05.矩阵理论与方法_矩阵分解
第五章 矩阵分解64页PPT文档

(1)首先解线性方程组 LyPb,可得 y L1Pb .
(2) 接着计算原方程组的解x U1y,即 求解方程组 Ux y 。
例 5.1.5 例 5.1.6 例 5.1.7
定理5.2.1 设 zCn是单位列向量,则对
C n 中的任意向量x,都存在Householder矩
阵使得
Hxz,其中
x
,且
2
x H z为实
数。
例 5.2.1 例 5.2.2
5.2.2 矩阵的QR分解
下面我们探讨如何利用Householder变 换将矩阵化为上三角矩阵。我们以n=3的 情形开始讨论 .
即 xˆ a1是 Axr1的精确解,从而达到改进 解的目的。当然很可能还存在误差,得到
的是 aˆ 1 ,而不是 a 1 。此时设r 2b A x ˆ a ˆ1,
解线性方程组 Axr2,得到 aˆ 2 ,将 Axb的 解改进为 xˆaˆ1aˆ2 。
如此继续下去,可以证明,只要cond(A) 不是太大,序列 x ˆ,x ˆa ˆ1,x ˆa ˆ1a ˆ2, 最终会收 敛到 Axb 的解,通常只需迭代几步就可 以得到很精确的解。
3
2
此时
l1 v1 w1
H1A 0 v2 w2
0
v3
w3
接下来可构造H使得
H
v v
2 3
l2 0
其中
l2
v v
2 3
令
H2
矩阵理论课件-第二章 矩阵的分解

故xH AH Ax=xH x= 2 xH x,因为AH A=I,所以 2 =1.
(因为xH x= x 2 0)
:由条件UHAU=diag{1, , n}共轭转秩得UHAHU=
diag{1,
, n},所以UHAAT U=diag{ 1 2 ,
,
n
2
}=I
,
n
所以AAT =In .
注1:设A Cnn ,则
Cmr r
,
C
Ir
D
Crn r
.
下设A的前r个列向量线性相关,只需先做列变换,变成
线性无关,
因此存在P
Cmmm,Q
Cnn n
,
满足
PAQ=
Ir 0
D 0
或A=P-1
Ir 0
D 0
Q-1
=P-1
Ir 0
I
r
=BC
D Q-1
其中B=P-1
Ir 0
Cmr r
,C
Ir
D
讨论知AH x1, , AH xp为AH A属于i 0的特征向量,只要证明
AH x1, , AH xp线性无关,就证明了AAH的p重特征值也是AH A 的p重特征值.
下证AH x1, , AH xp线性无关.
设k1AH x1
k p AH xp 0.则( AH x1,
,
AH
xp
)
k1
0
kp
H
=
1 2
11,可知|I-A|无重根,
A为单纯矩阵,但AAH AH A.
推论1:A为正规矩阵,当且仅当A有n个特征向量构成Cn的一组 标基,且A的不同特征值的特征向量正交.
