有效数字及其与误差的关系
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正整数,m 是整数。 若x*的绝对误差限为:e x* x 1 10mn,则称 2
x*为具有n位有效数字,或称它精确到10mn,其中每一个
数字1,2 ,
都是
n
x*的有效数字。
3.1416 五位有效数字,精确到0.0001
203和0.0203都是具有三位有效数字的有效数. 0.0203和0.020300: 其中0.0203具有三位有效数字,精确到0.0001, 0.020300具有五位有效数字,精确到0.000001. 可见,两者的精确程度大不相同,后者比前者精确.注: 有效数字尾部的零不可随意省去,以免损失精度.
解:3.1416具有五位有效数字,1 3,那么有:
* r
(
x)
1 1051 23
1 104 6
例2、为了使积分I 1ex2 dx的近似值I *的相对误差不超过 0
0.1%,问至少需要几位有效数字。
解:可以知道I 0.7467 ,这样,1 7,有:
* r
(
x)
1 10n1 27
0.1%
可以解出:n 3,即I *只要取三位有效数字,I * 0.747就能
0.5 1t
注意:
计算机对任何实数的舍入相对误差与实数本身无关,只 与计算机字长t有关,通常定义数eps=0.5×β1-t为计算 机精度。
由于计算机的精度只与字长有关,计算机字长t越大, 其精度越高,有些数值要用双字长处理,双字长数据也 称双精度数。
示近似值x*,如想其相对误差
* r
(
x)能满足:
* r
(
x)
1
2(! 1)
10n1
则x*至少具有n位有效数字。
证明如下:由
* r
(
x)
1 10n1及
2(! 1)
x*
(1 1) 10m1,
(x)
x*
* r
(
x)
(1
1)
10m1
1
2(1
1)
10
n
1
1 10mn 2
即表示x*至少具有n位有效数字。
例1、当用3.1416来表示的近似值时,它的相对误差是多少?
它为存疑数字。
二、有效数字与误差的关系
1、有效数字与绝对误差的关系 由 e x x* 1 10mn,可知从有效数字可以算出 2
近似数的绝对误差限;有效数字的位数越多,其绝对误 差限也就越小。
2、有效数字与相对误差的关系
若x* 0.12 n 10m 有n位有效数字时,显然有
(x)
x x*
§3 有效数字及其与误差的关系
一、有效数字
例如:对无穷小数或着循环小数,可用四舍五入的办法来取其
近似值
3.1415926
若按四舍五入取四位小数,则可得其近似值3.1416 若取五位小数则得到其近似值为3.14159 这种近似值取法的特点是误差限为其末位的半个单位。
3.1416 0.002 1 104 3.14159 0.000008 1 105
1 10mn,又因为 x* 2
1 10m1,其相对误
差有:
* r
(
x)
(x)
x*
1 10mn
2
1
10m1
1 10n1
21
故相对误差限为: 1 10n1。 21
上式表达了有效数字与相对误差之间的关系,由此
可见,有效数字的位数反映了近似值的相对精确度。
上述关系的逆也是成立的,即当用x* 0.12 n 10m 表
最大正数。
计算机经舍入处理后以fl x 接收,即fl x c a,
其中:
a
Βιβλιοθήκη Baidu
0.a01a.a2 1a2 at
at
t
当0 at1 / 2 当 / 2 at1
计算机对x的舍入绝对误差满足:
e x fl x 0.5 ct
舍入相对误差满足:
er
x
fl x
x
0.5 ct 0.1 c
保证I *的相对误差不超过0.1%。
三.计算机舍入误差
设计算机的数系为F ,t, L,U ,某数
x c 0.a1a2 at
其中ai 0,1, , 1i 1, 2, , a1 0, x F ,t, L,U 且满足m x M , m及M 是F ,t, L,U 中的最小正数和
2
2
定义:当近似值x*的误差限是其某一位上的半个单位
时,我们就称其“准确”到这一位,且从该位起直到 前
面第一一般位说非,零设数有字一为个止数的x,所其有近数似字值都x*的称规为格 有化 效形 数式 字。:
x* 0.12 n 10m 1,2 , n都是0,1, , 9中的一个数字,1 0,n 是
另一种情况,例如x 0.1524, x* 0.154,这时x*的误差
是 (x) 0.0016,其绝对值超过了0.000(5 1 103,即第三位
2 小数的半个单位),但却没有超过0.00(5 1 102,即第二位
2 小数的半个单位),即0.0005 x x* 0.005。
显然x*虽有三位小数,其中1 1,2 5都是准确数 字,而第三位小数3 4就不再是准确数字了,我们就称
x*为具有n位有效数字,或称它精确到10mn,其中每一个
数字1,2 ,
都是
n
x*的有效数字。
3.1416 五位有效数字,精确到0.0001
203和0.0203都是具有三位有效数字的有效数. 0.0203和0.020300: 其中0.0203具有三位有效数字,精确到0.0001, 0.020300具有五位有效数字,精确到0.000001. 可见,两者的精确程度大不相同,后者比前者精确.注: 有效数字尾部的零不可随意省去,以免损失精度.
