人教全国中考数学反比例函数的综合中考真题汇总及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、反比例函数真题与模拟题分类汇编(难题易错题)
1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.
(1)求双曲线的解析式;
(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;
(3)点(6,n)为G1与G2的交点坐标,求a的值.
(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.
【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,
所以双曲线的解析式为y= ;
(2)2
(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),
抛物线G2的解析式为y=﹣(x﹣a)2+9,
把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,
即a的值为6± ;
(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,
把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;
把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2
;
∵G1与G2有两个交点,
∴3+ ≤a≤12﹣2 ,
设直线DE的解析式为y=px+q,
把D(3,4),E(12,1)代入得,解得,
∴直线DE的解析式为y=﹣ x+5,
∵G2的对称轴分别交线段DE和G1于M、N两点,
∴M(a,﹣ a+5),N(a,),
∵MN<,
∴﹣ a+5﹣<,
整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,
∴a<4或a>9,
∴a的取值范围为9<a≤12﹣2 .
【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),
所以BE= =2 .
故答案为2 ;
【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的
解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.
2.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.
(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C (﹣2,3)和射线OA之间的距离为________;
(2)如果直线y=x+1和双曲线y= 之间的距离为,那么k=________;(可在图1中进行研究)
(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.
①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).
②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.
【答案】(1)3;
(2)﹣4
(3)解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF 垂直),
;
②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,
由得,即点M(﹣,),
由得:,即点N(﹣,),
则﹣≤x≤﹣,
图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),
即图形W与图形N之间的距离为d,
d=
=
=
∴当x=﹣时,d的最小值为 = ,
即图形W和图形N之间的距离.
【解析】【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 = ,
故答案分别为:3,;
(2)直线y=x+1和双曲线y= k x 之间的距离为,
∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).
过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,
由得,即点F(﹣,),
则OF= = ,
∴OE=OF+EF=2 ,
在Rt△OEG中,∠EOG=∠OEG=45°,OE=2 ,
则有OG=EG= OE=2,
∴点E的坐标为(﹣2,2),
∴k=﹣2×2=﹣4,
故答案为:﹣4;
【分析】(1)由题意可得出点B(2,3)到射线OA之间的距离为B点纵坐标,根据新定义得点C(﹣2,3)和射线OA之间的距离;
(2)根据题意即可得k<0(否则直线y=x+1和双曲线y= k x 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= k x 交于点E、F,过点E作EG⊥x 轴,如图1,将其联立即可得点F坐标,根据两点间距离公式可得OF长,再由OE=OF+EF 求出OE长,在Rt△OEG中,根据等腰直角三角形的性质可得点E的坐标为(﹣2,2),将E点代入反比例函数解析式即可得出k值.
(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直);
②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,分别联立即可得出点M、N坐标,从而得出x取值范围,根据题意图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),从而求出图形W与图形N之间的距离为d,由二次函数性质知d 最小值.