推论2:设A R nn ,则
矩阵论之矩阵的分解

矩阵的分解一、矩阵的三角分解 定义 3.1 设.n nA F⨯∈(1) 若,n n L U F ⨯∈分别为下三角矩阵和上三角矩阵,,A LU =则称A 可作LU 分解。
(2) 若,n n L U F ⨯∈分别是对角线元素为1的下三角矩阵和上三角矩阵,D 为对角矩阵。
,A LDU = 则称A 可作LDU 分解。
用Gauss 消去法,一个方阵总可以用行初等变换化为上三角矩阵,若只用第i 行乘以数k 加到第j 行(i j <)型初等变换就能把A 化为上三角矩阵U ,则有下三角形可逆矩阵,P 使,PA U =从而有LU 分解:1.A P U -=例1 设223477245A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,求A 的LU 分解和LDU 分解。
解 为求,P 对下面的矩阵做如下行初等变换:3223100223100()477010031210245001068101223100031210006521A I ⎡⎤⎡⎤⎢⎥⎢⎥=→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦因此 100223210,031521006P PA ⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦. 令1100223210,031121006L P U -⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则223031.006A L LU ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦再利用初等变换,有31121002121030131216001A ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦就得到A LDU =其中 311210021210,3,0131216001L D U ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦一般来说,,LU LDU 分解一般不是惟一的。
下面讨论方阵的LU 和LDU 分解的 存在性和唯一性。
定理 3.1 设(),n nij n n A a F ⨯⨯=∈ 则A 有惟一LDU 分解A LDU =的充分必要条件是A 的顺序主子式1112121222012......0,1,2,...,;1,...............k k k k k kka a a a a a k n a a a ∆=≠=∆=其中 121,;1,2,...,...k k k n d d D d k n d -⎡⎤⎢⎥∆⎢⎥===⎢⎥∆⎢⎥⎣⎦证明:只证充分性:对A 的阶数n 进行归纳证明11111111,()(1)()(1)n A a a L DU ==== 所以定理对1n =成立,设定理对1n -成立,即 (1)(1)111()ij n n n n n A a L D U -⨯----== 则对,n 将A 分块成1n n Tnnn A A u a τ-⎡⎤=⎢⎥⎣⎦其中 121,12,1(,,...,),(,,...,),TTn n n n n n n n n n a a a u a a a τ--==设111100,1001n n n n n n T T n nn nn A L D V v u a l d τ----⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 比较两边,则有1111,n n n n A L D U ----= (3.1)11n n n n L D v τ--= (3.2)11T Tn n n n u l D U --= (3.3) 1T nn n n n n a l D v d -=+ (3.4)由归纳假设(3.1)式成立。
矩阵的分解

矩阵的分解矩阵的分解是一种数学方法,它把复杂的矩阵拆分成几个简单的子矩阵,以便能更好地理解和解决特定矩阵问题。
矩阵分解也可以用来提高现有计算机算法的效率。
它是一种重要的数学工具,常用于机器学习,信号处理,图像处理,信息论,控制工程,统计学,优化,数值分析,科学计算等。
