等比等差数列练习题及答案
等差等比数列基础练习题
等差等比数列基础练习题1.等差数列8,5,2,…的第20项为-43.2.在等差数列中已知a1=12,a6=27,则d=3.3.在等差数列中已知d=-3,a7=8,则a1=-16.4.(a+b)与(a-b)的等差中项是a。
5.等差数列-10,-6,-2,2,…前11项的和是54.6.正整数前n个数的和是n(n+1)/2.7.数列{an}的前n项和Sn=3n^2-n,则an=6n-1.8.已知数列{an}的通项公式an=3n-50,则当n=17时,Sn 的值最小,S17的最小值是-200.1.求等差数列8,5,2,…的第20项。
2.已知等差数列中a1=12,a6=27,求公差d。
3.已知等差数列中d=-3,a7=8,求首项a1.4.若(a+b)与(a-b)的等差中项为a,求a和b的关系。
5.求等差数列-10,-6,-2,2,…前11项的和。
6.求正整数前n个数的和。
7.已知数列{an}的前n项和Sn=3n^2-n,求通项公式an。
8.已知数列{an}的通项公式an=3n-50,求当n=17时,Sn 的最小值。
月来夜亮精品三、计算题1.求等差数列 $\{a_n\}$ 的未知数:1) 已知 $a_1=1$,$d=-3$,$S_n=-5$,求 $n$ 和 $a_n$。
解:由等差数列前 $n$ 项和公式$S_n=\dfrac{n}{2}(a_1+a_n)$,得到 $a_n=a_1+(n-1)d$,代入已知条件得到:begin{cases}a_1=1\\d=-3\\S_n=-5\end{cases}$$begin{cases}S_n=\dfrac{n}{2}(a_1+a_n)=-5\\a_n=a_1+(n-1)d=-3n+4\end{cases}$$将 $a_n$ 代入 $S_n$ 的公式,解得 $n=3$,再代入$a_n$ 的公式得到 $a_3=-5$。
2) 已知 $a_1=2$,$d=2$,$a_{15}=-10$,求 $a_1$ 和$S_{66}$。
等差数列与等比数列的类比练习题(带答案)(可编辑修改word版)
(b 1b n)nn + 1 ,则有2n3等差数列与等比数列的类比一、选择题(本大题共 1 小题,共 5.0 分){a } S S =n (a 1 + a n ) 1. 记等差数列 n 的前 n 项和为 n ,利用倒序求和的方法得 n 2 ;类似地,记等比数列{b n }的前 n 项积为T n ,且b n> 0(n ∈ N *),类比等差数列求和的方法,可将T n 表示成关于首项b 1,末项b n 与项数 n 的关系式 为 ( )1. Anb 1b nA. B. 2 C. nb 1b nnb 1b nD. 2 二、填空题(本大题共 9 小题,共 45.0 分)2. 在公差为 d 的等差数列{a n }中有:a n = a m + (n - m )d (m 、n ∈ N + ),类比到公比为 q 的等比数列{b n }中有: .2.b n = b m ⋅ q n - m (m ,n ∈ N * ){a} b = a 1 + 2a 2 + 3a 3 + … + n a n{b }3. 数列 n 是正项等差数列,若 n 1 + 2 + 3 + … + n ,则数列 n 也 为等差数列,类比上述结论,写出正项等比数列{c n },若d n = 则数列{d n }也为等比数列.1(c c 2c 3…c n )1 + 2 + 3 + … + n 3. 1 2 3 n4. 等差数列{a n }中,有a 1 + a 2 + … + a 2n + 1 = (2n + 1)a n + 1,类比以上性质,在等比数列{b n }中,有等式 成立.4.b 1b 2…b 2n + 1 = b 2n + 1T5. 若等比数列{a n }的前 n 项之积为T n T 3n = ( T n ) ;类比可得到以下正确结论:若等差数列的前 n 项之和为S n ,则有 .5. S 3n = 3(S 2n - S n ){a}a 11 + a 12 + … + a 20 = a 1 + a 2 + …a 306. 已知在等差数列 n 中, 10 30 ,则在等比数列{b n }中,类似的结论为10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30q S nn7. 在等比数列{a n}中,若a9 = 1,则有a1⋅a2…a n = a1⋅a2…a17- n(n < 17,且n∈N* )成立,类比上述性质,在等差数列{b n}中,若b7 = 0,则有.b1 + b2 + … + b n= b1 + b2 + … + b13- n(n < 13,且n∈ N* )8.设S n是公差为d 的等差数列{a n}的前n 项和,则数列S6 - S3,S9 - S6,S12 - S9是等差数列,且其公差为9d.通过类比推理,可以得到结论:设T n是公比为2 的等比数列{b n}的前n 项积,则数列T6T9T12T3,T6,T9 是等比数列,且其公比的值是.5129.若等差数列{a n}的公差为d,前nS n{ }项的和为,则数列为等差数列,d. {b}公差为2 类似地,若各项均为正数的等比数列n的公比为q,前n 项的积为T n,则数列{nT n}为等比数列,公比为.10. 设等差数列{a n}的前n 项和为S n m,n(m < n),使得S m= S n,则S m + n= 0.类比上述结论,设正项等比数列{b n}的前n 项积为T n,若存在正整数m,n(m < n),使得T m= T n,则T m + n=.10. 1答案和解析【解析】{a} S= n(a1 + a n)1. 解:在等差数列n的前n 项和为n 2 ,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列{bn}的前n 项积T n= (b1b n)n,故选:A由等差和等比数列的通项和求和公式及类比推理思想可得结果,在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.n + 1n + 12. 解:在等差数列{a n }中,我们有a n = a m + (n ‒ m )d ,类比等差数列,等比数列中也是如此,b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).故答案为b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).因为等差数列{a n }中,a n = a m + (n ‒ m )d (m ,n ∈ N + ),即等差数列中任意给出第 m项a m ,它的通项可以由该项与公差来表示,推测等比数列中也是如此,给出第 m 项 b m 和公比,求出首项,再把首项代入等比数列的通项公式中,即可得到结论.本题考查了类比推理,类比推理就是根据两个不同的对象在某些方面的相似之处,从而推出这两个对象在其他方面的也具有的相似之处,是基础题.3. 解: ∵ 根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字 倍的和,除以下标的和,∴ 根据新的等比数列构造新的等比数列, c c 2c 3…c n乘积变化为乘方 1 2 3 n ,1(c c 2c 3…c n ) 1 + 2 + 3 + … + n原来的除法变为开方 1 2 3 n1(c c 2c 3…c n ) 1 + 2 + 3 + … + n故答案为: 1 2 3 n根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字倍的和, 除以下标的和,等比数列要类比出一个结论,只有乘积变化为乘方,除法变为开方, 写出结论.本题考查类比推理,两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象的也具有这类特征,是一个有特殊到特殊的推理.4. 解:把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,∴ 在等比数列{b n }中有结论b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ).故答案为:b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ). 利用“类比推理”,把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,即可得出.本题考查了等比数列的通项公式、类比推理等基础知识与基本技能方法,属于中档题.5. 解:在等差数列中S 3n= S n + (S 2n ‒ S n ) + (S 3n ‒ S 2n ) = (a 1 + a 2 + … + a n ) ++ (S 2n ‒ S n ) + (a 2n + 1 + a 2n + … + a 3n )因为a 1 + a 3n = a 2 + a 3n ‒ 1 = … = a n + a 2n + 1 = a n + 1 + a 2n 所以S n + (S 3n ‒ S 2n ) = 2(S 2n ‒ S n ),所以S 3n = 3(S 2n ‒ S n ). 故答案为:S 3n = 3(S 2n ‒ S n ).本小题主要考查类比推理,由等差和等比数列的通项和求和公式及类比推理思想可得结果.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.6. 解:等差数列与等比数列的对应关系有:等差数列中的加法对应等比数列中的乘法,等差数列中除法对应等比数列中的开方,故此我们可以类比得到结论:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30. 故答案为:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30.在等差数列中,等差数列的性质m + n = p + q ,则a m + a n = a p + a q ,那么对应的在等比数列中对应的性质是若m + n = p + q ,则b m b n = b p b q .本题考查类比推理,掌握类比推理的规则及类比对象的特征是解本题的关键,本题中由等差结论类比等比结论,其运算关系由加类比乘,解题的难点是找出两个对象特征的对应,作出合乎情理的类比.7. 解:在等比数列中,若a 9 = 1,则a 18 ‒ n ⋅⋅⋅ a 9 ⋅⋅⋅ a n = 1即a 1 ⋅ a 2…a n = a 1 ⋅ a 2…a 17 ‒ n (n < 17,且n ∈ N ∗)成立,利用的是等比性质,若 m + n = 18,则a 18 ‒ n ⋅ a n = a 9 ⋅ a 9 = 1,∴ 在等差数列{b n }中,若b 7 = 0,利用等差数列的性质可知,若m + n = 14,b 14 ‒ n + b n = b 7 + b 7 = 0,∴ b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗ )故答案为:b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗).据等差数列与等比数列通项的性质,结合类比的规则,和类比积,加类比乘,由类比规律得出结论即可.本题的考点是类比推理,考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.T 6 T 9 T 12 T 3,T , T 929 = 5128. 解:由题意,类比可得数列6是等比数列,且其公比的值是 ,故答案为 512.由等差数列的性质可类比等比数列的性质,因此可根据等比数列的定义求出公比即可.本题主要考查等比数列的性质、类比推理,属于基础题目.{a } SS n= a + (n ‒ 1) ⋅ d 9. 解:因为在等差数列 n 中前 n 项的和为 n 的通项,且写成了n1 2. 所以在等比数列{b n }中应研究前 n 项的积为T n 的开 n 方的形式.类比可得nT n = b 1( q )n ‒ 1.其公比为 故答案为 q .S nS nd{ n } n= a 1 + (n ‒ 1) ⋅ 2仔细分析数列 为等差数列,且通项为 的特点,类比可写出对应数 列{nT n }为等比数列的公比.本小题主要考查等差数列、等比数列以及类比推理的思想等基础知识.在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.10. 解:在由等差数列的运算性质类比推理到等比数列的运算性质时:加减运算类比推理为乘除运算,累加类比为累乘,故由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列{b n }为等比数列,它的前n .项积为T n ,若存在正整数 m ,n .(m ≠ n ),使得T m = T n ,则T m + n = 1.故答案为 1.在类比推理中,等差数列到等比数列的类比推理方法一般为:加减运算类比推理为乘除运算,累加类比为累乘,由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存q在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列 {b n }为等比数列,它的前n .项积为T n ,若存在正整数m ,n .(m ≠ n ),使得T m = T n ,则 T m + n = 1.类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).。
等差等比数列性质练习题
等差等比数列性质练习题等差数列性质1已知数列a n中,a n 0^ 1 2(n N ,n 2),若a1 3,则此数列的第10项是 ___________________2、等差数列a n的前n项和为s n,若a4 18 a5,则s8等于______________3、在等差数列中,a i与an是方程2x2 3 x 7 0的两根,贝U a为___________4、等差数列a n共有2n 1项,所有奇数项之和为132,所有偶数项之和为120,则n等于 ________________5、在x和y之间插入n个实数,使它们与x, y组成等差数列,则此数列的公差为 ______6、首相为-24的等差数列,从第10项起开始为正数,则公差d的取值范围 _____________7、已知等差数列a n中,前15项之和为05 90,则a8等于_______________1&已知数列{a n}中,a3=2,a7=1,又数列{——}为等差数列,则a n= _________a n 19、数列 a n 满足:a13, a26, a n+2a n+1 a n , a2004 =10、在等差数列a n中,a m n , a n m (m,n € N+),则 a mn11、等差数列a n中,已知a11,a2a5 4,a n33,则n为312、已知在数列{a n}中,a1 = —10,a n+1=a n+2,则|a1|+|a2|+|a3|+…+|a10|等于_13、已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 _______________14、设数列{a n}和{b n}都是等差数列,其中a1=24,一=75,且a2+b2=100,则数列{a n+b n}的第100项2 若S^ 1, S 4,求 a17 a18 a19 a20的值;3若已知首项a113,且S3 Sn,问此数列前多少项的和最大?为15、设a n是公差为正数的等差数列,若6 a2 a3 15 , a22a3 80,则an盹盹_________________16、在等方程(x2 2x m)(x2 2x n) 0的四个根组成一个首项为1的等差数列,贝U |m—n|= __________417、若a n为等差数列,a2, a10是方程x2 3x 5 0的两根,贝U a? ______________________ 。
(完整版)等差等比数列综合练习题.doc
