协整检验及误差修正模型

合集下载

协整与误差修正模型

协整与误差修正模型

第六讲协整与误差修正模型一、非平稳过程与单位根检验二、长期均衡关系与协整三、误差修正模型-可编辑修改-。

一、非平稳过程与单位根检验1、非平稳过程1)随机游走过程(random walk)。

y t = y t-1 + u t, u t~ IID(0, σ2)10y=y(-1)+u5-5-1020406080140160-可编辑修改-。

-可编辑修改-差分平稳过程(difference- stationary process ) 。

2)有漂移项的非平稳过程(non-stationary process with drift )或随机趋势非平稳过程(stochastic trend process )。

y t = μ + y t -1 + u t , u t ~ IID(0, σ2)迭代变换:y t = μ + (μ + y t -2 + u t -1) + u t = … = y 0 + μ t +∑-t i i u 1= μ t +∑-ti i u 120406080100-80-60-40-2020100200300400500600700800。

差分平稳过程3)趋势平稳过程(trend-stationary process)或退势平稳过程。

y t = μ+ α t + u t, u t~ IID(0, σ2)252015105趋势平稳过程的差分过程是过度差分过程:∆y t = α + u t - u t-1。

-可编辑修改-。

所以应该用退势的方法获得平稳过程。

y t - α t = μ+ u t。

4)确定性趋势非平稳过程(non-stationary process with deterministic trend)y t = μ+ α t + y t-1+ u t, u t~ IID(0, σ2)1801601401201008060400450500550600650700750800-可编辑修改-。

协整和误差修正模型

协整和误差修正模型

协整和误差修正模型一、协整理论 1. d 阶单整序列对不平稳时间序列{}t Y 进行d 阶差分如下(d =1,2,…n):1t t t Y Y Y -∆=- 一阶差分21()t t t t Y Y Y Y -∆=∆∆=∆-∆ 二阶差分……1111()d d d d t t t t Y Y Y Y ----∆=∆∆=∆-∆ d 阶差分若{}t Y 进行d 阶差分后成为平稳序列, 则称{}t Y 为d 阶单整序列。

记为{}~()t Y I d2. 协整定义如果时间序列{}{}{}(1)(2)(),,...,r tttY Y Y 都是d 阶单整序列,即,{}~(),1,2,...,jtY I d j r =,且存在12,,...,rβββ使得(1)(2)()12...~()r t t r t Y Y Y I d b βββ+++-其中b>0, 称序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在(d,b) 阶协整关系。

3. 协整的意义若序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在协整关系,则它们之间存在长期稳定关系,对它们进行回归,可排除伪回归现象。

4. 协整检验EG 两步法( see p.275)二、误差修正模型 ECM 方法:若{}{},t t X Y 都是1阶单整序列,它们存在协整关系,建立自回归模型 012131t t t t t Y X Y X ββββμ--=++++ (1) 整理得:011t ttt Y X e ββγμ-∆=+∆++ (2) 其中t e 为残差序列, 1t e -为误差修正项。

(1) 或(2) 称为ECM模型,用于短期分析。

它们的Eviews命令分别为:LS Y C X Y(-1) X(-1),或:GENR T=Y-Y(-1)GENR H=X-X(-1)GENR e= residLS T C H e(-1)三、实例根据下表,讨论时间序列的平稳性、协整关系以及它们的误差修正模型。

计量经济学第五章协整与误差修正模型

计量经济学第五章协整与误差修正模型
数据变换
根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质

协整与误差修正模型

协整与误差修正模型

协整与误差修正模型有些时间序列,虽然他们本身非平稳,但是其线形组合确实平稳。

这个线形组合反映了变量之间的长期稳定的比例关系,称为协整关系。

第一节协整的定义与协整检验1、协整的定义如果时间序列nt t t y y y ,,21都是d 阶单整,即)(d I ,存在一个向量),(21n αααα =,使得)(~b d I y -'α,这里),,(21nt t t t y y y y =,0≥≥b d ,则称序列nt t t y y y ,,21是),(b d 阶协整的,记为),(~b d CI y t ,α为协整向量。

本部分只是介绍两个时间序列的协整关系,关于三个以上变量的协整关系将在另外一章予以讨论。

关于两个变量t x 和t y 是否协整,Engle 和Granger 于1987年提出了两步检验法,称为EG 检验。

序列t x 和t y 若都是d 阶单整的,用一个变量对另一个变量进行回归,即有t t t u x y ++=βα用αˆ和βˆ表示回归系数的估计值,则模型残差估计值为 tt t x y u βαˆˆˆ--= 若)0(~ˆI u,则t x 和t y 具有协整关系,且)ˆ(β-I 为协整向量,上式即为协整回归方程。

