1:设抛物线的解析式为y=a(x+1)(x-5) (a≠0),将C(0, 52)代入得:a(0+1)(0-5)= 52解得:a= 1 2∴二次函数的解析式为:y= 1(x+1)(x-5) 即y=2 1x22﹣2x﹣52解法2:设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,5- )三点在抛物线上,2∴,解得.∴抛物线的解析式为:y= 12x2﹣2x﹣2﹣2x﹣52(2) 解法1:存在,理由如下:①以A C为边时,当N点位于x 轴下方时,若四边形ACNM为平行四边形,则 C N∥AM ∴N与C纵坐标相等∴点N与点C关于抛物线对称轴直线x=2 对称∴N(4, 52)当点N在x 轴上方时,如图,过点N2作N2D⊥x 轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC= 525 ,即N2点的纵坐标为2.∴1252m﹣2m﹣=252,解得x=2+ 或x=2﹣,∴N 2(2+ ,52 ),N 3(2﹣,52).②当AC为对角线时,根据 C N∥AM,过C点作x轴平行线与抛物线交点和N1 重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●探究(1)在图1中,已知线段AB,CD,其中点分别为E,F。
①若A(-1,0),B(3,0),则E点坐标为__________;②若C(-2,2),D(-2,-1),则F点坐标为__________;(2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程;●归纳无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=_________,y=___________;(不必证明)●运用在图2中,一次函数y=x-2与反比例函数的图象交点为A,B。
①求出交点A,B的坐标;②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。
图 2 图 3 图1以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题.1 两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。
1.1 线段中点坐标公式平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,221y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P =221x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +).1.2 平行四边形顶点坐标公式 □ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D .证明: 如图2,连接AC 、BD ,相交于点E .∵点E 为AC 的中点,∴E 点坐标为(2C A x x +,2C A y y +). 又∵点E 为BD 的中点, ∴E 点坐标为(2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D .即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.2 一个基本事实,解题的预备知识如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C .图43 两类存在性问题解题策略例析与反思3.1 三个定点、一个动点,探究平行四边形的存在性问题例1 已知抛物线y=x 2-2x+a (a <0)与y 轴相交于点A ,顶点为M .直线y=21x-a 分别与x 轴、y 轴相交于B 、C 两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M ( ), N ( );(2)如图4,将△NAC 沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连接CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线y=x 2-2x+a (a <0)上是否存在一点P ,使得以P 、A 、C 、N 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,试说明理由.解:(1)M (1,a-1),N (a 34,-a 31);(2)a=-49;S 四边形ADCN =16189; (3)由已知条件易得A (0,a )、C (0,-a )、N (a 34,-a 31).设P (m ,m 2-2m +a ). ①当以AC 为对角线时,由平行四边形顶点坐标公式(解题时熟练推导出),得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23134002,∴⎪⎪⎩⎪⎪⎨⎧-==81525a m . ∴P 1(25,-85); ②当以AN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧==81525a m (不合题意,舍去). ③当以CN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+=--+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧-=-=8321a m . ∴P 2(-21,87). ∴在抛物线上存在点P 1(25,-85)和P 2(-21,87),使得以P 、A 、C 、N 为顶点的四边形是平行四边形.反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解.这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论.图53.2 两个定点、两个动点,探究平行四边形存在性问题例2 如图5,在平面直角坐标系中,抛物线A (-1,0),B (3,0),C (0,-1)三点.(1)求该抛物线的表达式;(2)点Q 在y 轴上,点P 在抛物线上,要使以点Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标.解 :(1)易求抛物线的表达式为y=132312--x x ; (2)由题意知点Q 在y 轴上,设点Q 坐标为(0,t );点P 在抛物线上,设点P 坐标为(m ,132312--m m ). 尽管点Q 在y 轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了. ①当以AQ 为对角线时,由四个顶点的横坐标公式得:-1+0=3+m ,∴m=-4,∴P 1(-4,7);②当以BQ 为对角线时,得:-1+m=3+0,∴m=4,∴P 2(4,35); ③当以AB 为对角线时,得:-1+3=m+0,∴m=2,∴P 3(2,-1).综上,满足条件的点P 为P 1(-4,7)、P 2(4,35)、P 3(2,-1). 反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在x 轴(y 轴)或对称轴或某一定直线上.设出抛物线上的动点坐标,另一个动点若在x 轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y 轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关的公式.本例中点Q 的纵坐标t 没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的三条线段为对角线分类,分三种情况讨论.例3 如图6,在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.解:(1)易求抛物线的解析式为y=21x 2+x-4; (2)s=-m 2-4m (-4<m <0);s 最大=4(过程略);(3)尽管是直接写出点Q 的坐标,这里也写出过程.由题意知O (0,0)、B (0,-4). 由于点Q 是直线y=-x 上的动点,设Q (s ,-s ),把Q 看做定点;设P (m ,21m 2+m -4). ①当以OQ 为对角线时,⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s=-252±.∴Q 1(-2+52,2-52),Q 2(-2-52,2+52);②当以BQ 为对角线时,⎪⎩⎪⎨⎧--=-+++=+s m m s m 44210002 ∴s 1=-4,s 2=0(舍).∴Q 3(-4,4);③当以OB 为对角线时,⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s 1=4,s 2=0(舍).∴Q 4(4,-4).综上,满足条件的点Q 为Q 1(-2+52,2-52)、Q 2(-2-52,2+52)、Q 3(-4,4)、Q 4(4,-4).反思:该题中的点Q 是直线y =-x 上的动点,设动点Q 的坐标为(s ,-s ),把Q 看做定点,就可根据平行四边形顶点坐标公式列方程组了.4 问题总结这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类,分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组).这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想.如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO 上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.如图,在平面直角坐标系xOy中,直线y=2x+4与y轴交于A点,与x轴交于B点,抛物线C1:y=﹣x2+bx+c过A、B两点,与x轴另一交点为C.(1)求抛物线解析式及C点坐标.(2)向右平移抛物线C1,使平移后的抛物线C2恰好经过△ABC的外心,抛物线C1、C2相交于点D,求四边形AOCD的面积.(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为抛物线C1上一点,是否存在以点M、Q、P、B为顶点的四边形为平行四边形?若存在,直接写出P点坐标;不存在,请说明理由.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.。