等差数列等比数列综合练习题一.选择题1. 已知 a n 1 a n 3 0 ,则数列 a n 是 ( ) A. 递增数列B.递减数列C.常数列D.摆动数列2. 等比数列 { a n } 中,首项 a 1 8 ,公比 q 1,那么它的前 5 项的和 S 5 的值是( )A . 31. 33 2 . 35 . 37 C22223. 设 S n 是等差数列 { a n } 的前 n 项和,若 S 7=35,则 a 4=( )A. 8B.7C.6D.54. 等差数列 { a n } 中, a 1 3a 8 a15120,则 2a 9a10()A .24B .22C .20D .-85. 数列 a n 的通项公式为 a n 3n 228n ,则数列 a n 各项中最小项是 ( )A. 第 4 项B.第 5 项C.第 6 项 D. 第 7 项6. 已知 a , b , c , d 是公比为 2 的等比数列,则 2a b等于( )2cdA .1B . 1. 1 . 12C 4D 87.在等比数列 a n 中, a 7 ? a 11 6, a 4 a 14 5, 则a 20()a 10A. 2B.3C. 2 或3 D.2 或3323 2328.已知等比数列 a n 中, a n >0, a 2a 4 2a 3a 5 a 4 a 6 25 ,那么 a 3 a 5 =( )A.5B .10C.15D .209.各项不为零的等差数列a n 中 ,有 2a 3 a 722a 110 ,数列 b n 是等比数列 ,且b7 a7 , 则 b6b8( )A.2B. 4C.8 D .1610.已知等差数列a n中,a n 0, 若 m 1且 a m 1 a m1 a m2 0, S2 m 1 38, 则m等于A. 38B. 20C.10D. 911.已知s n是等差数列a n(n N * ) 的前n项和,且 s6 s7 s5,下列结论中不正确的是 ( )A. d<0B. s11 0C. s12 0D. s13 012.等差数列{ a n}中,a1,a2 , a4恰好成等比数列,则a4 的值是()a1A .1 B.2 C.3 D.4二.填空题13.已知 { a n} 为等差数列, a15=8,a60=20,则 a75=________14. 在等比数列{ a n}中,a2?a816 ,则 a5=__________15.在等差数列 { a n} 中,若 a7=m,a14=n,则 a21=__________16. 若数列x n满足lg x n 1 1 lg x n n N,且x1x2L x100100 ,则lg x101x102L x200________17.等差数列 {a n} 的前 n 项和为 S n,若 a3+a17=10,则 S19的值_________18.已知等比数列 {a n} 中, a1+a2+a3=40,a4+a5+a6=20,则前 9 项之和等于_________三.解答题19.设三个数 a ,b, c 成等差数列,其和为6,又 a ,b,c 1成等比数列,求此三个数 .20. 已知数列a n中,a11,a n2a n 13,求此数列的通项公式.21. 设等差数列an的前n项和公式是sn5n23n ,求它的前3项,并求它的通项公式 .22. 已知等比数列a n的前n项和记为S n,,S10=10,S30=70,求S40。
等差等比数列专题题目+答案
高三二轮复习讲义 等差、等比数列1.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.2.(2014·江苏卷)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.3.(2010·江苏卷)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.4.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.5、等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则S n 的最小值为________.6、 (2015·郑州模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于________.7、 (2015·苏北四市模拟)在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 015的值为________.8、在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87=________.9、(2015·苏州期中)在等差数列{a n }中,a 5=3,a 6=-2,则a 3+a 4+…+a 8=________.10、设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.11、 数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上. (1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.12、 已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足a 2n =S 2n -1,令b n=1a n ·a n +1,数列{b n }的前n 项和为T n .(1)求数列{a n }的通项公式及数列{b n }的前n 项和T n ;(2)是否存在正整数m ,n (1<m <n ),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值;若不存在,请说明理由.13.(2015·广州模拟)等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为________.14.(2015·南师附中调研)设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 7=________.15.(2015·南通检测)已知等比数列{a n }为递增数列,且a 3+a 7=3,a 2a 8=2,则a 13a 11=________.16.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________.17.(2015·阳泉模拟)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.18.(2015·安徽卷)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于________.19.(2015·福建卷改编)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于________.20.已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.21.(2015·洛阳模拟)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5. (1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.22.(2015·苏、锡、常、镇调研)已知数列{a n }是首项为133,公比为133的等比数列,设b n +15log 3a n =t ,常数t ∈N *.(1)求证:{b n }为等差数列;(2)设数列{c n }满足c n =a n b n ,是否存在正整数k ,使c k ,c k +1,c k +2按某种次序排列后成等比数列?若存在,求k ,t 的值;若不存在,请说明理由.数列的综合应用1、(2015·江苏卷)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列?并说明理由.2、(2011·江苏卷)设M 为部分正整数组成的集合,数列{a n }的首项a 1=1,前n 项的和为S n ,已知对任意的整数k ∈M ,当整数n >k 时,S n +k +S n -k =2(S n +S k )都成立. (1)设M ={1},a 2=2,求a 5的值; (2)设M ={3,4},求数列{a n }的通项公式.3、(2012·江苏卷)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n ∈N *. (1)设b n +1=1+b n a n ,n ∈N *,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设b n +1=2·b na n ,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.4、如果无穷数列{a n}满足下列条件:①a n+a n+22≤a n+1;②存在实数M,使得a n≤M,其中n∈N*,那么我们称数列{a n}为Ω数列.(1)设数列{b n}的通项为b n=5n-2n,且是Ω数列,求M的取值范围;(2)设{c n}是各项为正数的等比数列,S n是其前n项和,c3=14,S3=74,证明:数列{S n}是Ω数列;(3)设数列{d n}是各项均为正整数的Ω数列,求证:d n≤d n+1.5、(2014·江苏卷)设数列{a n}的前n项和为S n.若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0.若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.6、(2014·泰州期末)设数列{a n}的前n项积为T n,已知对∀n,m∈N*,当n>m时,总有T nT m=T n-m·q(n-m)m(q>0是常数).(1)求证:数列{a n}是等比数列;(2)设正整数k,m,n(k<m<n)成等差数列,试比较T n·T k和(T m)2的大小,并说明理由;(3)探究:命题p:“对∀n,m∈N*,当n>m时,总有T nT m=T n-m·q(n-m)m(q>0是常数)”是命题t:“数列{a n}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.7、 (2015·徐州质检)已知数列{a n },{b n }满足a 1=3,a n b n =2,b n +1=a n ⎝⎛⎭⎪⎫b n -21+a n ,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1b n 是等差数列,并求数列{b n }的通项公式;(2)设数列{c n }满足c n =2a n -5,对于给定的正整数p ,是否存在正整数q ,r (p <q <r ),使得1c p,1c q,1cr成等差数列?若存在,试用p 表示q ,r ;若不存在,请说明理由.18.(2015·全国Ⅱ卷)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________.19.数列{a n }的通项公式a n =1 n +n +1,若{a n }的前n 项和为24,则n 为________.20.(2012·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x +a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭⎪⎫12=________.21.在等差数列{a n }中,a 1=142,d =-2,从第一项起,每隔两项取出一项,构成新的数列{b n },则此数列的前n 项和S n 取得最大值时n 的值是________.22.在正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项公式为________.23.(2015·苏、锡、常、镇模拟)已知各项都为正的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n 的最小值为________.24.(2015·南通调研)设S n 为数列{a n }的前n 项之和,若不等式a 2n +S 2n n2≥λa 21对任何等差数列{a n }及任何正整数n 恒成立,则λ的最大值为________.25.(2015·南京、盐城模拟)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.26.数列{a n}满足a n=2a n-1+2n+1(n∈N*,n≥2),a3=27.(1)求a1,a2的值;(2)是否存在一个实数t,使得b n=12n(a n+t)(n∈N*),且数列{b n}为等差数列?若存在,求出实数t;若不存在,请说明理由;(3)求数列{a n}的前n项和S n.27.(2013·江苏卷)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=nS nn2+c,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.28.(2014·南京、盐城模拟)已知数列{a n}满足a1=a(a>0,a∈N*),a1+a2+…+a n-pa n+1=0(p≠0,p≠-1,n∈N*).(1)求数列{a n}的通项公式a n;(2)若对每一个正整数k,若将a k+1,a k+2,a k+3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k.①求p的值及对应的数列{d k}.②记S k为数列{d k}的前k项和,问是否存在a,使得S k<30对任意正整数k恒成立?若存在,求出a 的最大值;若不存在,请说明理由.。
等差等比数列前N项和练习答案
等差数列前N 项和(第一课时) 一、选择题1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .2[答案] A[解析] 本题考查数列的基础知识和运算能力.⎩⎪⎨⎪⎧ S 3=4a 3a 7=-2⇒⎩⎪⎨⎪⎧ 3a 1+3d =4a 1+8d a 1+6d =-2⇒⎩⎪⎨⎪⎧a 1=10d =-2. ∴a 9=a 1+8d =-6.2.四个数成等差数列,S 4=32,a 2a 3=13,则公差d 等于( )A .8B .16C .4D .0[答案] A [解析] ∵a 2a 3=13,∴a 1+da 1+2d =13,∴d =-2a 1.又S 4=4a 1+4×32d =-8a 1=32,∴a 1=-4,∴d =8.3.等差数列{a n }中,a 3+a 7-a 10=8,a 11-a 4=14.记S n =a 1+a 2+a 3+…+a n ,则S 13=( )A .168B .156C .152D .286[答案] D[解析] ∵⎩⎪⎨⎪⎧ a 3+a 7-a 10=8a 11-a 4=14,∴⎩⎪⎨⎪⎧a 1-d =87d =14,∴⎩⎪⎨⎪⎧d =2a 1=10,∴S 13=13a 1+13×122d =286.4.在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )A .0B .4475C .8950D .10 000[答案] C[解析] 设c n =a n +b n ,则c 1=a 1+b 1=40,c 100=a 100+b 100=139,{c n }是等差数列,∴前100项和S 100=100(c 1+c 100)2=100×(40+139)2=8950.5.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2[答案] C[解析] 设等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 3+a 5+a 7+a 9=15a 2+a 4+a 6+a 8+a 10=30, ∴5d =15,∴d =3.6.设S n 是等差数列{a n }的前n 项和,若a 7a 5=913,则S 13S 9=( ) A .1 B .-1 C .2 D .12[答案] A [解析]S 13S 9=13a 79a 5=139×913=1,故选A . 二、填空题7.已知数列{a n }的通项公式a n =-5n +2,则其前n 项和S n =________. [答案] -5n 2+n2[解析] ∵a n =-5n +2, ∴a n -1=-5n +7(n ≥2),∴a n -a n -1=-5n +2-(-5n +7)=-5(n ≥2). ∴数列{a n }是首项为-3,公差为-5的等差数列. ∴S n =n (a 1+a n )2=n (-5n -1)2=-5n 2+n 2.8.