算法-单源点最短路径-Dijkstra算法
dijkstra算法代码python
dijkstra算法代码pythonDijkstra算法是一种贪心算法,用于计算图中单源最短路径。
该算法基于贪心算法的原则,每次选择一个距离源点最近的顶点,然后更新这个顶点的邻元素的距离。
算法步骤:1. 初始化距离数组,设置源点的距离为0,其余点的距离为无穷大(表示没有到达该点的路径)。
2. 创建一个空的集合S,用于存放已经求出的最短路径的结点。
3. 循环执行以下步骤,直到所有点都被添加到集合S中:- 在未确定最短路径的结点中,选择距离源点最近的结点,并将该结点添加到S集合中。
- 更新该结点的邻元素的距离,如果新路径的距离小于目前已知的最短路径,则更新最短路径。
在实现Dijkstra算法时,需要使用图的邻接矩阵或邻接表来表示图。
下面是使用邻接矩阵实现Dijkstra算法的Python代码:def dijkstra(graph, src):# 初始化距离数组dist = [float('inf')] * len(graph)# 设置源点的距离为0dist[src] = 0# 用于存放最短路径的结点s = []# 循环执行直到所有点都被添加到集合S中while len(s) < len(graph):# 在未确定最短路径的结点中,选择距离源点最近的结点,并将该结点添加到集合S 中min_dist = float('inf')min_index = -1for i in range(len(graph)):if i not in s and dist[i] < min_dist:min_dist = dist[i]min_index = is.append(min_index)return dist# 示例graph = [[0, 2, 4, 0, 0],[2, 0, 1, 3, 0],[4, 1, 0, 5, 6],[0, 3, 5, 0, 2],[0, 0, 6, 2, 0]]上述代码通过邻接矩阵表示图,其中0表示两点之间没有边,其他数字表示该边的边权。
Dijkstra算法
最短路径—Dijkstra算法Dijkstra算法1.定义概览Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
注意该算法要求图中不存在负权边。
问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。
(单源最短路径)2.算法描述1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S 中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。
此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:a.初始时,S只包含源点,即S={v},v的距离为0。
U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
单源最短路径dijkstra算法c语言
单源最短路径dijkstra算法c语言单源最短路径问题是图论中的经典问题之一,指的是在图中给定一个起始节点,求出该节点到其余所有节点之间的最短路径的算法。
其中,Dijkstra 算法是一种常用且高效的解决方案,可以在有向图或无向图中找到起始节点到其余所有节点的最短路径。
本文将逐步介绍Dijkstra算法的思想、原理以及C语言实现。
一、Dijkstra算法的思想和原理Dijkstra算法的思想基于贪心算法,通过逐步扩展当前已知路径长度最短的节点来逐步构建最短路径。
算法维护一个集合S,初始时集合S只包含起始节点。
然后,选择起始节点到集合S之外的节点的路径中长度最小的节点加入到集合S中,并更新其他节点的路径长度。
具体来说,算法分为以下几个步骤:1. 初始化:设置起始节点的路径长度为0,其他节点的路径长度为无穷大。
2. 选择最小节点:从集合S之外的节点中选择当前路径长度最短的节点加入到集合S中。
3. 更新路径长度:对于新加入的节点,更新与其相邻节点的路径长度(即加入新节点后的路径长度可能更小)。
4. 重复步骤2和3,直到集合S包含所有节点。
二、Dijkstra算法的C语言实现下面我们将逐步讲解如何用C语言实现Dijkstra算法。
1. 数据结构准备首先,我们需要准备一些数据结构来表示图。
我们可以使用邻接矩阵或邻接表来表示图。
这里,我们选择使用邻接矩阵的方式来表示权重。
我们需要定义一个二维数组来表示图的边权重,以及一个一维数组来表示起始节点到各个节点的路径长度。
c#define MAX_NODES 100int graph[MAX_NODES][MAX_NODES];int dist[MAX_NODES];2. 初始化在使用Dijkstra算法之前,我们需要对数据进行初始化,包括路径长度、边权重等信息。
cvoid initialize(int start_node, int num_nodes) {for (int i = 0; i < num_nodes; i++) {dist[i] = INT_MAX; 将所有节点的路径长度初始化为无穷大}dist[start_node] = 0; 起始节点到自身的路径长度为0初始化边权重for (int i = 0; i < num_nodes; i++) {for (int j = 0; j < num_nodes; j++) {if (i == j) {graph[i][j] = 0; 自身到自身的边权重为0} else {graph[i][j] = INT_MAX; 其他边权重初始化为无穷大}}}}3. 主要算法接下来是Dijkstra算法的主要逻辑。
dijkstra最短路径算法详解
dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。