实例待定误差修正模型误差修正模型是由Davidsom 、Hendry 、Srba 和Yeo 于1978年提出的,称为DHSY 模型。

对)1,1(ADL 模型t t t t t x y x y αββββ++++=--131210移项后整理可得t t t t x y x y αββββββ+⎪⎪⎭⎫ ⎝⎛-+--+∆+=∆-12312101)1( 该方程即为ECM ,其中x y 2311βββ-+-是误差修正项,记为ecm 。

模型解释了因变量t y 的短期波动t y ∆是如何被决定的。

一方面,它受到自变量短期波动t x ∆的影响,另一方面,取决于ecm 。

如果变量t x 和t y 间存在着长期均衡关系,即有x y α=,式中的ecm 可以改写为x y 2311βββ-+= 可见,ecm 反映了变量在短期波动中偏离它们长期均衡关系的程度,称为均衡误差。

协整检验和误差修正模型

协整检验和误差修正模型

财政支出与财政收入的协整关系研究一 实验内容根据我国1990-2007年间财政支出和财政收入的月度数据,研究财政支出和财政支出之间是否存在协整关系,进而做出二者的误差修正模型。

二 模型设定为了定量分析财政支出和财政收入的关系,弄清二者是否存在长期均衡关系,建立了财政支出和财政收入的回归模型。

μββ++=)_ln()_ln(21in f ex f其中ex f _表示财政支出;in f _表示财政收入。

数据如下:数据来源:统计年鉴三、实证分析 1、数据处理由数据结构可以看出,数据存在季节波动。

首先利用X-12季节调整方法对这两个指标进行季节调整,消除季节因素,然后去对数。

2、单位根检验经济时间序列数据往往出现非平稳的情况,如果直接对数据建立回归模型,可能会出现伪回归的现象,因此在做回归之前,运用ADF 方法,对数据进行单位根检验。

对ln(ex f _)、ln(in f _)及其一阶差分进行单位根检验,具体检验结果如下所示:ln(ex f _)原值单位根检验Null Hypothesis: LNF_EX has a unit rootExogenous: ConstantLag Length: 5 (Automatic based on SIC, MAXLAG=14)t-StatisticProb.*Augmented Dickey-Fuller test statistic 0.519686 0.9871 Test critical values: 1% level -3.4614785% level -2.87512810% level -2.574090*MacKinnon (1996) one-sided p-values.f_)一阶差分单位根检验ln(exNull Hypothesis: D(LNF_EX) has a unit rootExogenous: ConstantLag Length: 4 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.* Augmented Dickey-Fuller test statistic -10.83446 0.0000 Test critical values: 1% level -3.4614785% level -2.87512810% level -2.574090*MacKinnon (1996) one-sided p-values.f_)原值单位根检验ln(inNull Hypothesis: LNF_IN has a unit rootExogenous: ConstantLag Length: 11 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.* Augmented Dickey-Fuller test statistic 0.763850 0.9932 Test critical values: 1% level -3.4624125% level -2.87553810% level -2.574309*MacKinnon (1996) one-sided p-values.f_)一阶差分单位根检验ln(inNull Hypothesis: D(LNF_IN) has a unit rootExogenous: ConstantLag Length: 10 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.*Augmented Dickey-Fuller test statistic -8.161494 0.0000Test critical values:1% level -3.462412 5% level -2.87553810% level-2.574309*MacKinnon (1996) one-sided p-values.汇总检验结果如下表所示:财政收入和财政支出的对数的原值和一阶差分的单位根检验结果指标 ADF 值P 值ln(ex f _) 0.519686 0.9871 ln(ex f _)的一阶差分-10.83446 0.0000 ln(in f _) 0.763850 0.9932 ln(in f _)的一阶差分 -8.1614940.0000从上表中的ADF 值和P 值可以看出:当显著性水平为0.05时,对ln(ex f _)和ln(in f _)的原值进行检验时,检验结果都表明不能拒绝“存在单位根”的原假设;而当对ln(ex f _)和ln(in f _)的一阶差分进行检验时,检验结果都表明拒绝“存在单位根”的原假设。

第6章协整和误差修正模型

第6章协整和误差修正模型

第6章协整和误差修正模型本章介绍含有非平稳变量结构方程或V AR的估计。

在一维模型中,我们已经看到,可以通过差分去掉一个随机趋势,得到的平稳序列,再用Box-Jenkins方法来估计模型。

在多维情况下,并不这样直接处理。

通常,整变量的线性组合是平稳的,这些变量称为协整的。

许多经济模型都有这种关系。

本章主要内容:1.介绍协整的基本概念,及在经济模型中的应用。

非平稳变量之间的均衡关系意味着它们的随机趋势是相联系的。

均衡关系意味着这些变量不能相互独立运动。

随机趋势之间的这种联系保证了这些变量是协整的。

2.考虑了协整变量的动态路径,由于协整变量的趋势是相互联系的,这些变量的动态路径反映了偏离均衡的偏差的联系。

详细分析了变量的变化与偏离均衡的偏差之间的联系。

3.讨论了协整检验的几种方法。

6.1整变量的线性组合考虑一个简单的货币需求模型:1)居民持有实际货币余额,使名义货币需求与价格水平成比例;2)当实际收入及交易次数的增加,居民希望持有更多的货币余额;3)利率是持有货币的机会成本,货币需求与利率负相关。

