[农学]第三章 常用概率分布

合集下载

常用概率分布课件

常用概率分布课件
常用概率分布
常用概率分布
1
内容
• 二项分布 • Poisson分布 • 正态分布
•分布的概念 •分布的条件 •分布的特征 •分布的应用
常用概率分布
2
概率的意义及相关的一些概念
• 考虑: • 确定n之后,阳性数目的概率分布(随机 变量X=阳性数目) • 掷一枚均匀钱币:P(正面朝上)=0.5, P(正面朝下)=0.5 • 掷一枚均匀骰子:P(1朝上)=P(2朝上) =…=P(6朝上)=1/6
• P(正面朝上)=0.50;
• 一般地,一个随机变量含两个要素:
• 1.它是一个变量;
• 2.这个变量可能值的出现各具有一定的 概率。
常用概率分布
5
概 念与定理:
• 组合(combination):从几个元素中抽取x 个元素组成一组(不考虑其顺序) 的组合方式个数,记Cnx
•几个相互独立事件同时发生的概率 等于各独立事件的概率之积。
-5
1
-4
-3
-2
-1
μ 0
1
3
2
3
4
5
6
12 3
σ1
σ3
-3
-2
-1
0
1
2
1
2
3
3
常用概率分布
41
4、正态分布曲线下面积的分布规律
• 面积的分布规律由两个参数决定; • 横轴上、曲线下的面积为1;曲线下的面 积就是概率。 • 曲线下,横轴上对称于0的面积相等。
常用概率分布
42
正态曲线下面积分布可用公式求得:
• 又称Gauss分布,正态分布曲线是 一条高峰位于中央(均数所在处), 两侧完全对称,两端永远不与横轴 相交的钟型曲线。

第3章 常用概率分布(田间试验与统计分析 四川农业大学)

第3章 常用概率分布(田间试验与统计分析 四川农业大学)

P(“至少1粒种子出苗”) = P(x=1)+P(x=2)+…+P(x=6) = C610.6710.335 C62 0.6720.334 C66 0.6760.330 = 0.0157+0.0799+0.2162 +0.3292+0.2672+0.0905 = 0.9987
二项分布的应用条件:
在统计学上,把小概率事件在一次试验中 看成是实际不可能发生的事件称为小概率事件 实际不可能性原理,亦称为小概率原理(small probability principle)。
小概率事件实际不可能性原理是统计学上 进行假设检验(显著性检验)的基本依据。
第二节 概率分布
事件的概率表示了一次试验某一个结果发生的 可能性大小。
标准正态分布的概率密度函数及分布函数分别 记作ψ(u)和Φ(u)。
(u)
1
u2
e2
2
(u) 1
u 1u2
e 2 du
2
u~N(0,1)
对于任何一个服从正态分布N(μ,σ2)的随 机变量x,都可以通过标准化变换:
u x
将其变换为服从标准正态分布的随机变量u。
一、正态分布的定义及其特征
(一) 正态分布的定义 若连续型随机变 量 x 的概率分布密度函数为
其中μ为平均数,σ2为方差,则称随机变量 x 服从正 态分布(normal distribution) , 记为x~N(μ, σ2)。
相应的概率分布函数为:
F(x) 1
e dx x

(
x) 2 2
对于样本是取自连续型随机变量的情况,这 条函数曲线将是光滑的。这条曲线排除了抽样和 测量的误差,完全反映了水稻行产量的变动规律。 这条曲线叫概率分布密度曲线,相应的函数叫概 率分布密度函数 。

