锅炉尾部烟道顶部包墙
循环流化床锅炉的结构是什么
循环流化床锅炉的结构是什么阀⑦对固体粒子流量进行分配,一部分通过回料器直接送入下炉膛以维持主循环回路固体粒子平衡;另一部分从旋风分离器分离下来的固体粒子通过布置在类似鼓泡床中的外置式换热器④放热后被送入炉膛。
分离后含少量飞灰的干净烟气进入尾部竖井③,经空气预热器和飞灰收集系统,最后由烟囱排入大气。
1.2锅炉整体布置锅炉为单汽包、自然循环、半露天布置的循环流化床锅炉,锅炉整体呈左右对称布置,支吊在锅炉钢架上,采用高温旋风分离器进行气固分离,采用外置换热器控制床温及再热汽温。
本锅炉由五跨组成,第一、二跨布置有主循环回路(炉膛、高温钢板旋风分离器、回料器以及外置式换热器)、冷渣器以及二次风系统等;第三、四跨布置尾部烟道(包括高温过热器、低温再热器以及省煤器);第五跨为单独布置的回转式空气预热器。
炉膛采用全膜式水冷壁结构,炉膛底部采用裤衩型将下炉膛一分为二。
布风板之下为由水冷壁管弯制围成的水冷风室。
锅炉采用回料器给煤的方式,四个给煤口布置在回料器上,石灰石采用气力输送,8个石灰石给料口布置回料腿上。
在水冷风室之前的两个一次风道内分别布置一台风道点火器,另外在炉膛下部还设置有2×4只不带点火和火检的床上助燃油枪,用于锅炉启动点火和低负荷稳燃。
四台流化床式冷渣器被分为两组布置在炉膛两侧,每台冷渣器有9个排渣口,分别将底渣排到机械除渣系统或地面。
四台高温旋风分离器布置在炉膛两侧的钢架副跨内,在旋风分离器下各布置一台回料器。
由旋风分离器分离下来的物料一部分经回料器直接返回炉膛,另一部分则经过布置在炉膛两侧的外置换热器后再返回炉膛。
外置式换热器内布置有受热面,靠后墙外置式换热器内设置有中温过热器(ITS1和ITS2),可以通过控制其间的固体粒子流量来控制炉膛温度;靠前墙外置式换热器内设置有低温过热器(LTS)和高温再热器(HTR),可以通过控制其间的固体粒子流量来控制再热蒸汽温度。
汽冷包墙包覆的尾部烟道内从上到下依次布置有高温过热器、低温再热器、省煤器。
锅炉热力计算部分总结
锅炉热力计算部分总结一、计算流程1,沿着烟气流动方向,一次计算炉膛、水平烟道、转向室、尾部烟道中的受热面 烟道 炉膛 水平烟道 转向室 尾部烟道 受热面 水冷壁,前屏后屏,高过、高再、后后水 省煤器出口管、包墙 低再、低过、省煤器、空预器 附加受热面顶棚顶棚、延伸侧墙顶棚、后、左、右包墙包墙、隔墙每一段烟道的换热计算可能会迭代3~5次,最终使计算结果收敛。
从炉膛到预热器出口的计算过程,成为一轮。
一般而言,第一轮计算往往达不到计算精度要求,需要根据预热器烟气温度计算结果将不合理的烟气焓降按照吸热比例分配到前面各段烟道的受热面。
从而进行下一轮精度更高的计算过程。
1, 误差要求 (1)烟气温度o 30C θθ−≤假设计算 (1)(2)空气温度o 10C t t −≤假设计算(2)(3)水、水蒸汽温度o 5C t t −≤假设计算(3)(4)换热量0.2%Q Q Q −≤假设计算计算(4)二、辐射换热计算根据第九章相关公式计算,主要是辐射换热基本方程(9-18)。
(1)保热系数φ的确定,根据第三章 锅炉机组热平衡中的内容确定。
(2)热有效系数 (3)角系数 (4)沾污系数 (5)炉膛黑度(6)理论燃烧温度 根据第三章 锅炉机组热平衡中的内容确定。
(7)炉壁面积按照水冷壁、顶棚、前屏的总面积计算。
三、对流换热计算根据Nu 数的经验公式计算对流换热系数,以锅侧受热面以烟气侧面积为准。
空气预热器的面积按照空气侧和烟气侧的面积的算术平均值计算。
传热量按照传热公式计算对于烟气较高部分的烟道,对流换热也伴随着辐射换热。
(1)灰污系数(2)热有效系数(3)管排数、结构等修正系数(4)辐射换热计算中,有效辐射层厚度的计算公式随着受热面的结构区别而发生变化。
(5)确定传热系数。
四、附加受热面计算(1)面积:存在折扣,修正系数=0.4~0.8(2)传热温差:烟气与附加受热面工质之间的平均温度之差。
(3)传热系数:主受热面的传热系数。
百万千瓦火电机组塔式锅炉尾部垂直烟道吊装技术
2020年第7期 Lifting technique«' ■塔式炉炉《-图1塔式锅炉炉后垂直烟道示意图吊装顺序和方法;相对于锅炉钢架和 本体受热面而言,烟道布置于炉外, 同等重量下构件尺寸和受风面更大, 相应的高空作业难度及安全风险大。
此外,烟道下方布置有烟气脱硝装 置、空气预热器、旁路省煤器等部 件,受施工工序和吊装空间影响,对 现场吊装、高空就位调整也提出了更 高技术要求。
2施工技术方案炉后垂直烟道包括烟道护板、图2塔式锅炉炉后垂直烟道实景图导流板、桁架、吊挂装置、限位装置、 膨胀节、喷氨装置等。
为减少高空作 业风险,综合考虑烟道结构强度、吊 车负荷、组合场地、运输路线、施工效 率等因素,确定将整个烟道分成10个 模块进行组合和吊装,以此为主线穿 插吊装吊挂装置、限位装置、膨胀节 等部件。
吊装机械的选用,以现场配置的MZQ 2250移动式吊车作为烟道模块由组合场地运输至炉后吊装区域的主 吊机械,以炉后布置的FZQ 1650动臂1工程槪况华能莱芜电厂百万千瓦机组“上 大压小”扩建工程的锅炉,为二次 再热超超临界参数、全悬吊结构塔 式燃煤直流锅炉,尾部垂直烟道与 炉膛出口处连接,底部与脱硝反应器入口连接,高度落差54m (见 图1、图2 >;竖直段烟道截面尺寸为 26.17m x 5.2m ,内部主桁架型钢沿 气流方向5列并行布置。
整个烟道总 重量504t ,通过12根吊杆悬挂在炉顶 钢梁上,其中前侧5根M 75吊杆承担着 炉膛出口膨胀节及其与竖直段烟道之 间倾斜段烟道的重量,后侧7根M 155 吊杆主要承担竖直段烟道、喷氨装置 及脱硝入口膨胀节的重量,悬挂吊杆 分别生根在标高147m 的炉顶大板梁 连梁和炉后148.5m 的炉后悬挑梁上。
由于塔式锅炉垂直烟道为全悬 挂结构,吊装作业、调整对接时仅上 方有生根点,与tr 型锅炉相比尾部烟 道安装位置更高,且无常规TT 型锅炉 设计的后竖井四周钢架和平台可以利 用,吊装时不能采用自下而上的垂直百万千瓦火电机组塔式锅炉尾部垂直烟道吊装技术赵海涛杜传国王建勇李开(中国电建集团山东电力建设第一工程公司济南250102 )摘要:锅炉炉膛出口连接尾部垂直烟道是塔式锅炉区别于n 型锅炉的重要特点之一,垂直烟道结构简 单,造价低廉,但地处高空位置,作业风险大,受结构及空间限制无法采用常规吊装方法。
