2021届高三数学(新高考)一轮复习检测 (12)第2章第九讲函数与方程
第2章函数及其表示-2021版高三数学(新高考)一轮复习教学课件(45张ppt)
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
返回导航
题组三 考题再现 5.(2019·江苏,5 分)函数 y= 7+6x-x2的定义域是____[_-__1_,7_]_______.
[解析] 要使函数有意义,则 7+6x-x2>0,解得-1≤x≤7,则函数的定义域是 [-1,7].
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
[答案] (1)①是映射,也是函数 ②不是映射,更不是函数 ③不是映射,更不是函数 ④是映射,但不是函数 (3)不同函数①②;同一函数③
返回导航
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
返回导航
1.映射与函数的含义 (1)映射只要求第一个集合A中的每个元素在第二个集合B中有且只有一个元素与 之对应;至于B中的元素有无原象、有几个原象却无所谓. (2)函数是特殊的映射:当映射f:A→B中的A,B为非空数集时,且每个象都有 原象,即称为函数. 2.判断两个函数是否相同的方法 (1)构成函数的三要素中,定义域和对应法则相同,则值域一定相同. (2)两个函数当且仅当定义域和对应法则相同时,才是相同函数.
f2:
x
x≤1
y
1
1<x<2 2
x≥2 3
返回导航
f3:
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)①是映射,也是函数; ②不是映射,更不是函数,因为从A到B的对应为“一对多”; ③当x=0时,与其对应的y值不存在.故不是映射,更不是函数; ④是映射,但不是函数,因为集合A不是数集. (2)A图象不满足函数的定义域,不正确;B、C满足函数的定义域以及函数的值 域,正确;D不满足函数的定义,故选B、C. (3)①中f1的定义域为{x|x≠0},f2的定义域为R,f3的定义域为{x|x≠0},故不是 同一函数; ②中f1的定义域为R,f2的定义域为{x|x≥0},f3的定义域为{x|x≠0},故不是同 一函数; ③中f1,f2,f3的定义域相同,对应法则也相同,故是同一函数.
高考数学一轮复习第02章函数测试卷(2021年整理)
第二章函数测试卷班级__________ 姓名_____________ 学号___________ 得分__________一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【2018届北京市西城区44中12月月考】已知是定义在上的奇函数,则的值为( ). A 。
B. C 。
D.【答案】B 【解析】∵是定义在上的奇函数,∴,解得,且,∴.选.2.【2018年全国卷Ⅲ文】下列函数中,其图象与函数的图象关于直线对称的是( ) A. B.C 。
D.【答案】B3.【2018年新课标I 卷】设函数,则满足的x 的取值范围是A 。
B.C.D.【答案】D【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有成立,一定会有,从而求得结果。
详解:将函数的图像画出来,()f x ()2,a a -()0f a+011-2()f x ()2,a a -20aa -+=1a =()00f =()01f a +=B观察图像可知会有,解得,所以满足的x 的取值范围是,故选D.4.【2018届贵州省遵义市第四中学第一次月考】“”是“函数在区间上为增函数”的( )A. 充分不必要条件 B 。
必要不充分条件 C 。
充要条件 D. 既不充分也不必要条件【答案】A【解析】若函数在区间 上为增函数, 则对称轴,解得 ,则“”是“函数在区间上为增函数”的充分不必要条件, 故选A5.【2018年全国卷Ⅲ理】设,,则A. B 。
C 。
D.【答案】B【解析】分析:求出,得到的范围,进而可得结果。
详解:.1a ≤()241f x x a x =-+[)4,+∞241fx x a x =-+()[)4,+∞4242ax a -=-≤=2a ≤1a ≤241fx x a x =-+()[)4,+∞,即又即故选B.6.【2018年全国卷II 理】已知是定义域为的奇函数,满足.若,则( )A。
2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)
(2)由题意,易知 a>1.
在同一坐标系内作出 y=(x-1)2,x∈(1,2)及 y=logax 的图象.
若 y=logax 过点(2,1),得 loga2=1,所以 a=2. 根据题意,函数 y=logax,x∈(1,2)的图象恒在 y=(x-1)2,x∈(1,2)的上方. 结合图象,a 的取值范围是(1,2]. 规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高 点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 考点三 对数函数的性质及应用 【例 3-1】 已知函数 f(x)=ln x+ln(2-x),则( )
调性时,一定要明确底数 a 的取值对函数增减性的影响,及真数必须为正的限制条件.
[方法技巧]
1.对数值取正、负值的规律
当 a>1 且 b>1 或 0<a<1 且 0<b<1 时,logab>0;
当 a>1 且 0<b<1 或 0<a<1 且 b>1 时,logab<0.
2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化
2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
1,-1
3.对数函数 y=logax(a>0,且 a≠1)的图象过定点(1,0),且过点(a,1),a
,函数图象只在
第一、四象限.
三、 经典例题
考点一 对数的运算
【例 1-1】
(1)计算:
lg1-lg 25 4
÷100-1=________.
高考数学总复习(一轮)(人教A)教学课件第二章 函 数第3节 函数的奇偶性、周期性与对称性
(2)如果函数f(x)是偶函数,那么f(x)=f(-x)=f(|x|).
(3)若函数满足f(x)=0或解析式可化简为f(x)=0(x∈D),其中定义
域D是关于原点对称的非空数集,则函数既是奇函数又是偶函数.
(4)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×
偶=偶,奇×偶=奇.
所以函数 f(x)是以 2 为周期的周期函数,f( )=f( -2)=f(- )= .
故选 C.
3.已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=
2x3-3x+1,则f(-3)=-(-54+9+1)=44.
是奇函数,且单调递增,
故原不等式等价于 f(x)- ≤ -f(a-2x),
即(-) ≤-(--) =(2x-a+1)
,
所以 x-1≤2x-a+1,
所以 x+2≥a 在任意的 x∈[2,3]上恒成立,故 a≤4.故选 D.
(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在
定义域为 R,g(-x)=ln( + -x),
而 g(-x)+g(x)=ln( + -x)+ln( + +x)=0,符合题意.故选 ABD.
判断函数的奇偶性,其中包括两个必备条件
(1)定义域关于原点对称,否则为非奇非偶函数.
(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可
5.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+x-1,则函数
2021高考一轮数学(理)第2章第2节函数的单调性与最值
第二节函数的单调性与最值[最新考纲] 1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图像分析函数的性质.1.函数的单调性(1)单调函数的定义如果函数y =f (x )在区间A 上是增加的或减少的,那么称A 为单调区间. 2.函数的最值1.函数单调性的结论(1)对任意x 1,x 2∈D (x 1≠x 2),f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.2.函数最值存在的2个结论(1)闭区间上的连续函数一定存在最大值和最小值.(2)开区间上的“单峰”函数一定存在最大(小)值.一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).()(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数.()(3)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).()(4)闭区间上的单调函数,其最值一定在区间端点取到.()[答案](1)×(2)×(3)×(4)√二、教材改编1.函数y=x2-6x+10在区间(2,4)上()A.递减B.递增C.先递减后递增D.先递增后递减C[因为函数y=x2-6x+10的图像为抛物线,且开口向上,对称轴为直线x =3,所以函数y=x2-6x+10在(2,3)上为减函数,在(3,4)上为增函数.] 2.下列函数中,在区间(0,1)上是增函数的是()A.y=|x| B.y=3-xC.y=1x D.y=-x2+4A[y=3-x在R上递减,y=1x在(0,+∞)上递减,y=-x2+4在(0,+∞)上递减,故选A.]3.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________. ⎝ ⎛⎭⎪⎫-∞,-12 [因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0, 即k <-12.] 4.已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.2 25 [易知函数f (x )=2x -1在x ∈[2,6]上为减函数,故f (x )max =f (2)=2,f (x )min=f (6)=25.]考点1 确定函数的单调性(区间)确定函数单调性的4种方法(1)定义法:利用定义判断.(2)导数法:适用于初等函数、复合函数等可以求导的函数.(3)图像法:由图像确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图像不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.求函数的单调区间(1)函数f (x )=|x 2-3x +2|的单调递增区间是( )A .⎣⎢⎡⎭⎪⎫32,+∞B .⎣⎢⎡⎦⎥⎤1,32和[2,+∞) C .(-∞,1]和⎣⎢⎡⎦⎥⎤32,2D .⎝ ⎛⎦⎥⎤-∞,32和[2,+∞)(2)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.(1)B (2)[2,+∞) (-∞,-3] [ (1)y =|x 2-3x +2|=⎩⎨⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2.如图所示,函数的单调递增区间是⎣⎢⎡⎦⎥⎤1,32和[2,+∞);单调递减区间是(-∞,1]和⎣⎢⎡⎦⎥⎤32,2.故选B.(2)令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).](1)求函数的单调区间,应先求定义域,在定义域内求单调区间.(2)求复合函数的单调区间的步骤一般为:①确定函数的定义域;②求简单函数的单调区间;③求复合函数的单调区间,其依据是“同增异减”.含参函数的单调性[一题多解]判断并证明函数f (x )=ax 2+1x (其中1<a <3)在x ∈[1,2]上的单调性.[解] 法一:(定义法)设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-⎝ ⎛⎭⎪⎫ax 21+1x 1 =(x 2-x 1)⎣⎢⎡⎦⎥⎤a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又1<a <3,所以2<a (x 1+x 2)<12,得a(x1+x2)-1x1x2>0,从而f(x2)-f(x1)>0,即f(x2)>f(x1),故当a∈(1,3)时,f(x)在[1,2]上单调递增.