设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________. [答案] 24[解析] ∵S 9=9·(a 1+a 9)2=72,∴a 1+a 9=16,即a 1+a 1+8d =16, ∴a 1+4d =8,又a 2+a 4+a 9=a 1+d +a 1+3d +a 1+8d =3(a 1+4d )=3×8=24. 三、解答题9.已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求n 和d ;(2)a 1=4,S 8=172,求a 8和d . [解析] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2·d =-5,解得n =15,n =-4(舍).(2)由已知,得S 8=8(a 1+a 8)2=8(4+a 8)2,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列前N 项和(第二课时) 一、选择题1.记等差数列{a n }的前n 项和为S n .若d =3,S 4=20,则S 6=( ) A .16 B .24 C .36 D .48[答案] D[解析] 由S 4=20,4a 1+6d =20,解得a 1=12⇒S 6=6a 1+6×52×3=48.2.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18[答案] B[解析] 由题设求得:a 3=35,a 4=33,∴d =-2,a 1=39,∴a n =41-2n ,a 20=1,a 21=-1,所以当n =20时S n 最大.故选B .3.13×5+15×7+17×9+…+113×15=( ) A .415B .215C .1415D .715[答案] B[解析] 原式=12(13-15)+12(15-17)+…+12(113-115)=12(13-115)=215,故选B .4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A .100101B .99101C .99100D .101100[答案] A[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.∵a 5=5,S 5=15 ∴5(a 1+5)2=15,∴a 1=1.∴d =a 5-a 15-1=1,∴a n =n .∴1a n a n +1=1n (n +1)=1n -1n +1. 则数列{1a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101. 故选A .5.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为( )A .5B .6C .7D .8[答案] B[解析] 解法一:∵a 1>0,S 4=S 8,∴d <0,且a 1=112d ,∴a n =-112d +(n -1)d =nd -132d ,由⎩⎨⎧a n ≥0a n +1<0,得⎩⎨⎧nd -132d ≥0(n +1)d -132d <0,∴512<n ≤612,∴n =6,解法二:∵a 1>0,S 4=S 8, ∴d <0且a 5+a 6+a 7+a 8=0, ∴a 6+a 7=0,∴a 6>0,a 7<0, ∴前六项之和S 6取最大值.6.设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值[答案] C[解析] 由S 5<S 6知a 6>0,由S 6=S 7知a 7=0,由S 7>S 8知a 8<0,C 选项S 9>S 5即a 6+a 7+a 8+a 9>0,∴a 7+a 8>0,显然错误. 二、填空题7.设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________. [答案] 25[解析] 由⎩⎪⎨⎪⎧ a 1=1a 4=7得⎩⎪⎨⎪⎧a 1=1d =2,∴S 5=5a 1+5×42×d =25.8.(2014·北京理,12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.[答案] 8[解析] 本题考查了等差数列的性质与前n 项和.由等差数列的性质,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,于是有a 8>0,a 8+a 9<0,故a 9<0,故S 8>S 7,S 9<S 8,S 8为{a n }的前n 项和S n 中的最大值,等差数列{a n }中首项a 1>0公差d <0,{a n }是一个递减的等差数列,前n 项和有最大值,a 1<0,公差d >0,{a n }是一个递增的等差数列,前n 项和有最小值.三、解答题9.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 取最大值的n 的值.[解析] (1)设公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+2d =5a 1+9d =-9,解得⎩⎪⎨⎪⎧a 1=9d =-2.∴a n =a 1+(n -1)d =-2n +11.(2)由(1)知S n =na 1+n (n -1)2d =10n -n 2=-(n -5)2+25,∴当n =5时,S n 取得最大值.等比数列前N 项和综合练习1.(2013·新课标全国Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n答案 D解析 S n =a 1(1-q n )1-q =a 1-a n q 1-q =1-23a n1-23=3-2a n ,故选D 项. 2.等比数列{a n }各项都是正数,若a 1=81,a 5=16,则它的前5项和是( )A .179B .211C .248D .275答案 B解析 ∵a 5=a 1q 4,∴16=81q 4.∴q =±23.又数列{a n }的各项都是正数,∴q =23. ∴S 5=a 1(1-q 5)1-q =81[1-(23)5]1-23=211. 3.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( )A .3B .-3C .-1D .1答案 A解析 思路一:列方程求出首项和公比,过程略; 思路二:两等式相减得a 4-a 3=2a 3,从而求得a 4a 3=3=q .4.在公比为正数的等比数列中,a 1+a 2=2,a 3+a 4=8,则S 8等于( )A .21B .42C .135D .170 答案 D 解析5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( )A.152B.314C.334D.172答案 B解析 显然公比q ≠1,由题意,得⎩⎨⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q=7,解得⎩⎪⎨⎪⎧a 1=4,q =12,∴S 5=a 1(1-q 5)1-q =4(1-125)1-12=314. 6.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数( )A .4B .5C .6D .7答案 B解析 ∵q ≠1(14≠78),∴Sn =a 1-anq 1-q.∴778=14-78q 1-q ,解得q =-12,78=14×(-12)n +2-1.∴n =3,故该数列共5项.7.等比数列{an }的首项为1,公比为q ,前n 项和为S ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为( ) A.1S B .S C .Sq 1-n D .S -1q 1-n答案 C解析 q ≠1时,S =1-q n 1-q ,⎩⎨⎧⎭⎬⎫1a n 的前n 项和为1(1-1q n )1-1q =q 1-n ·1-q n1-q =q 1-n ·S .当q =1时,q 1-n ·S =S .8.在等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( ) A .4 B .-4 C .-2 D .2答案 A 解析9.数列{a n }的前n 项和为S n =4n +b (b 是常数,n ∈N *),若这个数列是等比数列,则b 等于( )A .-1B .0C .1D .4答案 A 解析10.(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 由题意知q =a 3+a 5a 2+a 4=2.由a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20, ∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.11.(2012·新课标全国)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.答案 -2解析 由S 3=-2S 2,可得a 1+a 2+a 3=-3(a 1+a 2),即a 1(1+q +q 2)=-3a 1(1+q ),化简整理得q 2+4q +4=0,解得q =-2.12.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________.答案 1013.(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.答案 32解析 由已知S 4-S 2=3a 4-3a 2,即a 4+a 3=3a 4-3a 2,即2a 4-a 3-3a 2=0,两边同除以a 2,得2q 2-q -3=0,即q =32或q =-1(舍).答案 3n -1,或(-3)n -14解析答案24解析16.等比数列{a n}的公比q>0,已知a2=1,a n+2+a n+1=6a n,则{a n}的前4项和S4=________.答案 152解析 由条件a n +2+a n +1=a n q 2+a n q =6a n ,q >0,得q =2,又a 2=1,所以a 1=12,S 4=152.17.一个等比数列的首项为1,项数为偶数,其中奇数项的和为85,偶数项的和为170,求该数列的公比和项数.答案 该数列的公比为2,项数为8解析18.设等比数列{a n }的公比q <1,前n 项和为S n ,已知a 3=2,S 4=5S 2,求{a n }的通项公式.解析 由题设知a 1≠0,S n =a 1(1-q n )1-q,则⎩⎨⎧ a 1q 2=2,a 1(1-q 4)1-q =5×a 1(1-q 2)1-q , ①② 由②得1-q 4=5(1-q 2),(q 2-4)(q 2-1)=0. (q -2)(q +2)(q -1)(q +1)=0,因为q <1,解得q =-1或q =-2. 当q =-1时,代入①得a 1=2,a n =2×(-1)n -1;当q =-2时,代入①得a 1=12,a n =12×(-2)n -1.综上,当q =-1时,a n =2×(-1)n -1;当q =-2时,a n =12×(-2)n -1.。
高考数学(理)二轮专题练习【专题4】(1)等差数列和等比数列(含答案)
第1讲 等差数列和等比数列考情解读 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.1.a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.等差数列和等比数列热点一 等差数列例1 (1)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( ) A .21 B .24 C .28 D .7(2)设等差数列{a n }的前n 项和为S n ,若-1<a 3<1,0<a 6<3,则S 9的取值范围是________. 思维启迪 (1)利用a 1+a 7=2a 4建立S 7和已知条件的联系;(2)将a 3,a 6的范围整体代入. 答案 (1)C (2)(-3,21)解析 (1)由题意可知,a 2+a 6=2a 4,则3a 4=12,a 4=4,所以S 7=7×(a 1+a 7)2=7a 4=28.(2)S 9=9a 1+36d =3(a 1+2d )+6(a 1+5d ) 又-1<a 3<1,0<a 6<3,∴-3<3(a 1+2d )<3,0<6(a 1+5d )<18, 故-3<S 9<21.思维升华 (1)等差数列问题的基本思想是求解a 1和d ,可利用方程思想; (2)等差数列的性质①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列; ③a m -a n =(m -n )d ⇔d =a m -a nm -n(m ,n ∈N *);④a n b n =A 2n -1B 2n -1(A 2n -1,B 2n -1分别为{a n },{b n }的前2n -1项的和). (3)等差数列前n 项和的问题可以利用函数的性质或者转化为等差数列的项,利用性质解决.(1)已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64(2)在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 (1)A (2)C解析 (1)因为a 8是a 7,a 9的等差中项,所以2a 8=a 7+a 9=16⇒a 8=8,再由等差数列前n 项和的计算公式可得S 11=11(a 1+a 11)2=11·2a 62=11a 6,又因为S 11=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A. (2)由题意可知a 6+a 5>0,故S 10=(a 1+a 10)×102=(a 5+a 6)×102>0,而S 9=(a 1+a 9)×92=2a 5×92=9a 5<0,故选C.热点二 等比数列例2 (1)(2014·安徽)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =_____________________.(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n 等于( )A .4n -1B .4n -1C .2n -1D .2n -1思维启迪 (1)列方程求出d ,代入q 即可;(2)求出a 1,q ,代入化简. 答案 (1)1 (2)D解析 (1)设等差数列的公差为d ,则a 3=a 1+2d , a 5=a 1+4d ,∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1, ∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.(2)∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q 2q +q 3=2,∴q =12,代入①得a 1=2, ∴a n =2×(12)n -1=42n ,∴S n =2×(1-(12)n )1-12=4(1-12n ),∴S na n =4(1-12n )42n=2n -1,故选D. 思维升华 (1){a n }为等比数列,其性质如下:①若m 、n 、r 、s ∈N *,且m +n =r +s ,则a m ·a n =a r ·a s ; ②a n =a m q n -m ;③S n ,S 2n -S n ,S 3n -S 2n 成等比数列(q ≠-1). (2)等比数列前n 项和公式 S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).①能“知三求二”;②注意讨论公比q 是否为1;③a 1≠0.