220t循环硫化床锅炉运行规程
HG—220/9.8—L.MN17锅炉运行规程1 锅炉的基本特性1.1 概述循环流化床(CFB)锅炉是八十年代发展起来的高效率、低污染和良好综合利用的燃煤技术,由于它在煤种适应性和变负荷能力以及污染物排放上具有的独特优势,使其得到迅速发展。
我厂锅炉由德国EVT公司负责锅炉的性能设计,并提供技术支持。
哈尔滨锅炉有限责任公司根据国内现行标准、材料完成施工设计和制造。
这种锅炉采用了新的燃烧方式,具有以下优点:(1) 燃料适应性广与煤粉炉相比,其煤种的适应性较广。
(2) 低硫排放燃烧室内添加石灰石直接脱硫,无需在尾部设置烟气脱硫设备,即可满足环保标准要求。
(3) 高燃烧效率气固间高滑移速度导致固体颗粒在床内横向、纵向混合良好,且有较长的停留时间,因此可以保证最佳的碳燃尽率。
(4) 低NO x排放低燃烧温度和分级燃烧可降低NO x排放量,无需对烟气处理也能满足最严格的排放标准要求。
(5) 消除溶渣低温燃烧不产生溶渣,降低了碱性盐的挥发,因而减少了锅炉的腐蚀和对流受热面的沾污。
(6) 较大的负荷调节比从稳定燃烧的观点出发,不投油稳燃的锅炉负荷为30%。
负荷的调节比较大。
1.2 锅炉的主要规范型号:HG—220/9.8—L.MN17制造厂:哈尔滨锅炉制造厂燃料:设计煤种为70%煤泥+30%煤矸石;校核煤种为40%煤泥+60%煤矸石和原煤燃烧方式:循环流化过热蒸汽压力:9.81MPa锅炉燃烧额定蒸发量:220t/h汽包压力:10.8MPa给水温度:215℃过热蒸汽温度:540℃锅炉效率:89.81%预热器进口温度:25℃排烟温度:142℃1.3 燃料特性1.3.1 设计煤种和校核煤种数值名称符号单位煤泥煤矸石设计煤校核煤种煤泥70%+煤矸石30%煤泥40%+煤矸石60%原煤收到基碳 C % 43.25 30.46 39.41 35.58 62.92 收到基氢H % 2.89 2.07 2.64 2.40 3.95 收到基氧O % 6.59 8.2 7.07 7.56 7.84 收到基氮N % 0.8 0.52 0.72 0.62 1.13 收到基硫S % 0.42 0.62 0.48 0.54 0.56 收到基全水分W % 029 4.3 21.59 14.18 9.7收到基灰份A % 17.05 53.83 28.06 39.12 13.9 低热值Q kJ/kg 16309 11182 14771 13233 24732 粒度范围mm 0.1~5 0.1~5 0.1~5 1.3.2 点火用油(0#柴油)Cy Hy Oy Ny Sy 低热值闪点凝点单位% % % % % kj/kg ℃℃数值85.5~86.513.5~14.50.034 0.034 0.082 10200 68 01.4 石灰石数值名称符号单位数值碳酸钙CaCO3 % 92.8 碳酸镁MgCO3 % 6.5水H2O % 0.0 惰性物质% 0.7 石灰石粒度:max<1mm<0.5mm <0.2mm <0.1mm <0.05mm d50 mm%%%%%mm1100987030100.151.5 启动用砂:单位数值Na2O % 1.0~2.0K2O % 2.0~3.0 粒度范围:max<1mm<0.5 mm <0.2 mm <0.1 mm <0.05 mm d50 mm%%%%%mm1100987030100.151.6 锅炉具体设计特点1.6.1 设计煤种(70%煤泥+30%煤矸石)负荷% 100 70 50 30 高加不投水/蒸汽参数给水流量t/h 220 154 110 66 203 蒸汽流量t/h 220 154 110 66 203 排污量t/h 2.2 1.54 1.10 0.66 2.03 喷水幅度% 3.83 5.15 4.53 1.46 6.37 一级喷水量t/h 5.24 4.75 2.99 0.58 7.78二级喷水量t/h 3.38 3.17 1.98 0.40 5.18MPa 11.02 10.50 10.25 10.08 10.84 省煤器入口压力锅筒压力MPa 10.8 10.30 10.06 9.90 10.64 过热器出口MPa 9.80 9.80 9.80 9.80 9.80 压力℃215 196 183 170 158 省煤器入口温度℃540 540 540 540 540 过热器出口温度汽水温度省煤器入口℃215 196 183 170 158 省煤器出口℃280 267 263 285 252℃316 313 311 310 315 包墙过热器入口℃328 329 330 329 329 包墙过热器出口SHI入口℃328 329 330 329 329 SHI出口℃448 453 453 469 467 SHII入口℃429 425 429 460 429 SHII出口℃500 501 503 513 507 SHIII入口℃485 481 485 507 480 SHIII出口℃540 540 540 540 540汽水压力省煤器入口MPa 11.02 10.50 10.25 10.08 10.84 省煤器出口MPa 11.00 10.48 10.24 10.07 10.82 包墙过热器MPa 10.80 10.30 10.06 9.90 10.64 入口包墙过热器MPa 10.47 10.13 9.97 9.87 10.37 出口SHI入口MPa 10.47 10.13 9.97 9.87 10.37 SHI出口MPa 10.33 10.06 9.93 9.85 10.25 SHII入口MPa 10.25 10.02 9.91 9.84 10.18SHII出口MPa 10.00 9.90 9.85 9.82 9.97SHIII入口MPa 9.92 9.86 9.83 9.81 9.90 SHIII出口MPa 9.80 9.80 9.80 9.80 9.80烟气温度炉膛出口℃850 827 767 639 850 床温℃860 845 815 790 860 SHIII入口℃812 782 723 615 813 SHIII出口℃715 679 635 574 715 SHI出口℃438 412 396 397 443 省煤器出口℃268 236 219 217 226℃142 130 124 120 128 空气预热器出口空气温度空气入口℃14.5 14.5 14.5 14.5 .14.5空气预热器℃25 30 37 40 32 入口(平均)空气预热器℃185 174 167 164 162 出口(平均)质量流量煤kg/s 11.768 8.431 6.239 4.056 11.792 总燃烧空气kg/s 71.21 51.22 42.11 42.34 71.36kg/s 65.45 45.38 36.26 36.50 65.51 通过空气预热器空气烟气kg/s 79.45 57.15 46.44 45.07 79.61烟气流速(平均)炉膛m/s 6.0 4.2 3.3 2.9 6.1 SHIII m/s 9.0 6.2 4.8 4.3 9.0 SHI m/s 9.5 6.6 5.1 4.8 9.5 省煤器m/s 7.5 5.2 4.1 4.0 7.3 空气预热器m/s 8.8 6.0 4.8 4.6 8.3效率计算(按MN1942)过剩空气% 20 20 34.8 114.8 20 环境温度℃14.5 14.5 14.5 14.5 14.5计算的基准℃25 25 25 25 25 温度未燃碳损失% 3.11 2.70 3.86 6.73 3.10 灰渣热损失% 0.72 0.76 0.67 0.50 0.71 散热损失% 0.62 0.90 1.23 1.94 0.63 排烟热损失% 5.74 5.15 5.27 7.42 4.99 锅炉效率% 89.81 90.49 88.97 83.41 90.57 1.6.2 校核煤种(40%煤泥+60%煤矸石和原煤)原煤燃料40%煤泥+60%煤矸石负荷% 100 50 100 50水/水蒸气参数给水流量t/h 220 110 220 110 蒸汽流量t/h 220 110 220 110 排污量t/h 2.20 1.10 2.20 1.10 喷水幅度% 3.67 4.46 3.59 4.78 一级喷水量t/h 4.86 2.95 4.75 3.17 二级喷水量t/h 3.24 1.98 3.17 2.09 省煤器入口MPa 11.02 10.25 11.02 10.24 压力锅筒压力MPa 10.80 10.06 10.80 10.07 过热器出口MPa 9.80 9.80 9.80 9.80 压力℃215 183 215 183 省煤器入口温度℃540 540 540 540 过热器出口温度汽水温度省煤器入口℃215 183 215 183 省煤器出口℃280 263 273 256℃316 311 317 311 包墙过热器入口包墙过热器℃327 330 327 330出口SHI入口℃327 330 327 330 SHI出口℃449 454 441 449 SHII入口℃430 430 423 423 SHII出口℃499 502 497 499 SHIII入口℃485 484 483 480 SHIII出口℃540 540 540 540汽水压力省煤器入口MPa 11.02 10.25 11.02 10.24 省煤器出口MPa 11.00 10.24 11.00 10.23 包墙过热器MPa 10.80 10.06 10.80 10.07 入口MPa 10.47 9.97 10.47 9.97 包墙过热器出口SHI入口MPa 10.47 9.97 10.47 9.97 SHI出口MPa 10.33 9.93 10.33 9.93 SHII入口MPa 10.25 9.91 10.25 9.91 SHII出口MPa 10.00 9.85 10.00 9.85 SHIII入口MPa 9.92 9.83 9.92 9.83 SHIII出口MPa 9.80 9.80 9.80 9.80烟气温度炉膛出口℃854 771 888 805 SHIII入口℃817 728 845 755 SHIII出口℃720 638 733 649 SHI出口℃439 398 432 392 省煤器出口℃264 219 258 214 空气预热器℃142 124 135 120 出口空气温度风机入口℃14.5 14.5 14.5 14.5空气预热器℃25 37 25 40 入口(平均)空气预热器℃185 167 179 163出口(平均)质量流量煤kg/s 13.17 6.968 6.891 3.625 总燃烧空气kg/s 71.57 42.24 67.27 39.79 通过空气预kg/s 65.70 36.37 61.42 33.94 热器空气烟气kg/s 79.41 46.35 73.08 42.84烟气流速(平均)炉膛m/s 6.0 3.3 5.7 3.1 SHIII m/s 8.9 4.8 8.3 4.5 SHI m/s 9.4 5.1 8.6 4.7 省煤器m/s 7.5 4.1 6.7 3.7 空气预热器m/s 8.7 4.8 7.8 4.3效率计算(按DIN1942)过剩空气% 20 34.7 20 34.8 环境温度℃14.5 14.5 14.5 14.5℃25 25 25 25 计算的基准温度未燃碳损失% 2.77 3.45 2.55 3.18 灰渣热损失% 1.38 1.23 0.30 0.23 散热损失% 0.63 1.23 0.64 1.25 排烟热损失% 5.68 5.21 4.94 4.65 锅炉效率% 89.54 88.88 91.57 90.69 1.6.3 烟气压降计算燃料70%煤泥+30%煤矸石负荷% 100烟气压降数值旋风筒Pa 1500旋风筒出口烟道Pa 50转向室Pa 20SHIII(包括静压头)Pa 40SHI(包括静压头)Pa 264省煤器(包括静压头)Pa 285空气预热器(包括静压头)Pa 577烟气压力值炉膛出口kPa 102.20旋风筒出口kPa 100.70转向室出口kPa 100.63 SHIII出口kPa 100.59SHI出口kPa 100.33省煤器出口kPa 100.04空气预热器出口kPa 99.46大气压力kPa 100.701.6.4 空气分配流率流率流率范围% kg/s Kg/s一次风50 35.6 28.5—42.7 二次风17.2 12.2 2.2—21.4 通过燃烧器的空气17.2 12.2 5.4—22.0 给煤风 6.7 4.8冷渣器用风 4.1 2.9回料阀用风 1.6 1.1石灰石输送风0.4 0.3密封风 2.0 1.4火焰监视器用风0.3 0.2煤泥分配风0.6 0.4总燃烧用风100 71.2通过空气预热器风91.8 65.4冷风8.2 5.81.6.5 灰量分配70%煤泥+30%煤矸石40%煤泥+60%煤矸石100%原煤煤量kg/s11.77 13.17 6.89 石灰石量kg/s 0.31 0.34 0.27正常工况总灰量kg/s 3.62 5.52 1.21 底渣量kg/s 1.45 3.04 0.60 飞灰量kg/s 2.17 2.48 0.60 排渣温度℃100 100 100 飞灰温度℃142 142 135设计工况Max.