法二:(导数法)因为f′(x)=2ax-1x2=2ax3-1x2,因为1≤x≤2,所以1≤x3≤8,又1<a<3,所以2ax3-1>0,所以f′(x)>0,所以函数f(x)=ax2+1x(其中1<a<3)在[1,2]上是增函数.定义法证明函数单调性的一般步骤:①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2);③变形(通常是因式分解和配方);④定号(即判断f(x1)-f(x2)的正负);⑤下结论(即指出函数f(x)在给定的区间D上的单调性).1.函数y =-x 2+2|x |+3的递增区间为________.(-∞,-1],[0,1] [由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图像如图.由图像可知,函数y =-x 2+2|x |+3的递增区间为(-∞,-1],[0,1].]2.判断并证明函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. [解] 法一:(定义法)设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.法二:(导数法)f′(x)=a(x-1)-ax(x-1)2=-a(x-1)2,所以当a>0时,f′(x)<0,当a<0时,f′(x)>0,即当a>0时,f(x)在(-1,1)上为单调减函数,当a<0时,f(x)在(-1,1)上为单调增函数.考点2函数的最值求函数最值的5种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)若函数f (x )=⎩⎪⎨⎪⎧(x -a )2(x ≤0),x +1x+a (x >0)的最小值为f (0),则实数a 的取值范围是( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2](2)函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.(3)函数y =x -x (x ≥0)的最大值为________.(1)D (2)3 (3)14 [(1)当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1x ,即x =1时,等号成立.故当x =1时取得最小值2+a , ∵f (x )的最小值为f (0),∴当x ≤0时,f (x )=(x -a )2单调递减,故a ≥0, 此时的最小值为f (0)=a 2,故2+a ≥a 2,得-1≤a ≤2. 又a ≥0,得0≤a ≤2.故选D.(2)∵f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上单调递减,∴f (x )max =f (-1)=3-log 21=3.(3)令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,当t =12,即x =14时,y max=14.][逆向问题] 若函数f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________,b =________.1 52 [∵f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上是增函数,∴f (x )min =f ⎝ ⎛⎭⎪⎫12=12,f (x )max =f (2)=2.即⎩⎪⎨⎪⎧-2a +b =12,-a2+b =2,解得a =1,b =52.](1)求函数的最值时,应先确定函数的定义域.如本例(3).(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.如本例(1).(3)若函数f (x )在区间[a ,b ]上单调,则必在区间的端点处取得最值.如本例(2);若函数f (x )在区间[a ,b ]上不单调,则最小值为函数f (x )在该区间内的极小值和区间端点值中最小的值,最大值为函数 f (x )在该区间内的极大值和区间端点值中最大的值.1.函数f (x )=x 2+4x 的值域为________.(-∞,-4]∪[4,+∞) [当x >0时,f (x )=x +4x ≥4, 当且仅当x =2时取等号; 当x <0时,-x +⎝ ⎛⎭⎪⎫-4x ≥4,即f (x )=x +4x ≤-4, 当且仅当x =-2时取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞).]2.对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.1 [法一:(图像法)在同一坐标系中,作函数f (x ),g (x )图像, 依题意,h (x )的图像如图所示. 易知点A (2,1)为图像的最高点, 因此h (x )的最大值为h (2)=1.法二:(单调性法)依题意,h (x )=⎩⎨⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2 x 是增函数, 当x >2时,h (x )=3-x 是减函数,所以h(x)在x=2时取得最大值h(2)=1.]考点3函数单调性的应用比较大小比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.已知函数f (x )的图像向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >cD [根据已知可得函数f (x )的图像关于直线x =1对称,且在(1,+∞)上是减函数.所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,f (2)>f (2.5)>f (3),所以b >a >c .]本例先由[f (x 2)-f (x 1)](x 2-x 1)<0得出f (x )在(1,+∞)上是减函数,然后借助对称性,化变量-12,2,3于同一单调区间,并借助单调性比较大小.解不等式求解含“f”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f(g(x))>f(h(x))的形式,再根据函数的单调性去掉“f”,得到一般的不等式g(x)>h(x)(或g(x)<h(x)).此时要特别注意函数的定义域.定义在[-2,2]上的函数f(x)满足(x1-x2)·[f(x1)-f(x2)]>0,x1≠x2,且f(a2-a)>f(2a-2),则实数a的取值范围为()A.[-1,2) B.[0,2)C.[0,1) D.[-1,1)C[因为函数f(x)满足(x1-x2)[f(x1)-f(x2)]>0,x1≠x2,所以函数在[-2,2]上单调递增,所以-2≤2a-2<a2-a≤2,解得0≤a<1,故选C.]本例在求解时,应注意隐含条件为a2-a∈[-2,2],2a-2∈[-2,2].[教师备选例题]f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,则不等式f(x)+f(x-8)≤2的解集为________.(8,9] [因为2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2可得f [x (x -8)]≤f (9),f (x )是定义在(0,+∞)上的增函数,所以有⎩⎨⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.]根据函数的单调性求参数利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图像或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.(1)(2019·郑州模拟)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3(2)已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是( )A .(1,2)B .⎝ ⎛⎦⎥⎤1,32C .⎣⎢⎡⎭⎪⎫32,2D .⎝ ⎛⎭⎪⎫32,2(1)C (2)C [(1)y =x -a -2+a -3x -a -2=1+a -3x -a -2=1+a -3x -(a +2),由题意知⎩⎨⎧a -3<0,a +2≤-1,得a ≤-3. 所以a 的取值范围是a ≤-3. (2)由已知条件得f (x )为增函数,所以⎩⎨⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,2.故选C.]分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.如本例(2).1.若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]B [因为函数f (x )=2|x -a |+3=⎩⎨⎧2x -2a +3,x ≥a ,-2x +2a +3,x <a ,且函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,所以a >1.所以a 的取值范围是(1,+∞).故选B.]2.设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)D [作出函数f (x )的图像如图所示 ,由图像可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4,故选D.]3.已知函数f (x )=⎩⎨⎧ x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)D [因为当x =0时,两个表达式对应的函数值都为零,所以函数的图像是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,所以函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.]。
2021届高三数学(文理通用)一轮复习题型专题训练:函数与方程(二)(含解析)
《函数与方程》(二)考查内容:主要涉及函数零点个数的判断(方程法、数形结合法、图象法、零点存在定理与函数性质结合法)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数26,0()3ln ,0x x x f x x x ⎧--≤=⎨-+>⎩的零点个数为( )A .3B .2C .1D .02.已知函数ln ,0()2(2),0x x f x x x x ⎧>=⎨-+≤⎩,则函数()3y f x =-的零点个数是( )A .1B .2C .3D .43.函数()ln 1f x x x =-+的零点个数为( ) A .0B .1C .2D .34.已知函数()()y f x x R =∈满足(2)()f x f x +=,且(1,1]x ∈-时,2()f x x =,则4()log ||y f x x =-的零点个数为( ) A .8B .6C .4D .25.函数()sin 1f x x x =-在,22ππ⎛⎫- ⎪⎝⎭上的零点个数为( )A .2B .3C .4D .56.函数()22lg 2||f x x x x =+-的零点的个数为( ) A .2B .3C .4D .67.已知函数23(0),()1(0),x x x x f x e x -⎧-=⎨-+<⎩则方程|()1|2f x c -=-(c 为常数且(1,0)c ∈-)的不同的实数根的个数为( )A .3B .4C .5D .68.已知函数()2e e xx f x ax =--有且只有一个零点,则实数a 的取值范围为( )A .(],0-∞B .[)0,+∞ C .()()0,11,+∞ D .(]{},01-∞9.已知函数23||,3()(3),3x x f x x x -⎧=⎨->⎩,()(3)6g x f x +-=,则函数()()y f x g x =-的零点个数为( )A .0B .4C .3D .210.若函数()2020xlog x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则a 的取值范围是( ) A .(﹣∞,﹣1)∪(0,+∞) B .