常见概率分布

常见概率分布
此外,由于泊松分布是描述小概率事件的,因 而二项分布中当p很小n很大时,可用
Today: 2020/7/9
第二节 泊松分布 Possion distribution
泊松分布是用来描述和分析稀有事件即小概率事件分 布规律的函数。
一、泊松分布的意义
(一)定义
若随机变量X(X=k)只取零和正整数值,且其概率分
则称这一串重复的独立试验为n重贝努利试验, 简称贝努利试验。
(二)二项分布的概率
Today: 2020/7/9
在n重贝努利试验中,事件A发生x次的概率恰好
是(q+p)n二项展开式中的第x+1项,因此将
C Pn (k) =
k n
pkq
n-k
,
k
=称0,1作,2...二.., n项概率公式。
二、二项分布的意义及其性质
出现的怪胎(如缺皮症,全身无毛等)的头数,然
后以怪胎头数把200个奶牛场分类,统计每类中奶
牛场数目,结果如下:
10年内母牛产怪胎次数 (m)
0 1 2 3 4 总计
奶牛场数(f)
10 65 2 3 1 200
试研究10年内母牛怪胎数的9概率分布2。
Today: 2020/7/9
先假设母牛产怪胎数的概率分布为泊松分布。
Today: 2020/7/9
∑m
P(X ≤m) = Pn (k ≤m) = Cknpkqn k
k=0
∑n
P(X ≥m) = Pn (k ≥m) =
C
k n
pk
q
n
k
k=m
P(m1 ≤X ≤m2 ) = Pn (m1 ≤k ≤m2 )
∑m2
=
C

常用概率分布

常用概率分布
关于 左右对称,正态高峰位于中央 在 处取得该概率密度函数的最大值,在 x处
有拐点,表现为钟形 靠近 x 处曲线下面积较为集中,两边减少,意味
着正态分布变量取值靠近 x处 的概率较大,两 边逐渐减少 正态分布的总体偏度系数和峰度系数均为0
8
正态分布曲线下面积
正态分布变量X的取值为(-∞,∞)
23
四、二项分布的图形
24
图形特点:两个轴意义,对称、偏态、与 正态分布的关系
决定图形的两个参数:n,
25
五、样本率的均数和标准差
样本率的总体均数p:
p
1 n
x
1 n
(n )
样本率的总体标准差p:
p
1 n
x
(1 )
n
样本率的标准差(标准误)Sp:
Sp
p(1 p) n
26
根据中心极限定理,在n较大,n(1- )均大于5时,二项分 布接近于正态分布。当n → ∞ , 二项分布B(n,)的极限分布 是总体均数为X = n、总体方差 X2 = n(1-)的正态分布 N(n, n(1-))。这个时候可以用正态分布N(n, n(1-)) 作近似计算。
16
确定医学参考值范围
例 估计某地健康成年女子的血红蛋白的95% 医学参考值范围
具体步骤如下: 1. 根据研究背景确定研究对象的入选标准和排
除标准。这类研究一般要求参加体检并且要 求除研究指标血红蛋白指标外,其他指标均 正常的对象。 2. 根据研究背景,确定血红蛋白过高或过低均 属于不正常(双侧范围)。
6. 如果受检指标血红蛋白呈偏态分布,则可 以用百分位数P2.5~P97.5确定95%参考值 范围,但样本量要充分大。
7. 样本量充分大是相对与指标的变异程度, 指标变异大,要求样本量大;指标变异程 度小,要求样本量可以相对小一些。

生物统计学 第三章 概率分布09

生物统计学 第三章 概率分布09

2
2 2
x
= 期望 2 = 方差
X ~ N(, 2)
正态分布
正态分布概率密度函数的几何表示
f (x)
正态曲线
x
曲线下某区间的面积即为随机变量在该区间取值的概率
正态分布
正态分布的特点
➢只有一个峰,峰值在x = 处 ➢曲线关于x = 对称,因而平均数=众数=中
位数 ➢x轴为曲线向左、右延伸的渐进线
P(x≥4)=1-P(x<4)=1-P(0)-P(1)-P(2)-P(3)
1
30!0 e331 1!e3 Nhomakorabea32 2!
e3
33 3!
e3
=0.3528
连续型随机变量的概率分布
正态分布(normal distribution)
➢具有如下概率密度函数的随机变量称为正态 分布随机变量:
f (x) 1 e[ (x )2 ]
第三章 常用概率分布
二项分布 普哇松分布 正态分布 抽样分布
离散型随机变量的概率分布
二项分布(binomial distribution)
假设:1. 在相同条件下进行了n次试验 2. 每次试验只有两种可能结果(1或0) 3. 结果为1的概率为p,为0的概率为1-p 4. 各次试验彼此间是独立的
在n次试验中,结果为1的次数(X = 0,1,2, ,n)服从二项分布,表示为
较大,顶部略低,尾部略高。自由度小的t 分布,更为明显。 n>30时, t 分布接近于标准正态分布; n>100时,t 分布基本与标准正态分布相同; n→∞时,t 分布与标准正态分布完全一致。 3. t 分布概率求法 可查P302 t 分布的双侧分位表。
例:df=4 双侧 t0.05=2.776 t0.01=4.604 单侧 t0.05=2.132 t0.01=3.747