以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。
2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。
之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。
更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。
3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。
4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。
Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。
其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。
总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。
在处理如飞机和火车等交通路径规划问题中有较好的应用。
求解单源最短路径问题的算法
求解单源最短路径问题的算法
求解单源最短路径问题的算法有多种,下面列举了几种常见的算法:
1. Dijkstra算法:通过维护一个距离数组,不断更新起始点到其他节点的最短路径长度。
核心思想是每次选择距离起始点最近的节点,并逐步更新距离数组。
该算法适用于无负权边的情况。
2. Bellman-Ford算法:通过迭代更新距离数组,每次都扫描所有的边,更新路径长度。
该算法适用于存在负权边的情况。
3. Floyd-Warshall算法:通过一个二维矩阵来存储任意两个节点之间的最短路径长度,通过尝试经过不同的中间节点来更新路径长度。
该算法适用于有向图或无向图,且适用于任意权重的情况。
4. A*算法:在Dijkstra算法的基础上引入启发函数,通过启发函数估计从起始点到目标节点的距离,并按照估计值进行优先级队列的排序。
该算法适用于图中存在目标节点的情况。
以上算法适用于不同的情况,具体选择哪个算法要根据问题的特点来决定。
dijkstra最短路径算法
图解迪杰斯特拉(Dijkstra)最短路径算法目录前言一、最短路径的概念及应用二、Dijkstra迪杰斯特拉1.什么是Dijkstra2.逻辑实现总结前言无论是什么程序都要和数据打交道,一个好的程序员会选择更优的数据结构来更好的解决问题,因此数据结构的重要性不言而喻。
数据结构的学习本质上是让我们能见到很多前辈在解决一些要求时间和空间的难点问题上设计出的一系列解决方法,我们可以在今后借鉴这些方法,也可以根据这些方法在遇到具体的新问题时提出自己的解决方法。
(所以各种定义等字眼就不用过度深究啦,每个人的表达方式不一样而已),在此以下的所有代码都是仅供参考,并不是唯一的答案,只要逻辑上能行的通,写出来的代码能达到相同的结果,并且在复杂度上差不多,就行了。
一、最短路径的概念及应用在介绍最短路径之前我们首先要明白两个概念:什么是源点,什么是终点?在一条路径中,起始的第一个节点叫做源点;终点:在一条路径中,最后一个的节点叫做终点;注意!源点和终点都只是相对于一条路径而言,每一条路径都会有相同或者不相同的源点和终点。
而最短路径这个词不用过多解释,就是其字面意思:在图中,对于非带权无向图而言,从源点到终点边最少的路径(也就是BFS广度优先的方法);而对于带权图而言,从源点到终点权值之和最少的路径叫最短路径;最短路径应用:道路规划;我们最关心的就是如何用代码去实现寻找最短路径,通过实现最短路径有两种算法:Dijkstra迪杰斯特拉算法和Floyd弗洛伊德算法,接下来我会详细讲解Dijkstra迪杰斯特拉算法;二、Dijkstra迪杰斯特拉1.什么是DijkstraDijkstra迪杰斯特拉是一种处理单源点的最短路径算法,就是说求从某一个节点到其他所有节点的最短路径就是Dijkstra;2.逻辑实现在Dijkstra中,我们需要引入一个辅助变量D(遇到解决不了的问题就加变量[_doge]),这个D我们把它设置为数组,数组里每一个数据表示当前所找到的从源点V开始到每一个节点Vi的最短路径长度,如果V到Vi有弧,那么就是每一个数据存储的就是弧的权值之和,否则就是无穷大;我们还需要两个数组P和Final,它们分别表示:源点到Vi的走过的路径向量,和当前已经求得的从源点到Vi的最短路径(也就是作为一个标记表示该节点已经加入到最短路径中了);那么对于如下这个带权无向图而言,我们应该如何去找到从V0到V8的最短路径呢;在上文中我们已经描述过了,在从V0到V8的这一条最短路径中,V0自然是源点,而V8自然是终点;于是我根据上文的描述具现化出如下的表格;在辅助向量D中,与源点V0有边的就填入边的权值,没边就是无穷大;构建了D、P和Final,那么我们要开始遍历V0,找V0的所有边中权值最短的的边,把它在D、P、Final中更新;具体是什么意识呢?在上述带权无向图中,我们可以得到与源点有关的边有(V0,V1)和(V0,V2),它们的权值分别是1和5,那么我们要找到的权值最短的的边,就是权值为1 的(V0,V1),所以把Final[1]置1,表示这个边已经加入到最短路径之中了;而原本从V0到V2的距离是5,现在找到了一条更短的从V0 -> V1 -> V2距离为4,所以D[2]更新为4,P[2]更新为1,表示源点到V2经过了V1的中转;继续遍历,找到从V0出发,路径最短并且final的值为0的节点。
dijkstra算法求解过程
Dijkstra算法求解过程简介Dijkstra算法是解决单源最短路径问题的经典算法之一,它通过贪心策略逐步确定从源点到其他所有节点的最短路径。
该算法的核心思想是利用优先队列,不断选择最短路径中还未确定最短路径的节点,直到找到源点到目标节点的最短路径。
算法思路1.创建一个优先队列Q,并初始化源点到所有其他节点的距离为无穷大(表示未确定最短路径)。
2.将源点到自身的距离设置为0,将源点加入优先队列Q。