(﹣∞,﹣1)∪[0,+∞) C .[﹣1,0)D .[0,+∞)11.已知函数()sin ,02224xx f x x π⎧≤≤⎪=⎨⎪<≤⎩,若函数()()1g x f x kx =--恰有三个零点,则实数k 的取值范围为 ( )A .31,44⎡⎤--⎢⎥⎣⎦B .31,44⎛⎤-- ⎥⎝⎦C .41,34⎛⎫-- ⎪⎝⎭D .41,34⎛⎤-- ⎥⎝⎦12.已知函数()()21,1ln 1,1x x f x x x -≤⎧⎪=⎨->⎪⎩,则方程()()1f f x =根的个数为( )A .3B .5C .7D .9二.填空题13.函数()()2ln 14xf x x =⋅+-的零点个数为_______.14.已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.15.已知函数32ln(2),2,()68,,x x m f x x x x x m +-<<⎧=⎨-+≥⎩若函数()f x 仅有2个零点,则实数m 的取值范围为______. 16.已知函数,0()(1),0xlnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是__.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.求函数lg y x =和sin y x =的图像的交点个数.18.讨论a 取不同值时,关于x 的方程2|log |1|2|x a -+=的解的个数.19.已知函数()f x =,()3g x ax =-.(1)设函数()()()()25h x f x g x x =+-+,讨论函数()y h x =在区间[]0,2内的零点个数;(2)若对任意[]0,4x ∈,总存在[]02,2x ∈-,使得()()0g x f x =成立,求实数a 的取值范围.20.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[]2,4上单调递增,求m 的取值范围; (2)求()f x 在区间[]1,1-上的最小值()g m ; (3)讨论()f x 在区间[]3,3-上的零点个数.21.已知函数()22,182,1x a x f x ax x a x ⎧-≤=⎨-+>⎩,其中a R ∈.()1当1a =时,求()f x 的最小值; ()2当2a ≤时,讨论函数()f x 的零点个数.22.已知函数()34ln f x x x x=--. (1)求()f x 的单调区间;(2)判断()f x 在(]0,10上的零点的个数,并说明理由.(提示:ln10 2.303≈)《函数与方程》(二)解析1.【解析】若260x x --=.则2x =-或3x =.又∵0x ≤∴2x =- 若3ln 0x -+=,则3x e =满足0x >,综上,函数()f x 的零点个数为2. 故选:B2.【解析】当0x >时,3|ln |30,ln 3,x x x e -=∴=±∴=或3e -,都满足0x >; 当0x ≤时,222430,2430,20,164230x x x x ---=∴++=>∆=-⨯⨯<,所以方程没有实数根.综合得函数()3y f x =-的零点个数是2.故选:B3.【解析】函数()ln 1f x x x =-+的零点个数等价于函数ln y x =与函数1y x =-的图象的交点个数.在同一坐标系下作出函数ln y x =与1y x =-的图象,如下图:因为1(ln )y x x ''==,曲线ln y x =在点(1,0)处的切线的斜率为:11k x==, 所以曲线ln y x =在点(1,0)处的切线方程为1y x =-,所以可知两函数图象有一个交点,故函数()ln 1f x x x =-+的零点个数为1. 故选:B .4.【解析】因为()()y f x x R =∈为周期为2的函数,通过且(1,1]x ∈-时,2()f x x =,做出函数图象如图所示:4()log ||y f x x =-的零点个数即为()y f x =与4log ||y x =图象交点个数,由图象可知共有6个交点.故选:B.5.【解析】令()sin 10f x x x =-=,显然0x =不是函数的零点,可得1sin x x=. 故作出函数sin y x =和1y x =的图象,如图所示:在(,)22ππ-上有2个交点.故选:A6.【解析】函数()22lg 2||f x x x x =+-的零点个数,即方程22lg 2||x x x =-+的根的个数,考虑()()22lg ,2||g x x h x x x ==-+,定义在()(),00,-∞+∞的偶函数,当0x >时,()()22lg ,2g x x h x x x ==-+,作出函数图象:两个函数一共两个交点,即当0x >时22lg 2||x x x =-+有两根, 根据对称性可得:当0x <时22lg 2||x x x =-+有两根, 所以22lg 2||x x x =-+一共4个根,即函数()22lg 2||f x x x x =+-的零点的个数为4.故选:C7.【解析】由|()1|2f x c -=-,得()1(2)f x c =±-.∵(1,0)c ∈-, ∴1(2)(3,4),1(2)(2,1)c c +-∈--∈--. 作出函数()f x 和1(2)y c =±-的图象如图所示,易知它们的图象共有4个不同的交点,即方程|()1|2f x c -=-(c 为常数且(1,0)c ∈-)有4个不同的实数根.故选:B8.【解析】(0)1100f =--=,则可知0x =一定是函数()f x 的一个零点0x ≠时,可得:1x x e a x e -=,令1(),()x x e a g x h x x e -==,21()x x xe e g x x '-+=,令()1x x u x xe e =-+, ()xu e x x '=,可得函数()u x 在0x =时取得极小值即最小值 ,()()00u x u ∴≥=.())'0(0g x x ∴>≠.∴函数()g x 在(,0)-∞和(0,)+∞上单调递增,此时,()0g x >恒成立,对于()xa h x e =, 0a <时 , 函数()g x 与()h x 没有交点,如下图,满足条件0a =时 , 函数()g x 与()h x 没有交点,如下图,满足条件1a =时 , 函数1()x h x e=, 经过()0,1, 与函数()g x 的图象没有交点, 如下图,满足条件 .0a >, 且1a ≠时 , 函数()h x 与函数()g x 的图象有交点,如下图,不满足条件,舍去 .综上可得:实数a 的取值范围为{}(],01-∞⋃,故选:D .9.【解析】由()6(3)g x f x =--,知()()()(3)6y f x g x f x f x =-=+--. 令()()(3)F x f x f x =+-,则(3)(3)()F x f x f x -=-+, 所以(3)()F x F x -=,即()F x 的图象关于直线32x =对称.当302x时,()()(3)33(3)3F x f x f x x x =+-=-+--=; 当0x <时,2221()()(3)3(33)32F x f x f x x x x x x ⎛⎫=+-=++--=++=++⎪⎝⎭114.作出()F x 的图象可知,函数()6F x =的解有2个,所以函数()()y f x g x =-的零点个数2个.故选:D10.【解析】当x >0时,因为log 21=0,所以有一个零点,所以要使函数()2020x log x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则当x ≤0时,函数f (x )没有零点即可,当x ≤0时,0<2x ≤1,∴﹣1≤﹣2x <0,∴﹣1﹣a ≤﹣2x ﹣a <﹣a ,所以﹣a ≤0或﹣1﹣a >0,即a ≥0或a <﹣1.故选:B11.【解析】当24x <≤时,y =,则0y ≤,等式两边平方得2268y x x =-+-,整理得()2231x y -+=,所以曲线)24y x =<≤表示圆()2231x y -+=的下半圆,如下图所示:由题意可知,函数()y g x =有三个不同的零点,等价于直线1y kx =+与曲线()y f x =的图象有三个不同交点,直线1y kx =+过定点()0,1P ,当直线1y kx =+过点()4,0A 时,则410k +=,可得14k =-; 当直线1y kx =+与圆()2231x y -+=相切,且切点位于第三象限时,k0<,1=,解得34k =-.由图象可知,当3144k -<≤-时,直线1y kx =+与曲线()y f x =的图象有三个不同交点.因此,实数k 的取值范围是31,44⎛⎤-- ⎥⎝⎦. 故选:B.12.【解析】令()u f x =,先解方程()1f u =. (1)当1u ≤时,则()211f u u =-=,得11u =;(2)当1u >时,则()()ln 11f u u =-=,即()ln 11u -=±,解得211u e=+,31u e =+. 如下图所示:直线1u =,11u e=+,1u e =+与函数()u f x =的交点个数为3、2、2, 所以,方程()1f f x ⎡⎤=⎣⎦的根的个数为3227++=.故选:C. 13.【解析】令()()2ln 140xf x x =⋅+-=,则()24ln 122x x x -+==, 在同一直角坐标系中作出函数()ln 1y x =+与22xy -=的图象,如图:由图象可知,函数()ln 1y x =+当1x →-时,()ln 1y x =+→+∞则与22xy -=的图象有必有两个交点, 所以方程()24ln 122xxx -+==有两个不同实根,所以函数()()2ln 14x f x x =⋅+-的零点个数为2.故答案为:2.14.【解析】作出函数()f x 的图象,如图所示,由图象可知,当01k <<时,函数()f x 与y k =的图象有两个不同的交点, 此时,方程有两个不同实根,所以所求实数k 的取值范围是(0,1).故答案为:(0,1) 15.【解析】对于函数3268y x x x =-+,23128y x x '=-+,令0y '=,解得23x =±,故当,2x ⎛∈-∞- ⎝⎭时,0y '>;当22x ⎛∈ ⎝⎭时,0y '<;当2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,0y '>; 令ln(2)0x +=,解得1x =-;令32680x x x -+=,解得0x =,2x =或4x =. 作出ln(2)y x =+,3268y x x x =-+的大致图像:观察可知,若函数()f x 仅有2个零点,则24m <≤,故实数m 的取值范围为(]2,4. 16.【解析】当0x >时,函数()f x lnx =单调递增;当0x ≤时,()(1)xf x e x =+,则()(2)x f x e x '=+2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x ≤时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,所以()f x 在2x =-处取极小值,极小值为2(2)f e --=-;当1x <-时,()(1)0xf x e x =+< 作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个交点,由图可知,20e c --<<,故答案为:()20,e -- 17.【解析】由1y lgx ==解得10x =,又sin y x =的值域为[]1,1-, 且y lgx =在定义域上单调递增,作出函数sin y x =与y lgx =的图象如图: 由图象可知两个图象的交点个数为3个,18.【解析】令2()|log |1|2|f x x =-+,作出函数()f x 的图象,如图所示,所求问题可转化为函数()f x ,与直线y a =交点的个数问题. 当0a <时,()y f x =与y a =无交点,所以原方程无解; 当0a =时,()y f x =与y a =有两个交点,原方程有2个解; 当0a >时,()y f x =与y a =有四个交点,原方程有4个解.19.【解析】(1)因为()()()()()22511h x fx g x x x a x =+-+=+-+,令()0h x =,则()2110x a x +-+=,当=0x 时,则10=,不符合条件,当0x ≠时,则11a x x-=+ 作函数1y a =-与()102y x x x=+<≤的图象,由图可知:①当12a -<时,即1a >-时,两图象无公共点,则()h x 在区间[]0,2内无零点;②当12a -=时或512a ->时,即32a <-或1a =-时,两图象仅有一个公共点, 则()h x 在区间[]0,2内仅有一个零点; ③当5212a <-≤时,即312a -≤<-时,两图象有两个公共点, 则()h x 在区间[]0,2内有两个零点.