(1)已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( ) A .1 B .2 C .4D .8(2)在等比数列{a n }中,a 1+a n =34,a 2·a n -1=64,且前n 项和S n =62,则项数n 等于( ) A .4 B .5 C .6D .7答案 (1)D (2)B解析 (1)∵a 4-2a 27+3a 8=0,∴2a 27=a 4+3a 8,即2a 27=4a 7,∴a 7=2,∴b 7=2,又∵b 2b 8b 11=b 1qb 1q 7b 1q 10=b 31q 18=(b 7)3=8,故选D.(2)设等比数列{a n }的公比为q ,由a 2a n -1=a 1a n =64,又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 1(1-q n )1-q =a 1-a n q 1-q =2-32q 1-q=62,解得q =2.又a n =a 1q n-1,所以2×2n -1=2n =32,解得n =5.同理,当a 1=32,a n =2时,由S n =62,解得q =12.由a n =a 1q n -1=32×(12)n -1=2,得(12)n -1=116=(12)4,即n -1=4,n =5.综上,项数n 等于5,故选B.热点三 等差数列、等比数列的综合应用例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.思维启迪 (1)利用方程思想求出a 1,代入公式求出a n 和S n ;(2)将恒成立问题通过分离法转化为最值.解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q , 则q =b 2b 1=12,∴T m =4[1-(12)m ]1-12=8[1-(12)m ],∵(12)m 随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<4+λ,得λ>6.即实数λ的取值范围为(6,+∞). 思维升华 等差(比)数列的综合问题的常见类型及解法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)等差数列、等比数列与函数、方程、不等式等的交汇问题,求解时用等差(比)数列的相关知识,将问题转化为相应的函数、方程、不等式等问题求解即可.已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求证:1b 1+1b 2+1b 3+…+1b n <12.(1)解 ∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得a n =S n -S n -1=2a n -2a n -1, ∴a na n -1=2, ∴数列{a n }是首项为12,公比为2的等比数列,∴a n =12×2n -1=2n -2.(2)证明 b n =(log 2a 2n +1)×(log 2a 2n +3)=log 222n +1-2×log 222n+3-2=(2n -1)(2n +1),1b n =12n -1×12n +1=12(12n -1-12n +1), 1b 1+1b 2+1b 3+…+1b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1)<12(n ∈N *). 即1b 1+1b 2+1b 3+…+1b n <12.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.等差、等比数列的单调性 (1)等差数列的单调性d >0⇔{a n }为递增数列,S n 有最小值. d <0⇔{a n }为递减数列,S n 有最大值. d =0⇔{a n }为常数列. (2)等比数列的单调性当⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}仍为等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…,成等比数列,且公比为a 3-a 2a 2-a 1=(a 2-a 1)qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等比数列,其公差为q k .等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等差数列,公差为k 2d . 5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的充要条件是b 2=ac .真题感悟1.(2014·大纲全国)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 答案 C解析 数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4 =lg(a 4·a 5)4=lg(2×5)4=4.2.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 ∵a 7+a 8+a 9=3a 8>0,∴a 8>0. ∵a 7+a 10=a 8+a 9<0,∴a 9<-a 8<0. ∴数列的前8项和最大,即n =8. 押题精练1.已知等比数列{a n }的前n 项和为S n ,则下列一定成立的是( ) A .若a 3>0,则a 2 013<0 B .若a 4>0,则a 2 014<0 C .若a 3>0,则a 2 013>0 D .若a 4>0,则a 2 014>0答案 C解析 因为a 3=a 1q 2,a 2 013=a 1q 2 012,而q 2与q 2 012均为正数,若a 3>0,则a 1>0,所以a 2 013>0,故选C.2.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a na n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)解析 a n =a +(n -1)×1=n +a -1,所以b n =1+a n a n =n +an +a -1,因为对任意的n ∈N *,都有b n ≥b 8成立,即n +a n +a -1≥8+a 8+a -1(n ∈N *)恒成立,即n -8(a +7)(n +a -1)≤0(n ∈N *),则有⎩⎪⎨⎪⎧a +7<0,1-a <9,解得-8<a <-7. 3.设各项均为正数的数列{a n }的前n 项和为S n ,满足a 2n +1=4S n +4n +1,n ∈N *,且a 2,a 5,a 14恰好是等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式;(2)记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,(T n +32)k ≥3n -6恒成立,求实数k 的取值范围.解 (1)当n ≥2时,由题设知4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, ∴a 2n +1=a 2n +4a n +4=(a n +2)2,∵a n >0,∴a n +1=a n +2.∴当n ≥2时,{a n }是公差d =2的等差数列. ∵a 2,a 5,a 14构成等比数列,∴a 25=a 2·a 14,(a 2+6)2=a 2·(a 2+24),解得a 2=3, 由条件可知,4a 1=a 22-5=4,∴a 1=1, ∵a 2-a 1=3-1=2,∴{a n }是首项a 1=1,公差d =2的等差数列. ∴等差数列{a n }的通项公式为a n =2n -1. ∵等比数列{b n }的公比q =a 5a 2=2×5-13=3,∴等比数列{b n }的通项公式为b n =3n . (2)T n =b 1(1-q n )1-q =3(1-3n )1-3=3n +1-32,∴(3n +1-32+32)k ≥3n -6对任意的n ∈N *恒成立,∴k ≥2n -43n 对任意的n ∈N *恒成立,令c n =2n -43n ,c n -c n -1=2n -43n -2n -63n -1=-2(2n -7)3n ,当n ≤3时,c n >c n -1; 当n ≥4时,c n <c n -1. ∴(c n )max =c 3=227,∴k ≥227.(推荐时间:60分钟)一、选择题1.等比数列{a n }中a 1=3,a 4=24,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189答案 C解析 由题意可得q 3=8,所以q =2.所以a 3+a 4+a 5=a 1q 2(1+q +q 2)=84. 2.设等差数列{a n }的前n 项和为S n ,若2a 6=6+a 7,则S 9的值是( ) A .27 B .36 C .45 D .54答案 D解析 由2a 6=6+a 7得a 5=6,所以S 9=9a 5=54.故选D.3.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于( ) A .3 B .4 C .5 D .6答案 C解析 由已知得,S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =-2,又S m =a 1-a m q1-q =-11,故a 1=-1,又a m =a 1·q m -1=-16,代入可求得m =5.4.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11 答案 B解析 ∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62·d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,a 8=3.故选B. 5.数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 2 014等于( )A.16 B .-16C .6D .-6答案 D解析 由a n =a n +1-1a n +1+1得a n +1=1+a n 1-a n ,而a 1=2,所以a 2=-3,a 3=-12,a 4=13,a 5=2,则数列是以4为周期,且a 1a 2a 3a 4=1,所以T 2 014=(a 1a 2a 3a 4)503a 1a 2=1503×2×(-3)=-6,故选D.6.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ), Q (2 011,a 2 011),则OP →·OQ →等于( ) A .2 011 B .-2 011 C .0 D .1 答案 A解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011. 二、填空题7.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________. 答案 3解析 设等比数列{a n }的公比为q ,由已知,得⎩⎪⎨⎪⎧a 1+a 1q 2=8,a 1q 4+a 1q 6=4,解得q 4=12. 又a 9+a 11=a 1q 8+a 3q 8=(a 1+a 3)q 8=8×(12)2=2,a 13+a 15=a 1q 12+a 3q 12=(a 1+a 3)q 12=8×(12)3=1, 所以a 9+a 11+a 13+a 15=2+1=3.8.(2014·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=______.答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.9.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________. 答案 6解析 设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36, 故当n =6时,S n 取最小值.10.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________.答案 2×⎝⎛⎭⎫32n -1 ⎩⎪⎨⎪⎧ 2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2)解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n =2×⎝⎛⎭⎫32n -1, 由此得a n =⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2). 三、解答题11.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.(1)解 设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15.解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54. 所以b n =b 1·q n -1=54·2n -1=5·2n -3, 即数列{b n }的通项公式b n =5·2n -3. (2)证明 由(1)得数列{b n }的前n 项和S n =54(1-2n )1-2=5·2n -2-54, 即S n +54=5·2n -2. 所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2. 因此{S n +54}是以52为首项,2为公比的等比数列. 12.若数列{b n }对于n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d 的准等差数列,如数列{c n },若c n =⎩⎪⎨⎪⎧4n -1,n 为奇数,4n -9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n .(1)求证:{a n }为准等差数列;(2)求{a n }的通项公式及前20项和S 20.(1)证明 ∵a n +1+a n =2n ,①∴a n +2+a n +1=2n +2.②由②-①得a n +2-a n =2(n ∈N *),∴{a n }是公差为2的准等差数列.(2)解 已知a 1=a ,a n +1+a n =2n (n ∈N *),∴a 1+a 2=2,即a 2=2-a .∴由(1)可知a 1,a 3,a 5,…,成以a 为首项,2为公差的等差数列,a 2,a 4,a 6,…,成以2-a 为首项,2为公差的等差数列.∴当n 为偶数时,a n =2-a +(n 2-1)×2=n -a , 当n 为奇数时,a n =a +(n +12-1)×2=n +a -1, ∴a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数,n -a ,n 为偶数. S 20=a 1+a 2+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2×1+2×3+…+2×19=2×(1+19)×102=200. 13.(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 (1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18. 即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18, 解得⎩⎪⎨⎪⎧a 1=3,q =-2. 故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n . 假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,得n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.。
(完整版)等差等比数列综合练习题