因而,方程设定形式(采用对数形式)如下:0123t t t t t m p y r e ββββ=++++ (6.1.1) 这里: t m =货币需求, t p =价格水平 t y =实际收入 t r =利率t e =平稳扰动项i β=待估计的参数在货币市场是均衡的条件下,可以得到货币供给、价格水平、实际收入和短期利率的时间序列数据,且要求1231,0,0βββ=><。

当然,在研究中需要检验这些限制。

货币需求的任何偏差{}t e 必须是暂时的。

如果{}t e 有随机趋势,偏离货币市场均衡的偏差不能消失。

所以,这里的关键假设是{}t e 是平稳的。

许多研究者认为,实际GDP 、货币供给、价格水平、利率都是I(1)变量。

每个变量都没有返回到长期水平的趋势。

但(6.1.1)说明:对这些非平稳变量,存在线性组合是平稳的。

协整分析与误差修正模型

协整分析与误差修正模型

协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。

当两个变量之间存在协整关系时,它们的线性组合将是平稳的。

协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。

协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。

2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。

3)如果线性组合是平稳的,那么就可以认为存在协整关系。

协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。

但是,协整分析不能提供因果关系,只能提供关联关系。

2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。

它是在协整分析的基础上发展而来的。

误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。

因此,误差修正模型可以用来分析变量之间的动态行为。

基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。

α、β和γ分别表示模型的截距和参数。

误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。

2)构建误差修正模型,通过估计模型参数来描述长期关系。

3)进行模型检验,包括参数显著性检验、拟合优度检验等。

4)根据模型结果进行解释和预测。

误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。

同时,误差修正模型还可以用于预测和政策分析等方面。

但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。

综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。

第4讲 协整与误差修正模型

第4讲 协整与误差修正模型

现在的问题是:何原因造成的残差序列自相关? 首先,模型没问题,因散点图呈线性关系。 其次,遗漏重要解释变量了吗?需要考虑政策变量吗? 再次,是滞后性吗?需要考虑前期收入对即期消费的影响吗? 有人做过研究:如用年度数据,发现前期收入比当期收入对消费的 影响都大。 最后,看时序图:
不难看出:x和y有明显共同趋势,需检验是否存在协整关系。 下面我们用EG两步法: 第一步:构建协整回归(见前) 第二步:对e做单位根检验 定义:genr e=y-yf,对e做单位根检验:
第4 讲
一、协整关系
协整与误差修正模型(ECM)
协整模型常用在经济学领域分析相关变量的长期均衡关系,也常 被用来分析金融中的套利等。自从20世纪90年代以来,国际著名杂志 发表了大量的相关文章。 协整分析是基于非平稳序列基础之上,而利用非平稳序列进行回 归,经常出现伪回归。而另一种情况却是更有应用价值的协整关系。
对二者取自然对数后进行单位根检验,发现在10%的水平下都不能拒 绝变量含有单位根。
如果暂时忽略非平稳性,直接设立以下回归方程,即 cont=c+βinct+et
回归后得:cont=−0.167+1.008inct
R2=0.998,且各系数也具有统计显著性。 试问:是不是伪回归呢?
为此,考察:et=cont − c − βinct
1 3 y x 是误差修正项,即(1) 可见(3)即为ECM模型,其中 (1 2 ) 中ecm 。
如果 xt 和 yt 间存在长期均衡关系,即 y ax ,则上述(3)式中 的ecm 正好可以改写成: 1 3
y
(1 2 )
x
可见,短期波动 yt 的影响因素有二:
第二步:做回归 (1)建立回归方程

实验八:协整关系检验与误差修正模型(ECM)new

实验八:协整关系检验与误差修正模型(ECM)new

实验八:协整关系检验与误差修正模型(ECM)new实验八:协整关系检验与误差修正模型(ECM)一、实验目的通过上机实验,使学生加深对时间序列之间协整关系的理解,能够运用Eviews 软件检验时间序列数据之间的协整关系并以此估计误差修正模型(ECM)。

二、预备知识(1)用EViews估计线性回归模型的基本操作;(2)时间序列数据的协整关系及其检验方法;(3)误差修正模型的结构及估计方法。

三、实验内容(1)用EViews检验两个时间序列数据的协整关系;(2)用EViews估计误差修正模型;四、实验步骤(一)、建立工作文件sy8.wf1及导入数据打开sy8.xls文件,运用前面学过的方法,在EViews新建一个工作文件sy8.wf1,把sy8.xls的数据导入到EViews,并根据得到人均消费(consp)和人均GDP(gdpp)两个序列,分别计算对应的自然对数,即lnc=log(consp)、lngdp=log(gdpp)。