(2)当[]0,4x ∈时,[]20,16x ∈,则[]299,25x +∈,所以()f x 的值域是[]3,5; 当[]02,2x ∈-时,设函数()0g x 的值域是M ,依题意,[]3,5M ⊆,①当0a =时,()03g x =-不合题意;②当0a >时,()()[]2,223,23M g g a a =-=---⎡⎤⎣⎦, 由()()2523g g ⎧≥⎪⎨-≤⎪⎩ ,得2352330a a a -≥⎧⎪--≤⎨⎪>⎩,解得4a ≥; ③当0a <时,()()[]2,223,23M g g a a =-=---⎡⎤⎣⎦,由()()2523g g ⎧-≥⎪⎨≤⎪⎩,得2352330a a a --≥⎧⎪-≤⎨⎪<⎩,解得4a ≤-; 综上得,实数a 的取值范围是(][),44,-∞-⋃+∞.20.【解析】(1)由题意,函数2()()7f x x mx m m R =++-∈开口向上,对称轴的方程为2m x =-,若使得函数()f x 在[]2,4上单调递增,则满足122m -≤,解得4m ≥-,即实数m 的取值范围[4,)-+∞.(2)①当112m -≤-即2m ≥时,函数()y f x =在区间[]1,1-单调递增, 所以函数()y f x =的最小值为()()16g m f =-=-;②当1112m -<-<,即22m -<<时, 函数()y f x =在区间11,2m ⎡⎤--⎢⎥⎣⎦单调递减,在区间1,12m ⎡-⎤⎢⎥⎣⎦上单调递增, 所以函数()y f x =的最小值为21()724m g m f m m ⎛⎫=-=-+- ⎪⎝⎭; ③当112m -≥即2m ≤-时,函数()y f x =在区间[]1,1-单调递减, 所以函数()y f x =的最小值为()()126g m g m ==-, 综上可得,函数的最小值为226,27(),2246,2m m m m g m m m -≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩. (3)因为函数()y f x =的对称轴方程为12x m =-,且24280m m ∆=-+>恒成立, ①当()()133232203420m f m f m ⎧-<-<⎪⎪-=-≥⎨⎪=+≥⎪⎩,即112m -≤≤时, 函数()f x 在区间[]3,3-上有2个零点; ②当()1323220m f m ⎧-≤-⎪⎨⎪-=-≥⎩,此时m 不存在; ③当()1323420m f m ⎧-≥⎪⎨⎪=+≥⎩,此时m 不存在;④当()()330f f -⋅≤,即()()22420m m -+≤,解得m 1≥或12m ≤-时,函数()f x 在区间[]3,3-上有1个零点. 综上可得:当112m -≤≤时,函数()f x 在区间[]3,3-上有2个零点, 当m 1≥或12m ≤-时,函数()f x 在区间[]3,3-上有1个零点. 21.【解析】()1当1a =时,()221,182,1x x f x x x x ⎧-≤=⎨-+>⎩,则当1x ≤时,()f x 在(],1-∞上单调递增,()1f x >-且无最小值;当1x >时,由二次函数()()2282414g x x x x =-+=--知,()f x 在(]1,4上单调递减,在()4,+∞上单调递增,故()()min 414f x f ==-.()2当0a ≤,1x ≤时,()f x 没有零点,当1x >时,()f x 没有零点;当02a <≤,1x ≤时,()f x 有一个零点,当1x >时,()f x 有一个零点.22.【解析】(1)由题意知,()f x 的定义域为()0,∞+,则令2223443()10x x f x x x x -+'=+-==, 解得1x =或3x =,当01x <<或3x >时,()0f x '>,则此时()f x 单调递增; 当13x <<时,()0f x '<,则此时()f x 单调递减.故()f x 的单调递增区间是()0,1和()3,+∞,单调递减区间是()1,3.(2)由函数在()0,1上单调递增,在()1,3上单调递减,则当03x <≤时,()()12f x f ≤=-,故()f x 在(]0,3上无零点;又()324ln30f =-<,当310x <≤时,因为3(10)104ln10100.34 2.3030.488010f =--≈--⨯=>, 又()f x 在(]3,10上单调递增,所以()f x 在(]3,10上仅有一个零点.综上,()f x 在(]0,10上的零点的个数为1.。
高考数学一轮复习:函数与方程(Word版,含解析)
函数与方程基础练一、选择题1.[2021·河南濮阳模拟]函数f (x )=ln2x -1的零点所在区间为( )A .(2,3)B .(3,4)C .(0,1)D .(1,2)2.函数f (x )=x 2+ln x -2021的零点个数是( )A .3B .2C .1D .03.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( )A.(-1,0) B .C .(1,2) D .(2,3)4.[2021·四川绵阳模拟]函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)5.[2021·大同调研]已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >03x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]二、填空题6.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________. 7.[2021·新疆适应性检测]设a ∈Z ,函数f (x )=e x +x -a ,若x ∈(-1,1)时,函数有零点,则a 的取值个数为________.8.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 三、解答题9.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同的零点,求实数a 的取值范围.10.已知函数f (x )=ax 2+bx +c (a ≠0),满足f (0)=2,f (x +1)-f (x )=2x -1.(1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-mx 的两个零点分别在区间(-1,2)和(2,4)内,求m 的取值范围.能力练11.[2021·天津部分区质量调查]已知函数f (x )=若关于x 的方程f (x )=m (m ∈R )恰有三个不同的实数根a ,b ,c ,则a +b +c 的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫34,1C.⎝⎛⎭⎫34,2D.⎝⎛⎭⎫32,212.[2021·长沙市四校高三年级模拟考试]已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤01x ,x >0,若方程f (x )=a (x +3)有四个不同的实数根,则实数a 的取值范围是( )A .(-∞,4-23)B .(4-23,4+23)C .(0,4-23]D .(0,4-23)13.[2021·山西省六校高三阶段性测试]函数y =5sin ⎝⎛⎭⎫π5x +π5(-15≤x ≤10)的图象与函数y=5(x +1)x 2+2x +2图象的所有交点的横坐标之和为______.参考答案:1.解析:由f (x )=ln2x -1,得函数是增函数,并且是连续函数,f (1)=ln2-1<0,f (2)=ln4-1>0,根据函数零点存在性定理可得,函数f (x )的零点位于区间(1,2)上,故选D.答案:D2.解析:由题意知x >0,由f (x )=0得ln x =2021-x 2,画出函数y =ln x 与函数y =2021-x 2的图象(图略),即可知它们只有一个交点.故选C.答案:C3.解析:设f (x )=e x -(x +2),则f (1)=-0.28<0,f (2)=3.39>0,故方程e x -x -2=0的一个根在区间(1,2)内.故选C.答案:C4.解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧ f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C 项. 答案:C5.解析:h (x )=f (x )+x -a 有且只有一个零点,即方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.在同一坐标系中作出函数f (x )的图象和直线y =-x +a ,如图所示,若函数y =f (x )的图象与直线y =-x +a 有且只有一个交点,则有a >1,故选B.答案:B 6.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-127.解析:根据函数解析式得到函数f (x )是单调递增的.由零点存在性定理知若x ∈(-1,1)时,函数有零点,需要满足⎩⎪⎨⎪⎧f (-1)<0,f (1)>0⇒1e -1<a <e +1,因为a 是整数,故可得a 的可能取值为0,1,2,3.答案:48.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点.令f (x )=0,得a =2x .因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是(0,1].答案:(0,1]9.解析:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同的实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).10.解析:(1)由f (0)=2得c =2,又f (x +1)-f (x )=2x -1,得2ax +a +b =2x -1,故⎩⎪⎨⎪⎧2a =2,a +b =-1,解得a =1,b =-2,所以f (x )=x 2-2x +2. (2)g (x )=x 2-(2+m )x +2,若g (x )的两个零点分别在区间(-1,2)和(2,4)内,则满足⎩⎪⎨⎪⎧ g (-1)>0,g (2)<0,g (4)>0⇒⎩⎪⎨⎪⎧ 5+m >0,2-2m <0,10-4m >0,解得1<m <52.所以m 的取值范围为⎝⎛⎭⎫1,52. 11.解析:假设a <b <c ,通过作图可得a ∈⎝⎛⎭⎫-12,0,b +c =2,所以a +b +c ∈⎝⎛⎭⎫32,2,故选D 项.答案:D12.解析:方程f (x )=a (x +3)有四个不同的实数根可化为函数y =f (x )与y =a (x +3)的图象有四个不同的交点,易知直线y =a (x +3)恒过点(-3,0),作出函数y =f (x )的大致图象如图所示,结合函数图象,可知a >0且直线y =a (x +3)与曲线y =-x 2-2x ,x ∈[-2,0]有两个不同的公共点,所以方程x 2+(2+a )x +3a =0在[-2,0]上有两个不等的实数根,令g (x )=x 2+(2+a )x +3a ,则实数a 满足⎩⎪⎨⎪⎧ Δ=(2+a )2-12a >0-2<-2+a 2<0g (0)=3a ≥0g (-2)=a ≥0,解得0≤a <4-23,又a >0,所以实数a 的取值范围是(0,4-23),故选D.答案:D 13.解析:函数y =5sin ⎝⎛⎭⎫π5x +π5(x ∈R )的图象关于点(-1,0)对称.对于函数y =5(x +1)x 2+2x +2,当x =-1时,y =0,当x ≠-1时,易知函数y =5(x +1)x 2+2x +2=5x +1+1x +1在(-1,0)上单调递增,在(0,+∞)上单调递减,且当x ∈(-1,+∞)时,y =5(x +1)x 2+2x +2的最大值为52,函数图象关于点(-1,0)对称.对于函数y =5sin ⎝⎛⎭⎫π5x +π5,当x =0时,y =5sin π5>5sin π6=52,所以在(-1,0)内两函数图象有一个交点.根据两函数图象均关于点(-1,0)对称.可知两函数图象的交点关于点(-1,0)对称,画出两函数在[-15,10]上的大致图象,如图,得到所有交点的横坐标之和为-1+(-2)×3=-7.答案:-7。