等差数列等比数列综合练习题一.选择题1. 已知031=--+n n a a ,则数列{}n a 是 ( )A. 递增数列B. 递减数列C. 常数列D. 摆动数列 2.等比数列}{n a 中,首项81=a ,公比21=q ,那么它的前5项的和5S 的值是( ) A .231 B .233 C .235 D .2373. 设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=( ) A. 8 B.7C.6D.54. 等差数列}{n a 中,=-=++10915812,1203a a a a a 则( ) A .24B .22C .20D .-85. 数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 ( ) A. 第4项 B.第5项 C. 第6项 D. 第7项6.已知a ,b ,c ,d 是公比为2的等比数列,则dc ba ++22等于( ) A .1 B .21 C .41D .817.在等比数列{}n a 中,7114146,5,a a a a •=+=则2010a a =( ) A.23B.32C.23或32 D.23-或 32- 8.已知等比数列{}n a 中,n a >0,243546225a a a a a a ++=,那么35a a +=( ) A.5 B .10 C.15 D .209.各项不为零的等差数列{}n a 中,有23711220a a a -+=,数列{}n b 是等比数列,且7768,b a b b ==则( )A.2B. 4C.8 D .16 10.已知等差数列{}n a 中, 211210,10,38,n m m m m a m a a a S -+-≠>+-==若且则m 等于 A. 38 B. 20 C.10D. 911.已知n s 是等差数列{}n a *()n N ∈的前n 项和,且675s s s >>,下列结论中不正确的是( )A. d<0B. 110s >C.120s <D. 130s < 12.等差数列}{n a 中,1a ,2a ,4a 恰好成等比数列,则14a a 的值是( ) A .1 B .2 C .3 D .4二.填空题13.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________ 14. 在等比数列}{n a 中,1682=•a a ,则5a =__________15.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=__________ 16. 若数列{}n x 满足1lg 1lg n n x x +=+()n N *∈,且12100100x x x +++=,则()101102200lg x x x +++=________17.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值_________ 18.已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20,则前9项之和等于_________三.解答题19. 设三个数a ,b ,c 成等差数列,其和为6,又a ,b ,1+c 成等比数列,求此三个数.20. 已知数列{}n a 中,111,23n n a a a -==+,求此数列的通项公式.21. 设等差数列{}na的前n项和公式是253ns n n=+,求它的前3项,并求它的通项公式.22. 已知等比数列{}n a的前n项和记为S n,,S10=10,S30=70,求S40。
等差等比数列及其前n项和作业及答案
等差等比数列及其前n 项和作业及答案一、选择题:1.设命题甲为“a ,b ,c 成等差数列”,命题乙为“a b +c b=2”,那么 ( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件解析:由a b +c b=2,可得a +c =2b ,但a 、b 、c 均为零时,a 、b 、c 成等差数列, 但a b +c b≠2. 答案:B 2.(2009·福建高考)等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( )A .1 B.53C .2D .3 解析:∵S 3=(a 1+a 3)×32=6,而a 3=4,∴a 1=0, ∴d =a 3-a 12=2. 答案:C 3.(2010·广州模拟)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k等于 ( )A .9B .8C .7D .6解析:a n =⎩⎪⎨⎪⎧ S 1 (n =1)S n -S n -1 (n ≥2)=⎩⎪⎨⎪⎧-8 (n =1)-10+2n (n ≥2)=2n -10, ∵5<a k <8,∴5<2k -10<8, ∴152<k <9,又∵k ∈N *,∴k =8. 答案:B 4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于 ( )A .63B .45C .36D .27解析:由{a n }是等差数列,则S 3,S 6-S 3,S 9-S 6成等差数列.由2(S 6-S 3)=S 3+(S 9-S 6)得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45. 答案:B5.设数列{a n }是等差数列,且a 4=-4,a 9=4,S n 是数列{a n }的前n 项和,则 ( )A .S 5<S 6B .S 5=S 6C .S 7=S 5D .S 7=S 6解析:因为a 4=-4,a 9=4,所以a 4+a 9=0,即a 6+a 7=0,所以S 7=S 5+a 6+a 7=S 5. 答案:C6.各项都是正数的等比数列{}a n 中,a 2,123,a 1成等差数列,则a 3+a 4a 4+a 5的值为 ( ) A.5-12 B.5+12 C.1-52 D.5+12或5-12解析:设{a n }的公比为q ,∵a 1+a 2=a 3, ∴a 1+a 1q =a 1q 2,即q 2-q -1=0, ∴q =1±52,又∵a n >0,∴q >0,∴q =1+52,a 3+a 4a 4+a 5=1q =5-12. 答案:A 7.(2009·广东高考)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( )A.12B.22C.2 D .2 解析:∵a 3·a 9=2a 25=a 26,∴a 6a 5= 2. 又a 2=1=a 1·2,∴a 1=22. 答案:B 8.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于 ( )A .1∶2B .2∶3C .3∶4D .1∶3解析:∵{a n }为等比数列, ∴S 3,S 6-S 3,S 9-S 6成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 又∵S 6∶S 3=1∶2,∴14S 23=S 3(S 9-12S 3),即34S 3=S 9, ∴S 9∶S 3=3∶4. 答案:C 9.若数列{a n }满足a 2n +1a 2np (p 为正常数,n ∈N *),则称{a n }为“等方比数列”. 甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件解析:数列{a n }是等比数列则a n +1a n =q ,可得a 2n +1a 2n=q 2,则{a n }为“等方比数列”.当{a n }为“等方比数列”时,则a 2n +1a 2n=p (p 为正常数,n ∈N *),当n ≥1时a n +1a n =±p ,所以此数列{a n }并不一定是等比数列. 答案:B10.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1= ( ) A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 解析:∵q 3=a 5a 2=18∴q =12,a 1=4,数列{a n ·a n +1}是以8为首项,14为公比的等比数列,不难得出答案为C. 答案:C11. 在等差数列{a n }中,若a 1<0,S 9=S 12,则当S n 取得最小值时,n 等于A .10B .11C .9或10D .10或11解析:设数列{a n }的公差为d ,则由题意得9a 1+12×9×(9-1)d =12a 1+12×12×(12-1)d , 即3a 1=-30d ,∴a 1=-10d . ∵a 1<0,∴d >0. ∴S n =na 1+12n (n -1)d =12dn 2-212dn =d 2⎝⎛⎭⎫n -2122-441d 8∴S n 有最小值,又n ∈N *, ∴n =10,或n =11时,S n 取最小值. 答案:D12.在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S n n 最大时,n 的值等于 ( )A .8B .9C .8或9D .17解析:∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5,而a 3a 5=4,∴a 3=4,a 5=1, ∴q =12,a 1=16,a n =16×(12)n -1=25-n , b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n (9-n )2∴S n n =9-n 2, ∴当n ≤8时,S n n >0;当n =9时,S n n =0;当n >9时,S n n<0, ∴当n =8或9时,S 11+S 22+…+S n n 最大. 答案:C 二、填空题:13.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.解析:∵log 2(a 5+a 9)=3,∴a 5+a 9=23=8.∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52. 答案:52 14.(2009·辽宁高考)等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,则由6S 5-5S 3=5,得6(a 1+3d )=2,所以a 4=13. 答案:1315.(2009·浙江高考)设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________. 解析:a 4=a 1(12)3=181,S 4=a 1(1-124)1-12=158a 1, ∴S 4a 4=15. 答案:15 16.(2009·宁夏、海南高考)等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________.解析:∵a n +2+a n +1=6a n ,∴a n ·q 2+a n ·q =6a n (a n ≠0), ∴q 2+q -6=0,∴q =-3或q =2. ∵q >0,∴q =2,∴a 1=12,a 3=2,a 4=4, ∴S 4=12+1+2+4=152. 答案:152三、解答题:17.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2-,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n . 解:(1)证明:由已知a n +1=2a n +2n 得 b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. 又b 1=a 1=1, 因此{b n }是首项为1,公差为1的等差数列.(2)由(1)知a n 2-=n ,即a n =n ·2n -1. S n =1+2×21+3×22+…+n ×2n -1, 两边乘以2得,2S n =2+2×22+…+n ×2n . 两式相减得S n =-1-21-22-…-2n -1+n ·2n =-(2n -1)+n ·2n =(n -1)2n+1. 18.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值; (2)求证:数列{S n +2}是等比数列.解:(1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8.(2)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2,∴S n +2=2(S n -1+2). ∵S 1+2=4≠0, ∴S n -1+2≠0, ∴S n +2S n -1+22, 故{S n +2}是以4为首项,2为公比的等比数列. 19.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=5,S 6=36.(1)求数列{a n }的通项公式;(2)设b n =6n +(-1)n -1λ·2a n (λ为正整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有b n +1>b n 成立.解:(1)∵2a n +1=a n +a n +2,∴{a n }是等差数列,设{a n }的首项为a 1,公差为d , 由a 3=5,S 6=36得⎩⎪⎨⎪⎧ a 1+2d =56a 1+15d =36,解得a 1=1,d =2. ∴a n =2n -1.(2)由(1)知b n =6n +(-1)n -1·λ·22n -1,要使得对任意n ∈N *都有b n +1>b n 恒成立, ∴b n +1-b n =6n +1+(-1)n ·λ·22n +1-6n -(-1)n -1·λ·22n -1=5·6n -5λ·(-1)n -1·22n -1>0恒成立, 即12λ·(-1)n -1<(32)n . 当n 为奇数时, 即λ<2·(32)n ,而(32)n 的最小值为32, ∴λ<3. 当n 为偶数时,λ>-2(32)n , 而-2(32)n 的最大值为-92,∴λ>-92.由上式可得-92<λ<3,而λ为正整数, ∴λ=1或λ=2. 20.(2010·株州模拟)已知二次函数f (x )=ax 2+bx +c (x ∈R),满足f (0)=f (12)=0,且f (x )的最小值是-18.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,S n )在函数f (x )的图象上.(1)求数列{a n }的通项公式;(2)通过b n =S n n +c 构造一个新的数列{b n },是否存在非零常数c ,使得{b n }为等差数列; (3)令c n =S n +n n,设数列{c n ·2c n }的前n 项和为T n ,求T n . 解:(1)因为f (0)=f (12)=0,所以f (x )的对称轴为x =0+122=14,又因为f (x )的最小值是-18,由二次函数图象的对称性可设f (x )=a (x -14)2-18. 又f (0)=0,所以a =2,所以f (x )=2(x -14)2-18=2x 2-x . 因为点(n ,S n )在函数f (x )的图象上,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=4n -3(n =1时也成立),所以a n =4n -3(n ∈N *).(2)因为b n =S n n +c =2n 2-n n +c =2n (n -12)n +c c =-12(c ≠0),即得b n =2n ,此时数列{b n }为等差数列,所以存在非零常数c =-12{b n }为等差数列. (3)c n =S n +n n =2n 2-n +n n=2n ,则c n ·2c n =2n ×22n =n ×22n +1. 所以T n =1×23+2×25+…+(n -1)22n -1+n ×22n +1,4T n =1×25+2×27+…+(n -1)22n +1+n ×22n +3,两式相减得:-3T n =23+25+…+22n +1-n ×22n +3=23(1-4n )1-4n ·22n +3, T n =23(1-4n )9+n ·22n +33=(3n -1)22n +3+89. 21.已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2n -1a n=8n 对任意的n ∈N *都成立,数列{b n +1-b n }是等差数列.