3.从Q中选择距离最短的节点u,并标记节点u的最短路径为确定。
4.遍历节点u的所有邻接节点v,更新源点到v的距离,如果发现新的最短路径,则更新路径长度并将节点v加入优先队列Q。
5.重复步骤3和4,直到优先队列Q为空。
算法步骤详解初始化首先,我们需要创建一个优先队列Q,并初始化源点到所有其他节点的距离为无穷大。
同时,将源点到自身的距离设置为0,将源点加入优先队列Q。
选择最短路径节点从优先队列Q中选择距离最短的节点u,将其标记为最短路径已确定的节点。
更新最短路径遍历节点u的所有邻接节点v,计算从源点到节点v的距离。
如果发现新的最短路径,则更新节点v的路径长度,并将节点v加入优先队列Q。
重复步骤3和4重复进行步骤3和4,直到优先队列Q为空。
这样就能够找到源点到所有其他节点的最短路径。
算法实例下面通过一个具体的示例来演示Dijkstra算法的求解过程。
假设有如下图所示的带权有向图,我们需要求解从源点A到其他所有节点的最短路径:4A -------> B| /|\| / || 2 | \3| \/ \/| C---D| / || /1 |2| \/ |--->E------>F我们先初始化距离表,将源点A到所有其他节点的距离设置为无穷大,源点A到自身的距离设置为0:节点距离A 0——- —-B ∞——- —-C ∞——- —-D ∞——- —-E ∞——- —-F ∞接着,将源点A加入优先队列Q。
迪杰斯特拉算法求单源最短路径
迪杰斯特拉算法是一种用于求解单源最短路径的经典算法,它被广泛应用于网络路由、电信领域以及各种其他实际问题中。
本文将从以下几个方面详细介绍迪杰斯特拉算法的原理、实现以及应用,以帮助读者深入理解并掌握该算法。
一、迪杰斯特拉算法的原理迪杰斯特拉算法的核心思想是通过逐步确定从起点到其他顶点的最短路径来求解单源最短路径问题。
其具体原理包括以下几个步骤:1. 初始化:将起点到所有其他顶点的距离初始化为无穷大,起点到自身的距离为0,并建立一个空的集合S来存放已确定最短路径的顶点。
2. 选择最近顶点:从未确定最短路径的顶点中选择距离起点最近的顶点u加入集合S。
3. 更新距离:对于顶点集合V-S中的每个顶点v,如果通过顶点u可以找到一条比当前最短路径更短的路径,则更新起点到顶点v的距离。
4. 重复步骤2和步骤3,直到集合S包含所有顶点。
通过上述步骤,迪杰斯特拉算法可以求解出起点到图中所有其他顶点的最短路径。
二、迪杰斯特拉算法的实现迪杰斯特拉算法可以通过多种数据结构来实现,其中最常见的是使用优先队列来存储未确定最短路径的顶点,并通过松弛操作来更新顶点的距离。
下面将介绍一种基于优先队列的迪杰斯特拉算法实现方法:1. 初始化距离数组dist[],其中dist[i]表示起点到顶点i的最短距离,将所有顶点初始化为无穷大,起点初始化为0。
2. 将起点加入优先队列,并将其距离更新为0。
3. 循环执行以下步骤直到优先队列为空:(1)从优先队列中取出距离起点最近的顶点u。
(2)遍历顶点u的所有邻接顶点v,对于每个邻接顶点v,如果通过顶点u可以找到一条更短的路径,则更新顶点v的距离,并将其加入优先队列。
通过上述实现,我们可以得到起点到所有其他顶点的最短路径。
三、迪杰斯特拉算法的应用迪杰斯特拉算法在实际应用中有着广泛的应用场景,其中最典型的应用包括网络路由、电信领域以及地图路径规划等。
1. 网络路由:在计算机网络中,迪杰斯特拉算法被用于寻找最短路径,以确保数据包以最短的路径到达目的地,提高网络传输效率。
Dijkstra算法求解单源最短路径问题
Dijkstra算法求解单源最短路径问题一、单源最短路径问题描述给定一个带权有向图G=(V,E),其中每条边的权都是非负数。
给定V中的一个顶点,称为源。
计算从源到所有其他定点的最短路径长度。
这里的路径长度就是指各边权之和。
该问题称为单源最短路径问题(Single-Source Shortest Paths)。
二、Dijkstra算法思想将图G中所有的顶点V分成两个顶点集合S和T。
以v为源点已经确定了最短路径的终点并入S集合中,S初始时只含顶点v, T则是尚未确定到源点v最短路径的顶点集合。
然后每次从T集合中选择S集合点中到T路径最短的那个点,并加入到集合S中,并把这个点从集合T删除。
直到T集合为空为止。
三、算法描述(步骤)1、选一顶点v为源点,并视从源点v出发的所有边为到各顶点的最短路径:①记录从源点v到其它各顶点的路径长度数组dist[],开始时,dist是源点v到顶点i的直接边长度,即dist中记录的是邻接阵的第v行。
②设一个用来记录从源点到其它顶点的路径数组path[],path中存放路径上第i个顶点的前驱顶点。
2、在上述的最短路径dist[]中选一条最短的,并将其终点(即<v,k>)k加入到集合s中。
3、调整T中各顶点到源点v的最短路径。
因为当顶点k加入到集合s中后,源点v到T中剩余的其它顶点j就又增加了经过顶点k到达j的路径,这条路径可能要比源点v到j原来的最短的还要短。
调整方法是比较dist[k]+g[k,j]与dist[j],取其中的较小者。
4、再选出一个到源点v路径长度最小的顶点k,从T中删去后加入S中,再回去到第三步,如此重复,直到集合S中的包含图G的所有顶点。
四、算法实现(数据结构)1、算法实现输入:一个大于1的整数n.输出:●一个随机生成的有向图G=(V,E),对于每一条边,有一个非负数字c(u,v)与之相关。
●对于每个顶点v∈V,得到从v0到v的最短路径的长度。
Dijkstra算法步骤详述
Dijkstra算法步骤详述Dijkstra算法是一种经典的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
本文将详细介绍Dijkstra算法的步骤和实现。
1. 初始化首先,我们需要将算法的输入进行初始化。
假设我们有一个带权重的有向图,其中节点集合为V,边的集合为E。
