协整检验及误差修正模型
协整与误差修正模型

第六讲协整与误差修正模型一、非平稳过程与单位根检验二、长期均衡关系与协整三、误差修正模型-可编辑修改-。
一、非平稳过程与单位根检验1、非平稳过程1)随机游走过程(random walk)。
y t = y t-1 + u t, u t~ IID(0, σ2)10y=y(-1)+u5-5-1020406080140160-可编辑修改-。
-可编辑修改-差分平稳过程(difference- stationary process ) 。
2)有漂移项的非平稳过程(non-stationary process with drift )或随机趋势非平稳过程(stochastic trend process )。
y t = μ + y t -1 + u t , u t ~ IID(0, σ2)迭代变换:y t = μ + (μ + y t -2 + u t -1) + u t = … = y 0 + μ t +∑-t i i u 1= μ t +∑-ti i u 120406080100-80-60-40-2020100200300400500600700800。
差分平稳过程3)趋势平稳过程(trend-stationary process)或退势平稳过程。
y t = μ+ α t + u t, u t~ IID(0, σ2)252015105趋势平稳过程的差分过程是过度差分过程:∆y t = α + u t - u t-1。
-可编辑修改-。
所以应该用退势的方法获得平稳过程。
y t - α t = μ+ u t。
4)确定性趋势非平稳过程(non-stationary process with deterministic trend)y t = μ+ α t + y t-1+ u t, u t~ IID(0, σ2)1801601401201008060400450500550600650700750800-可编辑修改-。
协整和误差修正模型

协整和误差修正模型一、协整理论 1. d 阶单整序列对不平稳时间序列{}t Y 进行d 阶差分如下(d =1,2,…n):1t t t Y Y Y -∆=- 一阶差分21()t t t t Y Y Y Y -∆=∆∆=∆-∆ 二阶差分……1111()d d d d t t t t Y Y Y Y ----∆=∆∆=∆-∆ d 阶差分若{}t Y 进行d 阶差分后成为平稳序列, 则称{}t Y 为d 阶单整序列。
记为{}~()t Y I d2. 协整定义如果时间序列{}{}{}(1)(2)(),,...,r tttY Y Y 都是d 阶单整序列,即,{}~(),1,2,...,jtY I d j r =,且存在12,,...,rβββ使得(1)(2)()12...~()r t t r t Y Y Y I d b βββ+++-其中b>0, 称序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在(d,b) 阶协整关系。
3. 协整的意义若序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在协整关系,则它们之间存在长期稳定关系,对它们进行回归,可排除伪回归现象。
4. 协整检验EG 两步法( see p.275)二、误差修正模型 ECM 方法:若{}{},t t X Y 都是1阶单整序列,它们存在协整关系,建立自回归模型 012131t t t t t Y X Y X ββββμ--=++++ (1) 整理得:011t ttt Y X e ββγμ-∆=+∆++ (2) 其中t e 为残差序列, 1t e -为误差修正项。
(1) 或(2) 称为ECM模型,用于短期分析。
它们的Eviews命令分别为:LS Y C X Y(-1) X(-1),或:GENR T=Y-Y(-1)GENR H=X-X(-1)GENR e= residLS T C H e(-1)三、实例根据下表,讨论时间序列的平稳性、协整关系以及它们的误差修正模型。
计量经济学第五章协整与误差修正模型

根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质
协整与误差修正模型

协整与误差修正模型有些时间序列,虽然他们本身非平稳,但是其线形组合确实平稳。
这个线形组合反映了变量之间的长期稳定的比例关系,称为协整关系。
第一节协整的定义与协整检验1、协整的定义如果时间序列nt t t y y y ,,21都是d 阶单整,即)(d I ,存在一个向量),(21n αααα =,使得)(~b d I y -'α,这里),,(21nt t t t y y y y =,0≥≥b d ,则称序列nt t t y y y ,,21是),(b d 阶协整的,记为),(~b d CI y t ,α为协整向量。