《常用概率分布》PPT课件

《常用概率分布》PPT课件

n=20,π=0.5
π=0.5时,不同n值对应的二项分布
n=5,π=0.3
n=10,π=0.3
n=30,π=0.3
π=0.3时,不同n值对应的二项分布
二项分布图的形态取决于π和n,高峰在µ= πn处
➢ 当π=0.5,图形是对称的; ➢ 当π≠0.5,图形不对称;π离0.5愈远,对称性愈差,
但随着n的增大,分布趋向于对称.
〔2〕其中最少有2人感染的概率有多大?
解:P(x ≥ 2)= x1=5∑02 C150x 0.13x(0.97)150-x
= 1 -(C1500 0.130 × 0.97150 +C1501 0.131 × 0.97149) ≈1
〔3〕其中最少有20人感染的概率有多大?
解:P(x ≥
150
20)=
∑C150x
第一节 二项分布及其应用
1.1 二项分布的概念和函数 1.2 二项分布的特征 1.3 二项分布的应用
一、二项分布的概念 和概率函数
摸球模型
一个袋子里有5个乒乓球,其中2个黄球、3个白球, 我们进行摸球游戏,每次摸1球,放回后再摸.先后摸 100次,请问:
⑴摸到0次黄球的概率是多大?
解:① 每次摸到白球的概率 =0.6
〔1〕至多有4人患先天性心脏病的概率是多少? 〔2〕至少有5人患先天性心脏病的概率是多少?
举例2:实验室显示某100cm2的培养皿中平均菌落数为6
个,试估计<1>该培养皿中菌落数小于3的概率,
<2>大于1个的概率.
解析:菌落长、不长
二项分布
长概率很小, n很大
Poission分布
故:
=nπ=6 (1) P(x<3)=