(1)求数列{a n }与{b n }的通项公式;(2)问是否存在k ∈N *,使得(b k -a k )∈(0,1)?请说明理由.解:(1)已知a 1+2a 2+22a 3+…+2n -1a n =8n (n ∈N *)①当n ≥2时,a 1+2a 2+22a 3+…+2n -2a n -1=8(n -1)(n ∈N *)②①-②得2n -1a n =8,求得a n =24-n , 在①中令n =1,可得a 1=8=24-1, ∴a n =24-n (n ∈N *). 由题意知b 1=8,b 2=4,b 3=2, ∴b 2-b 1=-4,b 3-b 2=-2, ∴数列{b n +1-b n }的公差为-2-(-4)=2, ∴b n +1-b n =-4+(n -1)×2=2n -6, 法一:迭代法得:b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =8+(-4)+(-2)+…+(2n -8)=n 2-7n +14(n ∈N *).法二:可用累加法,即b n -b n -1=2n -8, b n -1-b n -2=2n -10, … b 3-b 2=-2, b 2-b 1=-4, b 1=8,相加得b n =8+(-4)+(-2)+…+(2n -8)=8+(n -1)(-4+2n -8)2=n 2-7n +14(n ∈N *). (2)∵b k -a k =k 2-7k +14-24-k , 设f (k )=k 2-7k +14-24-k .当k ≥4时,f (k )=(k -72)2+74-24-k 单调递增. 且f (4)=1, ∴当k ≥4时,f (k )=k 2-7k +14-24-k ≥1. 又f (1)=f (2)=f (3)=0, ∴不存在k ∈N *,使得(b k -a k )∈(0,1).22.等差数列{a n }的前n 项和为S n ,S 4=24,a 2=5,对每一个k ∈N *,在a k 与a k +1之间插入2k -1个1,得到新数列{b n },其前n 项和为T n .(1)求数列{a n }的通项公式; (2)试问a 11是数列{b n }的第几项;(3)是否存在正整数m ,使T m =2010?若存在,求出m 的值;若不存在,请说明理由. 解:(1)设{a n }的公差为d ,∵S 4=4a 1+4×32d =24,a 2=a 1+d =5, ∴a 1=3,d =2,a n =3+(n -1)×2=2n +1.(2)依题意,在a 11之前插入的1的总个数为1+2+22+…+29=1-2101-2=1023, 1023+11=1034,故a 11是数列{b n }的第1034项.(3)依题意,S n =na 1+n (n -1)2d =n 2+2n , a n 之前插入的1的总个数为1+2+22+…+2n -2=1-2n -11-2=2n -1-1, 故数列{b n }中,a n 及前面的所有项的和为n 2+2n +2n -1-1,∴数列{b n }中,a 11及前面的所有项的和为112+22+210-1=1166<2010, 而2010-1166=844,a 11与a 12之间的1的个数为210=1024个, 即在a 11后加844个1,其和为2010,故存在m =1034+844=1878,使T 1878=2010.。
高考数学二轮复习第一部分微专题强化练习题:等差数列与等比数列含解析
第一部分 一 9一、选择题1.(文)(2014·东北三省三校联考)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6 =12,则S 7的值是( )A .21B .24C .28D .7[答案] C[解析] ∵a 2+a 4+a 6=3a 4=12,∴a 4=4, ∴2a 4=a 1+a 7=8,∴S 7=7(a 1+a 7)2=7×82=28.[方法点拨] 1.熟记等差、等比数列的求和公式. 2.形如a n +1=a n +f (n )的递推关系用累加法可求出通项; 3.形如a n +1=a n f (n )的递推关系可考虑用累乘法求通项a n ;4.形如a n +1=ka n +b (k 、b 为常数)可通过变形,设b n =a n +bk -1构造等比数列求通项a n .(理)在等比数列{a n }中,a 1=a ,前n 项和为S n ,若数列{a n +1}成等差数列,则S n 等于( ) A .a n +1-a B .n (a +1) C .na D .(a +1)n -1[答案] C[解析] 利用常数列a ,a ,a ,…判断,则存在等差数列a +1,a +1,a +1,…或通过下列运算得到:2(aq +1)=(a +1)+(aq 2+1),∴q =1,S n =na .2.(文)已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53 D .4[答案] A[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.(理)(2014·全国大纲文,8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .64[答案] C[解析] 解法1:由条件知:a n >0,且⎩⎪⎨⎪⎧a 1+a 2=3,a 1+a 2+a 3+a 4=15, ∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15,∴q =2. ∴a 1=1,∴S 6=1-261-2=63.解法2:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.[方法点拨] 下标成等差的等差、等比数列的项或前n 项和的问题,常考虑应用等差、等比数列的性质求解.3.(2015·浙江理,3)已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0 [答案] B[解析] 考查等差数列的通项公式及其前n 项和;等比数列的概念. ∵{a n }为等差数列,且a 3,a 4,a 8成等比数列, ∴(a 1+3d )2=(a 1+2d )(a 1+7d )⇒ a 1=-53d ,∴S 4=2(a 1+a 4)=2(a 1+a 1+3d )=-23d ,∴a 1d =-53d 2<0,dS 4=-23d 2<0,故选B.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19 D .-19[答案] C[解析] ∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1,a 3=9a 1=a 1q 2,∴q 2=9, 又∵a 5=9,∴9=a 3·q 2=9a 3,∴a 3=1, 又a 3=9a 1,故a 1=19.[方法点拨] 求基本量的问题,熟记等差、等比数列的定义、通项及前n 项和公式,利用公式、结合条件,建立方程求解.5.(2015·江西省质检)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2015项的和S 2015等于( )A .31008-2B .31008-3C .32015-2D .32015-3[答案] A[解析] 因为a 1=1,a 2=3,a n +2a n=3, 所以S 2015=(a 1+a 3+…+a 2015)+(a 2+a 4+…+a 2014)=1-310081-3+3(1-31007)1-3=31008-2.6.(文)(2014·新乡、许昌、平顶山调研)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101的值为( )A .2B .200C .-2D .0[答案] A[解析] 设公比为q ,∵a n +2a n +1+a n +2=0,∴a 1+2a 2+a 3=0,∴a 1+2a 1q +a 1q 2=0,∴q 2+2q +1=0,∴q =-1,又∵a 1=2,∴S 101=a 1(1-q 101)1-q =2[1-(-1)101]1+1=2.(理)(2014·哈三中二模)等比数列{a n },满足a 1+a 2+a 3+a 4+a 5=3,a 21+a 22+a 23+a 24+a 25=15,则a 1-a 2+a 3-a 4+a 5的值是( )A .3 B. 5 C .- 5 D .5[答案] D[解析] 由条件知⎩⎪⎨⎪⎧a 1(1-q 5)1-q=3a 21(1-q10)1-q2=15,∴a 1(1+q 5)1+q=5,∴a 1-a 2+a 3-a 4+a 5=a 1[1-(-q )5]1-(-q )=a 1(1+q 5)1+q=5.7.(文)在等差数列{a n }中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600[答案] B[解析] 由a 1+a 2+a 3=3,a 18+a 19+a 20=87得, a 1+a 20=30,∴S 20=20×(a 1+a 20)2=300.(理)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 [答案] C[解析] 由条件知a 3=a 1+2a 2, ∴a 1q 2=a 1+2a 1q , ∵a 1≠0,∴q 2-2q -1=0, ∵q >0,∴q =1+2, ∴a 8+a 9a 6+a 7=q 2=3+2 2. 8.(2015·福建理,8)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9[答案] D[解析] 由韦达定理得a +b =p ,a ·b =q ,因为p >0,q >0,则a >0,b >0,当a ,b ,-2适当排序后成等比数列时,-2必为等比中项,故a ·b =(-2)2=4,故q =4,b =4a .当适当排序后成等差数列时,-2必不是等差中项,当a 是等差中项时,2a =4a -2,解得a =1,b =4,;当b 是等差中项时,8a =a -2,解得a =4,b =1,综上所述,a +b =p =5,所以p +q =9,选D.9.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=2,n ∈N +,则数列{ba n }的前10项的和为( )A.43(49-1) B.43(410-1) C.13(49-1) D.13(410-1) [答案] D[解析] 由a 1=1,a n +1-a n =2得,a n =2n -1, 由b n +1b n=2,b 1=1得b n =2n -1, ∴ba n =2a n -1=22(n -1)=4n -1,∴数列{ba n }前10项和为1×(410-1)4-1=13(410-1).10.(文)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1等于( )A .1-14nB.23(1-14n ) C .1-12nD.23(1-12n ) [答案] B[解析] 因为a n =1×2n -1=2n -1,所以a n ·a n +1=2n -1·2n =2×4n -1, 所以1a n a n +1=12×(14)n -1,所以{1a n a n +1}也是等比数列,所以T n =1a 1a 2+1a 2a 3+…+1a n a n +1=12×1×(1-14n )1-14=23(1-14n ),故选B.(理)(2014·唐山市一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n( )A .4n -1B .4n -1 C .2n -1 D .2n -1[答案] C[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12)=2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 11.给出数列11,12,21,13,22,31,…,1k ,2k -1,…,k1,…,在这个数列中,第50个值等于1的项的序号..是( ) A .4900 B .4901 C .5000 D .5001[答案] B[解析] 根据条件找规律,第1个1是分子、分母的和为2,第2个1是分子、分母的和为4,第3个1是分子、分母的和为6,…,第50个1是分子、分母的和为100,而分子、分母的和为2的有1项,分子、分母的和为3的有2项,分子、分母的和为4的有3项,…,分子、分母的和为99的有98项,分子、分母的和为100的项依次是:199,298,397,…,5050,5149,…,991,第50个1是其中第50项,在数列中的序号为1+2+3+…+98+50=98(1+98)2+50=4901.[点评] 本题考查归纳能力,由已知项找到规律,“1”所在项的特点以及项数与分子、分母的和之间的关系,再利用等差数列求和公式即可.二、填空题12.(文)(2015·广东理,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.[答案] 10[解析] 本题考查等差数列的性质及简单运算,属于容易题.因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25 即a 5=5,a 2+a 8=2a 5=10.(理)(2015·湖南理,14)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.[答案] 3n -1[解析] 考查等差数列与等比数列的性质.∵3S 1,2S 2,S 3成等差数列,∴4S 2=3S 1+S 3,∴4(a 1+a 2)=3a 1+a 1+a 2+a 3⇒a 3=3a 2⇒q =3.又∵{a n }为等比数列,∴a n =a 1q n -1=3n -1.[方法点拨] 条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.13.(文)(2015·安徽理,14)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.[答案] 2n -1[解析] 考查1.等比数列的性质;2.等比数列的前n 项和公式.由题意,⎩⎪⎨⎪⎧ a 1+a 4=9,a 2·a 3=8.∴⎩⎪⎨⎪⎧a 1+a 4=9,a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n =a 1(1-q n )1-q =1-2n 1-2=2n -1.(理)(2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.[答案]2011[解析] 考查数列通项,裂项求和.由题意得:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,所以1a n =2(1n -1n +1),S n =2(1-12)+2(12-13)+…+2(1n -1n +1)=2(1-1n +1)=2nn +1,S 10=2011.三、解答题14.(文)设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数. (1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式. [解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p3.所以{a n }是首项为p 3,公比为43的等比数列.(2)因为a 1=1,则a n =(43)n -1,由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1,当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-(43)n -11-43=3(43)n -1-1,当n =1时,上式也成立.∴b n =3·(43)n -1-1.[方法点拨] 证明数列是等差(等比)数列时,应用定义分析条件,结合性质进行等价转化. (理)(2015·河南高考适应性测试)已知数列{a n }的各项均为正数,且a 1=2,a n =a 2n +1+4a n +1+2.(1)令b n =log 2(a n +2),证明:数列{b n }是等比数列. (2)设c n =nb n ,求数列{c n }的前n 项和S n .