矩阵分解可以把大的矩阵分解成小的子矩阵,以便更容易理解特定的矩阵问题。
典型的矩阵分解方法包括LU 分解,QR分解,SVD分解,Cholesky分解,Schur分解,病态分解,矩阵分解等。
LU分解是将一个矩阵分解成一个下三角矩阵和一个上三角矩阵的过程。
这种分解可以用于解决特定的线性方程组,以及求解矩阵的逆。
一般来说,LU分解具有非常高的计算效率,而且它不需要很多内存来存储矩阵。
QR分解是把一个矩阵分解成一个正交矩阵和一个上三角矩阵的过程。
这种分解可以用来求解矩阵的特征值和特征向量,以及求解线性方程组。
QR分解是一种非常有用的分解形式,因为它可以使用稠密矩阵和稀疏矩阵的快速算法。
SVD(奇异值分解)是将一个矩阵分解成两个正交矩阵和一个对角矩阵的过程。
SVD分解可以用来解决矩阵的秩、特征值、特征向量以及正交正则化问题。
一般来说,SVD 分解是一种非常有效的矩阵分解方法,并且它可以用来提高现有的计算机算法的效率。
Cholesky分解是一种分解矩阵的方法,它可以将一个对称正定矩阵分解成一个下三角矩阵和一个上三角矩阵的乘积。
Cholesky分解可以用来解决线性方程组、估计最小二乘解、求解矩阵的特征值等。
Cholesky分解的计算效率很高,并且它可以用来提高现有的计算机算法的效率。
Schur分解则是将一个实矩阵分解成一个可逆矩阵和一个上三角矩阵的乘积。
Schur分解可以用来解决矩阵的特征值和特征向量问题,以及求解线性方程组。
Schur分解也可以用来提高现有计算机算法的效率。
病态分解是将一个矩阵分解成一个低秩的正交矩阵和一个正定矩阵的乘积的过程。
矩阵分解——精选推荐

矩阵分解矩阵分解矩阵分解是将矩阵拆解为数个矩阵的乘积,可分为三⾓分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常见的有三种.矩阵的三⾓分解、正交三⾓分解、满秩分解将矩阵分解为形式⽐较简单或性质⽐较熟悉的⼀些矩阵的乘积,这些分解式能够明显地反映出原矩阵的许多数值特征,如矩阵的秩、⾏列式、特征值及奇异值等. 另⼀⽅⾯, 构造分解式的⽅法和过程也能够为某些数值计算⽅法的建⽴提供了理论依据. 接下来就讨论⼀下矩阵的三⾓分解.1 矩阵的三⾓分解1.1 矩阵的三⾓分解基本概念与定理定义1.1[]5设m n∈和上三⾓矩L C?A C?∈,如果存在下三⾓矩阵m n阵n m∈, 使得A=LU, 则称A可作三⾓分解或LU分解.U C?定义1.2设A为对称正定矩阵, D为⾏列式不为零的任意对⾓矩阵,则T=成⽴:A A=, U为⼀个单位上三⾓矩阵, 且有A LDU1) 如果L是单位下三⾓矩阵, D是对⾓矩阵, U是单位上三⾓矩阵, 则称分解D=为LD U分解.A L U2) 如果L=LD是下三⾓矩阵, ⽽U是单位上三⾓矩阵, 则称三⾓分解A LUCrout分解;= 为克劳特()3) 如果U DU是单位下三⾓矩阵, U 为上三⾓矩阵, 则称三⾓=分解A LUDoolittle分解;= 为杜利特()U --=== , 称为不带平⽅根的乔累斯基()Cholesky 分解;5) 如果12L D L = , 12D U U= , 则1122A LD U LD D U LU=== , 由于T UL = , 则T A LL= , 称为带平⽅根的乔累斯基()Cholesky 分解. 定理 1.1 n阶⾮奇异矩阵A可作三⾓分解的充要条件是k 0A ≠()1,2,,1k n =- ,这⾥A k为A 的k 阶顺序主⼦阵, 以下同.证明必要性. 设⾮奇异矩阵A 有三⾓分解A L U=, 将其写成分块形式k12k122122212222A L 0U =A A 0U kA U L L这⾥A k ,k L 和k U 分别为A, L和U 的k 阶顺序主⼦阵. ⾸先由0⽽L 0k ≠,U 0k ≠; 因此A =L U0kkk ≠()1,2,,1k n =-.充分性. 对阶数n 作数学归纳法. 当n=1时, 1A =(11a )=(1)(11a ),结论成⽴. 设对n k =结论成⽴, 即k =k k A L U , 其中k L 和k U 分别是下三⾓矩阵和上三⾓矩阵. 若k 0A ≠,则由kA =L k k U 易知L k 和k U 可逆. 