对于每个节点v ∈ V,我们设置初始距离d[v]为正无穷大(INF),表示从起点到节点v的距离为无穷大;同时,我们设置起点s的初始距离d[s]为0,表示从起点到自身的距离为0。
2. 确定最短路径接下来,我们将在图中逐步确定起点到其他节点的最短路径。
首先,我们从起点s开始,将s标记为当前节点。
然后,对于s的所有邻居节点v,我们更新其当前最短路径,并标记v为下一个当前节点。
这一步骤可以通过以下过程实现:a. 对于节点s的所有邻居节点v,计算通过s到达v的距离。
如果该距离小于d[v],则将d[v]更新为该距离,并将s作为节点v的前驱节点(即最短路径上v的前一个节点)。
b. 从剩余的未标记节点中选择一个距离最短的节点作为下一个当前节点。
具体而言,从未标记节点中选择一个节点u,使得d[u]最小,并将其标记为当前节点。
3. 更新最短路径在上一步中,我们确定了起点到一个节点的最短路径。
现在,我们将以已选择的当前节点继续执行第2步,直到所有节点都被标记为止。
具体而言,重复进行以下步骤:a. 在当前节点的所有邻居节点中,更新其最短路径并选择下一个当前节点,过程与第2步相同。
b. 如果不存在未标记节点,则算法终止。
4. 输出最短路径当算法终止时,我们可以得到从起点到达所有节点的最短路径。
对于每个节点v,最短路径可以通过回溯每个节点的前驱节点得到。
具体而言,从目标节点开始,通过前驱节点一直回溯到起点,即可得到最短路径。
总结:Dijkstra算法通过逐步确定起点到其他节点的最短路径,从而找到整个图中的最短路径。
它的步骤包括初始化、确定最短路径和更新最短路径。
单源点最短路径
单源点最短路径
单源点最短路径是指从给定的一个源点出发,到图中的其他所有顶点的最短路径。
常用的解决单源点最短路径问题的算法有:
1. Dijkstra算法:用于求带权有向图的单源点最短路径。
该算
法从起始点出发,逐步找到距离起始点最近的顶点,然后以该顶点为中转点,更新其他顶点到起始点的距离。
该算法的时间复杂度为O(V^2),其中V为顶点数。
2. Bellman-Ford算法:用于求带权有向图的单源点最短路径,
允许存在负权边。
该算法通过对所有边进行V-1次松弛操作,逐步逼近最短路径。
如果存在负权环,则顶点间的最短路径将无法确定。
该算法的时间复杂度为O(VE),其中V为顶点数,E为边数。
3. Floyd-Warshall算法:用于求带权有向图的所有顶点对之间
的最短路径。
该算法通过动态规划的方式计算任意两点之间的最短路径,利用中间顶点的集合进行递推。
该算法的时间复杂度为O(V^3),其中V为顶点数。
以上是一些常用的解决单源点最短路径问题的算法,根据实际情况选择合适的算法进行求解。
单源最短路径算法
单源最短路径算法常见的单源最短路径算法有迪杰斯特拉算法(Dijkstra's algorithm)和贝尔曼-福特算法(Bellman-Ford algorithm)。
本文将详细介绍这两种算法的实现原理和特点。
1.迪杰斯特拉算法:迪杰斯特拉算法是一种用于求解带权重图的单源最短路径的算法。
它的基本思想是,维护一个集合S,初始时包含源节点,不断地向集合S中加入离源节点最近的节点,直到所有节点都加入了集合S。
在每次加入节点的过程中,更新源节点到集合S中每个节点的最短距离。
迪杰斯特拉算法的步骤如下:1)初始化源节点的最短距离为0,其他节点的最短距离为无穷大。
2)将源节点加入集合S。
3)对于源节点的每个邻居节点,更新从源节点到邻居节点的最短距离。
如果更新后的距离更短,更新邻居节点的最短距离。
4)从集合S中选择一个离源节点最近的节点加入集合S,并重复步骤35)重复步骤4,直到所有节点都加入了集合S。
迪杰斯特拉算法的时间复杂度为O(V^2),其中V是节点的数量。
在稠密图中,即边的数量接近节点的数量平方时,迪杰斯特拉算法表现较好。
2.贝尔曼-福特算法:贝尔曼-福特算法是一种用于求解带有负权重边的单源最短路径的算法。
与迪杰斯特拉算法不同的是,贝尔曼-福特算法可以处理负权重边。
贝尔曼-福特算法的基本思想是,通过对边进行松弛操作,不断地更新节点的最短距离,直到找到所有节点的最短距离。
算法的步骤如下:1)初始化源节点的最短距离为0,其他节点的最短距离为无穷大。
2)对于边的数量-1次迭代,做以下操作:a)遍历所有边,对每条边(u,v),如果源节点u的最短距离加上边的权重w小于目标节点v的最短距离,则更新目标节点v的最短距离。
3)再进行一次遍历,如果仍然存在可以松弛的边,则说明存在负权重环。
贝尔曼-福特算法的时间复杂度为O(V*E),其中V是节点的数量,E 是边的数量。
相较于迪杰斯特拉算法,贝尔曼-福特算法的时间复杂度更高,但是它可以处理带有负权重边的图。
求解单源最短路径问题的算法
求解单源最短路径问题的算法单源最短路径问题是指从图中的一个顶点到其他所有顶点的最短路径的问题。
下面将详细介绍两种经典的求解该问题的算法:Dijkstra算法和Bellman-Ford 算法。
1. Dijkstra算法:- 初始化:将源顶点的距离初始化为0,其他顶点的距离初始化为无穷大。
创建一个集合S,记录已经确定最短路径的顶点。
- 重复以下步骤,直到集合S包含所有顶点:- 从未确定最短路径的顶点中选择距离源顶点最近的顶点u,并将其加入集合S。
- 对于与u相邻的顶点v,更新其距离为:min(distance[v], distance[u] + weight(u, v)),其中weight(u, v)表示边(u, v)的权值。
- 最终得到源顶点到图中所有其他顶点的最短路径。
2. Bellman-Ford算法:- 初始化:将源顶点的距离初始化为0,其他顶点的距离初始化为无穷大。
- 重复以下步骤,执行V-1次(V为顶点数):- 遍历图中的所有边,对于每条边(u, v),更新顶点v的距离为:min(distance[v], distance[u] + weight(u, v))。
- 检查是否存在负权回路:再次遍历所有边,如果对于边(u, v),发现distance[v] > distance[u] + weight(u, v),则说明存在从源顶点可达的负权回路,无法确定最短路径;否则,最短路径已经确定。