底渣量kg/s 4.17Max飞灰量kg/s 3.61Max.底渣温度℃150Max飞灰温度℃1701.6.6 石灰石量和Ca/S70%煤泥+30%煤矸石40%煤泥+60%煤矸石100%原煤煤量kg/s 11.77 13.17 6.89 含硫量% 0.48 0.54 0.56 含灰量% 28.09 39.11 13.9 灰中CaO量% 3.52 3.43 3.36 石灰石中CaCO3量% 92.8 92.8 92.8 石灰石反应能力High High High 脱硫率% 90.7 90 90 SO2量(在含O26%干烟气中)Mg/m3N 167 225 131 需要的Ca/S比 2.1 2 2.3 石灰石流量kg/s 0.306 0.344 0.271 1.7 锅炉基本尺寸炉膛宽度(两侧水冷壁中心线距离) 6450mm炉膛深度(前后水冷壁中心线距离) 6450 mm尾部对流烟道宽度(两侧包墙中心线距离) 7500 mm尾部对流烟道深度(前后包墙中心线距离) 4240 mm尾部对流烟道宽度(空气预热器烟道宽度) 8530 mm尾部对流烟道深度(空气预热器烟道深度) 4240 mm 锅筒中心线标高 39830 mm 省煤器进口集箱标高 18000 mm 过热器出口集箱标高 36930 mm 锅炉运转层标高 8000 mm 锅炉最高点标高(顶板上标高) 45000 mm 锅炉宽度(两侧外支柱中心线距离) 19450 mm 锅炉深度(K1柱至K4柱中心线距离) 30860 mm 1.8 锅炉水容积名称单位锅筒水冷壁下水管连接管过热器省煤器总计水压时m3 19.23 36 30.43 17 102.66 正常运行时m3 6.9 36 0 17 59.9 1.9 锅炉整体布置本锅炉系高压参数、单锅筒、自然循环蒸汽锅炉,采用循环流化床燃烧方式,高温分离。
75th循环流化床锅炉设计说明
返料风系统
返料风主要用来流化回料装置内循环物料,以确保物料通过回料装置返回到燃烧室中,返料风起到松动物料及输送物料的作用。返料风要求具有较高压力。该返料风机的风量约为2500Nm3,压头为2000mmH2O。
6
锅炉水系统简述
6.1
水循环系统
给水(一部分经面式减温器)进入尾部烟道内的省煤器,再进入汽包,炉水经汽包下降管到下水集箱,经蒸发受热面(膜式水冷壁)回到汽包。饱和蒸汽从汽包引出后,首先经顶棚过热器后经尾部烟道的包墙过热器进入低温过热器,再经面式减温器进入高温过热器。
6.4
过热器
高温过热器布置在炉膛上部的水平烟道内,呈逆流顺列布置,其管径为φ38×4mm,材质为15CrMoG。低温过热器布置在尾部竖井烟道内,呈卧式逆流布置,管径为φ32×4mm,材质为20G(GB5310)。饱和蒸汽经4根φ108×4.5mm连接管,由锅筒引到顶棚管进口集箱,蒸汽从顶棚管尾部后包墙管,再经U型集箱,分别引到两侧包墙,蒸汽在两侧墙管内自下而上,汇集到两侧包墙上集箱,顶棚管及后包墙管均采用φ51×5mm的管子,两侧包墙采用φ42×4mm,蒸汽由两侧包墙上集箱再引到过热器吊挂集箱,通过54根φ42×5mm吊挂管将蒸汽引到低温过热器进口集箱。低温过热器管重量全部由吊挂管承担。为调节过热器中蒸汽温度,在低温过热器与高温过热器之间,布置一面式减温器,其减温能力可达到50℃。
燃烧室壁面开有:二次风口、回料口(包括循环灰入口、石灰石入口、燃料入口)、排渣口、启动燃烧器口、测温口、测压口、出烟口、人孔等各种门孔。
5.2
布风及点火系统
锅炉采用床下热烟气点火,水冷风箱和布风板等技术。在靠近风室入口的主风管道上开一旁通、油枪在旁通中先燃烧加热空气,并与主风道空气混合至800~900℃,作为点火期间一次风道入水冷风室。锅炉正常运行时,旁通要关闭。油枪工作压力2~2.5MPa。
卡门涡流对电站锅炉安全性的影响及治理措施_董琨
卡门涡流对电站锅炉安全性的影响及治理措施董 琨北京国华电力技术研究中心有限公司,北京 065201[摘 要] 分析了国华太仓发电公司8号锅炉尾部烟道振动、国华沧东发电公司1号锅炉和国华定州发电公司1号锅炉包墙过热器拉稀管断裂的原因,认为其主要由卡门涡流脱落频率接近于设备的声学驻波频率而使设备产生高频共振所致。
对此,提出了在锅炉尾部烟道省煤器区域加装防振隔板,在锅炉前包墙过热器加装管卡等措施。
改造后,无论高低负荷运行均未再发生尾部烟道振动现象和前包墙过热器拉稀管断裂事故。
[关 键 词] 卡门涡流(卡门涡街);锅炉;过热器;拉稀管;断裂;烟道;振动[中图分类号] TK223.3+2[文献标识码] B[文章编号] 1002-3364(2008)10-0031-04作者简介: 董琨(1979-),男,北京国华电力技术研究中心锅炉工程师,从事锅炉及热力系统相关技术工作,华北电力大学在读工程硕士研究生。
E -m ail :d k29@ 2005年9月,国华太仓发电有限公司(太仓发电公司)8号机组调试期间,锅炉尾部烟道省煤器区域发生大面积振动,并伴有低沉的轰鸣声,经对相关参数进行了调整,并无效果;2006年5月,国华沧东发电有限责任公司(沧东发电公司)1号锅炉包墙过热器拉稀管断裂;2007年2月6日,国华定州发电有限责任公司(定州发电公司)1号锅炉包墙过热器拉稀管断裂。
以上3次事件均是由于卡门涡流脱落频率接近设备的声学驻波频率,而使设备发生高频共振并造成损坏。
卡门涡流(又称卡门涡街)是粘性不可压缩流体动力学所研究的一种现象。
流体绕流高大烟囱、高层建筑、电线、油管道和换热器的管束时都会产生卡门涡流,这种涡流曾使潜水艇的潜望镜失去观察能力,海峡大桥受到毁坏,锅炉的空气预热器管箱发生振动和破裂。
1 锅炉尾部烟道振动太仓发电公司8号锅炉是上海锅炉厂有限公司引进美国ALS TON 技术制造的超临界600M W 、变压运行、螺旋管圈、单炉膛、一次中间再热、四角切圆燃烧、平衡通风、固态排渣、Π型布置直流燃煤锅炉,型号为SG -1913/25.4-M 950,主要技术参数见表1。