现证当1n k =+时结论也成⽴, 事实上-1k k k k1TT 1T 1-1k+1,1k 1,1k k k A c 0c A =10c kkk T kk k k k k L U L r a r U a r U L +--+++??= ? ?-.由归纳法原理知A 可作三⾓分解.定理 1.1 给出了⾮奇异矩阵可作三⾓分解的充要条件, 由于不满⾜定理1.1的条件, 所以它不能作三⾓分解. 但110000110011211011202A ?????????? ?===.上例表明对于奇异矩阵,它还能作三⾓分解未必要满⾜定理1.1的条件.⾸先指出,⼀个⽅阵的三⾓分解不是唯⼀的, 从上⾯定义来看,杜利特分解与克劳特分解就是两种不同的三⾓分解,其实,⽅阵的三⾓分解有⽆穷多, 这是因为如果D 是⾏列式不为零的任意对⾓矩阵, 有1()()A LU C D D U LU-== ,其中,LU 也分别是下、上三⾓矩阵, 从⽽A LU = 也使A 的⼀个三⾓分解. 因D 的任意性, 所以三⾓分解不唯⼀. 这就是A 的分解式不唯⼀性问题, 需规范化三⾓分解.定理 1.2 (LD U 基本定理)设A 为n 阶⽅阵,则A 可以唯⼀地分解为A =LD U(1.1)的充分必要条件是A 的前1n -个顺序主⼦式k 0A ≠()1,2,,1k n =- .其中L,U分别是单位下、上三⾓矩阵, D是对⾓矩阵D=diag ()12,,,n d d d ,1k k k A d A -=()1,2,,kn = , 01A =.证明充分性. 若k 0A ≠()1,2,,1k n =- , 则由定理1.1, 即实现⼀个杜利特分解A LU= , 其中L 为单位下三⾓矩阵, U 为上三⾓矩阵,记1112122==()()()()()()1111112122222n n n nn a a a a a a ??=()n A , 因为()u 0i ii ii a ≡≠()1,2,,1i n =- .下⾯分两种情况讨论:1) 若A ⾮奇异,由式(1)有n ?=()()() 121122n nn a a a =A ≠, 所以()n nn nna u =≠,这时令()()()()121122diag n nn D a a a = , 则() ()()1121122111,,,n nn D diag a a a -??= ?.LD D U LDU -=== (1.2)是A 的⼀个LD U 分解.2)若A 奇异,则()u 0i iiii a ≡=,此时令()()()12111221,1(,,,,0)n n n D diag a a a ---= ,()()()()121n-111221,1,,,n n n D diag a a a ---= , α=()1n1u,,,Tn u n - ,则10n T UU α-??≡ =1111110=DU 0001n n n n T T U D U D α------,因此不论哪种情况, 只要k0A ≠()1,2,,1k n =- , 总存在⼀个LD U分解式(1.1),1a kk k kk k A d A -==()1,2,,1kn =- ,01A =.均⾮奇异.若还存在另⼀个LD U 分解111A L D U =, 这⾥1L ,1D , 1U 也⾮奇异,于是有111L D U L D U =(1.3)上式两端左乘以11L -以及右乘以1U -和1D -, 得111111L L D U U D---=, (1.4)但式(1.4)左端是单位下三⾓矩阵, 右端是单位上三⾓矩阵, 所以都应该是单位阵, 因此1LL I-=,1111D U UDI--=,即1L L =,111--=. 由后⼀个等式类似地可得11U UI-=,11D D I-=,即有1U U=,1D D=.2) 若A 奇异, 则式(1.3)可写成分块形式1111100001000110001T T T T T L D U L D U ααββ= ? ? ? ? ? ???????????, 其中1L, 1L 是1n -阶单位下三⾓阵; U , 1U 是1n -阶上三⾓阵; D,1D 是1n -阶对⾓阵; α, 1α,β, 1β是1n -维列向量. 由此得出111111=D U D DUD ααββαββα???? ? ???, 其中1L, 1D , 1U 和L ,D, U均⾮奇异, 类似于前⾯的推理, 可得1L =L ,1D =D , 1U =U ,1=αα,T T1=ββ.必要性. 