(二)、分别检验序列lnc和lngdp的单整阶数。

运用图示法观察序列的时间路径图,如图8-1所示。

可见,lnc和lngdp都随时间不断上升,表明两者都是非平稳的。

(再运用自相关函数法,判断lnc 的平稳性。

打开lnc 序列的窗口,点击view\Correlogram ,设定滞后阶数为12,可得样本自相关系数图,操作和结果分别如图8-2和图8-3所示。

可见,lnc 是非平稳的。

再分析lnc 的一阶差分是否平稳。

在自相关函数图中,设定显示序列的一阶差分(1st differenc )后,再观察其样本自相关函数图,设定和结果如图8-4和图8-5所示。

可见,lnc 取一阶差分后就达到平稳,因此,lnc 是一阶单整序列,即I(1)序列。

如果采用单位根检验,结果相同。

同理,也可检验得到lngdp 序列是I(1)序列。

(三)运用Engle-Granger 方法(即EG 检验)检验consp 与gdpp 的协整关系。

时间序列的协整检验与误差修正模型讲义

时间序列的协整检验与误差修正模型讲义

时间序列的协整检验与误差修正模型讲义时间序列的协整检验与误差修正模型是在经济学和金融学中广泛使用的方法,用于分析两个或多个变量之间的长期稳定关系。

本讲义将介绍协整检验的基本概念和步骤,并讨论误差修正模型的理论背景和实际应用。

一、协整检验1. 概念与原理协整是指两个或多个变量之间存在长期稳定的关系,即它们的线性组合是平稳的。

协整关系可以用来解释一个变量对另一个变量的影响,并提供长期均衡关系的信息。

协整检验的基本原理是利用单位根检验方法,测试变量是否存在单位根(非平稳性)。

如果变量存在单位根,则它们是非平稳的;如果变量不存在单位根,则它们是平稳的。

如果变量之间存在协整关系,它们的线性组合将是平稳的。

2. 协整检验的步骤协整检验的一般步骤如下:- 收集数据并绘制时间序列图,观察变量之间的趋势和关系;- 进行单位根检验,常用的方法包括ADF检验、Phillips-Perron检验等;- 如果变量存在单位根,则进行差分,直到变量变为平稳的;- 应用最小二乘法等方法,估计协整关系方程;- 进行残差平稳性检验,确保协整关系的合理性;- 如果协整关系存在,可以进行模型的进一步分析与应用。

二、误差修正模型(Error Correction Model, ECM)1. 概念与原理误差修正模型是一种动态模型,用于解释协整关系的调整速度和误差纠正机制。

在误差修正模型中,除了协整关系的线性组合外,还引入了误差修正项,用于捕捉变量之间的短期非平衡关系。

误差修正项反映了系统离开长期均衡后的调整速度,通过估计误差修正项的系数,可以判断系统是否有趋向于均衡的能力。

当误差修正项的系数为负数且显著时,表示系统具有自我修复的能力;当系数为零时,表示系统处于长期均衡状态;当系数为正数时,表示系统趋向于进一步偏离均衡。

2. ECM模型的应用误差修正模型可以用于解释和预测时间序列数据的长期和短期动态变化。

它在经济学和金融学中有广泛的应用,如货币供给与通货膨胀、利率与消费支出、汇率与经济增长等领域。

协整和误差修正模型

协整和误差修正模型

在式(5.4.3)两端减去 yt-1,在右边加减 2xt-1 得到 :
yt 0 (1 1) yt1 2xt (2 3 )xt1 ut
(5.4.7)
利用 2 + 3 = k1 (1 - 1), 0 = k0 (1 - 1),式
(5.4.7)又可改写成
yt (1 1)( yt1 k0 k1xt1) 2xt ut
(5.4.8)
令 = 1-1,则式(5.4.8) 可写成
yt ( yt1 k0 k1xt1) 2xt ut
(5.4.9) 上式称为误差修正模型 (error correction model,
简记ECM)。当长期平衡关系是 y* = k0 + k1x* 时,误 差修正项是如 (yt - k0- k1xt) 的形式,它反映了 yt 关于 xt 在第 t 时点的短期偏离。一般地,由于式(5.4.3)中
| 1|<1 ,所以误差项的系数 = ( 1-1) < 0,通常称
为调整系数,表示在 t-1 期 yt-1 关于 k0 + k1xt-1 之间
利用ADF的协整检验方法来判断残差序列是否平稳, 如果残差序列是平稳的,则回归方程的设定是合理的, 说明回归方程的因变量和解释变量之间存在稳定的均衡 关系。反之,说明回归方程的因变量和解释变量之间不 存在稳定均衡的关系,即便参数估计的结果很理想,这 样的一个回归也是没有意义的,模型本身的设定出现了 问题,这样的回归是一个伪回归。
y1t 2 y2t 3 y3t k ykt ut
模型估计的残差为Biblioteka uˆt y1t ˆ2 y2t ˆ3 y3t ˆk ykt
(2)检验残差序列ût是否平稳,也就是判断序列 ût是否含有单位根。通常用ADF检验来判断残差序列 ût是否是平稳的。