Dijkstra算法适用于无负权边且图稠密的情况,时间复杂度为O(V^2),也可以通过最小堆优化(时间复杂度为O((V+E)logV))。
Bellman-Ford算法适用于有负权边或存在负权回路的情况,时间复杂度为O(VE)。
需要注意的是,以上算法都是解决单源最短路径问题的经典算法,也可以使用其他如SPFA、Floyd-Warshall等算法求解,选择合适的算法应根据具体问题的要求和图的特性进行评估和选择。
求单源最短路径—Dijkstra算法实验报告
本科学生综合性实验报告项目组长杨滨学号_******* _成员杨滨专业_软件工程班级12软件2班实验项目名称求单源最短路径—Dijkstra算法指导教师及职称_赵晓平讲师___开课学期13 至_14 学年_一_学期上课时间2013 年9 月 1 日学生实验报告三(综合性实验) 学生姓名杨滨 学号 0123707 同组人 实验项目 求单源最短路径——Dijkstra 算法□必修 □选修 □演示性实验 □验证性实验 □操作性实验 □综合性实验 实验地点W101 实验仪器台号 指导教师 赵晓平 实验日期及节次 2013.12.17(二) 12节2013.12.19(一) 89A 节一、实验综述1、实验目的及要求(1)了解求最优化问题的贪心算法,了解贪心法的基本要素,学会如何使用贪心策略设计算法;(2)了解单源最短路径问题,掌握Dijkstra 算法的思想;(3)编写程序,利用Dijkstra 算法实现,求任意两点间的单源最短路径。
实验题:给出如右有向图的边权图,求任意两点间的单源最短路径。
实验要求:认真完成实验题,能正确运行,提交实验报告并上传程序,实验报告要求写出操作步骤、结果、问题、解决方法、体会等。
2、实验仪器、设备或软件计算机、VC++6.0、office 、相关的操作系统等。
二、实验过程(实验步骤、记录、数据、分析)#include<iostream>using namespace std;/*void Graph(int n,bool *inS,int a[6][6],int *d){inS=new bool[n];inS[0]=0;for(int i=1;i<n;i++)inS[i]=1;a=new int*[n];for(i=0;i<n;i++)a[i]=new int[n];cout<<"input "<<endl;for(i=0;i<n;i++)for(int j=0;j<n;j++)√ √cin>>a[i][j];d=new int[n];for(i=0;i<n;i++)d[i]=a[0][i];}*/int Choose(int n,int *d,bool *s){int i,minpos=-1,min=500;for(i=1;i<n;i++)if(d[i]<min && !s[i]){ min=d[i];minpos=i; }return minpos;}void Dijkstra(int s,int n,bool *inS,int *d,int *path,int a[6][6]) {int k,i,j;for(i=0;i<n;i++){inS[i]=false;d[i]=a[s][i];if(i!=s && d[i]<500) path[i]=s;else path[i]=-1;}inS[s]=true;d[s]=0;for(i=0;i<n-1;i++){k=Choose(n,d,inS);inS[k]=true;for(j=0;j<n;j++)if(!inS[j] && d[k]+a[k][j]<d[j]){ d[j]=d[k]+a[k][j];path[j]=k; } }}void Display(int s,int n,int a[6][6],int *d,int *path){int t,m;cout<<"a["<<n<<"]["<<n<<"]: "<<endl;for(int i=0;i<n;i++){for(int j=0;j<n;j++)cout<<a[i][j]<<" ";cout<<endl;}cout<<"输入终点: ";cin>>t;cout<<"距离为d["<<t<<"]: "<<d[t]<<" ";cout<<"路径为: "<<t;while(t!=s){m=path[t];cout<<m;t=m;}cout<<endl;}int main(){int n,*d,*path;//**a,bool *inS;int a[6][6]={0,50,10,500,70,500,500,0,15,500,10,500,20,500,0,15,500,500, 500,20,500,0,35,500,500,500,500,30,0,500,500,500,500,3,500,0};cout<<"Input n: ";cin>>n;inS=new bool[n];/* a=new int*[n];for(i=0;i<n;i++)a[i]=new int[n];cout<<"input "<<endl;for(i=0;i<n;i++)for(int j=0;j<n;j++)cin>>a[i][j];*/path=new int[n];d=new int[n];// Graph(n,inS,a,d);int s=0;Dijkstra(s,n,inS,d,path,a);Display(s,n,a,d,path);return 0;}三、结论1、实验结果2、分析讨论这个实验稍微复杂些,在实现算法时遇到好多问题,首先要实现距离的算法:图中的数等同于下图:1 2 3 4 5 6 然后经过Dijkstra算法分析求出最短路径,1┏ 0 50 10 ∞ 70 ∞┓通过这道程序,我明白了:你有了一个算法,2┃∞ 0 15 ∞10 ∞┃要通过程序去实现它非常复杂,以后需要勤3┃ 20 ∞ 0 15 ∞∞┃学苦练,加以熟练才能将算法变成程序。
dijkstra最短路径经典例题 java