2021届高考数学一轮复习第二章函数、导数及其应用考点测试6函数的单调性(含解析)人教版B版
考点测试6 函数的单调性高考概览本考点是高考的常考知识点,常与函数的奇偶性、周期性相结合综合考查.题型为选择题、填空题,分值5分,难度为低、中、高各种档次 考纲研读 1.理解函数的单调性、最大值、最小值及其几何意义 2.会运用基本初等函数的图象分析函数的单调性一、基础小题1.下列函数中,在区间(0,1)上是增函数的是( ) A .y =|x | B .y =3-x C .y =1xD .y =-x 2+4答案 A解析 函数y =3-x ,y =1x,y =-x 2+4在(0,1)上均为减函数,y =|x |在(0,1)上为增函数,故选A.2.函数y =x 2-6x +10在区间(2,4)上( ) A .递减 B .递增 C .先递减后递增 D .先递增后递减答案 C解析 由函数y =x 2-6x +10的图象开口向上,对称轴为直线x =3,知y =x 2-6x +10在(2,4)上先递减后递增,故选C.3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫12,+∞ D .⎝⎛⎭⎪⎫-∞,12 答案 D解析 当2a -1<0,即a <12时,该函数是R 上的减函数.故选D.4.已知函数y =f (x )在R 上单调递增,且f (m 2+1)>f (-m +1),则实数m 的取值范围是( )A .(-∞,-1)B .(0,+∞)C .(-1,0)D .(-∞,-1)∪(0,+∞)答案 D解析 由题意得m 2+1>-m +1,故m 2+m >0,解得m <-1或m >0.故选D. 5.函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是( )A.32 B .-83C .-2D .2答案 A解析 因为f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上为减函数,所以当x =-2时,f (x )取得最大值,且为2-12=32.故选A.6.函数f (x )=⎩⎪⎨⎪⎧x +cx ≥0,x -1x <0是增函数,则实数c 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1)D .(-∞,-1]答案 A解析 ∵f (x )在R 上单调递增,∴c ≥-1,即实数c 的取值范围是[-1,+∞).故选A.7.设函数f (x )在R 上为增函数,则下列结论一定正确的是( ) A .y =1f x在R 上为减函数B .y =|f (x )|在R 上为增函数C .y =-1f x在R 上为增函数D .y =-f (x )在R 上为减函数 答案 D解析 A 错误,如y =x 3,y =1f x在R 上无单调性;B 错误,如y =x 3,y =|f (x )|在R 上无单调性; C 错误,如y =x 3,y =-1f x在R 上无单调性;故选D.8.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-113,-3 B .[-6,-4] C .[-3,-22] D .[-4,-3]答案 B解析 由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].9.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1]B .(-1,0)∪(0,1)C .(0,1)D .(0,1]答案 D解析 f (x )=-(x -a )2+a 2,当a ≤1时,f (x )在[1,2]上是减函数;g (x )=ax +1,当a >0时,g (x )在[1,2]上是减函数,则a 的取值范围是0<a ≤1.故选D.10.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c答案 D解析 因为f (x )的图象关于直线x =1对称,所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),所以b >a >c .11.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.答案 (-∞,1]∪[4,+∞)解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.12.已知f (x )=ax +1x +2,若对任意x 1,x 2∈(-2,+∞),有(x 1-x 2)[f (x 1)-f (x 2)]>0,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 由f (x )=ax +1x +2=a +1-2ax +2,且y =f (x )在(-2,+∞)上是增函数,得1-2a <0,即a >12.二、高考小题13.(2019·全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )答案 C解析 因为f (x )是定义域为R 的偶函数,所以f ⎝ ⎛⎭⎪⎫log 314=f (-log 34)=f (log 34).又因为log 34>1>>0,且函数f (x )在(0,+∞)单调递减,所以f (log 34)< .故选C.14.(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |答案 A解析 作出函数f (x )=|cos2x |的图象,如图.由图象可知f (x )=|cos2x |的周期为π2,在区间⎝⎛⎭⎪⎫π4,π2上单调递增.同理可得f (x )=|sin2x |的周期为π2,在区间⎝ ⎛⎭⎪⎫π4,π2上单调递减,f (x )=cos|x |的周期为2π.f (x )=sin|x |不是周期函数.故选A.15.(2017·全国卷Ⅱ)函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0可得x >4或x <-2,所以x ∈(-∞,-2)∪(4,+∞),令u =x2-2x -8,则其在x ∈(-∞,-2)上单调递减,在x ∈(4,+∞)上单调递增.又因为y =ln u 在u ∈(0,+∞)上单调递增,所以f (x )=ln (x 2-2x -8)在x ∈(4,+∞)上单调递增.故选D.16.(2017·北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 答案 A解析 ∵函数f (x )的定义域为R ,f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-f (x ),∴函数f (x )是奇函数.∵函数y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,∴函数y =-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.又y =3x在R上是增函数,∴函数f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.故选A.17.(2016·北京高考)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln (x +1)D .y =2-x答案 D解析 A 中,y =11-x =1-x -1的图象是将y =-1x的图象向右平移1个单位得到的,故y =11-x在(-1,1)上为增函数,不符合题意;B 中,y =cos x 在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;C 中,y =ln (x +1)的图象是将y =ln x 的图象向左平移1个单位得到的,故y =ln (x +1)在(-1,1)上为增函数,不符合题意;D 中,y =2-x=⎝ ⎛⎭⎪⎫12x 在(-1,1)上为减函数,所以D 符合题意.18.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,32 解析 由题意知函数f (x )在(0,+∞)上单调递减.因为f (2|a -1|)>f (-2),且f (-2)=f (2),所以f (2|a -1|)>f (2),所以2|a -1|<,解得12<a <32.三、模拟小题19.(2019·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]答案 B解析 因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a ,-2x +2a +3,x <a ,因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,所以a >1,所以a 的取值范围是(1,+∞).故选B.20.(2019·郑州模拟)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3答案 C 解析 y =x -a -2+a -3x -a -2=1+a -3x -a -2=1+a -3x -a +2,由题意知⎩⎪⎨⎪⎧a -3<0,a +2≤-1,得a ≤-3.所以a 的取值范围是a ≤-3.21.(2019·重庆模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知得,当-2≤x ≤1时,f (x )=x -2;当1<x ≤2时,f (x )=x 3-2.因为f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,所以f (x )的最大值为f (2)=23-2=6.22.(2019·漳州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln x +1,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案 D解析 因为当x =0时,两个表达式对应的函数值都为零,所以函数的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln (x +1)也是增函数,所以函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.23.(2020·沈阳市高三摸底)如果函数y =f (x )在区间I 上是增函数,且函数y =f xx在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]答案 D解析 因为函数f (x )=12x 2-x +32的对称轴为直线x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f x x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤ 3,即函数f x x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].24.(2019·广东名校联考)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.答案 [0,1)解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其单调递减区间是[0,1).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2019·福建泉州高三阶段测试)已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1;②当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解 (1)令x =y =0得f (0)=-1. 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f ((x 1-x 2)+x 2)=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又因为f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.2.