二次函数与平行四边形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中构建平行四边形的存在性问题
已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)
1.如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
2、如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.
(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
3、如图,在平面直角坐标系中,抛物线y =x 2+mx +n 经过点A (3,0)、B (0,-3),点
P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t . (1)分别求出直线AB 和这条抛物线的解析式.
(2)若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积. (3)是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若
存在,请直接写出点P 的横坐标;若不存在,请说明理由.
(二)、已知两个定点,再找两个点构成平行四边形
①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等) 1.如图甲,在平面直角坐标系中,A 、B 的坐标分别为(4,0)、(0,3),抛物线y=34
x 2
+bx+c 经过点B ,且对称轴是直线x=﹣
52
. (1)求抛物线对应的函数解析式;
(2)将图甲中△ABO 沿x 轴向左平移到△DCE (如图乙),当四边形ABCD 是菱形时,请说明点C 和点D 都在该抛物线上.
(3)在(2)中,若点M 是抛物线上的一个动点(点M 不与点C 、D 重合),经过点M 作MN ∥y 轴交直线CD 于N ,设点M 的横坐标为t ,MN 的长度为l ,求l 与t 之间的函数解析式,并求当t 为何值时,以M 、N 、C 、E 为顶点的四边形是平行四边形.(参考公式:抛物线y=ax 2+bx+c (a≠0)的
顶点坐标为(b 2a -,24ac b 4a -),对称轴是直线x=b 2a
-.)
②两定点连接的线段没确定为平行四边形的边时,则这条线段可能为平行四边形的边或对角线 1.如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A (-2,0)、 B (0,1)、C (d ,2)。 (1)求d 的值;
(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B′、C′正好落在某反比例函
数图像上。请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线B′C′交y 轴于点G 。问是否存在x 轴上的点M 和反比例函数图像上的
点P ,使得四边形PGMC′是平行四边形。如果存在,请求出点M 和点P 的坐标;如果不存在,请说明理由。
2、如图,在直角梯形OABC 中,CB ∥OA ,90OAB ∠=
,点O 为坐标原点,点A 在x 轴的正半轴上,对角线OB ,AC 相交于点M ,4OA AB ==,2OA CB =. (1)线段OB 的长为 ,点C 的坐标为 ; (2)求△OCM 的面积;
(3)求过O ,A ,C 三点的抛物线的解析式; (4)若点E 在(3)的抛物线的对称轴上,点F 为该 抛物线上的点,且以A ,O ,F ,E 四点为顶点的四边形 为平行四边形,求点F 的坐标.
3、 如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,
其中12x x ,是方程24120x x --=的两个根。 (1)求抛物线的解析式;
(2)点M 是线段AB 上的一个动点,过点M 作MN ∥BC ,
交AC 于点N ,连接CM ,当CMN △的面积最大时,求点M 的坐标; (3)点()4,D k 在(1)中抛物线上,点E 为抛物线上一动点,
在x 轴上是否存在点F ,使以A D E F 、、、为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F 的坐标,若不存在,请说明理由。
如图,在坐标系xoy 中,△ABC 是等腰直角三角形,∠BAC = 90°,A (1,0),B (0,2).抛物线22
12
-+=
bx x y 的图象过C 点. (1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l ,当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?
(3)点P 是抛物线上一动点,是否存在点P ,使四边形P ACB 为平行四边形?若存在,求出P 点坐标,若不存在,说明理由.
(备用图)
3题图