假定A 有⼀个唯⼀的LD U 分解, 写成分块的形式便是1111A 00=0101n n n n T T nn n x D L U ya d αβ----,(1.5)其中1n L -,1D n -, 1n U -, 1n A -分别是L,A的1n -阶顺序主⼦矩阵;x , y, α,β为1n -维列向量. 由式(1.5)有下⾯的矩阵⽅程:1111n n n n A L D U ----=, (1.6)11TTn n yD U β--=,(1.7)11n n x L D α--=, (1.8)1Tnn n na D d βα-=+. (1.9)否则, 若10n A -=, 则由式(1.6)有111110n n n n n A L D U D -----===.于是有1110n n n L D D ---==, 即11n n L D --奇异. 那么对于⾮其次线性⽅程组(1.8)有⽆穷多⾮零解, 不妨设有α', 使11n n L D x α--'=, ⽽α'=α.同理, 因11n n D U --奇异, ()1111TTT n n n n L D U D ----=也奇异,故有ββ'≠, 使11TTn n U D yβ--=, 或11TTn n D U yn nn n d a D βα-'''=-, 则有1111000101n n n n T T nn nA x D L U y a d αβ----'= ? ? ? ?'',这与A 的LD U 分解的唯⼀性⽭盾, 因此10n A -≠.考察1n -阶顺序主⼦矩阵1n A -由式(1.6)写成分块形式, 同样有2222n n n n A L D U ----=. 由于10n D -≠, 所以20n D -≠, 可得222220n n n n n A L D U D -----==≠, 从⽽20n A -≠. 依此类推可得0k A ≠()1,2,,1k n =- .综上所述, 定理证明完毕.推论 1[]3 设A 是n 阶⽅阵, 则A 可惟⼀进⾏杜利特分解的充分必要条件是A 的前1n -个顺序主⼦式11110k k k kka a A a a =≠,1,2,,1k n =- , 其中L 为单位上三⾓矩阵, 即有11121212223132121111n nnn n n n n u u u l u u l l A u l l l -=并且若A 为⾮奇异矩阵, 则充要条件可换为: A的各阶顺序主⼦式全不为零, 即:0k A ≠,1,2,,k n = .推论 2[]3 n 阶⽅阵A 可惟⼀地进⾏克劳特分解111212122212111n nn n nnl u u ll u A LUl l l==的充要条件为11110k k k kka a A a a =≠, 1,2,,1k n =- .若A 为奇异矩阵, 则0nn l =, 若A 为⾮奇异矩阵, 则充要条件也可换为0k A ≠, 1,2,,k n = .定理 1.3[]3 设A 为对称正定矩阵, 则A 可惟⼀地分解为T A LDL =, 其中L 为下三⾓矩阵, D 为对⾓矩阵, 且对⾓元素是L 对⾓线元素的倒数. 即2212n n nnl l l L l l l ?? ?=, 1122111nn l l D l ?? ? ? ? ?=. 其中11/j ijij ik jk kkk l a l l l -==-∑,1,2,,ni = , 1,2,,j i = .。
矩阵分解的方法和应用

矩阵分解的方法和应用在机器学习和数据分析领域,矩阵分解是一个常用的技术手段。
通过对数据矩阵进行分解,我们可以得到数据的潜在特征和规律,从而更好地理解和利用数据。
本文将介绍矩阵分解的常见方法和应用。
一、基本概念矩阵分解是指将一个矩阵表示为若干个小矩阵(或向量)的乘积的形式。
这些小矩阵一般是具有特定结构或意义的,例如对称矩阵、正定矩阵、特征矩阵等等。
矩阵分解可以应用到各种场景,例如数据降维、矩阵压缩、矩阵重构、协同过滤等等。
二、矩阵分解的方法常见的矩阵分解方法有以下几种:1. 奇异值分解(SVD)奇异值分解是一种基础的矩阵分解方法。
它将一个矩阵分解为三个小矩阵的乘积形式:$A=U\Sigma V^T$,其中$U$和$V$是正交矩阵,$\Sigma$是奇异值矩阵。
通过特征值分解可以得到奇异值矩阵,从而实现矩阵分解。
奇异值分解可以用来进行数据降维和矩阵重构。