超临界锅炉水平烟道前包墙管泄漏原因分析与处理
超临界锅炉水平烟道前包墙管泄漏原因分析与处理宋效琦【摘要】针对超临界锅炉的水平烟道包墙管发生多次同位置泄漏问题,通过对锅炉结构、运行状况、泄漏部位管材的化学成分、金相组织及力学性能分析,找出泄漏主要原因是包墙管热膨胀差过大,采取在热应力集中部位加装膨胀弯及锅炉启动运行中保证通畅的汽水循环等措施,有效避免了泄漏的发生,保证机组的安全稳定运行.【期刊名称】《吉林电力》【年(卷),期】2017(045)006【总页数】3页(P51-53)【关键词】超临界锅炉;烟道包墙管;泄漏膨胀不均;应力释放【作者】宋效琦【作者单位】吉林电力股份有限公司白城发电公司,吉林白城 137000【正文语种】中文【中图分类】TK223.31锅炉是火力发电厂的重要设备之一,其安全与否直接影响机组的稳定运行。
如果在设计、安装、运行中存在金属部件膨胀受阻或相邻部件热偏差较大,将会导致金属部件产生很大的热应力,在热应力得不到有效释放时就会发生金属部件断裂或泄漏。
由热应力而引发的金属部件失效通常多发生在机组的启动过程中,严格执行锅炉启停机操作规程且保证热应力得到可靠释放,可有效降低金属部件断裂和泄漏事件发生,使机组安全稳定运行。
1 超临界锅炉概况某厂超临界燃煤锅炉型号为HG2071566-HM9,为全钢构架的变压本生直流炉,配置循环泵式启动系统、前后墙对冲低NOx轴向旋流燃烧器、一次中间再热、单炉膛平衡通风、固态排渣系统。
锅炉以最大连续负荷(BMCR)工况为设计参数,最大连续蒸发量2 070 t/h,过热器蒸汽出口温度为571 ℃,再热器蒸汽出口温度为569 ℃,给水温度为279.3 ℃。
锅炉呈“П”型布置,设计有固定的膨胀中心,受热面采用全悬吊结构。
炉膛上部布置有屏式过热器,水平烟道中布置有末级过热器、末级再热器。
尾部为双烟道,前烟道布置有低温再热器,后烟道布置有低温过热器和省煤器,水平低温过热器和水平低温再热器采用中间隔墙入口集箱引出管作为吊挂管。
350MW超临界循环流化床锅炉安装总结(徐州)资料
350MW超临界直流型循环流化床锅炉安装总结【摘要】徐州华美电厂是350MW超临界直流型循环流化床锅炉,锅炉受热面的安装、大件吊装等主要施工措施与其它普通锅炉存在着很大的差异,对设计和制造存在的问题进行了技术改造。
本文就此进行了论述和总结,为同类型的循环流化床锅炉的安装和设计提供参考。
【关键词】超临界;循环流化床;锅炉受热面;旋风分离器。
一、概述循环流化床(CFB)锅炉技术是七十年代发展起来的新技术,它发展的动力在于人类社会对环境保护的日益重视,作为清洁燃烧技术,其特殊的燃烧方式大大减少作为世界大气污染源——燃煤电站的二氧化硫(SO2)和氮氧化物(NOX)排放,即从根本上解决了酸雨问题。
同时循环流化床锅炉还具有燃料适应性广、负荷调节性好、投资和运行成本相对较低,因此作为世界上能源技术发展的三大方向之一,该技术在全世界得到迅猛发展。
现就徐州华美电厂350MW循超临界直流型循环流化床锅炉主要安装技术,作以下总结及探讨。
二、工程概况徐州华美热电二期为新建2×350MW级超临界直流型循环流化床机组工程。
锅炉为东方锅炉(集团)股份有限责任公司生产的型号为DG1150/25.4-Ⅱ1的超临界循环流化床锅炉,锅炉为超临界参数变压运行、单炉膛、一次中间再热、固态排渣、全钢架悬吊结构、露天布置、炉顶设置密封罩壳、循环流化床锅炉。
锅炉最大连续出力(BMCR)参数:低再入口处蒸汽压力MPa(g) 5.57温度℃352.4高再出口处蒸汽流量t/h 955.97压力MPa(g) 5.38温度℃569 省煤器进口处给水温度℃291三、350MW超临界流化床锅炉工艺流程350MW超临界循环流化床锅炉延续了135~150MW和300MW等级CFB炉的特色,主要由以下三大部分组成(如图):●炉膛(1)(包括屏过(8)、屏再(9)、双面水冷壁(10))●固体循环回路,主要由旋风分离器(2)、回料器(3)组成●尾部竖井(4)1-炉膛 2-分离器 3-回料器 4-尾部受热面5-一次风 6-二次风 7-给煤装置 8-屏式过热器9-屏式再热器 10-双面水冷壁 11-管式空预器 12-播煤风超临界流化床锅炉的心脏部件是炉膛(1),燃料(7)和播煤风(12)从这里给入。
循环流化床锅炉改造毕业论文
AGX75-1№17.2 D 左 90
62480m3/h
17000Pa 电动机
型号 功率 转速 电压
Y400-4 450KW 1450rpm 6000V
二次风机
型号
风量 风压
AGX75-2№12.5 D 右 90
41925m3/h
9356Pa 电动机
型号 功率 转速 电压
Y315 L-4 160KW 1450rpm
7
2 峄化公司型锅炉整体情况
2.1 锅炉概况
尾部烟道的前包墙与炉膛后墙水冷壁共用,形成双面水冷壁;低温过热器布置 在尾部烟道内,采用吊管结构;一、二级省煤器支于侧包墙上,并随侧包墙一 同膨胀;空气预热器单独向外拉出,分为一次风及二次风预热器;在炉膛出口, 烟气分为两路分别进入两只旋风分离器,进旋风分离器后的烟气回到炉顶水平 烟道。
(2) 鲁奇(Lurgi)型循环流化床 (3)巴特利(Battelle)的多固体循环流化床锅炉
(4)德国Babcock公司的Cirfluid循环流化床锅炉
4
1.3 国内外循环流化床锅炉的发展
从节约燃料、保护大气环境及回收温室气体CO2这三观点出发, 发展流化床锅炉在以煤为主要能源的国家具有重大意义。
9
设备技术参数
a.锅炉技术规格
表2-1 锅炉主要技术数据
锅筒中心标高 运转层标高 左右柱距 一次风量 锅炉效率
32050mm 8000mm 7200mm 62100m3/h
87%
表2-2 锅炉重要参数表
额定蒸发量 额定蒸汽压力 额定蒸汽温度
连续排污
75t/h 3.82MPa 450℃
2%
操作层标高 烟气量 前后柱距 二次风量
针对该型锅炉在实际运行中存在的问题(带负荷能力不足、水冷壁 管磨损严重、锅炉给煤易堵塞等),我公司结合实际运行经验,通过理论 分析和实践验证,积极采用各类技术和设备先后对一次风风道、风帽、旋 风分离器、给煤机、煤筛分机进行了合理的改造,创造了更好的燃烧条件, 提高了锅炉出力率,有效地延长了锅炉的运行时间。
600MW锅炉水冷壁
结构特点
下部螺旋盘绕上升, 从水冷壁进口到折焰角下 一定距离(标高52608.9 mm)处。