[解析] (1)由a n =a 2n +1+4a n +1+2,得a n +2=a 2n +1+4a n +1+4=(a n +1+2)2.因为a n >0,所以a n +2=a n +1+2. 因为b n +1b n =log 2(a n +1+2)log 2(a n +2)=log 2a n +2log 2(a n +2)=12,又b 1=log 2(a 1+2)=2,所以数列{b n }是首项为2,公比为12的等比数列.(2)由(1)知,b n =2·⎝⎛⎭⎫12n -1,则c n =2n ⎝⎛⎭⎫12n -1. S n =2×⎝⎛⎭⎫120+4×⎝⎛⎭⎫121+…+2(n -1)⎝⎛⎭⎫12n -2+2n ⎝⎛⎭⎫12n -1,① 12S n =2×⎝⎛⎭⎫121+4×⎝⎛⎭⎫122+…+2(n -1)⎝⎛⎭⎫12n -1+2n ⎝⎛⎭⎫12n .② ①-②得:12S n =2×⎝⎛⎭⎫120+2×⎝⎛⎭⎫121+2×⎝⎛⎭⎫122+…+2×⎝⎛⎭⎫12n -1-2n ·⎝⎛⎭⎫12n =21-⎝⎛⎭⎫12n1-12-2n ·⎝⎛⎭⎫12n =4-(4+2n )⎝⎛⎭⎫12n . 所以S n =8-(n +2)⎝⎛⎭⎫12n -2.15.(2015·南昌市一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围.[解析] (1)等差数列{a n },a 1=1,S 3=6,∴d =1,故a n =n⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n (1)b 1·b 2·b 3·…·b n -1=2S n -1 (2),(1)÷(2)得b n =2S n -S n -1=2a n =2n (n ≥2), b 1=2S 1=21=2,满足通项公式,故b n =2n(2) 设λb n >a n 恒成立⇒λ>n 2n 恒成立,设c n =n 2n ⇒c n +1c n =n +12n当n ≥2时,c n <1,{c n }单调递减, ∴(c n )max =c 1=12,故λ>12.16.(文)(2014·湖北理,18)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.[分析] (1)设数列{a n }的公差为d ,利用等比数列的性质得到a 22=a 1·a 5,并用a 1、d 表示a 2、a 5,列等式求解公差d ,进而求出通项,注意对公差d 分类讨论;(2)利用(1)的结论,对数列{a n }的通项分类讨论,分别利用通项公式及等差数列的前n 项和公式求解S n ,然后根据S n >60n +800列不等式求解.[解析] (1)设数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ).化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立, 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2,令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去).此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.[方法点拨] 存在型探索性问题解答时先假设存在,依据相关知识(概念、定理、公式、法则、性质等),结合所给条件进行推理或运算,直到得出结果或一个明显成立或错误的结论,从而断定存在与否.(理)(2014·新课标Ⅰ理,17)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.[分析](1)利用a n+1=S n+1-S n用配凑法可获证;(2)假设存在λ,则a1,a2,a3应成等差数列求出λ的值,然后依据a n+2-a n=λ推证{a n}为等差数列.[解析](1)由题设:a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1,令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.。
等差与等比数列习题和答案
等差与等比数列1.数列1,3,7,15,…的通项公式a n 等于( ). (A )2n (B )2n +1 (C )2n -1 (D )2n -1【提示】排除法.由已知,各项均为奇数.所以(A )、(D )不正确.对于(B ),由于n =1时,21+1=3.所以(B )也不正确.也可以直接归纳出2n -1. 【答案】(C ).2.已知等差数列的公差为d ,它的前n 项和S n =-n 2,那么( ). (A )a n =2 n -1,d =-2 (B )a n =2 n -1,d =2 (C )a n =-2 n +1,d =-2 (D )a n =-2 n +1,d =2 【提示】由S n =-n 2 知,a 1=S 1=-1,a 2=S 2-a 1=-3,从而d =-2,且a n =a 1+(n -1)d =-1+(n -1)〃(-2)=-2 n +1. 【答案】(C ).3.在a 和b (a ≠b )两数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为( ). (A )na b - (B )1+-n a b (C )1+-n b a (D )2+-n a b【提示】b =a +[(n +2)-1]d . 【答案】(B ).4.数列{a n }中,a n =-2 n +100,当前n 项和S n 达到最大值时,n 等于( ).(A )49 (B )50 (C )51 (D )49或50【提示】令a n =-2 n +100≥0,得n ≤50.即a 49 以前各项均为正数,a 50=0,故S 49 或S 50 最大.【答案】(D ).5.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若510S S =3231,则510a a 等于( ). (A )-321 (B )-21 (C )321 (D )21【提示】由已知可求得q =-21. 【答案】(A ).6.等差数列{a n }中,a 1>0,S 5=S 11,则第一个使a n <0的项是( ). (A )a 7 (B )a 8 (C )a 9 (D )a 10【提示】由S 5=S 11 得2 a 1+15 d =0,又a 1>0,所以d <0.而2 a n =2 a 1+2(n -1)d =(2 n -17)d <0,所以2 n -17>0即n >8.5. 【答案】(C ).7.已知数列{a n }中,a 3,a 10 是方程x 2-3 x -5=0的两根,若{a n }是等差数列,则a 5+a 8=___________________;若{a n }是等比数列,则a 6〃a 7=______________.【提示】a 3+a 10=3,a 3a 10=-5.再利用已知与所求中的关系可求. 【答案】a 5+a 8=a 3+a 10=3;a 6〃a 7=a 3〃a 10=-5.8.在等比数列{a n }中,若其中三项a 1、a 2、a 4 又成等差数列,则公比是_____________.【提示】由已知,得2(a 1q )=a 1+a 1q 3 即q 3-2 q +1=0. 【答案】1或251±-.9.等差数列{a n }的公差d >0.已知S 6=51,a 2〃a 5=52.则S 7=_______________.【提示】列出a 1 和d 的方程组,求a 1 和d .进而求S 7 .或由S 6=2)(661a a +=3(a 2+a 5)=51,得方程组⎩⎨⎧=⋅=+52175252a a a a ,求出a 2,a 5,进而求S 7 . 【答案】70.10.已知等差数列{a n }的公差d ≠0,且a 1、a 3、a 9 成等比数列,则1042931a a a a a a ++++=___________.【提示】由已知推出a 1=d (d ≠0),并代入所求式中,消去d 即可. 【答案】1613.11.已知数列{}n a 的通项公式a n =3n -50,则当n=______时,S n 的值最小,S n 的最小值是__________。
等差、等比数列复习试题+答案解析
等差数列、等比数列1.(2014·二模)数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 5=1,则a 10=________2. (2014·二模)在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________3.(2014·一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=________4. (2014·一模)记等比数列{a n }的前n 项积为Ⅱn ,若a 4·a 5=2,则Ⅱ8=________5.(2014·卷)设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则________A .d <0B .d >0C .a 1d <0D .a 1d >06.(2014·七中二模)正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m a n =16a 21,则1m +4n的最小值为________7.(2014·卷)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.8.(2014·中学二模)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8·a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.9. 已知{a n }是等比数列,a 2=2,a 5=14,则S n =a 1+a 2+…+a n 的取值围是________.10.(2014·课标全国卷Ⅰ)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.11.(2014·一模)已知数列{a n},a1=-5,a2=-2,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2(n∈N*),若对于任意n∈N*,A(n),B(n),C(n)成等差数列.(1)求数列{a n}的通项公式;(2)求数列{|a n|}的前n项和.1.(2014·市七校联考)已知数阵⎣⎢⎢⎡⎦⎥⎥⎤a11 a 12 a 13a21 a 22 a 23a31a 32a 33中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=2,则这9个数的和为________2.(2014·一模)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.3.(2014·一模)若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方递推数列”.已知数列{a n }中,a 1=9,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n 为正整数.(1)证明数列{a n +1}是“平方递推数列”,且数列{lg(a n +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项积为T n ,即T n =(a 1+1)(a 2+1)…(a n +1),求lg T n ;(3)在(2)的条件下,记b n =lg T n lg a n +1,求数列{b n }的前n 项和S n ,并求使S n >4 026的n 的最小值.高考专题训练(九) 等差数列、等比数列A 级——基础巩固组一、选择题1.(2014·二模)数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 5=1,则a 10=( )A .5B .-1C .0D .1解析 设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d 2=a 1a 1+2d ,a 1+4d =1,解得⎩⎪⎨⎪⎧a 1=1,d =0,所以a 10=a 1+9d =1,故选D 答案 D2.(2014·二模)在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .13B .26C .52D .156解析 ∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10, ∴6a 4+6a 10=24,即a 4+a 10=4,∴S 13=13a 1+a 132=13a 4+a 102=26.答案 B3.(2014·一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=( )A .4n -1B .4n -1C .2n -1D .2n -1 解析∵⎩⎪⎨⎪⎧ a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎪⎫12n -1=42n,∴S n =2×⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎪⎫12n 1-12=4⎝⎛⎭⎪⎪⎫1-12n , ∴S na n=4⎝⎛⎭⎪⎪⎫1-12n 42n=2n -1,选D.答案 D4.(2014·一模)记等比数列{a n }的前n 项积为Ⅱn ,若a 4·a 5=2,则Ⅱ8=( )A .256B .81C .16D .1解析 由题意可知a 4a 5=a 1a 8=a 2a 7=a 3a 6=2, 则Ⅱ8=a 1a 2a 3a 4a 5a 6a 7a 8=(a 4a 5)4=24=16. 答案 C5.(2014·卷)设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( )A .d <0B .d >0C .a 1d <0D .a 1d >0解析 依题意得2a 1a n >2a 1a n +1,即(2a 1)a n +1-a n <1,从而2a 1d <1,所以a 1d <0,故选C.答案 C6.(2014·七中二模)正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m a n =16a 21,则1m +4n的最小值为( )A.256B.134C.73D.32解析 由a 3=a 2+2a 1,得q 2=q +2,∴q =2(q =-1舍去),由a m a n =16a 21得2m -12n -1=16, ∵m +n -2=4,m +n =6, 所以1m +4n =m +n 6⎝ ⎛⎭⎪⎪⎫1m +4n =16⎝⎛⎭⎪⎪⎫1+4+n m +4m n≥16⎝ ⎛⎭⎪⎪⎫5+2 n m ·4m n =32. 答案 D 二、填空题7.(2014·卷)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.解析 设等差数列的公差为d ,则a 3=a 1+2d ,a 5=a 1+4d , ∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1.∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.答案 18.(2014·中学二模)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8·a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.解析 ∵1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,而a 8a 9=a 7a 10,∴1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 7a 10=158-98=-53. 答案 -539.已知{a n }是等比数列,a 2=2,a 5=14,则S n =a 1+a 2+…+a n的取值围是________.