(2019·安徽肥东高级中学调研)函数f (x )=2x -ax的定义域为(0,1]. (1)当a =-1时,求函数f (x )的值域;(2)若f (x )在定义域上是减函数,求a 的取值范围.解 (1)因为a =-1,所以函数f (x )=2x +1x ≥22⎝ ⎛⎭⎪⎫当且仅当x =22时,等号成立,所以函数f (x )的值域为[22,+∞).(2)若函数f (x )在定义域上是减函数,则任取x 1,x 2∈(0,1]且x 1<x 2都有f (x 1)>f (x 2)成立, 即f (x 1)-f (x 2)=(x 1-x 2)⎝⎛⎭⎪⎫a +2x 1x 2x 1x 2>0,只要a <-2x 1x 2即可,由x 1,x 2∈(0,1],得-2x 1x 2∈(-2,0),所以a ≤-2,故a 的取值范围是(-∞,-2].3.(2019·湖南永州模拟)已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧f x ,x >0,-fx ,x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)因为f (-1)=0,所以a -b +1=0, 所以b =a +1,所以f (x )=ax 2+(a +1)x +1. 因为对任意实数x 均有f (x )≥0恒成立, 所以⎩⎪⎨⎪⎧a >0,Δ=a +12-4a ≤0,所以⎩⎪⎨⎪⎧a >0,a -12≤0.所以a =1,从而b =2,所以f (x )=x 2+2x +1,所以F (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. 因为g (x )在[-2,2]上是单调函数, 所以k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.故实数k 的取值范围是(-∞,-2]∪[6,+∞).4.(2019·陕西西安长安区大联考)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.(1)求f (1)的值;(2)证明:f (x )为单调增函数;(3)若f ⎝ ⎛⎭⎪⎫15=-1,求f (x )在⎣⎢⎡⎦⎥⎤125,125上的最值. 解 (1)因为函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2), 令x 1=x 2=1,则f (1)=f (1)+f (1),解得f (1)=0. (2)证明:设x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,所以f ⎝ ⎛⎭⎪⎫x 1x2>0,所以f (x 1)-f (x 2)=f ⎝⎛⎭⎪⎫x 2·x 1x2-f (x 2)=f (x 2)+f ⎝ ⎛⎭⎪⎫x 1x 2-f (x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (3)因为f (x )在(0,+∞)上是增函数.若f ⎝ ⎛⎭⎪⎫15=-1,则f ⎝ ⎛⎭⎪⎫15+f ⎝ ⎛⎭⎪⎫15=f ⎝ ⎛⎭⎪⎫125=-2, 因为f ⎝ ⎛⎭⎪⎫15×5=f (1)=f ⎝ ⎛⎭⎪⎫15+f (5)=0, 所以f (5)=1,则f (5)+f (5)=f (25)=2,f (5)+f (25)=f (125)=3,即f (x )在⎣⎢⎡⎦⎥⎤125,125上的最小值为-2,最大值为3.。
高考一轮复习第2章函数导数及其应用第9讲函数与方程
第九讲函数与方程知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE知识梳理知识点一函数的零点1.函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.注:函数的零点不是点.是函数f(x)与x轴交点的横坐标,而不是y=f(x)与x轴的交点.2.几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.知识点二二分法1.对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点c;(3)计算f(c);①若f(c)=0,则c就是函数的零点;②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).(4)判断是否达到精确度ε,即:若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)(3)(4).重要结论1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)由函数y=f(x)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示.所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶个零点)时,函数值才变号,即相邻两个零点之间的函数值同号.(5)若函数f(x)在[a,b]上单调,且f(x)的图象是连续不断的一条曲线,则f(a)·f(b)<0⇒函数f(x)在[a,b]上只有一个零点.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0 Δ=0 Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数两个零点一个零点无零点双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.( ×)(2)二次函数y=ax2+bx+c(a≠0)在当b2-4ac<0时没有零点.( √)(3)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×)(4)若f(x)在区间[a,b]上连续不断,且f(a)·f(b)>0,则f(x)在(a,b)内没有零点.( ×)(5)函数y=2x与y=x2只有两个交点.( ×)[解析](1)函数的零点是函数图象与x轴交点的横坐标.(2)当b2-4ac<0时,抛物线与x轴无交点,故没有零点.(3)函数图象若没有穿过x轴,则f(a)·f(b)>0.(4)若在区间[a,b]内有多个零点,f(a)·f(b)>0也可以.(5)y=x2与y=2x在y轴左侧一个交点,y轴右侧两个交点,如在x=2和x=4处都有交点.题组二走进教材2.(必修1P92AT2改编)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1 2 3 4 5f(x) -4 -2 1 4 7在下列区间中,函数f(x)A.(1,2) B.(2,3)C.(3,4) D.(4,5)[解析]由所给的函数值的表格可以看出,x=2与x=3这两个数字对应的函数值的符号不同,即f(2)·f(3)<0,所以函数在(2,3)内有零点,故选B.3.(必修1P92AT1改编)下列函数图象与x轴均有公共点,其中能用二分法求零点的是( C )[解析]A,B图中零点两侧不异号,D图不连续.故选C.4.(必修1P92AT4改编)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值(精确度0.1)如下表所示:x 1.25 1.312 5 1.375 1.437 5 1.5 1.562 5f(x) -0.871 6 -0.578 8 -0.281 3 0.210 1 0.328 43 0.641 15则方程2x+3x=7的近似解(精确到0.1)可取为( C )A.1.32 B.1.39C.1.4 D.1.3[解析]通过上述表格得知函数唯一的零点x0在区间(1.375,1.437 5)内,故选C.题组三走向高考5.(2015·安徽,5分)下列函数中,既是偶函数又存在零点的是( A )A.y=cos x B.y=sin xC.y=ln x D.y=x2+1[解析]y=cos x是偶函数且有无数多个零点,y=sin x为奇函数,y=ln x既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点,故选A.6.(2019·全国卷Ⅲ,5分)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( B )A.2 B.3C.4 D.5[解析]f(x)=2sin x-2sin xcos x=2sin x(1-cos x),令f(x)=0,则sin x=0或cos x=1,所以x=kπ(k∈Z),又x∈[0,2π],所以x=0或x=π或x=2π.故选B.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一,函数的零点考向1 确定函数零点所在区间——自主练透例1 (1)若函数f(x)的图象是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是( D )A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(1,2)内有零点C.函数f(x)在区间(0,2)内有零点D.函数f(x)在区间(0,4)内有零点(2)(2021·开封模拟)函数f(x)=x+ln x-3的零点所在的区间为( C )A.(0,1) B.(1,2)C.(2,3) D.(3,4)(3)(多选题)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)·(x-c)+(x-c)(x-a)的零点位于区间可能为( BC )A.(-∞,a) B.(a,b)C.(b,c) D.(c,+∞)[解析](1)因为f(1)·f(2)·f(4)<0,所以f(1)、f(2)、f(4)中至少有一个小于0.若f(1)<0,则在(0,1)内有零点,在(0,4)内必有零点;若f(2)<0,则在(0,2)内有零点,在(0,4)内必有零点;若f(4)<0,则在(0,4)内有零点.故选D.(2)解法一:利用零点存在性定理因为函数f(x)是增函数,且f(2)=ln 2-1<0,f(3)=ln 3>0,所以由零点存在性定理得函数f(x)的零点位于区间(2,3)内,故选C.解法二:数形结合函数f(x)=x+ln x-3的零点所在区间转化为g(x)=ln x,h(x)=-x+3的图象的交点横坐标所在范围.如图所示,可知f(x)的零点在(2,3)内.(3)易知f(a)=(a-b)(a-c),f(b)=(b-c)·(b-a),f(c)=(c-a)(c-b).又a<b<c,则f(a)>0,f(b)<0,f(c)>0,又该函数是二次函数,且图象开口向上,可知两个零点分别位于区间(a,b)和(b,c)内,故选B、C.名师点拨MING SHI DIAN BO确定函数零点所在区间的方法(1)解方程法:当对应方程f(x)=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)利用函数零点的存在性定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 考向2 函数零点个数的确定——师生共研例2 (1)函数f(x)=⎩⎪⎨⎪⎧x 2+x -2,x≤0,-1+ln x ,x>0的零点个数为( B )A .3B .2C .7D .0(2)已知f(x)=⎩⎪⎨⎪⎧|lg x|,x>0,2|x|,x≤0,则函数y =2f 2(x)-3f(x)+1的零点个数为5.[解析] (1)解法一:(直接法)由f(x)=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x>0,-1+ln x =0,解得x =-2或x =e. 因此函数f(x)共有2个零点.解法二:(图象法)函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点. (2)令2f 2(x)-3f(x)+1=0,解得f(x)=1或f(x)=12,作出f(x)的简图:由图象可得当f(x)=1或f(x)=12时,分别有3个和2个交点,则关于x 的函数y =2f 2(x)-3f(x)+1的零点的个数为5.名师点拨 MING SHI DIAN BO函数零点个数的判定有下列几种方法(1)直接求零点:令f(x)=0,如果能求出解,那么有几个解就有几个零点.