常用概率分布

常用概率分布

常用概率分布常用概率分布是数学中一个非常重要的概念,它描述了每种特定事件发生的可能性,并帮助我们更好地理解随机事件的性质。

在统计学、工程学、物理学、生物学和金融学等领域,常用概率分布被广泛应用于数据分析和模拟等方面。

接下来,我将介绍一些最常见的概率分布。

1. 二项分布二项分布是一种离散的概率分布,它描述了两种可能结果中每一种结果的概率。

比如说,抛硬币的结果只有正面和反面两种可能性。

当每次实验仅有两种可能结果,并且这两种结果的概率相等时,可以使用二项分布来计算任意试验中某个结果被观察到的概率。

一般地,二项分布可以用来计算n次独立实验中恰好有k次成功的概率。

2. 正态分布正态分布是一种连续概率分布,也称为高斯分布。

它是自然界中最常见的概率分布之一,用于描述一些连续型变量(例如长度、质量和时间等)的分布情况。

具有正态分布的数据通常呈现出钟形曲线的形状,且均值、中位数和众数相等。

正态分布是许多模型和算法的基础,例如线性回归和神经网络等。

3. 泊松分布泊松分布是一种离散概率分布,它描述了在一定时间内某个事件发生的次数。

该分布适用于低概率事件的发生频率较高的情况,例如在一定时间内接收到的电子邮件数量以及某种疾病的发病率等。

此外,泊松分布还可以用于描述自然生态系统中的物种数量变化、军事战斗中的伤亡人数等。

4. 指数分布指数分布是一种连续概率分布,用于描述一些事件所需的时间间隔。

比如说,等车的时间、电话呼叫之间的间隔时间等都可以用指数分布来描述。

该分布的特点是概率随着时间间隔的增加而逐渐减小,且具有单峰趋势。

5. Gamma分布Gamma分布是一种连续概率分布,广泛应用于工程和自然科学领域。

它可以用来描述诸如距离、强度、能量和粒子次数等连续型随机变量之和的概率分布。

由于Gamma 分布具有特定的形状和参数,因此它可以与其他分布结合使用,用于模拟各种实际场景的数据。

6. 卡方分布卡方分布是一种连续概率分布,用于描述统计独立性检验的结果。

常见概率分布特征总结

常见概率分布特征总结

常见概率分布特征总结
1、正态分布:正态分布是最常用的概率分布之一,它出现在许多形
式的研究中,主要是属于连续性概率分布。

正态分布的形状是一个钟形曲线,由一个均值(μ)和标准差(σ)决定。

它两侧各有一个“长”尖,就像
一个钟形。

正态分布的总体平均值μ=样本的均值,正态分布的总体方差
σ2=样本的方差。

正态分布有着特殊的性质:(1)中位数等于均值。

(2)标准差越大,尖峰越低,右腹越宽,左腹越窄。

(3)曲线两侧对称,均值、中位数、众数均相同。

2、贝叶斯分布:贝叶斯分布是一种连续性概率分布,其函数形式为
x^(α-1)*exp(-x^2/2b^2)。

贝叶斯分布具有有限的可变性,因此可以用
来描述连续现象的概率分布,如测量误差、估计参数等现象。

贝叶斯分布
亦称为Α-分布,其中α是分布的形状参数,β则表示尺度参数,可以
衡量其方差的大小。

当α=1和β=1时,贝叶斯分布可以用高斯分布来描述,此时又称为双变量高斯分布。

3、对数正态分布:对数正态分布是一种同密度连续概率分布,它是
一种特殊的正态分布,分布的概率密度函数与正态分布不同之处在于,其
取值范围限制在非负值,而且在正值上变化更为迅速,由均值μ和方差
σ2决定。