解析 因为{a n }是等比数列, 所以可设a n =a 1q n -1. 因为a 2=2,a 5=14,所以⎩⎪⎨⎪⎧a 1q =2,a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4,q =12.所以S n =a 1+a 2+…+a n =4⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎪⎫12n 1-12=8-8×⎝ ⎛⎭⎪⎪⎫12n. 因为0<⎝ ⎛⎭⎪⎪⎫12n ≤12,所以4≤S n <8. 答案 [4,8) 三、解答题10.(2014·课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.11.(2014·一模)已知数列{a n},a1=-5,a2=-2,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2(n∈N*),若对于任意n∈N*,A(n),B(n),C(n)成等差数列.(1)求数列{a n}的通项公式;(2)求数列{|a n|}的前n项和.解(1)根据题意A(n),B(n),C(n)成等差数列,∴A(n)+C(n)=2B(n),整理得a n+2-a n+1=a2-a1=-2+5=3.∴数列{a n}是首项为-5,公差为3的等差数列,∴a n=-5+3(n-1)=3n-8.(2)|a n |=⎩⎪⎨⎪⎧-3n +8,n ≤2,3n -8,n ≥3,记数列{|a n |}的前n 项和为S n . 当n ≤2时,S n =n 5+8-3n2=-3n 22+132n ;当n ≥3时,S n =7+n -21+3n -82=3n 22-132n +14;综上,S n=⎩⎪⎨⎪⎧-32n 2+132n ,n ≤2,32n 2-132n +14,n ≥3.B 级——能力提高组1.(2014·市七校联考)已知数阵⎣⎢⎢⎡⎦⎥⎥⎤a11 a 12 a 13a21 a 22 a 23a31a 32a 33中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=2,则这9个数的和为( )A .16B .18C .9D .8解析已知数阵⎣⎢⎢⎡⎦⎥⎥⎤a11 a 12 a 13a21 a 22 a 23a31a 32a 33中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=2,由等差数列的性质得:a 11+a 12+a 13+a 21+a 22+a 23+a 31+a 32+a 33=9a 22=18.答案 B2.(2014·一模)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.解析 易得S n =1-⎝ ⎛⎭⎪⎪⎫-13n ∈⎣⎢⎢⎡⎭⎪⎪⎫89,1∪⎝ ⎛⎦⎥⎥⎤1,43,而y =S n -1S n 在⎣⎢⎢⎡⎦⎥⎥⎤89,43上单调递增,所以y ∈⎣⎢⎢⎡⎦⎥⎥⎤-1772,712⊆[A ,B ],因此B -A 的最小值为712-⎝ ⎛⎭⎪⎪⎫-1772=5972. 答案 59723.(2014·一模)若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方递推数列”.已知数列{a n }中,a 1=9,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n 为正整数.(1)证明数列{a n +1}是“平方递推数列”,且数列{lg(a n +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项积为T n ,即T n =(a 1+1)(a 2+1)…(a n +1),求lg T n ;(3)在(2)的条件下,记b n =lg T n lg a n +1,求数列{b n }的前n 项和S n ,并求使S n >4 026的n 的最小值.解 (1)由题意得:a n +1=a 2n +2a n ,即a n +1+1=(a n +1)2,则{a n +1}是“平方递推数列”.对a n +1+1=(a n +1)2两边取对数得lg(a n +1+1)=2lg(a n +1),w 所以数列{lg(a n +1)}是以lg(a 1+1)为首项,2为公比的等比数列. (2)由(1)知lg(a n +1)=lg(a 1+1)·2n -1=2n -1 lg T n =lg(a 1+1)(a 2+1)…(a n +1)=lg(a 1+1)+lg(a 2+1)+…+lg(a n +1)=1·1-2n1-2=2n -1 (3)b n =lg T n lg a n +1=2n -12n -1=2-⎝ ⎛⎭⎪⎪⎫12n -1 S n =2n -1-12n 1-12=2n -2+12n -1 又S n >4 026,即2n -2+12n -1>4 026,n +12n >2 014 又0<12n <1,所以n min =2 014.。
等差、等比数列的性质及配套练习
等等差数列的概念定 义 式:*),2(1N n n d d a a n n∈≥=--为常数,,或*)(1N n d a a n n ∈=-+.递 推 式:*)(1N n d a a n n ∈+=+.等差中项:任何两个数b a ,都有且仅有一个等差中项A ⎪⎭⎫⎝⎛+=2b a A . 通项公式:d n a a n)1(1-+=,d m n a a m n )(-+=(广义).特征:b kn a n+=,其中d a b d k -==1,.前n 项和:d n n na d n n na n a a S n n n 2)1(2)1(2)(11--=-+=+=. 特征:Bn An S n +=2,其中2,21da B d A -==. 注:1.等差数列的定义式和递推式、等差中项、等差数列通项公式的特征、前n 项和的特征,都可以作为一个数列是等差数列的判定依据,但等差数列的证明必须根据定义式. 2.对任何数列,都有⎩⎨⎧∈≥-==-.*,2 ,,1,11N n n S S n S a n n n等差数列的性质1. 若{}n a 为等差数列,则d m n a a m n)(-+=*),(N n m ∈.2. 若{}n a 为等差数列,且*),,,(N q p n m q p n m ∈+=+,则q p n m a a a a +=+.3. 若{}n a 为等差数列,,则项数中间项 )12(12⨯=-⋅=-n a S n n .4. 若等差数列{}n a 共有12+n 项,则①中偶奇a S S =-;② nn S S 1+=偶奇. 5. 若等差数列{}n a 共有n 2项,则①nd S S =-奇偶;②nn a a S S 1+=奇偶.6. 若{}n a 为各项均不为零的等差数列,前n 项和为,n S ,则12121212--⋅=--n m S S a a m n m n . 7. 若{}n a 、{}n b 均为各项非零的等差数列,前n 项和分别为n n T S ,,则1212--=n n n n T S b a . 8. 在等差数列{}n a 中,若)(,n m m a n a n m ≠==,则0=+n m a .9. 在等差数列{}n a 中,若)(,n m m S n S n m ≠==,则)(n m S n m +-=+. 10.在等差数列{}n a 中,若)(n m S S n m ≠=,则0=+n m S .11.若{}n a 为等差数列,则{}b ka n +仍为等差数列,其中k 和b 是常数. 12.若{}n a 、{}n b 为等差数列,则{}n n b a +仍为等差数列.13.若{}n a 为等差数列,则序号成等差的项也成等差数列,即:若{}n a 为等差数列,{}n b 为正整数等差数列,则{}nb a 为等差数列.14.n S 为数列{}n a 的前n 项和,则{}n a 为等差数列⎭⎬⎫⎩⎨⎧⇔n S n 为等差数列. 15.若{}n a 为等差数列,则{}n a 依次k 项和仍为等差数列,即.,,232k k k k k S S S S S --…仍为等差数列.等比数列等比数列的概念定 义 式:*),2,0(1N n n q q a a n n∈≥≠=-常数,或*)(1N n q a a n n ∈=+. 递 推 式:*)(1N n q a a n n ∈=+.等比中项:两个同号的实数b a ,才有但有两个等比中项G ()ab G ±=. 通项公式:11-=n nq a a ,m n m n q a a -=(广义).前n 项和:当1=q 时,1na S n =,当1≠q 时,1111111)1(111)1(--+--=--=--=--=qq a q a a q q a a q q a S n n n n n n .特征:)0)(1(≠-=A q A S n n .注:非零常数列既是等差数列也是等比数列,反之亦然.等比数列的性质1. 若{}n a 为等比数列,则m n m nq a a -=*),(N n m ∈.2. 若{}n a 为等比数列,且*),,,(N q p n m q p n m ∈+=+,则q p n m a a a a =.3. 若{}n a 为等比数列,则{}n ka 仍为等比数列,其中k 是非零..常数. 4. 若{}n a 为等比数列,则当()kn a 恒有意义时(){}kn a 仍为等比数列,其中k 是任意常数.5. 若{}n a 、{}n b 为等比数列,则{}n n b a 、⎭⎬⎫⎩⎨⎧n n b a 仍为等比数列. 6. 若{}n a 为等比数列,则序号成等差的项也成等比数列,即:若{}n a 为等比数列,{}n b 为正整数等差数列,则{}nb a 为等比数列.7. n T 为正项数列{}n a 的前n 项积,则{}n a 为等比数列{}nnT ⇔为等比数列.8. 若k S 为等比数列{}n a 的前n 项和,且0≠k S ,则{}n a 依次k 项和仍为等比数列,即.,,232k k k k k S S S S S --…仍为等比数列.注:等比数列各项积的性质类似于等差数列各项和的性质,应用范围较小,故未写入.等差数列与等比数列的联系1. 非零常数列,也只有非零常数列,即是等差数列也是等比数列。
2019年人教版高中数学必修五考点练习:等差、等比数列的求和(含答案解析)
A.2
B.4
15
17
C. 2
D. 2
6. 已知等差数列{an}.
5
3
(1)a1=6,a15=-2,Sn=-5 ,求d和n;
(2)a1=4,S8=172,求a8和d.
7. 在等比数列{an}中,公比为q,前n项和为Sn.
1
63
(1)a1=8,an=4,Sn= 4 ,求n;
7
63
(2)S3=2,S6= 2 ,求an及Sn.
15. 等比数列{an}中,若a1+a3+…+a99=150,且公比q=2,则数列{an}的前100项和为______ __.
16. 已知{an}为递减的等比数列,且{a1,a2,a3}∈{-4,-3,-2,0,1,2,3,4}.
(1)求数列{an}的通项公式;
1-(-1)n
16
(2)当bn=
2
an时,求证:b1+b2+b3+…+b2n-1< 3 .
8. 已知数列{an}的通项公式为an=2-3n,则{an}的前n项和Sn等于( )
3n
3n
A.-2n2+2
B.-2n2-2
3n C.2n2+2
3n D.2n2-2
9. 已知等差数列{an}的前n项和为Sn,若S4≤4,S5≥15,则a4的最小值为________.
10. 已知a6-a4=24,a3·a5=64,求S8.
答案:75
12.
解析:选B
因为Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,
na1+an
a1+an=30,由Sn= 2 =210,得n=14.
( ) Sn 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差等比数列练习题
一、选择题
1.{a n }是等比数列,下面四个命题中真命题的个数为
( )
①{a n 2}也是等比数列
②{ca n }(c ≠0)也是等比数列 ③{
n
a 1
}也是等比数列
④{ln a n }也是等比数列 A .4 B .3
C .2
D .1
2.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为
( )
A .216
B .-216
C .217
D .-217
3.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为
( )
A .1
B .-
2
1
C .1或-1
D .-1或
2
1 4.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于
( )
A .4
B .
2
3
C .
9
16 D .2 5、从前180个正偶数的和中减去前180个正奇数的和,其差为( )
A. 0
B. 90
C. 180
D. 360
6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )
A. 130
B. 170
C. 210
D. 260
7、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )
A.54S S <
B.54S S =
C. 56S S <
D. 56S S =
8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( )
A. 13
B. 12
C. 11
D. 10
9、已知某数列前n 项之和3
n 为,且前n 个偶数项的和为)34(2
+n n ,则前n 个奇数项的和为( )
A .)1(32
+-n n
B .)34(2
-n n C .2
3n -
D .
3
2
1n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形
的边比为( )
A .6
B .8
C .10
D .12
二.填空题
11、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =
12、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和
S 10=
13、一个等差数列共有10项,其中奇数项的和为25
2
,偶数项的和为15,则这个数列的第6项是
14、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若
337++=n n T S n n ,则88
a b = . 三.解答题
15.已知数列满足a 1=1,a n +1=2a n +1(n ∈N *)
(1) 求证数列{a n +1}是等比数列; (2) 求{a n }的通项公式.
16、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数
列的数构成一个新的等差数列,求:
(1)原数列的第12项是新数列的第几项?
(2)新数列的第29项是原数列的第几项?
参考答案
一、选择题
1—5 BDCA C 6—10 C B A B A 二、填空题 11.
2
5
1+ 12、-10 13、3 14、6 三.解答题
15.(1)证明: 由a n +1=2a n +1得a n +1+1=2(a n +1)
又a n +1≠0 ∴
1
1
1+++n n a a =2
即{a n +1}为等比数列.
(2)解析: 由(1)知a n +1=(a 1+1)q n -
1
即a n =(a 1+1)q n -1-1=2·2n -
1-1=2n -1
16、解:设新数列为
{},4,)1(,3,2,1512511d b b d n b b a b a b b n n +=-+=====有根据则
即3=2+4d ,∴14d
=
,∴172(1)44
n n b n +=+-⨯= 1(43)7(1)114
n n a a n n -+=+-⨯=+=Q 又,∴43n n a b -=
即原数列的第n 项为新数列的第4n -3项. (1)当n=12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项;
(2)由4n -3=29,得n=8,故新数列的第29项是原数列的第8项。