例如,我们可以将一个高维度的数据矩阵分解为低维度的奇异向量,从而实现数据降维;或者我们可以使用奇异向量重构原始的矩阵,从而实现数据压缩。
2. QR分解QR分解是一种将矩阵分解为正交矩阵和上三角矩阵的方法。
具体来说,对于一个矩阵$A$,可以分解为$A=QR$,其中$Q$是正交矩阵,$R$是上三角矩阵。
QR分解可以应用到求解线性方程组、估计模型参数等领域。
3. 特征值分解(EVD)特征值分解是指将一个方阵分解为正交矩阵和对角矩阵的乘积形式。
具体来说,对于一个方阵$A$,可以分解为$A=V\LambdaV^{-1}$,其中$V$是正交矩阵,$\Lambda$是对角矩阵,对角线上的元素就是矩阵$A$的特征值。
特征值分解可以用于矩阵压缩和数据降维。
三、矩阵分解的应用1. 推荐系统推荐系统是一种常见的应用场景,它可以根据用户历史行为和兴趣,向用户推荐可能感兴趣的物品。
矩阵分解可以应用到推荐系统中,其基本思路是利用用户对物品的评分矩阵,对其进行分解,得到用户和物品的特征向量,然后通过计算余弦距离等方法,计算出用户和物品之间的相似度,从而推荐给用户可能感兴趣的物品。
矩阵分解方法

矩阵分解方法矩阵分解方法是一种将一个大型矩阵分解成小矩阵的技术。
这种方法在数学、计算机科学、物理和化学等领域都得到了广泛的应用。
本文将介绍这种技术的基本原理、常见方法以及应用案例。
一、基本原理矩阵分解技术的基本原理是将一个大型矩阵分解成小矩阵,这些小矩阵可以更容易地进行计算和存储。
通常情况下,矩阵可以分解成若干个子矩阵的乘积形式,即$A=BC$,其中$A$为大矩阵,$B$为左边的小矩阵,$C$为右边的小矩阵。
二、常见方法1.奇异值分解(SVD)奇异值分解是一种将一个矩阵分解成三个正交矩阵的乘积形式的方法。
其中一个正交矩阵包含了原矩阵的奇异值,而另外两个正交矩阵则包含了原矩阵的左右奇异向量。
这种方法在数据降维、信号处理、模式识别等领域得到了广泛的应用。
2.QR分解QR分解是一种将一个矩阵分解成一个正交矩阵与一个上三角矩阵的乘积形式的方法。
这种方法在线性代数、统计学、数值分析等领域得到了广泛的应用。
3.LU分解LU分解是一种将一个矩阵分解成一个下三角矩阵与一个上三角矩阵的乘积形式的方法。
这种方法在求解线性方程组时得到了广泛的应用。
三、应用案例1.推荐系统推荐系统是一种基于用户历史行为和偏好的算法,通过对用户喜好和商品特征进行分析和预测,为用户推荐最可能感兴趣的商品。
矩阵分解技术可以对用户行为和商品特征进行分解,从而得到用户和商品的隐含特征向量,从而更好地实现推荐。
Netflix prize就是一个基于矩阵分解技术的推荐系统竞赛。
2.图像处理图像处理是一种将数字信号处理与计算机视觉相结合的技术。
在图像处理中,矩阵分解技术可以将图像矩阵分解成若干个小矩阵,从而更好地实现图像处理和压缩。
3.自然语言处理自然语言处理是一种将人类语言转化为计算机可处理的形式的技术。
在自然语言处理中,矩阵分解技术可以将句子矩阵分解成若干个小矩阵,从而更好地实现语言模型训练和文本分类。
综上所述,矩阵分解方法具有广泛的应用价值和理论意义,在学术界和工业界都得到了广泛的关注和应用。
矩阵分解法

矩阵分解法
矩阵分解法是一种被广泛应用于矩阵和数据分析领域的数学方法,它能够对复杂的数据集进行简单而有效的分解,为更深入的分析提供基础。
本文将详细介绍矩阵分解法的基本原理及各种应用,以及它能够解决的相关问题。
矩阵分解法的基本概念是使用矩阵的特定分解技术,将一个大的复杂的矩阵分解成若干较小的更简单的矩阵,这些矩阵之间可能存在一定的关系。
最常用的矩阵分解方法是奇异值分解(Singular Value Decomposition,SVD),它能够有效地将一个矩阵分解成三个矩阵,这三个矩阵可以用来描述矩阵的行、列和特征。
其中,最重要的矩阵是特征值矩阵,它能够描述矩阵中特征之间的关系,这些特征信息可以作为进一步分析的依据。
同时,这些特征也能够影响到矩阵的值,从而有助于解决机器学习和数据挖掘中的关系推断问题,从而获得新的结论。
此外,矩阵分解还可以用于对数据进行统计和预测,这是因为矩阵分解能够提取出高维数据中隐藏的模式,从而将复杂的数据集简化为易于理解的表示形式。
因此,矩阵分解法在实际的数据分析中有着重要的应用,如文本分类、推荐系统和图像识别等。
另外,矩阵分解法还能够帮助数据科学家们解决压缩和特征选择的问题。