本部分只是介绍两个时间序列的协整关系,关于三个以上变量的协整关系将在另外一章予以讨论。
关于两个变量t x 和t y 是否协整,Engle 和Granger 于1987年提出了两步检验法,称为EG 检验。
序列t x 和t y 若都是d 阶单整的,用一个变量对另一个变量进行回归,即有t t t u x y ++=βα用αˆ和βˆ表示回归系数的估计值,则模型残差估计值为 tt t x y u βαˆˆˆ--= 若)0(~ˆI u,则t x 和t y 具有协整关系,且)ˆ(β-I 为协整向量,上式即为协整回归方程。
实例待定误差修正模型误差修正模型是由Davidsom 、Hendry 、Srba 和Yeo 于1978年提出的,称为DHSY 模型。
对)1,1(ADL 模型t t t t t x y x y αββββ++++=--131210移项后整理可得t t t t x y x y αββββββ+⎪⎪⎭⎫ ⎝⎛-+--+∆+=∆-12312101)1( 该方程即为ECM ,其中x y 2311βββ-+-是误差修正项,记为ecm 。
模型解释了因变量t y 的短期波动t y ∆是如何被决定的。
一方面,它受到自变量短期波动t x ∆的影响,另一方面,取决于ecm 。
如果变量t x 和t y 间存在着长期均衡关系,即有x y α=,式中的ecm 可以改写为x y 2311βββ-+= 可见,ecm 反映了变量在短期波动中偏离它们长期均衡关系的程度,称为均衡误差。
协整检验和误差修正模型

财政支出与财政收入的协整关系研究一 实验内容根据我国1990-2007年间财政支出和财政收入的月度数据,研究财政支出和财政支出之间是否存在协整关系,进而做出二者的误差修正模型。
二 模型设定为了定量分析财政支出和财政收入的关系,弄清二者是否存在长期均衡关系,建立了财政支出和财政收入的回归模型。
μββ++=)_ln()_ln(21in f ex f其中ex f _表示财政支出;in f _表示财政收入。
数据如下:数据来源:统计年鉴三、实证分析 1、数据处理由数据结构可以看出,数据存在季节波动。
首先利用X-12季节调整方法对这两个指标进行季节调整,消除季节因素,然后去对数。
2、单位根检验经济时间序列数据往往出现非平稳的情况,如果直接对数据建立回归模型,可能会出现伪回归的现象,因此在做回归之前,运用ADF 方法,对数据进行单位根检验。
对ln(ex f _)、ln(in f _)及其一阶差分进行单位根检验,具体检验结果如下所示:ln(ex f _)原值单位根检验Null Hypothesis: LNF_EX has a unit rootExogenous: ConstantLag Length: 5 (Automatic based on SIC, MAXLAG=14)t-StatisticProb.*Augmented Dickey-Fuller test statistic 0.519686 0.9871 Test critical values: 1% level -3.4614785% level -2.87512810% level -2.574090*MacKinnon (1996) one-sided p-values.f_)一阶差分单位根检验ln(exNull Hypothesis: D(LNF_EX) has a unit rootExogenous: ConstantLag Length: 4 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.* Augmented Dickey-Fuller test statistic -10.83446 0.0000 Test critical values: 1% level -3.4614785% level -2.87512810% level -2.574090*MacKinnon (1996) one-sided p-values.f_)原值单位根检验ln(inNull Hypothesis: LNF_IN has a unit rootExogenous: ConstantLag Length: 11 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.