时间序列的协整检验与误差修正模型

时间序列的协整检验与误差修正模型

时间序列的协整检验与误差修正模型时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。

协整检验是在时间序列数据中,判断变量之间是否存在长期平衡关系的一种方法。

误差修正模型是在协整关系已经验证的基础上,建立起变量之间的因果关系,对短期的偏离进行修正的模型。

协整检验的原理是基于单位根检验的思想,判断时间序列是否为平稳序列。

平稳序列是指序列的均值和方差不随时间发生变化。

如果两个变量都是非平稳序列,但它们的线性组合是平稳序列,那么可以认为这两个变量是协整的。

常用的协整检验方法有Engle-Granger方法和Johansen方法。

Engle-Granger方法是一种直观简单的协整检验方法。

它的步骤如下:首先,分别对两个变量进行单位根检验,确认它们是否为非平稳序列。

然后,对两个变量进行线性回归,得到残差序列。

接下来,对残差序列进行单位根检验,确认它是否为平稳序列。

最后,如果残差序列是平稳序列,则可以判断两个变量之间存在协整关系。

协整检验完成后,接下来可以建立误差修正模型。

误差修正模型是基于协整关系的基础上建立起来的,以短期的偏离修正为核心。

它的核心假设是,在长期平衡关系的约束下,两个变量之间的短期偏离可以通过一个修正项来消除。

误差修正模型的基本形式是多元线性回归模型,其中包含自变量、因变量以及一个误差修正项。

误差修正模型的估计和推断可以使用最小二乘法或最大似然法等统计方法进行。

通过对误差修正模型的估计和推断,可以对变量之间的因果关系进行分析。

同时,误差修正模型还可以用于预测和决策分析。

综上所述,时间序列的协整检验与误差修正模型是分析变量之间长期关系的重要工具。

协整检验可以判断变量是否具有长期平衡关系,而误差修正模型则可以分析变量之间的短期调整过程。

这些方法在经济学、金融学、管理学等领域都有广泛的应用。

时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。

协整检验与向量误差修正模型,时间序列ARIMA分析

协整检验与向量误差修正模型,时间序列ARIMA分析

向量误差修正一 模型的概述1 VEC 模型向量误差修正模型VEC 是协整与误差修正模型的结合。

只要变量之间存在协整关系,就可以由自回归分布滞后模型导出误差修正模型,即VEC 模型是建立在协整基础上的V AR 模型,主要应用于具有协整关系的非平稳时间序列建模。

V AR 模型的表达式为:11=1=+++ =1, 2,, p t t i t i t t i t T ---∆∆∑y ecm y x αΓH ε式中t y 为k 维内生变量列向量,其各分量都是非平稳的()1I 变量;t x 是d 维外生向量,代表趋势项、常数项等确定性项;每个方程都是一个误差修正模型,1t -ecm 是误差修正项向量,反映变量之间的长期均衡关系;系数矩阵α反映了变量之间偏离长期均衡状态时,将其调整到均衡状态的调整速度;解释变量的差分项的系数反映各变量的短期波动对作为被解释变量的短期变化的影响;t ε是k 维扰动向量。

2 诊断检验2.1 Johansen 协整检验Johansen 协整检验基于回归系数进行检验,其基本思想为: 对()VAR p 模型11=1=+++ =1, 2,, p t t i t i t t i t T ---∆∆∑y ecm y x αΓH ε两端减去1t -y 再变形可以得到11=1=+++ =1, 2,, p t t i t i t t i t T ---∆∆∑y y y x ∏ΓH ε其中的,t ∆y t j -∆y ()=1,2,j p 都变为()0I 变量构成的向量,只要1t -∏y 是()0I 的向量,即1t -y 的各分量之间具有协整关系,就能保证t ∆y 是平稳过程,而这主要依赖于矩阵∏的秩。

设∏的秩为r ,则0<<r k 时才有r 个协整组合,其余k r -个关系仍为()1I 关系。

这种情况下,∏可以分解为两个k r ⨯阶矩阵α和β的乘积:=∏αβ'其中()()=,=r r r r αβ,则模型变为1'1=1=+++ =1, 2, , p t t i t i t t i t T ---∆∆∑y y y x αβΓH ε式中'1t -βy 为一个()0I 向量,β为协整向量矩阵,其每一列所表示的1t -y 的各分量线性组合都是一种协整形式,矩阵β决定了1t -y 的各分量之间协整向量的个数(r )与形式。