首先,矩阵分解能够帮助我们压缩数据集,从而节省存储空间;其次,这种方法也可以帮助我们提取出有用的特征,从而达到减少计算负担的目的。
(尾)总之,矩阵分解法是一种极其重要的数学方法,它可以帮助我们对复杂的数据集进行分解,提取有用信息,从而为进一步分析提供基础,同时还可以用于压缩和特征选择等目的。
因此,矩阵分解法可以说是数据科学领域的一个重要的数学工具,值得进一步关注和研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nn
Ax b
可利用高斯消元法求解线性方程组
3
高斯自然顺序主元素消元法
考虑一种理想情况,在消元过程中,矩阵对角元素始终不为零,则可以按 对角元素的自然顺序进行消元,即不用进行行或列交换。
(0) (0) a11 a12 a1(0) n (0) (0) (0) a21 a22 a2 n (0) (0) A A 记 ,其中 a11 0 (0) (0) (0) an1 an 2 ann ai(0) 1 , i 2,..., n ,构造Frobenius矩阵 令 ci1 (0) a11
记
lik aik (li1u1k li 2u2k ... li (k 1)u(k 1)k )
10
矩阵的CROUT分解算法
akj lk1u1 j lk 2u2 j ... lkk ukj ,( j k ) 1 ukj akj (lk1u1 j lk 2u2 j ... lk ( k 1)u( k 1) j ) lkk 5 2 4 0 2 1 2 1 的Crout分解。 例:求矩阵 A 4 2 5 0 0 1 0 2 ,U 合并写在同一个矩阵中,即 矩阵 A 的Crout分解中,可将两矩阵 L u12 u1( n 1) u1n l11 l l u u 22 2( n 1) 2n 21 l l l u ( n 1)( n 1) ( n 1) n ( n 1)1 ( n 1)2 ln1 ln 2 ln ( n 1) lnn
1 c 1 L1 21 c 1 n1
1 c 1 21 1 L1 c 1 n1
4
高斯自然顺序主元素消元法
(0) (0) a11 a12 a1(0) n (1) (1) 0 a a 1 (0) 22 2n L1 A A(1) (1) (1) 0 a a n2 nn 1 (0) 1 因为 det( A(1) ) det(L1 A ) det(L1 )det( A(0) ) det( A(0) )
n 定理:设任意非零列向量 x R , n 1和单位列向量 z R ,则存在
n
Householder矩阵 H ,使得 Hx x z 。
T 例:设 x (2, 1, 2) ,用Householder变换将 x 转化为与 e1 同方向的向量。
定理:Givens矩阵是两个Householder矩阵的乘积。
1. Tij (c, s) Tij (c, s) Tij (c, s)
1
T
2. det Tij (c, s) 1 性质:设 x (1 ,..., n )T,y Tij x (1,...,n )T,则有
i ci s j j si c j , k i, j k k
ˆ LDU PA LU ˆ 为上三角矩阵,D 为对角矩阵,而 U 为单 其中 L 为单位下三角矩阵,U
位上三角矩阵。
14
Givens矩阵与Givens变换
定义:设实数 c , s 满足 c 2 s 2 1 ,称
1 (i ) c s Tij (i j ) ( j) s c 1 (i ) ( j)
5
高斯自然顺序主元素消元法
可得:
1 (1) (2) L A A 2
(0) a11 0 0 0
(0) a12 (1) a22
0 0
(0) a13 a1(0) n (1) (1) a23 a2 n (2) (2) a33 a3 n (2) (2) an a 3 nn
(0) ( r 1) 依次类推,可得 A(0) 的 r 阶顺序主子式 r a11 arr 0, r 1,..., n 1, 以及相应的Frobenius矩阵和上三角矩阵。
(0) a11 U (0) a12 (1) a22 (0) a13 (1) a23
第k 行
11
矩阵的CROUT分解算法
矩阵 A 的Crout分解的迭代实现 2.计算U矩阵第1行元素
4.计算U矩阵第2行元素