* Augmented Dickey-Fuller test statistic 0.763850 0.9932 Test critical values: 1% level -3.4624125% level -2.87553810% level -2.574309*MacKinnon (1996) one-sided p-values.f_)一阶差分单位根检验ln(inNull Hypothesis: D(LNF_IN) has a unit rootExogenous: ConstantLag Length: 10 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.*Augmented Dickey-Fuller test statistic -8.161494 0.0000Test critical values:1% level -3.462412 5% level -2.87553810% level-2.574309*MacKinnon (1996) one-sided p-values.汇总检验结果如下表所示:财政收入和财政支出的对数的原值和一阶差分的单位根检验结果指标 ADF 值P 值ln(ex f _) 0.519686 0.9871 ln(ex f _)的一阶差分-10.83446 0.0000 ln(in f _) 0.763850 0.9932 ln(in f _)的一阶差分 -8.1614940.0000从上表中的ADF 值和P 值可以看出:当显著性水平为0.05时,对ln(ex f _)和ln(in f _)的原值进行检验时,检验结果都表明不能拒绝“存在单位根”的原假设;而当对ln(ex f _)和ln(in f _)的一阶差分进行检验时,检验结果都表明拒绝“存在单位根”的原假设。
第6章协整和误差修正模型

第6章协整和误差修正模型本章介绍含有非平稳变量结构方程或V AR的估计。
在一维模型中,我们已经看到,可以通过差分去掉一个随机趋势,得到的平稳序列,再用Box-Jenkins方法来估计模型。
在多维情况下,并不这样直接处理。
通常,整变量的线性组合是平稳的,这些变量称为协整的。
许多经济模型都有这种关系。
本章主要内容:1.介绍协整的基本概念,及在经济模型中的应用。
非平稳变量之间的均衡关系意味着它们的随机趋势是相联系的。
均衡关系意味着这些变量不能相互独立运动。
随机趋势之间的这种联系保证了这些变量是协整的。
2.考虑了协整变量的动态路径,由于协整变量的趋势是相互联系的,这些变量的动态路径反映了偏离均衡的偏差的联系。
详细分析了变量的变化与偏离均衡的偏差之间的联系。
3.讨论了协整检验的几种方法。
6.1整变量的线性组合考虑一个简单的货币需求模型:1)居民持有实际货币余额,使名义货币需求与价格水平成比例;2)当实际收入及交易次数的增加,居民希望持有更多的货币余额;3)利率是持有货币的机会成本,货币需求与利率负相关。
因而,方程设定形式(采用对数形式)如下:0123t t t t t m p y r e ββββ=++++ (6.1.1) 这里: t m =货币需求, t p =价格水平 t y =实际收入 t r =利率t e =平稳扰动项i β=待估计的参数在货币市场是均衡的条件下,可以得到货币供给、价格水平、实际收入和短期利率的时间序列数据,且要求1231,0,0βββ=><。
当然,在研究中需要检验这些限制。
货币需求的任何偏差{}t e 必须是暂时的。
如果{}t e 有随机趋势,偏离货币市场均衡的偏差不能消失。
所以,这里的关键假设是{}t e 是平稳的。
许多研究者认为,实际GDP 、货币供给、价格水平、利率都是I(1)变量。
每个变量都没有返回到长期水平的趋势。
但(6.1.1)说明:对这些非平稳变量,存在线性组合是平稳的。
协整分析与误差修正模型

协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。
当两个变量之间存在协整关系时,它们的线性组合将是平稳的。
协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。
协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。
2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。
3)如果线性组合是平稳的,那么就可以认为存在协整关系。
协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。
但是,协整分析不能提供因果关系,只能提供关联关系。
2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。
它是在协整分析的基础上发展而来的。