计量经济学83时间序列的协整和误差修正模型

计量经济学83时间序列的协整和误差修正模型
• 如果两个变量都是单整变量,只有当它们的单整 阶数相同时,才可能协整;如果它们的单整阶数 不相同,就不可能协整。
• 3个以上的变量,如果具有不同的单整阶数,有 可能经过线性组合构成低阶单整变量。
Wt ~ I (1),Vt ~ I (2),Ut ~ I (2)
Pt aVt bUt ~ I (1) Qt cWt ePt ~ I (0)
二、协整检验—EG检验
1、两变量的Engle-Granger检验
• 为了检验两变量Yt,Xt是否为协整,Engle和Granger于 1987年提出两步检验法,也称为EG检验。
第一步,用OLS方法估计方程 Yt=0+1Xt+t
并计算非均衡误差,得到:
Yˆt ˆ0 ˆ1 X t
eˆt Yt Yˆt
Yt 1X t vt
vt=t-t-1
• 如果t-1期末,发生了上述第二种情况,即Y的 值小于其均衡值,则t期末Y的变化往往会比第 一种情形下Y的变化大一些;
• 反之,如果t-1期末Y的值大于其均衡值,则t期 末Y的变化往往会小于第一种情形下的Yt 。
• 可间的见长,期如稳果定Yt=的“0+均1X衡t+关t系正”确,地则提意示味了着X与Y对Y 其均衡点的偏离从本质上说是“临时性”的。
• 一个重要的假设就是:随机扰动项t必须是平稳 序列。如果t有随机性趋势(上升或下降), 则会导致Y对其均衡点的任何偏离都会被长期 累积下来而不能被消除。
• 式Yt=0+1Xt+t中的随机扰动项也被称为非均 衡误差(disequilibrium error),它是变量X 与Y的一个线性组合:
t Yt 0 1 X t
§3.2 协整与误差修正模型
Cointegration and Error Correction Model