题目:Dijkstra算法解决最短路径问题一、介绍Dijkstra算法Dijkstra算法是一种用于解决图中单源最短路径问题的经典算法。
它采用了贪心法的思想,即每次都选择当前最短的路径去更新相邻节点的距离,直到所有节点的最短路径都被更新为止。
Dijkstra算法的时间复杂度为O(V^2),其中V表示图中节点的个数,因此适用于节点数较少的情况。
二、Dijkstra算法的基本步骤1. 初始化:将起始节点的距离设置为0,其他节点的距离设置为无穷大。
2. 确定当前最短距离节点:从未标记节点中选择距离最短的节点作为当前节点。
3. 更新相邻节点的距离:计算当前节点到相邻节点的距离,若小于原距离,则更新距离。
4. 标记当前节点:将当前节点标记为已访问。
5. 重复步骤2-4,直到所有节点都被标记为已访问或者没有可更新的节点。
三、经典例题:求解最短路径假设有一个带权有向图,节点表示城市,边表示城市之间的道路并标有权值,即两个城市之间的距离。
现要求从起始城市A到目标城市B的最短路径。
四、Java代码实现Dijkstra算法```javaimport java.util.Arrays;public class DijkstraAlgorithm {private static final int INF = Integer.MAX_VALUE; // 无穷大表示两节点不直接相连public int[] dijkstra(int[][] graph, int start) {int n = graph.length;int[] distance = new int[n]; // 存储起始节点到各节点的最短距离boolean[] visited = new boolean[n]; // 记录节点是否已被访问// 初始化distance数组Arrays.fill(distance, INF);distance[start] = 0;// 循环更新最短距离for (int i = 0; i < n - 1; i++) {int minIndex = findMinIndex(distance, visited); // 找到未被访问且距禃最短的节点visited[minIndex] = true;for (int j = 0; j < n; j++) {if (!visited[j] graph[minIndex][j] != INFdistance[minIndex] + graph[minIndex][j] < distance[j]) {distance[j] = distance[minIndex] +graph[minIndex][j];}}}return distance;}private int findMinIndex(int[] distance, boolean[] visited) { int minDist = INF, minIndex = -1;for (int i = 0; i < distance.length; i++) {if (!visited[i] distance[i] < minDist) {minDist = distance[i];minIndex = i;}}return minIndex;}public static void m本人n(String[] args) {int[][] graph = {{0, 6, 3, INF, INF},{INF, 0, INF, 1, INF},{INF, 2, 0, 1, 1},{INF, INF, INF, 0, 3},{INF, INF, INF, INF, 0}};DijkstraAlgorithm dijkstra = new DijkstraAlgorithm();int[] distance = dijkstra.dijkstra(graph, 0);for (int i = 0; i < distance.length; i++) {System.out.println("节点0到节点" + i + "的最短距禿:" + (distance[i] == INF ? "不可达" : distance[i]));}}}```五、代码解析1. 首先定义了一个常量INF表示无穷大,在实际应用中可以根据具体情况设置为合适的数值。
单源最短路径算法
单源最短路径算法这篇文章将介绍两种常用的单源最短路径算法,Dijkstra算法和Bellman-Ford算法,它们分别使用了贪心法和动态规划的思想来解决该问题。
一、Dijkstra算法:Dijkstra算法是一种贪心法的算法,以其发明者荷兰计算机科学家Edsger W. Dijkstra的名字命名。
它的基本思想是通过逐步扩展已知最短路径集合,直到找到从起始节点到目标节点的最短路径为止。
算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。
2.将起始节点的距离设置为0。
3.对于与起始节点直接相连的节点,更新距离数组的值为起始节点到这些节点的距离。
4.选择距离数组中值最小且未访问过的节点作为下一个当前节点。
5.更新从起始节点到当前节点经过未访问过的节点的距离,并更新距离数组中的值。
6.重复步骤4和5,直到所有节点都被访问过或者无法再找到更短的路径。
Dijkstra算法的时间复杂度为O(V^2),其中V为图中节点的数量。
使用优先队列或堆数据结构可以将时间复杂度降低到O((V+E)logV)。
二、Bellman-Ford算法:Bellman-Ford算法是一种动态规划的算法,它以其发明者Richard Bellman和Leslie Ford的名字命名。
与Dijkstra算法不同的是,Bellman-Ford算法可以处理含有负权边的图。
算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。
2.将起始节点的距离设置为0。
3.对于每条边,更新距离数组的值为起始节点到目标节点的距离。
4.重复步骤3,直到所有节点的距离不再改变。
