用向量证明四点共面

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用向量证明四点共面
由n+m+t=1 , 得 t=1-n-m ,代入op=nox+ moy +toz,得 OP=n OX +mOY +(1-n-m)OZ, 整理,得
OP-OZ =n(OX-OZ) +m(OY-OZ)
即ZP =nZX +mZY
即P、X、Y、Z 四点共面。

以上是充要条件。

2
如和通过四点外的一点(空间中)与四点之间的关系来判断折四点共面
A,B,C,D,4个点,与另外一点O,若OA=xOB+yOC+zOD,x+y+z=1,四点就共面3设一向量的坐标为(x,y,z)。

另外一向量的坐标为(a,b,c)。

如果(x/a)=(y/b)=(z/c)=常数,则两向
量平行如果ax+by+cz=0,则两向量垂直。

答案补充三点一定共面,证第四点在该平面内
用向量,另取一点O 如向量OA=ax向量OB+bx向量OC+cx向量OD,且a+b+c=1 则有四点共面答案补充方法已经很详细了呀。

4线平行线: 两条线的方向向量矢量积为0,且两条
线没交点
面平行线:是线平行面吧,线的方向向量和平面法向量垂直,即线的方向向量和平面
法向量数量积为0 ,且线不在平面内
三点共面:三点肯定是共面的,我猜你说的是三点共线吧,比如ABC三点,证明共线,证明AB与BC的方向向量矢量积为0
四点共面:比如ABCD三点证明AB,AC,AD三者满足先求AB,AC的矢量积a,再a和AD
数量积为0
3
怎样证明空间任意一点O和不共线的三点A,B,C,向量OP=x向量OA+y向量OB+z向量OC且x+y+z=1,则P,A,B,C四点共面
简明地证明,网上的不具体,不要复制!
证明:由x+y+z=1→x向量OC + y向量OC + z向量OC=向量OC,且:x向量OA+y向
量OB+z向量OC=向量OP
将上边两式相减得:向量OP-向量OC=x(向量OA-向量OC)+y(向量OB-向量OC)
即:向量CP=x向量CA+y向量CB
由x向量CA+y向量CB所表示的向量必在平面ABC内→P点必在平面ABC内。

故:A,B,C,P四点共面。

4
可以先随便假设其中3点共面(很简单2点确定一条直线,直线和直线外一点可以确定1个平面) 不防设 A B C 三点共面只需证明P点在这个平面上即可以下向量符号省去
证明: PA=BA-BP
=OA-OB-(OP-OB)
=OA-OP
=OA-(a 向量OA+b向量OB+c向量OC )
=(1-a)OA-bOB-cOC
=(b+c)OA-bOB-cOC
=bBA+cCA
到这里因为ABC已经确定了一个平面且 PA=bBA+cCA
所以PA平行平面又A在平面内所以P点也在该平面内
所以四点共面。

相关文档
最新文档