常用的概率分布类型及其特征

常用的概率分布类型及其特征

常用的概率分布类型与其特征3.1 二点分布和均匀分布1、两点分布许多随机事件只有两个结果.如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效.描述这类随机事件变量只有两个取值,一般取0和1.它服从的分布称两点分布.其概率分布为:其中 Pk=P〔X=Xk〕,表示X取Xk值的概率:0≤P≤1.X的期望 E〔X〕=PX的方差 D〔X〕=P〔1—P〕2、均匀分布如果连续随机变量X的概率密度函数f〔x〕在有限的区间[a,b]上等于一个常数,则X服从的分布为均匀分布.其概率分布为:X的期望 E〔X〕=〔a+b〕/2X的方差 D〔X〕=〔b-a〕2/123.2 抽样检验中应用的分布3.2.1 超几何分布假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n 件作为被检样品,样品中的不合格数X服从的分布称超几何分布.X的分布概率为:X=0,1,……X的期望 E〔X〕=nd/NX的方差 D〔X〕=〔〔nd/N〕〔〔N-d〕/N〕〔〔N-n〕/N〕〕〔1/2〕3.2.2 二项分布超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐.二项分布就可以看成是超几何分布的一个简化.假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布.X的概率分布为:0<p<1x=0,1,……,nX的期望 E〔X〕=npX的方差 D〔X〕=np〔1-p〕3.2.3 泊松分布泊松分布比二项分布更重要.我们从产品受冲击〔指瞬时高电压、高环境应力、高负载应力等〕而失效的事实引入泊松分布.假设产品只有经过一定的冲击次数后,产品才失效,又设这些冲击满足三个条件:〔1〕、两个不相重叠的时间间隔内产品所受冲击次数相互独立;〔2〕、在充分小的时间间隔内发生两次或更多次冲击的机会可忽略不计;〔3〕、在单位时间内发生冲击的平均次数λ〔λ>0〕不随时间变化,即在时间间隔Δt内平均发生λΔt次冲击,它和Δt 的起点无关.则在[0,t]时间内发生冲击的次数X服从泊松分布,其分布概率为:X的期望 E〔X〕=λtX的方差 D〔X〕=λt假设仪表受到n次冲击即发生故障,则仪表在[0,t]时间内的可靠度为:其中:x =0,1,2,……,λ>0,t>0.3.2.4 x2分布本分布是可靠性工程中最常用的分布之一,虽然其概率密度形式较复杂,但可由标准正态分布推出.设有v个相互独立的随机变量X1,X2,…… Xv,它们服从于标准正态分布N 〔0,1〕.记x2 =X12 + X22 +…Xv2 ,x2读作"卡方"则x2服从的分布称为x2分布.它的概率密度函数为:该式称为随机变量x2服从自由度为V的x分布.式中:V—为自由度,是个自然数x2分布最重要的性质是:当m为整数时:3.3 产品的寿命分布3.3.1 指数分布指数分布是电子产品在可靠性工程学中最重要的分布.通常情况下,电子产品在剔除了早期故障后,到发生元器件或材料的老化变质之前的随机失效阶段其寿命服从指数分布规律.指数分布是唯一的失效率不随时间变化而变化的连续随机变量的概率分布.容易推出:指数分布有如下三个特点:1.平均寿命和失效率互为倒数;MTBF=1/λ2.特征寿命就是平均寿命;3.指数分布具有无记忆性.〔即产品以前的工作时间对以后的可能工作时间没有影响〕3.3.2 威布尔分布从上面的描述可知,指数分布只适用于浴盆曲线的底部,但任何产品都有早期故障,也总有耗损失效期.在可靠性工程学中用威布尔分布来描述产品在整个寿命期的分布情况.将指数分布中的〔-λt〕替换为〔-〔t/η〕m〕,就得到威布尔分布.容易得到:3.3.3 正态分布与对数正态分布正态分布又称为常态分布或高斯分布.它的概率密度函数为:式中:-∞<x<∞分布函数记为:对数正态分布是指:若寿命T的对数lnT服从正态分布N〔u,σ〕,则T服从对数正态分布.它的概率密度函数为:式中:t,σ为正数,μ和σ分别称为对数正态分布的"对数均值"和"对数标准差".3.4 为进行统计推断所构造的分布3.4.1 t分布〔学生氏分布〕t—分布常用于区间估计、正态总体的假设检验以与机械概率设计之中.服从t—分布的随机变量记住t.它是服从标准正态分布N〔0,1〕的随机变量U和服从自由度为v的x2分布的随机变量x2〔v〕的函数.它的概率密度函数f〔t〕为:3.4.2 F—分布F分布主要用于两个总体的假设检验与方差分析.服从F分布的随机变量F是两个相互独立的x2分布随机变量x2〔v1〕和x2〔v2〕的函数:式中:F只能取正值.F分布的概率密度函数为:另外还有β—分布等.中位秩是β—分布的中位数,一般用下式求出:中位秩值≈〔i-0.3〕/<n+0.4> 式中:n为样本总数.。

常见的概率分布

常见的概率分布

常见的概率分布离散分布0-1分布(伯努利分布)它的分布律为:\[P\{X=k\}=p^k(1-p)^{1-k}, k=0,1, (0<p<1)\]0-1分布记作:\(X \sim b(1,p)\)期望:\(E(X)=p\)⽅差:\(D(X)=p(1-p)\)常⽤的场景:新⽣婴⼉性别的登记,招⽣考试的录取,产品的是否合格,硬币的正反⾯。

⼆项分布⼆项分布为\(n\)重伯努利实验的概率分布。

分布律为:\[P\{X=k\}=\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k},k=0,1,2,...,n,(0<p<1)\]\[\sum\limits_{k=0}^{n}P\{X=k\}=\sum\limits_{k=0}^{n}\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k}=(p+1-p)^n=1\]⼆项分布记作:\( X \sim b(n,p)\)期望:\(E(X)=np\)⽅差:\(D(X)=np(1-p)\)常⽤的场景:⽐如⼀个⼈射击\(n\)次,其中\(k\)次命中的概率,抽查50台设备,其中10台出故障的概率等等。

从下⾯的图中,我们可以看到命中次数先增加,到了3达到最⼤,之后⼜逐渐减少,⼀般来说,对于固定的\(n,p\),都具有这⼀性质。

(1)当\((n+1)p\)不为整数时,⼆项概率\(P\{X=k\}\)在\(k=[(n+1)p]\)时达到最⼤值;(2)当\((n+1)p\)为整数时,⼆项概率\(P\{X=k\}\)在\(k=(n+1)p,k=(n+1)p-1\)时达到最⼤值。