上部垂直上升 均为膜式壁结构 两者间由过渡水冷壁转换连接
入水冷壁出口汇集集箱,再有连接管引入启动分离器
过渡段水冷壁结构简图
螺旋管圈水冷壁在标高46.459m处通过中间集箱转换 成垂直管屏。
垂直管屏由1312根φ31.8×5.5 MWT、材料为 15CrMoG、节距为57.5mm的管子组成。前、后墙垂 直管屏各由385根管子组成,两侧墙管屏各由271根 管子组成。
水冷壁,螺旋管与垂直管的管数 比为3:1。这种结构的过渡段水冷壁可以把螺旋水冷壁 的荷载平稳地传递到上部水冷壁。
上部水冷壁管屏
• 上部炉膛水冷壁与常规炉膛水冷壁没有差异 • 采用结构和制造较为简单的垂直管屏,垂直管屏管子规格
为Φ31.8×8.2,节距50.8; 膜式扁钢厚δ6,材料为SA-387Gr2 水冷壁出口工质汇入上部水冷壁出口集箱,后由连接管引
零膨胀点的设置
锅炉本体采用全悬吊结构,使锅炉本体的每个部分能 够比较充分的热膨胀,大大地减少了由于热膨胀受阻 而产生的热应力。锅炉的自然热膨胀中心除了与锅炉 的几何尺寸有关之外,还与温度的分布有关。而锅炉 在启动低负荷、满负荷和停炉工况下温度的分布是不 一样的。因此,锅炉的自然热膨胀中心是随着工况的 变化而变化的。为了进行比较精确的热膨胀位移计算, 以便进行系统的应力分析和密封设计,需要有一个在 各种工况下都保持不变的膨胀中心,作为热膨胀位移 计算的零点。这个膨胀中心就是所谓的人为的膨胀中 心,通过一定的结构措施就能实现它。
超超临界锅炉(1000MW)安装技术交底
超超临界锅炉(1000MW)安装技术交底超超临界锅炉(1000MW)特点:锅炉工程量大,安装工期长,作业面广,涉及工种多,交叉多而成为工程建设的主线,同时作为超超临界锅炉,新材料的焊接数量多,焊接工期长。
锅炉上下部水冷壁全部由垂直管膜式水冷壁构成,上下部水冷壁之间设有混合集箱。
炉膛上部布置屏式过热器,沿烟气流程方向分别设置二级过热器(大屏)和三级过热器(后屏),折焰角上方布置有四级过热器(末过)。
在水平烟道处布置了垂直二级再热器(高温再热器)。
尾部竖井由中隔墙分隔成前后两个烟道。
前部布置水平一级再热器(低温再热器)和省煤器。
后部布置水平一级过热器(低温过热器)和省煤器。
在后竖井烟道底部设置了烟气调节挡板装置。
烟气通过调节挡板后又汇集在一起经两个尾部烟道引入左右各一的回转式空气预热器。
锅炉启动系统为带再循环泵系统,二只立式内置式汽水分离器布置于锅炉的后部上方,由后竖井后包墙管上集箱引出的锅炉顶棚包墙系统的全部工质均通过4根连接管送入二只汽水分离器。
在启动阶段,分离出的水通过水连通管与一只立式分离器贮水箱相连,而分离出来的蒸汽则送往水平低温过热器的下集箱。
分离器贮水箱中的水经疏水管排入再循环泵的入口管道,作为再循环工质与给水混合后流经省煤器—水冷壁系统,进行工质回收。
除启动前的水冲洗阶段水质不合格时排往扩容器系统外,在锅炉启动期间的汽水膨胀阶段、在渡过汽水膨胀阶段的最低压力运行时期以及锅炉在最低直流负荷运行期间由贮水箱底部引出的疏水均通过三只贮水箱水位调节阀送入冷凝器回收或通过炉水循环泵送入给水管道进入水冷壁进行再循环。
借助于再循环泵和给水泵,在锅炉启动期间水冷壁系统内始终保持相当于锅炉最低直流负荷流量(25%BMCR),启动初期给水泵保持5%BMCR给水流量,随锅炉出力达到5%BMCR,三只贮水箱水位调节阀全部关闭,锅炉的蒸发量随着给水量的增加而增加,而通过循环泵的再循环流量则利用泵出口管道上的再循环调节阀逐步关小来调节,当锅炉达到最小直流负荷(25%BMCR),再循环调节阀全部关闭,此时,锅炉的给水量等于锅炉的蒸发量,启动系统解列,锅炉从二相介质的再循环模式运行(即湿态运行)转为单相介质的直流运行(即干态运行)。
第二章+锅炉自动控制系统
串级三冲量给水控制系统图
燃烧率阶跃扰动下的水位响应曲线
在燃烧率Q阶跃变化时,水位的响应曲线如图2-8所示。水位变化的动态特 性用下列传递函数表示:
GHQ ( s)
——为迟延时间(s)。
H (s) K [ ]e s Q( s ) (1 Ts)2 s
上式与蒸汽流量的扰动影响下的传递函数相类似,但增加了一个纯迟延环节。
(4) 根据运行中汽包“虚假水位”现象的 情况。设定蒸汽流量信号强度系数 D 。如“虚假水位”现象严重,可适当加强蒸 汽流量信号,例如可使蒸汽流量信号强度为 给水流量信号强度的1~3倍。但若因此需要 减小给水流量信号强度,则需要重新修正主、 副调节器的整定参数。 (5) 进行机组负荷扰动试验,要求同单级三 冲量系统。
1) 串级三冲量给水控制系统的组成为: (1) 给水流量W、给水流量变送器 rw 和给水流量反馈装置 aw 、副调节器PI2、 执行机构 K Z 、调节阀 K 组成的内回路(或称副回路)。
(2) 由水位控制对象 W01 s 、水位变送器 rH 、主调节器PI1和内回路组成 的外回路(或称主回路)。 (3) 由蒸汽流量信号D及蒸汽流量测量装置 rD 、蒸汽流量前馈装置
本章主要学习模拟量控制系统中锅炉部分的各主要子控制系统:给水控制系统、气 温控制系统和燃烧控制系统。
一、 模拟量闭环控制系统(MCS)
主要包括以下子系统: 1.锅炉给水控制系统 锅炉给水控制系统是调节锅炉的给水量以适应机组负荷(蒸汽量)的变化, 保持汽包水位稳定(对于汽包锅炉)或保持在不同锅炉负荷下的最佳燃水 比(对于直流锅炉) 2.汽温控制系统 汽温控制的质量直接影响到机组的安全与经济运行。它包括主蒸汽温度控制和 再热蒸汽温度控制 (过热气温调节:喷减温水;再热气温调节:烟气挡板位置)
最新版精编锅炉工模拟考试500题(含答案)
锅炉工考试题库500题[含答案]一、问答题1.DCS故障的紧急处理措施1)已配备的电厂,应根据机组的具体情况,制定在各种情况下DCS失灵后的紧急停机停炉措施。
2)当全部操作员站出现故障时(所有上位机“黑屏”或“死机”),若主要后备硬手操及监视仪表可用且暂时能够维持机组正常运行,则转用后备操作方式运行,同时排除故障并恢复操作员站运行方式,否则应立即停机停炉。
若无可靠的后备操作监视手段,也应停机停炉。
3)当部分操作员站出现故障时,应由可用操作员站继续承担机组监控任务(此时应停止重大操作),同时迅速排除故障,若故障无法排除,则应根据当时运行状况酌情处理。
4)当系统中的控制器或相应电源故障时,应采取以下对策。