解:3.1416具有五位有效数字,1 3,那么有:
* r
(
x)
1 1051 23
1 104 6
例2、为了使积分I 1ex2 dx的近似值I *的相对误差不超过 0
0.1%,问至少需要几位有效数字。
解:可以知道I 0.7467 ,这样,1 7,有:
* r
(
x)
1 10n1 27
0.1%
可以解出:n 3,即I *只要取三位有效数字,I * 0.747就能
0.5 1t
注意:
计算机对任何实数的舍入相对误差与实数本身无关,只 与计算机字长t有关,通常定义数eps=0.5×β1-t为计算 机精度。
由于计算机的精度只与字长有关,计算机字长t越大, 其精度越高,有些数值要用双字长处理,双字长数据也 称双精度数。
示近似值x*,如想其相对误差
* r
(
x)能满足:
* r
(
x)
1
2(! 1)
10n1
则x*至少具有n位有效数字。
证明如下:由
* r
(
x)
1 10n1及
2(! 1)
x*
(1 1) 10m1,
(x)
x*
* r
(
x)
(1
1)
10m1
1
2(1
1)
10
n
1
1 10mn 2
即表示x*至少具有n位有效数字。
例1、当用3.1416来表示的近似值时,它的相对误差是多少?
它为存疑数字。
二、有效数字与误差的关系
1、有效数字与绝对误差的关系 由 e x x* 1 10mn,可知从有效数字可以算出 2
近似数的绝对误差限;有效数字的位数越多,其绝对误 差限也就越小。
2、有效数字与相对误差的关系
若x* 0.12 n 10m 有n位有效数字时,显然有
(x)
x x*
§3 有效数字及其与误差的关系
一、有效数字
例如:对无穷小数或着循环小数,可用四舍五入的办法来取其
近似值
3.1415926
若按四舍五入取四位小数,则可得其近似值3.1416 若取五位小数则得到其近似值为3.14159 这种近似值取法的特点是误差限为其末位的半个单位。
3.1416 0.002 1 104 3.14159 0.000008 1 105
1 10mn,又因为 x* 2
1 10m1,其相对误
差有:
* r
(
x)
(x)
x*
1 10mn
2
1
10m1
1 10n1
21
故相对误差限为: 1 10n1。 21
上式表达了有效数字与相对误差之间的关系,由此
可见,有效数字的位数反映了近似值的相对精确度。
上述关系的逆也是成立的,即当用x* 0.12 n 10m 表
最大正数。
计算机经舍入处理后以fl x 接收,即fl x c a,
其中:
a
Βιβλιοθήκη Baidu
0.a01a.a2 1a2 at
at
t
当0 at1 / 2 当 / 2 at1
计算机对x的舍入绝对误差满足:
e x fl x 0.5 ct
舍入相对误差满足:
er
x
fl x
x
0.5 ct 0.1 c
保证I *的相对误差不超过0.1%。
三.计算机舍入误差
设计算机的数系为F ,t, L,U ,某数
x c 0.a1a2 at
其中ai 0,1, , 1i 1, 2, , a1 0, x F ,t, L,U 且满足m x M , m及M 是F ,t, L,U 中的最小正数和
2
2
定义:当近似值x*的误差限是其某一位上的半个单位
时,我们就称其“准确”到这一位,且从该位起直到 前
面第一一般位说非,零设数有字一为个止数的x,所其有近数似字值都x*的称规为格 有化 效形 数式 字。:
x* 0.12 n 10m 1,2 , n都是0,1, , 9中的一个数字,1 0,n 是
另一种情况,例如x 0.1524, x* 0.154,这时x*的误差
是 (x) 0.0016,其绝对值超过了0.000(5 1 103,即第三位
2 小数的半个单位),但却没有超过0.00(5 1 102,即第二位
2 小数的半个单位),即0.0005 x x* 0.005。
显然x*虽有三位小数,其中1 1,2 5都是准确数 字,而第三位小数3 4就不再是准确数字了,我们就称