%每轮射击10次,命中概率0.3,射击10000轮,x中返回的是每轮中命中的次数x=binornd(10,0.3,10000,1);%bin的数⽬为10hist(x,10);N=100;p=0.4;k=0:N;%事件发⽣k次的概率pdf=binopdf(k,N,p);%事件发⽣不⼤于k次的概率cdf=binocdf(k,N,p);plotyy(k,pdf,k,cdf);grid on;多项分布多项式分布是⼆项式分布的扩展,在多项式分布所代表的实验中,⼀次实验会有多个互斥结果,⽽⼆项式分布所代表的实验中,⼀次实验只有两个互斥结果。

常见概率分布表(超全总结)

常见概率分布表(超全总结)
������ ������ ������
指数分布 (负指数分布)
Γ(1, ������)
������ > 0
������
������ 2
注:指数分布是Γ分布的特殊情况
n
2n
χ2 分布
������ 2 (������)
������ ≥ 1
f(x) = {
2n⁄2 Γ(������⁄2) 0 ,
������ ≥ 1
������ > 0
均匀分布
U(a, b)
a<b
K=0,1,2,… 1 , ������ < ������ < ������ f(x) = {������ − ������ 0, 其它 f(x) = 1 f(x) = {√2������������������ 1 √2������������ ������ ������ −(������−������)
非中心χ 分布
2
������ f(x) = {
������+������ −( 2 ) ∞
������ (������, ��� 0
2������⁄2
������ 2+������−1 ������������ ∑ ������ , (������ > 0) 2������ ������=0 Γ (2 + ������) 2 ������! 0 , 其它
逆高斯分布
N (μ, λ)
−1
λ, μ > 0
Γ分布
连 续 型
(伽玛分布)
Γ(������, ������)
������, ������ > 0
1 ������ ������−1 ������ −������⁄������ , ������ > 0 f(x) = {������ ������ Γ(������) 0 , 其它 1 −������ ������ ������ , ������ > 0 f(x) = { ������ 0 , 其它 1 ������ 2 −1 ������ −2 , ������ > 0 其它

几种常见的概率分布率 (1)分解

几种常见的概率分布率 (1)分解

0 0.1 0.08 0.06 0.04 0.02 0
100
200 300 n=500,p=0.01
400
500
γ1=0.84 γ2=0.51
γ1=0.27 γ2=0.05
γ1=0.12 γ2=0.01
0
n=10,p=0.10
25 50 75 n=100,p=0.10
100
0 0.05 0.04 0.03 0.02 0.01 0
3.1 二项分布 B(n, p)
贝努利试验(Bernoulli trial) : 我们把只有两种可能观测值(每次试验只可能是两个对立 事件之一)的随机试验统称为贝努利试验。这种试验在实际中 广泛存在,如观察某一实验动物的卵孵化与否、某一实验动物 是雌性还是雄性、实验反应是阴性还是阳性等。 n次独立地贝努利试验称为n重贝努利试验,其试验结果的分 布(一种结果出现x次的概率是多少的分布)即为二项分布。 应用二项分布的重要条件是:每一种试验结果在每次试验中 都有恒定的概率,各试验之间是重复独立的。
一、 服从二项分布的随机变量的特征数 平均数:μ=np ,μ= p (用比率表示时)
p(1 - p) 方差: = np(1 - p), = (用比率表示时) n
2 2
偏斜度:
1 =
1- 2 p np(1 - p)
峭度:

1 6 2 = np(1 - p) n
从以上公式可以看出二项分布决定于两个参考数:试验次 数n 和概率P,因此其图形变化趋势与这两个参数有关。
二项分布的应用条件有三:
(1)各观察单位只具有互相对立的一种结果,如阳性 或阴性, 生存或死亡等, 属于二项分类资料; (2)已知发生某一结果 (如死亡) 的概率为p,其对立 结果的概率则为1-p=q,实际中要求 p 是从大量观察中 获得的比较稳定的数值; (3)n个观察单位的观察结果互相独立,即每个观察 单位的观察结果不会影响到其它观察单位的观察结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档