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b]上是连续的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:利用函数y =f(x)的图象与x 轴的交点的个数,从而判定零点的个数,或转化为两个函数图象交点个数问题.画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.〔变式训练1〕(1)已知函数f(x)=⎩⎪⎨⎪⎧x 2-2x ,x≤0,1+1x ,x>0,则函数y =f(x)+3x 的零点个数是( C )A .0B .1C .2D .3(2)设函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=e x+x -3,则f(x)的零点个数为( C ) A .1 B .2 C .3D .4(3)(2020·河南名校联考)函数f(x)=⎩⎪⎨⎪⎧|log 2x|,x>0,2x ,x≤0,则函数g(x)=3[f(x)]2-8f(x)+4的零点个数是( A )A .5B .4C .3D .6[解析] (1)由已知得y =f(x)+3x =⎩⎪⎨⎪⎧x 2+x ,x≤0,1+1x+3x ,x>0.令x 2+x =0,解得x =0或x =-1.令1+1x +3x =0(x>0)可得3x 2+x +1=0.因为Δ=1-12<0,所以方程3x 2+x +1=0无实根.所以y =f(x)+3x 的零点个数是2.(2)f(x)=e x+x -3在(0,+∞)上为增函数,f ⎝ ⎛⎭⎪⎫12=e 12-52<0,f(1)=e -2>0,∴f(x)在(0,+∞)上只有一个零点,由奇函数性质得f(x)在(-∞,0)上也有一个零点,又f(0)=0,所以f(x)有三个零点,故选C .(3)本题考查函数的零点与方程根的个数的关系.函数g(x)=3[f(x)]2-8f(x)+4=[3f(x)-2][f(x)-2]的零点,即方程f(x)=23和f(x)=2的根.函数f(x)=⎩⎪⎨⎪⎧|log 2x|,x>0,2x ,x≤0的图象如图所示,由图可得方程f(x)=23和f(x)=2共有5个根,即函数g(x)=3[f(x)]2-8f(x)+4有5个零点. 考向3 函数零点的应用——多维探究 角度1 与零点有关的比较大小例3 已知函数f(x)=2x+x ,g(x)=x -log 12x ,h(x)=log 2x -x 的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系为( D )A .x 1>x 2>x 3B .x 2>x 1>x 3C .x 1>x 3>x 2D .x 3>x 2>x 1[解析] 由f(x)=2x+x =0,g(x)=x -log 12x =0,h(x)=log 2x -x =0,得2x=-x ,x =log 12x ,log 2x=x ,在平面直角坐标系中分别作出y =2x与y =-x 的图象;y =x 与y =log 12x 的图象;y =log 2x 与y =x 的图象,由图可知:-1<x 1<0,0<x 2<1,x 3>1.所以x 3>x 2>x 1.角度2 已知函数的零点或方程的根求参数例4 (2018·全国Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧e x,x≤0,ln x ,x>0,g(x)=f(x)+x +a.若g(x)存在2个零点,则a 的取值范围是( C ) A .[-1,0) B .[0,+∞) C .[-1,+∞) D .[1,+∞)[解析]令h(x)=-x -a ,则g(x)=f(x)-h(x).在同一坐标系中画出y =f(x),y =h(x)图象的示意图,如图所示.若g(x)存在2个零点,则y =f(x)的图象与y =h(x)的图象有2个交点.由图知-a≤1,∴a≥-1.名师点拨 MING SHI DIAN BO 1.比较零点大小常用方法:(1)确定零点取值范围,进而比较大小; (2)数形结合法.2.已知函数有零点(方程有根)求参数值常用的方法和思路:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解. 〔变式训练2〕(1)(角度1)(2021·安徽蚌埠月考)已知函数f(x)=3x+x ,g(x)=log 3x +x ,h(x)=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为( B )A .a<b<cB .a<c<bC .a>b>cD .c>a>b(2)(角度2)(2021·杭州学军中学月考)已知函数f(x)=⎩⎪⎨⎪⎧2x-a ,x≤0,2x -1,x>0(a∈R),若函数f(x)在R 上有两个零点,则a 的取值范围是( D )A .(-∞,-1)B .(-∞,-1]C .[-1,0)D .(0,1][分析] (1)解法一:依据零点存在定理,确定a ,b ,c 所在区间,进而比较大小;解法二:分别作出y =3x、y =log 3x 、y =x 3与y =-x 的图象,比较其交点横坐标的大小即可.[解析](1)解法一:∵f(-1)=3-1-1=-23,f(0)=1,∴a∈⎝ ⎛⎭⎪⎫-23,0,又g ⎝ ⎛⎭⎪⎫13=log 313+13=-23,g(1)=1,∴b∈⎝ ⎛⎭⎪⎫13,1,显然c =0,∴a<c<b,故选B .解法二:数形结合法,在同一坐标系中分别作出y =3x、y =log 3x 、y =-x 的图象,结合图象及c =0可知a<c<b ,故选B .解法三:由概念知b>0,a<0,c<0,∴b 最大,选B .(2)∵当x>0时,f(x)=2x -1, 由f(x)=0得x =12,∴要使f(x)在R 上有两个零点, 则必须2x-a =0在(-∞,0]上有解. 又当x ∈(-∞,0]时,2x∈(0,1]. 故所求a 的取值范围是(0,1].考点二 二分法及其应用——自主练透例5 (1)用二分法研究函数f(x)=x 3+3x -1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈(0,0.5),第二次应计算f(0.25).(2)在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可判定该根所在的区间为⎝ ⎛⎭⎪⎫32,2. (3)在用二分法求方程x 2=2的正实数根的近似解(精确度0.001)时,若我们选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算的次数是7.[解析] (1)因为f(0)<0,f(0.5)>0,由二分法原理得一个零点x 0∈(0,0.5);第二次应计算f ⎝ ⎛⎭⎪⎫0+0.52=f(0.25).(2)区间(1,2)的中点x 0=32,令f(x)=x 3-2x -1,f ⎝ ⎛⎭⎪⎫32=278-4<0,f(2)=8-4-1>0,则根所在区间为⎝ ⎛⎭⎪⎫32,2. (3)设至少需要计算n 次,由题意知1.5-1.42n<0.001,即2n >100.由26=64,27=128,知n =7. 名师点拨 MING SHI DIAN BO1.用二分法求函数零点的方法:定区间,找中点,中值计算两边看,同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.2.利用二分法求近似解需注意的问题(1)在第一步中:①区间长度尽量小;②f(a),f(b)的值比较容易计算且f(a)·f(b)<0; (2)根据函数的零点与相应方程根的关系,求函数的零点与相应方程的根是等价的.(3)虽然二分法未单独考过,但有可能像算法中的“更相减损术”一样,嵌入到程序框图中去考查.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数零点的综合问题例6 (2021·山西五校联考)已知函数f(x)=⎩⎪⎨⎪⎧-2x ,x≤0-x 2+x ,x>0,若函数g(x)=f(x)-a 恰有三个互不相同的零点x 1,x 2,x 3,则x 1x 2x 3的取值范围是( A )A .⎝ ⎛⎭⎪⎫-132,0B .⎝ ⎛⎭⎪⎫-116,0 C .⎝ ⎛⎭⎪⎫0,132 D .⎝ ⎛⎭⎪⎫0,116 [解析] 解法一:显然x≤0时,-2x =a ,有一根不妨记为x 1,则x 1=-a 2(a≥0),当x>0时-x 2+x=a 即x 2-x +a =0有两个不等正根,不妨记为x 2,x 3,则Δ=1-4a>0,即a<14,从而-a 2∈⎝ ⎛⎭⎪⎫-116,0且x 2x 3=a.∴x 1x 2x 3=-a 22∈⎝ ⎛⎭⎪⎫-132,0,故选A .解法二:作出y =f(x)及y =a 的图象,显然0<a<14,不妨设x 1<x 2<x 3显然x 1<0,x 2>0,x 3>0,∴x 1x 2x 3<0排除C 、D ,又当x 2趋近x 3时,x 2x 3趋近14,x 1趋近-18,故x 1x 2x 3趋近-132.故选A .名师点拨 MING SHI DIAN BO以函数图象、图象的变换方法及函数的零点等相关知识为基础,通过作图、想象,发现该问题的相关数学知识及其联系,快速解决该问题.〔变式训练3〕(2021·东北三省四市模拟)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +1,x≤0,|lg x|,x>0.若f(x)=a(a∈R)有四个不等实根,则所有实根之积的取值范围是( B )A .(-∞,1)B .[0,1)C .(0,1)D .(1,+∞)[解析] 本题考查已知方程根的个数求根的乘积的取值范围. 设四个根依次为x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4), 则-2≤x 1<-1,-1<x 2≤0,x 1+x 2=-2, 由|lg x 3|=|lg x 4|,得-lg x3=lg x4,则lg x3+lg x4=lg(x3x4)=0,∴x3x4=1,∴x1x2x3x4=x1x2=(-2-x2)x2=-(x2+1)2+1∈[0,1).故选B.。
高考数学总复习(一轮)(人教A)教学课件第九章 统计、成对数据的统计分析第2节 用样本估计总体
6
10
9
8
7
则该校学生开展志愿者活动时长的第40百分位数是
8.5
.
解析:(2)40×40%=16,故第40百分位数是第16个数和第17个数的平
均数, 即
+
=8.5.
考点二
总体集中趋势的估计
[例3] (多选题)某学校共有2 000名男生,为了了解这部分学生的身
体发育情况,学校抽查了100名男生的体重情况.根据所得数据绘制
=0.01.
(2)根据频率分布直方图,估计样本数据的15%和85%分位数.
解 :(2)由 图 可 知 ,[20,40)内 的 比 例 为 10%,[40,60)内 的 比 例 为
20%,[60,80)内的比例为40%,[80,100]内的比例为30%.
因此,15%分位数一定位于[40,60),85%分位数一定位于[80,100],
直方图如图所示:
得分 [20,40) [40,60) [60,80) [80,100]
人数
6
a
24
18
(1)求a,b的值;
解:(1)由频率分布直方图可知,
得分在[20,40)的频率为0.005×20=0.1,
故抽取的学生答卷数为6÷0.1=60,由6+a+24+18=60,得a=12.
所以 b=
[针对训练] (2023·全国乙卷)某厂为比较甲乙两种工艺对橡胶产品伸缩率
的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产
品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡
胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为
2021届高考数学一轮总复习第二章函数导数及其应用2.5指数与指数函数课件苏教版
第五节 指数与指数函数
最新考纲
考情分析
1.了解指数函数模型的实际背景. 1.直接考查指数函数的图
象及其性质或以指数与指
2.理解有理数指数幂的含义,了解
数函数为知识载体,考查
实数指数幂的意义,掌握幂的运算.
指数幂的运算和函数图象
3.理解指数函数的概念,理解指数
的应用或以指数函数为载
C.4x2y
D.-2x2y
(2)已知 系是( D )
A.a<b<c C.b<a<c
B.a<c<b D.c<b<a
,则 a,b,c 的大小关
(3)若 x+x-1=3,则 x2-x-2=_____±_3__5__.
(4)若函数 f(x)=ax(a>0,且 a≠1)的图象经过点 A2,13,则 f(-1)=_____3____.