6.计算U矩阵第3行元素 1.计算 L矩阵 3.计算 8.计算U矩阵第4行元 第1列 L矩阵 5.计算 素 元素 第2列 L矩阵 7.计算 „ 元素 第3列 L矩阵 元素 第4列 „ „ 元素 „ „
7
矩阵的三角分解
定义:若 n阶矩阵 A能够分解为一个下三角矩阵 L 和一个上三角矩阵 U 的 乘积,则称其为三角分解或 LU分解。 注:矩阵 A 的LU分解不唯一。
定义:若 n 阶矩阵 A 能够分解为 A LDU,其中 L为单位下三角矩阵,U D 为对角矩阵,则称其为矩阵的LDU分解。 为单位上三角矩阵,
19
矩阵的QR(正交三角)分解
定义:如果实(复)非奇异矩阵 A 能够化成正交(酉)矩阵 Q 与实(复) 非奇异上三角矩阵 R 的乘积,即
A QR
则称 A QR 为 A 的QR分解。
定理:设 A 是 n 阶实(复)非奇异矩阵,则 A 存在QR分解 A QR ,且除 去一个对角元素的绝对值(模)为1的对角矩阵因子外,QR分解式唯一。 定理:设 A是 m n 实(复)矩阵,且其 n 个列向量线性无关,则 A有分 A QR 解 其中 Q 是 m n实(复)矩阵,且满足 Q Q I (Q Q I ) , R 是 n 阶实 (复)非奇异上三角矩阵。该分解除去相差一个对角元素的绝对值(模) 为1的对角矩阵因子外是唯一的。
注:Householder变换将列向量 x 映射为关于“与 u 正交的 n 1维超平面 空间”对称的向量 y 。
性质:
T H H 1. T 2. H H I 2 3. H I 1 4. H H
5. det H 1
18
Householder矩阵与Householder变换
矩阵理论与方法
第4章 矩阵分解 庄 伯 金
Bjzhuang@
1
主要内容
矩阵的LU分解 矩阵的QR分解 矩阵的满秩分解 矩阵的奇异值分解
2
线性方程组中的高斯消元法
记线性方程组
若令 A aij
a111 ... a1n n b1 a ... a b 21 1 2n n 2 an11 ... ann n b2
当 i2 j2 0时,取
c
i
2 i 2 j
,s
j i2 j2
16
2 2 则有 i i j 0, j 0 。
Givens矩阵与Givens变换
定理:设 x (1,..., n )T 0 ,则存在有限个Givens矩阵的乘积,记作 T , 使得 Tx x e1 。 推论:设任意非零列向量 x 和单位列向量 z ,则存在有限个Givens矩阵 的乘积 T ,使得 Tx x z 。
8
矩阵的三角分解Fra bibliotek 2 1 3 例:求矩阵 A 1 2 1 的LDU分解。 2 4 2
9
矩阵的CROUT分解算法
为矩阵 LD,则称 A LU 定义:若 n 阶矩阵 A存在分解 A LDU ,令 L 的Crout分解。
1 u12 u1n l11 l 1 u l 2n 21 22 U L 1 l l l nn n1 n 2 两边的元素,可递推得到 L ,U中各项元素。 对比矩阵等式 A LU ai1 li1 li1 ai1 第1 列 a1 j , j 1 a1 j l11u1 j , j 1 u1 j 第1 行 l11 aik li1u1k li 2u2k ... li (k 1)u(k 1)k lik 1,(i k ) 第k 列
12
矩阵的Doolittle分解算法
为矩 DU ,则称 A LU 定义:若 n 阶矩阵 A 存在分解 A LDU ,令U 阵的Doolittle分解。
Doolittle分解算法与Crout分解算法类似,只是将其中的行和列的计算顺 序和公式对调。
13
矩阵的三角分解
矩阵 A 的LDU分解和LU分解都需要 A 满足前 n 1 阶顺序主子式非零。若 不满足该条件,则可对 A 进行初等行(列)变换,使之满足条件。 定理:设 A 是 n 阶非奇异矩阵,则存在置换矩阵 P,使得 PA 的 n 个顺 序主子式非零。 推论:设 A 是 n 阶非奇异矩阵,则存在置换矩阵 P ,使得
可得:
(1) (0) (1) 由最初的假设,应有 a22 0 ,即 A(0)的二阶顺序主子式 2 a11 a22 0 。
ai(1) 2 令 ci 2 (1) , i 3,..., n,构造Frobenius矩阵 a22 1 1 1 1 1 L2 c32 1 L2 c32 1 1 1 cn 2 cn 2
n 2) a((n 1)( n 1)