a.辅机控制器或相应电源故障时,可切至后备手动方式运行并迅速处理系统故障,若条件不允许则应将该输机退出运行。
b.调节回路控制器或相应电源故障时,应将自动切至手动运行,同时迅速处理辅机故障,并根据处理情况采取相应措施。
c.涉及到机炉保护的控制器故障时应立即更换或修复控制器模件,涉及到机炉保护电源故障时则应采取强送措施,此时应做好防止控制器初始化的措施。
若恢复失败则应紧急停机停炉。
5)加强对DCS系统的监视检查,特别是发现CPU.网络.电源等故障时,应及时通知运行人员并迅速做好相应对策。
6)规范DCS系统软件和应用软件的管理,软件的修改.更新.升级必须履行审批授权及责任人制度。
在更新.修改.升级软件前,应对软件进行备份。
未经测试确认的各种软件严禁下载到已运行的DCS系统中使用,必须建立有针对性的DCS系统防病毒措施。
2.过热器的作用?将饱和蒸汽加热成为具有一定过热度的过热蒸汽。
3.水冷壁在什么位置采用内螺纹管?在炉膛高热负荷附近采用内螺纹管。
4.锅炉过热器.再热器系统的组成及布置?过热器由布置于炉顶的顶棚过热器,尾部烟道包墙过热器,尾部竖井烟道一级过热器,炉膛顶部屏式过热器和炉膛出口二级过热器组成,在水平烟道布置了垂直再热器,尾部竖井烟道由受热面隔墙分为前后两个烟道,前部布置水平再热器,后部布置省煤器和一级过热器。
锅炉本体四管及其附属设备防磨防爆控制手册
1、设备简介锅炉总体布置锅炉为单炉膛“∏”型布置,紧身封闭,高强螺栓连接,全钢架悬吊结构,采用四角切向燃烧、摆动燃烧器调温,固态除渣、平衡通风。
可采用定压运行,也可采用定—滑—定的运行方式。
炉膛截面为14212×14212mm的正方形,配有正四角切向燃烧器,炉膛四周布置水冷壁,热负荷均匀提供了良好条件。
炉室净高57.5m,炉膛截面积为202m2,炉膛容积9549.37m3,上排一次风喷口中心线至屏底距离20.02m,下排一次风喷口中心线至灰斗拐角为4.15m。
炉膛截面热负荷为3.83MW/m2,容积热负荷为80.96KW/m3,炉膛出口烟气温度为1012.5℃。
在炉膛上部前墙及两侧墙布置了壁式再热器,炉膛上方布置了分隔屏、后屏、在折焰角及水平烟道上依次布置了屏式再热器、高温再热器和高温过热器。
在尾部竖井烟道里自上而下布置了低温过热器和省煤器。
尾部受热面的重量通过省煤器中间集箱引出的悬吊管来承载。
锅炉设有膨胀中心,其膨胀零点设置在炉膛深度和宽度中心线上,通过装在炉前、炉后、两侧的导向装置来实现。
垂直方向的零点设在炉顶大罩壳上,所有受压吊杆均与膨胀零点有关,对位移量大的吊杆均留有予进量,以减少锅炉运行时的吊杆应力。
(侧视图)冷段省煤器壁再入口联箱水冷壁下降管热端低温过热器冷端低温过热器热段省煤器立式低温过热器后包墙过热器高温过热器后顶棚过热器壁再侧墙管屏壁再前墙管屏高温再热器 屏式再热器 后屏过热器 前屏过热器前顶棚过热器前包墙过热器(主视图)1.1水冷壁简介:水冷壁按受热情况,沿炉膛高度与宽度的热负荷分布划分28个回路,炉膛水冷壁采用膜式结构,由Φ60×7.5mm,SA210C光管和内螺纹管与6mm扁钢相焊制成,节距S=76mm,折焰角处由Φ70×10mm的内螺纹管组成。
在炉膛四角处的水冷壁管子形成燃烧器的水冷套以保护喷口免于烧坏。
水冷壁下集箱内装有邻炉加热装置,锅炉在点火前邻炉蒸汽进入28只水冷壁下集箱提前加热,以缩短启动时间。
(完整版)锅炉保温方案要点
上海化学工业区有害废料焚化项目锅炉保温施工方案编制单位:中化三建编制时间:2005年10月8日一、工程概况1.1工程情况:上海垃圾焚烧处理项目保温工程,单炉膛∏型露天布置,一次再热、平衡通风、固态排渣、全钢架结构、炉顶金属屋盖带防雨罩。
本工程保温包括锅炉四周、水平烟道、炉顶以及附属设备、管道的保温等。
1.2. 保温内容锅炉前、后包墙、左、右包墙和炉顶及灰斗、出入口烟道部位保温施工。
二、编制依据2.1 《工业设备及管道绝热工程施工及验收规范》GBJ126-892.2《工业设备管道供热工程质量检验评定标准》GBJ50185-932.3《管道及设备保温》图集98R4182.4上海垃圾焚烧处理项目保温及防腐工程之招标文件及杭州锅炉集团锅炉保温说明书。
三、施工前的准备工作A、技术交底:在每一个单项工程开始进行;接受人范围:所有参加施工人员。
B、准备齐全各种施工记录,应将自检记录、气象记录、施工日记与施工同步完成。
C、开工前,必须结合本工程的特点,进行全员培训,从理论到实践进行全员考核,合格者方可上岗工作。
D、组织好各个施工的管理层,以施工队长为主体,由质量检查员、安全检查员、工程技术人员、材料员组成,权责明确。
E、对施工人员实行执行作业责任制,基本固定施工作业区,按区域明确作业责任,坚持每天作业质量检查。
F、拟参加本工程的主要工种人数四、施工方案4.1 保温施工前具备条件(1)设备、管道的绝热工程施工,应在设备、管道的强度试验、气密性试验合格并交工及防腐工程完工后进行。
(2)在雨雪天气、寒冷季节室外绝热施工时,应采取防雨雪和防冻措施。
(3)必须配备绝热层、防潮层、保护层和预制品加工的施工机具。
(4)绝热层施工前,必须具备下列条件:支承件及固定件就位齐备。
(5)对任何运抵现场的保温材料要按规定要求抽样报检或分批检查,特别是保温材料要检查气孔率,从而使材料的导热系数在要求的范围内。
(6)对于干式保温材料应防止受潮,在使用前充分干燥为宜,如吸进油料不能使用。
480吨煤粉炉规程正文
480t/h锅炉工艺技术操作规程1 范围本规程规定了热电厂三期480t/h锅炉及辅助系统运行操作的基本原则和方法、注意事项及事故处理。
本规程适用于热电厂三期锅炉及辅助系统的运行操作。
2 规范性引用文件《电业安全工作规程(热力和机械部分)》3 术语和定义3.1锅炉锅炉是一种能量转换设备,利用燃料或其他能源的热能,把水加热成为热水或蒸汽的机械设备。
锅炉包括锅和炉两大部分,锅的原义是指在火上加热的盛水容器,炉是指燃烧燃料的场所。
锅炉中产生的热水或蒸汽可直接为生产和生活提供所需要的热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。
3.2一次风一次风用来输送、干燥煤粉,并提供煤粉中挥发份燃烧的氧量。
3.3二次风二次风起助燃的作用,为煤粉燃烧提供充足的氧气。
3.4密封风风源取自冷一次风管道,密封风为给煤机和磨煤机提供密封风用,其中磨煤机的密封风分为磨辊、磨碗、加载弹簧等部位。