实验四协整检验及误差修正模型实验报告

实验四协整检验及误差修正模型实验报告

实验四协整检验及误差修正模型实验报告一、实验目的协整检验及误差修正模型是时间序列分析中常用的方法。

本实验的目的是通过对两个时间序列数据的协整检验,并建立误差修正模型,来研究两个变量之间的长期关系以及短期波动情况。

二、实验步骤1.数据准备本实验所用数据为两个变量的时间序列数据。

我们需要确保数据的平稳性,并进行必要的数据预处理,如差分、对数化等。

2.协整检验协整检验是用来判断两个变量之间是否存在长期的关系。

本实验使用了Johansen协整检验方法。

该方法是基于向量自回归(VAR)模型的极大似然估计,用于检验多个时间序列之间的协整关系。

在进行协整检验之前,需要明确时间序列的滞后阶数,以及是否需要进行季节调整。

3.误差修正模型误差修正模型(ECM)是一种动态模型,用来描述变量之间的长期关系以及短期波动调整过程。

该模型基于协整检验的结果,使用差分变量进行建模,其中包含了误差修正项。

实验中,我们需要确定模型的滞后阶数,以及是否需要引入滞后差分变量等。

4.模型评估建立模型后,我们需要进行模型的评估与诊断,确保模型的有效性与准确性。

评估指标包括模型的拟合度、残差的正态性、自相关性以及异方差性等。

三、实验结果通过进行协整检验,我们得到了两个变量之间的协整关系。

根据检验结果,我们建立了误差修正模型,并进行参数估计与显著性检验。

最终的模型结果显示,模型的拟合效果良好,残差的正态性与自相关性得到了充分的满足。

四、实验分析根据实验结果1.两个变量存在着长期的关系,即它们在长期内呈现出稳定的均衡状态。

2.模型中的误差修正项描述了两个变量之间的短期波动调整过程,即使两个变量之间存在着均衡关系,也需要通过误差修正项来实现调整。

3.通过模型的参数估计与显著性检验,我们可以得到两个变量对于均衡关系的贡献程度,以及它们之间的动态调整速度。

五、实验总结协整检验及误差修正模型是时间序列分析中常用的方法,用于研究变量之间的长期关系以及短期波动调整过程。

时间序列的协整和误差修正模型

时间序列的协整和误差修正模型

时间序列的协整和误差修正模型时间序列分析中,协整和误差修正模型是两个重要的概念。

协整是指两个或多个时间序列之间的长期关系,而误差修正模型是一种用来修正时间序列中的误差的模型。

协整是经济学家提出的一个概念,用来解决时间序列数据存在的非平稳性的问题。

在实际应用中,有很多时间序列数据是非平稳的,即其均值和方差不随时间变化而保持不变。

然而,这些非平稳的时间序列之间可能存在长期的关系,也就是说它们会随着时间变化而趋于稳定。

这种关系可以通过协整分析来检验和建模。

协整模型的一种常见形式是误差修正模型(Error Correction Model,ECM)。

误差修正模型是建立在协整模型的基础上的,它可以用来描述时间序列数据之间的长期关系,并且考虑了这些时间序列数据之间的短期变动。

在误差修正模型中,如果两个时间序列之间存在协整关系,那么它们之间的生成误差(随机扰动)会导致它们之间的偏离程度逐渐回归到长期均衡的水平。

因此,误差修正模型是通过引入误差修正项来解决协整关系中存在的短期波动的问题。

误差修正模型的基本思想是,当两个时间序列之间存在协整关系时,如果它们之间的误差超过一定的阈值,那么它们之间的误差就会被修正回长期均衡的水平。

这种修正过程可以通过引入一个误差修正项来实现,从而使得模型具备误差修正的能力。

总之,协整和误差修正模型是对时间序列数据进行建模和分析的重要工具。

协整可以用来检验和描述时间序列之间的长期关系,而误差修正模型则是在协整的基础上引入修正项,用来处理时间序列之间的短期波动。

这些方法在经济学和金融学等领域中具有广泛的应用价值。

协整和误差修正模型是时间序列分析中非常重要的概念。

协整是指两个或多个非平稳时间序列之间存在的长期关系,而误差修正模型则是通过引入误差修正项来描述时间序列的短期波动。

在实际应用中,许多经济和金融时间序列是非平稳的,即它们的均值和方差会随时间变化而发生变动。

这种非平稳性可能会导致误导性的统计结果,因为传统的统计方法要求时间序列数据是平稳的。

3.2_时间序列的协整检验与误差修正模型

3.2_时间序列的协整检验与误差修正模型

§3.2 时间序列的协整检验与误差修正模型一、长期均衡关系与协整二、协整的E-G检验二协整的三、协整的JJ检验四、关于均衡与协整关系的讨论关均衡与协整关系的讨论五、结构变化时间序列的协整检验六、误差修正模型一、长期均衡与协整分析q g Equilibrium and Cointegration1、问题的提出•经典回归模型(classical regression model)是建立在平稳数据变量基础上的,对于非平稳变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。

•由于许多经济变量是非平稳的,这就给经典的回归分析方法带来了很大限制。

•但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration),则是可以使用经典回归模型方法建立回归模型的。

例如,中国居民人均消费水平与人均GDP变量的例子,从•例如,中国居民人均消费水平与人均GDP变量的例子经济理论上说,人均GDP决定着居民人均消费水平,它们之间有着长期的稳定关系,即它们之间是协整的。

2、长期均衡•经济理论指出,某些经济变量间确实存在着长期均衡关系这种均衡关系意味着经济系统不存在破坏均衡的内在系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。

假设X 与Y 间的长期“均衡关系”由式描述tt t X Y μαα++=10该均衡关系意味着:给定X 的一个值,Y 相应的均衡值也随 之确定为 α0+α1X 。

•期末存在下述三种情形之一:在t-1期末,存在下述三种情形之:–Y 等于它的均衡值:Y t-1=α0+α1X t ;–Y 小于它的均衡值:Y t-1<α0+α1X t ;–t 1+Y 大于它的均衡值:Y t-1>α0α1X t ;•在时期t ,假设X 有一个变化量∆X t ,如果变量X 与在时末仍满它间的均衡关Y 在时期t 与t-1末期仍满足它们间的长期均衡关系,即上述第一种情况,则Y 的相应变化量为:tt t v X Y +∆=∆1αv t =μt -μt-1•如果t-1期末,发生了上述第二种情况,即Y 的值小于其均衡值,则t 期末Y 的变化往往会比第种情形下的变化大些一种情形下Y 的变化大一些;•反之,如果t-1期末Y 的值大于其均衡值,则t 期的变化往往会小于第种情形下的末Y 的变化往往会小于第一种情形下的∆Y t 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设随机向量X t 中所含分量均为d 阶单整,记为X t : 1(d)。

如果存在一个非零向 量卩,使得随机向量Y E^X t ~ I d b , b 0 ,则称随机向量X t 具有d ,b 阶协整关系,
记为X t : CI( d ,b),向量卩被称为协整向量。

特别地,
y t 和X t 为随机变量,并且y t , X t ~ I(1),当t y t ( 0 1X t )~I(0),即y t 和X t 的线性组合与I(0)变量有相同的统计性 0, 1 称为协整系数。

更一般地, 如果一些 I(1) 变量的线 性
组合是 I(0) ,那么我们就称这些变量是协整的。

用Eviews5.1来分析1978年到2002年中国农村居民对数生活费支出序列 {In yj 和对数人均纯收入{In X t }序列之间的关系。

1、对两个数据序列分别进行平稳性检验:
1)做时序图看二者的平稳性
首先按前面介绍的方法导入数据, 在 workfiIe 中按住 ctrI 选择要检验的二变量, 击右键,选择 open —as group ,此时他们可以作为一个数据组被打开。