误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。
因此,误差修正模型可以用来分析变量之间的动态行为。
基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。
α、β和γ分别表示模型的截距和参数。
误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。
2)构建误差修正模型,通过估计模型参数来描述长期关系。
3)进行模型检验,包括参数显著性检验、拟合优度检验等。
4)根据模型结果进行解释和预测。
误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。
同时,误差修正模型还可以用于预测和政策分析等方面。
但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。
综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。
第4讲 协整与误差修正模型

现在的问题是:何原因造成的残差序列自相关? 首先,模型没问题,因散点图呈线性关系。 其次,遗漏重要解释变量了吗?需要考虑政策变量吗? 再次,是滞后性吗?需要考虑前期收入对即期消费的影响吗? 有人做过研究:如用年度数据,发现前期收入比当期收入对消费的 影响都大。 最后,看时序图:
不难看出:x和y有明显共同趋势,需检验是否存在协整关系。 下面我们用EG两步法: 第一步:构建协整回归(见前) 第二步:对e做单位根检验 定义:genr e=y-yf,对e做单位根检验:
第4 讲
一、协整关系
协整与误差修正模型(ECM)
协整模型常用在经济学领域分析相关变量的长期均衡关系,也常 被用来分析金融中的套利等。自从20世纪90年代以来,国际著名杂志 发表了大量的相关文章。 协整分析是基于非平稳序列基础之上,而利用非平稳序列进行回 归,经常出现伪回归。而另一种情况却是更有应用价值的协整关系。
对二者取自然对数后进行单位根检验,发现在10%的水平下都不能拒 绝变量含有单位根。
如果暂时忽略非平稳性,直接设立以下回归方程,即 cont=c+βinct+et
回归后得:cont=−0.167+1.008inct
R2=0.998,且各系数也具有统计显著性。 试问:是不是伪回归呢?
为此,考察:et=cont − c − βinct
1 3 y x 是误差修正项,即(1) 可见(3)即为ECM模型,其中 (1 2 ) 中ecm 。
如果 xt 和 yt 间存在长期均衡关系,即 y ax ,则上述(3)式中 的ecm 正好可以改写成: 1 3
y
(1 2 )
x
可见,短期波动 yt 的影响因素有二:
第二步:做回归 (1)建立回归方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设随机向量X t 中所含分量均为d 阶单整,记为X t : 1(d)。
如果存在一个非零向 量卩,使得随机向量Y E^X t ~ I d b , b 0 ,则称随机向量X t 具有d ,b 阶协整关系,
记为X t : CI( d ,b),向量卩被称为协整向量。
特别地,
y t 和X t 为随机变量,并且y t , X t ~ I(1),当t y t ( 0 1X t )~I(0),即y t 和X t 的线性组合与I(0)变量有相同的统计性 0, 1 称为协整系数。
更一般地, 如果一些 I(1) 变量的线 性
组合是 I(0) ,那么我们就称这些变量是协整的。
用Eviews5.1来分析1978年到2002年中国农村居民对数生活费支出序列 {In yj 和对数人均纯收入{In X t }序列之间的关系。
1、对两个数据序列分别进行平稳性检验:
1)做时序图看二者的平稳性
首先按前面介绍的方法导入数据, 在 workfiIe 中按住 ctrI 选择要检验的二变量, 击右键,选择 open —as group ,此时他们可以作为一个数据组被打开。
点击“ View ”一“ graph ”一 “ line ”,对两个序列做时序图见图 8-1,两个序列 都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能 存在协整关系。
但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是 一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,将 他们变成一阶单整序列。
图8-1 In x t 和In y t 时序图