3.5燃烬风(OFA、S-OFA)OFA和S-OFA都是燃烬风,主要作用是让主燃区未燃尽物质充分燃烧,降低飞灰的含量,SOFA是低氮燃烧器中的分离式燃尽风有一定的预置反切角。
而且刚性比较强,可降低火焰的旋转残余减少烟温偏差。
3.6水平浓淡燃烧器燃烧器是使燃料和空气以一定方式喷出混合(或混合喷出)燃烧的装置统称。
3.7SCR选择性催化还原法(Selective Catalytic Reduction,SCR):在催化剂(如V2O5/TiO2和V2O5-WO3/TiO2)作用下,还原剂NH3在290-400℃下将NO和NO2还原成N2,而几乎不发生NH3的氧化反应,从而提高了N2的选择性,减少了NH3的消耗。
3.8MFTMFT(主燃料跳闸)是锅炉安全保护的核心,他的作用是连续监视预先确定的各种安全运行条件是否满足,一旦出现可能危及锅炉安全运行的工况,就快速切断进入炉膛的燃料,避免事故发生。
3.9GFTGFT是当低负荷系统出现故障或锅炉MFT时,迅速切断低负荷供气,防止事故的进一步扩大。
循环流化床锅炉环保改造筑炉实施方案
循环流化床锅炉环保改造筑炉实施方案一、主要技术要求及说明1.1 点火装置点火装置在锅炉运行前起着主要的作用,点火装置左右各一个悬挂在水冷风室后墙,在油枪喷油点火时,它的温度逐渐增高,风压力大,所以在材料的使用上材质要求也相对较高。
点火装置的点火段内衬耐火材料采用刚玉莫来石耐磨砖砌筑,保温层采用二层轻质砖砌筑,使其在高温和高压下不会变形,刚玉莫来石耐磨砖在砌筑时,灰缝控制在1mm-2mm 之间,避免砖块同缝,各预留风管口位置正确,整体弧形的接口点设计在点火装置的底部,避免在运行时由于接点的松动,出现点火装置砖的脱落及倒塌现象。
点火装置保温层采用二层轻质保温砖,砌筑保温砖的灰缝控制在2mm-3mm 之间,避免同缝现象,点火装置砌筑过程中应配备相应材质的高温胶泥,砌筑时要表面平整,灰浆饱满,各过渡点要圆整平滑。
点火装置的一次风道段内衬耐火材料采用刚玉可塑料,施工厚度75mm;保温层采用轻质保温浇注料,施工厚度80mm。
施工时,先焊接耐热抓钉,抓钉焊接牢固,间距符合图纸设计要求,接着浇注轻质保温浇注料,待轻质保温浇注料充分干燥硬化,有一定的强度后,再捣打刚玉可塑料,可塑料捣打要均匀结实,表面平整光滑,避免产生蜂窝及空洞现象。
我方建议点火装置安装就位后再进行耐火材料施工,这样相对于在上面完成耐火材料施工后再吊装来说,能避免在吊装过程中对耐火材料产生的二次伤害。
另外,点火喷枪的安装位置必须准确,确保喷枪点火时燃油能够雾化均匀,避免雾化不均对局部耐火材料造成伤害,施工前我方施工人员将对点火喷枪的安装尺寸进行测量。
我方将严格按照无锡华光锅炉股份有限公司设计图纸来施工。
1.2 水冷风室(偏离:原设计为中质保温浇注料;实际施工:耐磨可塑料水冷风室原始设计为中质保温浇注料,由于锅炉运行中有不可预见的因素,产生漏灰或材料本身耐磨脱落现象,所以实际上水冷风室也产生普遍磨损现象,改为采用耐磨可塑料,厚度为100mm。
施工工艺:施工时,在水冷风室四壁及顶部、底部焊接耐磨抓钉,间距200mm ×300mm梅花状,焊接后的抓钉涂上1mm 沥青作为膨胀处理,待沥青充分干燥后,再在施工面捣打中质耐磨可塑料,施工厚度为100mm,可塑料要均匀结实,表面要平整光滑,避免产生蜂窝及空洞现象。
锅炉满膛架及尾部烟道顶棚管受热面检查搭拆脚手架施工方案
锅炉满膛架及尾部烟道顶棚管受热面检查搭拆脚手架施工方案公司在机组检修时,锅炉侧需要对炉膛受热面及尾部烟道顶棚管等受热面进行检查、受热面检修后需要做空气动力场试验等工作,搭拆脚手架招标技术要求如下:1 设备概况平东热电有限公司采用HG—670/13.7—YM17 型超高压、自然循环、单炉膛四角切圆燃烧一次中间再热、平衡通风、固态排渣、半露天布置、全钢构架、全悬吊结构、“Π”型布置汽包锅炉;该锅炉系哈尔滨锅炉厂制造,最大蒸发量为670t/h,炉膛结构见下图:2 脚手架搭设部位及方法2.1 锅炉满膛架的搭设:范围包括分隔屏过热器、后屏过热器检查;分隔屏过热器、后屏过热器上部顶棚管检查;后屏过热器后部、末级过热器前部及顶棚管检查;末级过热器后部、末级再热器及顶棚管检查脚手架搭拆;空气动力场试验脚手架搭拆。
2.1.1 分隔屏过热器、后屏过热器检查脚手架搭拆: 首先由锅炉零米捞渣机上方处搭设,分别在东西和南北向横杆,快搭至斜坡顶时在下面横杆每隔一个交点站立杆,站好立杆后,每隔1.5~1.8 米绑扎一步横杆(东西、南北向),按照此方法继续进行绑扎直至屏式过热器下800mm 处,在横杆上铺满竹笆,要求脚手架搭设时能够使检修人员从锅炉10 米层人孔门进入(炉膛10 米层处也要铺满竹芭)并攀爬至炉膛屏式过热器的下方平台上,以便对分隔屏过热器、后屏过热器前部及折焰角水冷壁进行检查、检修。
2.1.2 分隔屏过热器、后屏过热器上部顶棚管检查脚手架搭拆: 分隔屏过热器、后屏过热器检查完毕后,需要将炉膛内脚手架延伸搭设至顶棚管下部2米处(炉膛上方部位),并铺满竹笆,以便对炉膛上方顶棚管进行检查、检修。
2.1.3 后屏过热器后部及末级过热器前部检查脚手架搭拆: 在炉膛上方屏式过热器检查脚手架搭设好后,需要将脚手架延伸搭设至后屏过热器的后部并铺设竹笆,以便检查后屏过热器后部及末级过热器前部迎风面管子下部弯头,下部弯头检查完以后要将此处脚手架向上搭设至顶棚管下部2米处处并铺设平台(沿炉宽方向铺设通道),以便对上部顶棚管进行检查、检修。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、原锅炉顶部包墙管存在的问题:
原我厂锅炉尾部烟道顶部包墙上联箱处
包墙管频繁泄漏,机组需降负荷维持运行,
并需请专业高温高压堵漏公司带压堵漏,
不仅需要高额的堵漏费用,而且该堵漏部 位不稳定,存在严重的安全隐患。严重制 约着我厂发电机组的安全稳定运行。
二、改造措施:
•
经分析研究,发现顶包墙管每次泄漏以上
的部位,由于该部位,内外的温差较大,
包墙管金属疲劳,造成泄漏,特对包墙管 处鳍片割开,使该部位包墙有应力释放空 间,并浇筑可塑料保温。
三、改造后的效果:
• 经改造后,至今未出现过包墙泄漏故障,为 我厂节约了客观的堵漏费用,同时保证了发电机 组的安全稳定运行。一年出现两次包墙泄漏事故, 每次堵漏费用5万,机组降负荷维持运行一个周, 损失近10万元。避免了类似事故的发生,经济效