点击“ View ”一“ graph ”一 “ line ”,对两个序列做时序图见图 8-1,两个序列 都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能 存在协整关系。

但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是 一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,将 他们变成一阶单整序列。

图8-1 In x t 和In y t 时序图
协整检验及误
修正模型
质,则称y 和X t 是协整的,
(2)用ADF 佥验分别对序列In x t 和In y 进行单整检验
双击每个序列,对其进行ADF 单位根检验,有两种方法。

方法一:“view ”一“unit root test ”;方法二: 点击菜单中的 “quick ” 一 “series statistic ” 一 “unit root test ”。

序列In X t 和In y t 都有明显的上升趋势,采用带常数项和趋势项的模型进行检
验,见图8-2,对对数序列的原水平进行带趋势项和常数项的 ADF 检验,采用SC 准 则自动选择滞后阶数,检验结果见图 8-3 和 8-4,在 0.05 的显着性水平下,都接受 存在一个单位根的原假设,说明这两个序列都不平稳。

图 8-2 单位根检验图
图8-3序列In x t 的ADF 检验结果 图8-4序列In y t 的ADF 检
验结果
于是尝试对其一阶差分序列采用带常数项的模型进行 ADF 检验,首先点击主菜 单 Quick/Generate series ,出现图 8-5 的对话框,在方程设定栏里分别输入 和dlnyt=lnyt-lnyt(-1) ,产生Inx t 和In y t 的一阶差分序列, Inx t 和In y t ,一阶差分能初步消除增长的趋势,于是可以对其 图 8-5
图8-6序列In x t 的ADF 检验结果
图8-7序列In y t 的ADF 检验结果
dInxt=Inxt-Inxt(-1)
为了方便,简记为
进行只带常数项的 ADF 检验,检验结果见图 8-6和图8-7 :
由图8-6 和图8-7 ,得出两个一阶差分序列在 =0.05下都拒绝存在单位根的原假
设的结论,说明In X t和In y t序列在=0.05下平稳,即In x t: I (0), In y t: I (0),也就是 lnx t : I (1), ln y t : I (1) ,这样我们就可以对二者进行协整关系的检验。

2、协整检验:
首先用变量Iny t对In x t进行普通最小二乘回归,在命令栏里输入Is Inyt c
Inxt ,
得到回归方程的估计结果:在此基础上我们得到回归残差,现在的任务是检验残差是否平稳,对残差进行检验见图8-8 ,在0.05 显着性水平下拒绝存在单位根的原假设,说明残差平稳,又因为In x t和 In y t都是1 阶单整序列,所以二者具有协整关系。

ADF
图8-8 回归残差ADF 检验
3、误差纠正模型ECM勺建立(error correction mechanism )
即使两个变量之间有长期均衡关系,但在短期内也会出现失衡(例如收突发事件的影响)。

此时,我们可以用ECM来对这种短期失衡加以纠正。

我们利用差分序列{ In yj关于
{Inx t}和前期误差序列{ECM t 1}进行OLS回归,构建如下ECM模型:
其中 ECM t 1 In y t 1 0.0736 0.9573In x t 1
参数估计结果见图8-9 :
图8-9 ECM 模型估计结果
ECM模型可表示为:
另外,我们可以用 (1,1) 阶分布滞后形式:
对序列进行估计,在命令栏里输入 ls lnyt c lnyt(-1) lnxt lnxt(-1) 估计结果见图 8-10 :
图 8-10 短期波动模型估计结果
两种方法建立的误差修正模型是等价的,在进行预测时,第二种方法更方便。

方程检验结果均显示方程显着线相关,参数检验结果显示人均纯收入当期波动对生 活费支出的当期波动有显着性影响,上期误差对当期波动的影响不显着;同时,从 回归系数的绝对值大小可以看出可支配收入的当期波动对生活费支出的当期波动调
整幅度很大, 每增加 1 元的可支配收入便会增加 0.9551 元的人均生活费支出, 上期 误差对当期人均生活费支出的当期波动调整幅度很小,单位调整比例为 通过上述分析发现, 1978 年到 2002 年中国农村居民对数生活费支出序列 {ln y t } 和对数人均纯收入 { ln x t } 序列都是不平稳的,但对其进行一阶差分后序列平稳,且 都是一阶单整的,进行普通最小二乘回归后,残差在 0.05 的显着性水平下也平稳, 说明二者存在协整关系, 进而建立了短期波动的误差修正模型。

误差修正模型显示: 人均纯收入当期波动对生活费支出的当期波动有显着性影响,上期误差对当期波动 的影响不显着;同时,从回归系数的绝对值大小可以看出可支配收入的当期波动对
生活费支出的当期波动调整幅度很大, 每增加 1 元的可支配收入便会增加 0.9551 元 的人均生活费支出,上期误差对当期人均生活费支出的当期波动调整幅度很小,单 位调整比例为 -0.1715 。

,得到参数 -0.1715。

相关文档
最新文档