5.检查是否存在负权回路,如果存在,说明不存在最短路径。
Bellman-Ford算法的时间复杂度为O(VE),其中V为图中节点的数量,E为图中边的数量。
总结:Dijkstra算法和Bellman-Ford算法是解决单源最短路径问题的两种常用算法。
DIJKSTRA算法详细讲解
DIJKSTRA算法详细讲解DIJKSTRA算法是一种用于解决加权有向图中单源最短路径问题的算法。
它由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。
DIJKSTRA算法的基本思想是通过维护一个当前已知最短路径集合,不断更新起点到各个顶点的最短距离。
下面将详细讲解DIJKSTRA算法的步骤:1.初始化:设置一个集合S,用来保存已经确定最短路径的顶点;同时设置一个数组D,用来存放起点到各个顶点的当前最短距离。
初始时,将起点到自身的距离设置为0,其他顶点的距离设置为无穷大。
2.选择起点:从起点开始,将其加入集合S,并更新起点到各个邻接顶点的距离值。
首先选择起点的距离值为0,所以起点会被选入集合S。
3.更新距离:从集合S中取出一个顶点v,并遍历与v相邻的顶点。
如果从起点经过v到达相邻顶点w的距离比起点直接到达顶点w的距离要短,则更新起点到顶点w的距离,并将顶点w加入集合S。
重复这个步骤,直到集合S包含所有顶点。
4.重复步骤3:再次从集合S中取出距离最小的顶点,重复步骤3、这样不断更新起点到各个顶点的最短距离,直到集合S为空。
5.输出最短路径:最终得到每个顶点最短距离的数组D。
根据D数组中的值,可以得到起点到各个顶点的最短路径。
下面以一个示例来说明DIJKSTRA算法的具体过程:假设有以下加权有向图,起点为A:AD/\/\3214/\/\B-1-C-5-E初始化时,起点A到自身的距离为0,到其他顶点的距离为无穷大。
将集合S设为空。
开始计算:1.选择起点A,并加入集合S。
2.更新距离:起点A到B的距离为3,将其更新为1;起点A到C的距离为无穷大,将其更新为33.选择到达B距离最短的顶点B,并加入集合S。
4.更新距离:起点A到C的距离为3,将起点B到C的距离2与之相加,更新为3;起点A到D的距离为无穷大,更新为45.选择到达C距离最短的顶点C,并加入集合S。
6.更新距离:起点A到D的距离为4,将起点C到D的距离1与之相加,更新为3;起点A到E的距离为无穷大,更新为87.选择到达D距离最短的顶点D,并加入集合S。
狄克斯特拉算法
狄克斯特拉算法
狄克斯特拉算法(Dijkstra Algorithm)是由荷兰计算机科学家艾兹贝尔·狄克斯特拉(Edsger W. Dijkstra)于1959年提出的一种最短路径算法,它可以解决单源最短路径问题(Single Source Shortest Path),是最常被使用的路由算法之一。
狄克斯特拉算法的基本思想是,从源点出发,每次选择最近的邻接点,然后以该点为中心,不断更新整个图的最短路径。
它的运行原理是:首先,将源点标记为已访问;然后,从源点出发,搜索图中的所有邻接点,更新每个邻接点的最短路径;最后,重复上述步骤,直至所有节点都被标记为已访问。
由于狄克斯特拉算法具有较强的适应性和可扩展性,因此它可以被广泛应用于多种复杂的路由问题中,如最近邻居(Nearest Neighbor)、最佳路径(Best Path)和最低成本路径(Lowest Cost Path)等。
此外,它还可以被用于解决无穷源最短路径问题(Infinite Source Shortest Path)。
狄克斯特拉算法的具体实现方法有很多,如堆优化的Dijkstra算法(Heap Optimized Dijkstra)和双向Dijkstra算法(Bidirectional Dijkstra)等。
狄克斯特拉算法在许多行业中都得到了广泛的应用,如交通和物流、社会网络分析、机器学习等。
它是一种非常实用的路由算法,可以帮助用户快速找到最短路径,从而提高效率和准确性。
迪杰斯特拉(Dijkstra)算法描述及理解
迪杰斯特拉(Dijkstra)算法描述及理解Dijkstra算法是⼀种计算单源最短⽆负边路径问题的常⽤算法之⼀,时间复杂度为O(n2)算法描述如下:dis[v]表⽰s到v的距离,pre[v]为v的前驱结点,⽤以输出路径,vis[v]表⽰该点最短路径是否已经确认初始化:dis[v]=INT dis[s]=0 pre[s]=0 执⾏n次 在没有确定的点中找到⼀个路径最短的,并修改为已经确认 通过这个点修改其他所有没有确定的点 直到所有点已经确认为最短路径,退出循环现在证明算法的正确性:⾸先,我们说明两条性质:1.确定任何⼀个点为最短路径时,前驱p⼀定已经是最短路径(假设源点的前驱是它本⾝)。
2.任意时刻在还没有确定最短路径的点的集合中路径最短的点就是可以被确定的点。
稍微证明⼀下这两条性质(反证法):证明1:假如前驱p还不是最短路径,那么显然当p是最短路径时到当前节点的路径更短,即不是最短路径的节点所确定的节点⼀定不是最短路径(好像很显然)证明2:为了⽅便描述,我们定义已经确定的点为⽩点,没有确定的点为蓝点。
若是蓝点中路径最短x还不能确定为⽩点,那么x的最短路径上必定存在⼀个蓝点y。
即dis[x]>dis[y]+edge[y][x]。
⽽dis[y]处于两种状态:(1)dis[y]已经是y点的最短路径,那么显然与dis[x]为蓝点中最短的相⽭盾。
(2)dis[y]还不是y点的最短路径,那么它的前驱显然是另外⼀个蓝点,即dis[y]>=dis[x](这⾥省略了⼀些步骤,不过⾃⼰稍微想⼀下,我觉得挺显然的),也⽭盾。
综上,性质2得证。
回过头再看我们的算法:在刚开始的时候,⾸先确定的最短路(就是直接和源点相连的点)进⼊⽩点集合,满⾜性质1,2。
此后每个过程都满⾜以上两个性质,所以算法正确。