协整检验及误
修正模型
质,则称y 和X t 是协整的,
(2)用ADF 佥验分别对序列In x t 和In y 进行单整检验
双击每个序列,对其进行ADF 单位根检验,有两种方法。
方法一:“view ”一“unit root test ”;方法二: 点击菜单中的 “quick ” 一 “series statistic ” 一 “unit root test ”。
序列In X t 和In y t 都有明显的上升趋势,采用带常数项和趋势项的模型进行检
验,见图8-2,对对数序列的原水平进行带趋势项和常数项的 ADF 检验,采用SC 准 则自动选择滞后阶数,检验结果见图 8-3 和 8-4,在 0.05 的显着性水平下,都接受 存在一个单位根的原假设,说明这两个序列都不平稳。
图 8-2 单位根检验图
图8-3序列In x t 的ADF 检验结果 图8-4序列In y t 的ADF 检
验结果
于是尝试对其一阶差分序列采用带常数项的模型进行 ADF 检验,首先点击主菜 单 Quick/Generate series ,出现图 8-5 的对话框,在方程设定栏里分别输入 和dlnyt=lnyt-lnyt(-1) ,产生Inx t 和In y t 的一阶差分序列, Inx t 和In y t ,一阶差分能初步消除增长的趋势,于是可以对其 图 8-5
图8-6序列In x t 的ADF 检验结果
图8-7序列In y t 的ADF 检验结果
dInxt=Inxt-Inxt(-1)
为了方便,简记为
进行只带常数项的 ADF 检验,检验结果见图 8-6和图8-7 :
由图8-6 和图8-7 ,得出两个一阶差分序列在 =0.05下都拒绝存在单位根的原假
设的结论,说明In X t和In y t序列在=0.05下平稳,即In x t: I (0), In y t: I (0),也就是 lnx t : I (1), ln y t : I (1) ,这样我们就可以对二者进行协整关系的检验。
2、协整检验:
首先用变量Iny t对In x t进行普通最小二乘回归,在命令栏里输入Is Inyt c
Inxt ,
得到回归方程的估计结果:在此基础上我们得到回归残差,现在的任务是检验残差是否平稳,对残差进行检验见图8-8 ,在0.05 显着性水平下拒绝存在单位根的原假设,说明残差平稳,又因为In x t和 In y t都是1 阶单整序列,所以二者具有协整关系。
ADF
图8-8 回归残差ADF 检验
3、误差纠正模型ECM勺建立(error correction mechanism )
即使两个变量之间有长期均衡关系,但在短期内也会出现失衡(例如收突发事件的影响)。
此时,我们可以用ECM来对这种短期失衡加以纠正。
我们利用差分序列{ In yj关于
{Inx t}和前期误差序列{ECM t 1}进行OLS回归,构建如下ECM模型:
其中 ECM t 1 In y t 1 0.0736 0.9573In x t 1
参数估计结果见图8-9 :
图8-9 ECM 模型估计结果
ECM模型可表示为:
另外,我们可以用 (1,1) 阶分布滞后形式:
对序列进行估计,在命令栏里输入 ls lnyt c lnyt(-1) lnxt lnxt(-1) 估计结果见图 8-10 :
图 8-10 短期波动模型估计结果
两种方法建立的误差修正模型是等价的,在进行预测时,第二种方法更方便。
方程检验结果均显示方程显着线相关,参数检验结果显示人均纯收入当期波动对生 活费支出的当期波动有显着性影响,上期误差对当期波动的影响不显着;同时,从 回归系数的绝对值大小可以看出可支配收入的当期波动对生活费支出的当期波动调
整幅度很大, 每增加 1 元的可支配收入便会增加 0.9551 元的人均生活费支出, 上期 误差对当期人均生活费支出的当期波动调整幅度很小,单位调整比例为 通过上述分析发现, 1978 年到 2002 年中国农村居民对数生活费支出序列 {ln y t } 和对数人均纯收入 { ln x t } 序列都是不平稳的,但对其进行一阶差分后序列平稳,且 都是一阶单整的,进行普通最小二乘回归后,残差在 0.05 的显着性水平下也平稳, 说明二者存在协整关系, 进而建立了短期波动的误差修正模型。
误差修正模型显示: 人均纯收入当期波动对生活费支出的当期波动有显着性影响,上期误差对当期波动 的影响不显着;同时,从回归系数的绝对值大小可以看出可支配收入的当期波动对
生活费支出的当期波动调整幅度很大, 每增加 1 元的可支配收入便会增加 0.9551 元 的人均生活费支出,上期误差对当期人均生活费支出的当期波动调整幅度很小,单 位调整比例为 -0.1715 。
,得到参数 -0.1715。