算法实现:1 memset(vis,0,sizeof(vis));2 vis[s]=1;3 dis[s]=0;4 for(int i=1;i<n;i++)5 {6 int m=INT_MAX;7 int k=0;8 for(int j=1;j<=n;j++)9 {10 if(!vis[j] && dis[j]<m)11 {12 m=dis[j];13 k=j;14 }15 }16 if(k==0)17 break;18 vis[k]=1;19 for(int j=1;j<=n;j++)20 {21 if(dis[k]+e[k][j]<dis[j])22 dis[j]=dis[k]+e[k];23 }24 }View Code。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验单源点最短路径
一、实验目的
1、深入理解贪心策略的基本思想。
2、能正确采用贪心策略设计相应的算法,解决实际问题。
3、掌握贪心算法时间空间复杂度分析,以及问题复杂性分析方法
二、实验内容
单源最短路径
三、设计分析
单源点最短路径
Dijkstra算法是解单源点最短路径的一个贪心算法。
其基本思想是,设置顶点集合S并不断地做贪心选择来扩充这个集合。
一个顶点属于集合当且仅当从源点到该顶点的最短路径长度已知。
初始时,S中仅含有源。
设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短路径特殊长度。
Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist做必要的修改。
一旦S包括了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。
存在一个带权有向图。
四、算法描述及程序
#include "stdafx.h"
#include "iostream"
using namespace std;
#define N 5
#define MAX 1000
int edge1[7] = { 1, 1, 1, 2, 3, 4, 4 };
int edge2[7] = { 2, 5, 4, 3, 5, 3, 5 };
int length[7] = { 10, 100, 30, 50, 10, 20, 60 };
int c[N][N];
template<class T>
void Dijkstra(int n, int v, T dist[], int prev[])
{
bool s[MAX];
for (int i = 1; i <= n; i++)
{
dist[i] = c[v][i];
if (dist[i] == MAX)
prev[i] = 0;
else
prev[i] = v;
}
dist[v] = 0;
s[v] = true;
for (int i = 1; i<n; i++)
{
int temp = MAX;
int u = v;
for (int j = 1; j <= n; j++)
{
int temp = MAX;
int u = v;
for (int j = 1; j <= n; j++)
if ((!s[j]) && (dist[j]<temp))
{
u = j;
temp = dist[j];
}
s[u] = true;
for (int j = 1; j <= n; j++)
{
if ((!s[j]) && (c[u][j] < MAX))
{
T newdist = dist[u] + c[u][j];
if (newdist < dist[j])
{
dist[j] = newdist;
prev[j] = u;
}
}
}
}
}
}
int main()
{
int v;
for (int i = 1; i < N + 1; i++)
for (int j = 1; j < N + 1; j++)
{
}
for (int i = 0; i < 7; i++)
{
int m = edge1[i];
int n = edge2[i];
int Length = length[i];
c[m][n] = Length;
}
int dist[N + 1], prev[N + 1];
cout << endl << "可通行的路径:" << endl<<endl;
for (int i = 1; i < N + 1; i++)
{
for (int j = 1; j < N + 1; j++)
{
if (c[i][j] < MAX)
{
cout << i << "--" << j <<'\t' <<"距离为:";
cout << c[i][j] << endl;
}
}
cout << "从" << i << "无法到达其它顶点" << endl << endl;
}
cout << endl << "请输入源点:";
cin >> v;
Dijkstra(N, v, dist, prev);
cout << "最短路径为:" << endl << endl;
for (int i = 1; i < N + 1; i++)
{
if (dist[i]<MAX&&dist[i]>0)
{
cout << v << "-->" << i << "的最短路径为"<<i;
for (int n = prev[i]; n != 0;)
{
cout << "<--" << n;
n = prev[n];
}
cout << endl << "长度为" << dist[i] << endl << endl;
}
else
cout << v << "--" << i << "无最短路径"<<endl<<endl;
}
return 0;
}
五、测试与分析
六、实验总结与体会
1.用算法中数组prev记录的信息求出相应的最短路径;
2.计算复杂性:对于一个具有n个顶点和e条边的带权有向图,如果用带权邻接矩阵表示这个图,那么Dijkstra算法的主循环体需要O(n)时间。
这个循环需要执行n-1次,所以完成循环需要O(n^2)时间。
算法的其余部分所需要时间不超过O(n^2)。