2.有理数指数幂的性质
(1)aras=___a_r_+_s__ (a>0,r,s∈Q); (2)(ar)s=___a_rs___ (a>0,r,s∈Q);
(3)(ab)r=___a_r_b_r__ (a>0,b>0,r∈Q).
知识点二
指数函数的图象与性质
(1)指数函数的图象与底数大小的比较
在第一象限内,指数函数 y=ax(a>0,a≠1)的图象越高,底数越大. (2)指数函数 y=ax(a>0,a≠1)的图象和性质跟 a 的取值有关,要特 别注意应分 a>1 与 0<a<1 来研究.
n (
a)n=a.
(3)由指数函数的形式定义知应满足的条件:①系数为 1,②
(word完整版)高三数学第一轮复习函数测试题(2021年整理)
(word完整版)高三数学第一轮复习函数测试题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高三数学第一轮复习函数测试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高三数学第一轮复习函数测试题(word版可编辑修改)的全部内容。
高三数学第一轮复习《函数》测试题一、选择题(共50分):1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点 A 。
(2,—2) B. (2,2) C 。
(—4,2) D. (4,—2) 2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是A 。
增函数且最小值为m B.增函数且最大值为m - C 。
减函数且最小值为m D 。
减函数且最大值为m -3。
与函数()lg 210.1x y -=的图象相同的函数解析式是A .121()2y x x =->B .121y x =-C .11()212y x x =>- D .121y x =- 4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是 A .-∞(,-2] B .[-2,2] C .[-2,)+∞ D .[0,)+∞ 5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为 A .2 B .0 C .1 D .不能确定6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为x y 2=的图像,则)(x f y =的函数表达式为A. 22+=x yB. 22+-=x y C 。
2021新高考数学新课程一轮复习课件:第二章 第2讲 函数的单调性与最值
(4)函数 f(x)=x+3 1(x∈[2,5])的最大值与最小值之和等于____32____.
解析 因为函数 f(x)=x+3 1在[2,5]上单调递减,所以 f(x)max=f(2)=1, f(x)min=f(5)=12,f(x)max+f(x)min=32.
2.小题热身 (1)设定义在[-1,7]上的函数 y=f(x)的图象如图所示,则函数 y=f(x)的 增区间为__[_-__1_,1_]_,__[_5_,7_]_____.
解析 由图可知函数的单调递增区间为[-1,1]和[5,7].
(2)函数 y=4x-x2+3,x∈[0,3]的单调递增区间是___[0_,_2_] __,最小值是 ___3_____,最大值是___7_____.
解析 因为 y=4x-x2+3=-(x-2)2+7, 所以函数 y=4x-x2+3,x∈[0,3]的单调递增区间是[0,2]. 当 x=2 时,ymax=7;当 x=0 时,ymin=3.
(3)函数 f(x)=(2a-1)x-3 是 R 上的减函数,则 a 的取值范围是 _-__∞__,__12_ __.
1.概念辨析 (1)函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞).( × ) (2)设任意 x1,x2∈[a,b]且 x1≠x2,那么 f(x)在[a,b]上是增函数⇔ fxx11--fx2x2>0⇔(x1-x2)[f(x1)-f(x2)]>0.( √ ) (3)若函数 y=f(x),x∈D 的最大值为 M,最小值为 m(M>m),则此函数 的值域为[m,M].( × ) (4)闭区间上的单调函数,其最值一定在区间端点取到.( √ )
高考数学大一轮复习第二章函数、导数及其应用第九节函数模型及其应用教师用书理(2021年整理)
第九节函数模型及其应用☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.三种函数模型性质比较微点提醒1.“直线上升"是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢。
2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键。
3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性。
小|题|快|练一、走进教材1.(必修1P59A组T6改编)某种产品的产量原来是a件,在今后m年内,计划使每年的产量比上一年增加p%,则该产品的产量y随年数x变化的函数解析式为() A.y=a(1+p%)x(0〈x〈m)B.y=a(1+p%)x(0≤x≤m,x∈N)C.y=a(1+xp%)(0〈x〈m)D.y=a(1+xp%)(0≤x≤m,x∈N)【解析】设年产量经过x年增加到y件,则第一年为y=a(1+p%),第二年为y=a (1+p%)(1+p%)=a(1+p%)2,第三年为y=a(1+p%)(1+p%)(1+p%)=a(1+p%)3,…,则y=a(1+p%)x(0≤x≤m且x∈N)。
故选B。
【答案】B2.(必修1P107A组T1改编)在某个物理实验中,测量得变量x和变量y的几组数据,如下表:则对xA.y=2x B.y=x2-1C.y=2x-2 D.y=log2x【解析】根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2。
01,y=0。
98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D。
【答案】D二、双基查验1.已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f(x)〉g(x)〉h(x)B.g(x)〉f(x)>h(x)C.g(x)>h(x)〉f(x)D.f(x)〉h(x)〉g(x)【解析】由图象知,当x∈(4,+∞)时,增长速度由大到小依次为g(x)>f(x)>h(x).故选B。
2021届高考数学一轮总复习第9章解析几何第2节两直线的位置关系跟踪检测文含解析
第九章 解析几何第二节 两直线的位置关系A 级·基础过关|固根基|1.已知直线l :(a -1)x +(b +2)y +c =0,若l∥x 轴,但不重合,则下列结论正确的是( )A .a ≠1,c≠0,b≠2B .a ≠1,b =-2,c≠0C .a =1,b≠-2,c≠0D .其他解析:选C ∵直线l :(a -1)x +(b +2)y +c =0,l∥x 轴,但不重合,∴⎩⎪⎨⎪⎧a -1=0,b +2≠0,c≠0,解得a =1,b≠-2,c≠0.故选C.2.(2019届石家庄模拟)已知点P(3,2)与点Q(1,4)关于直线l 对称,则直线l 的方程为( )A .x -y +1=0B .x -y =0C .x +y +1=0D .x +y =0解析:选A 由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1,所以直线l 的斜率k =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.3.已知过点A(-2,m)和点B(m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析:选A 因为l 1∥l 2,所以k AB =4-m m +2=-2. 解得m =-8.又因为l 2⊥l 3,所以-1n×(-2)=-1, 解得n =-2,所以m +n =-10.4.已知点A(5,-1),B(m ,m),C(2,3),若△ABC 为直角三角形且AC 边最长,则整数m 的值为( )A .4B .3C .2D .1解析:选D 由题意得∠B =90°,即AB⊥BC,所以k AB ·k BC =-1,所以m +1m -5·3-m 2-m=-1,解得m =1或m =72,故整数m 的值为1,故选D. 5.对于任意的实数m ,直线(m -1)x +(2m -1)y =m -5都过一定点,则该定点的坐标为( )A .(9,-4)B .(-9,-4)C .(9,4)D .(-9,4)解析:选A (m -1)x +(2m -1)y =m -5即为m(x +2y -1)+(-x -y +5)=0,由⎩⎪⎨⎪⎧x +2y -1=0,-x -y +5=0,得定点的坐标为(9,-4).故选A.6.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析:由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2. ∴点(1,2)在直线mx +2y +5=0上,即m×1+2×2+5=0,∴m=-9.答案:-97.已知点A(3,2)和B(-1,4)到直线ax +y +1=0的距离相等,则a 的值为________.解析:由点到直线的距离公式可得,|3a +2+1|a 2+1=|-a +4+1|a 2+1,解得a =12或a =-4. 答案:12或-4 8.如果直线l 1:ax +(1-b)y +5=0和直线l 2:(1+a)x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b)=0 ①,因为l 2∥l 3,所以-2(1+a)+1=0 ②,由①②解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,所以d =105=2 5. 答案:2 59.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.解:(1)因为l 1⊥l 2,所以a(a -1)-b =0. ①又因为直线l 1过点(-3,-1),所以-3a +b +4=0. ②由①②可得a =2,b =2.(2)因为直线l 2的斜率存在,且l 1∥l 2,所以直线l 1的斜率存在.所以a b =1-a. ③ 又因为坐标原点到这两条直线的距离相等,所以l 1,l 2在y 轴上的截距互为相反数,即4b=b.④ 联立③④可得a =2,b =-2或a =23,b =2. 10.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P.(1)点A(5,0)到直线l 的距离为3,求直线l 的方程;(2)求点A(5,0)到直线l 的距离的最大值.解:(1)因为经过两已知直线交点的直线系方程为(2x +y -5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2, 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0, 解得⎩⎪⎨⎪⎧x =2,y =1,即交点P(2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离,则d≤|PA|(当l⊥PA 时等号成立).所以d max =|PA|=10.B 级·素养提升|练能力|11.(2019届山东省实验中学模拟)设a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:选C 由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin A a,直线bx -sin B ·y+sin C =0的斜率k 2=b sin B ,由正弦定理可得,k 1k 2=-sin A a ·b sin B=-1,所以直线sin A ·x +ay -c =0与直线bx -sin B ·y +sin C =0垂直,故选C.12.已知直线l 1:2x -y +3=0,直线l 2:4x -2y -1=0和直线l 3:x +y -1=0,若点M 同时满足下列条件:①点M 是第一象限的点;②点M 到l 1的距离是到l 2的距离的12; ③点M 到l 1的距离与到l 3的距离之比是2∶ 5.则点M 的坐标为( )A.⎝ ⎛⎭⎪⎫13,2 B.⎝ ⎛⎭⎪⎫13,3718 C.⎝ ⎛⎭⎪⎫19,2 D.⎝ ⎛⎭⎪⎫19,3718 解析:选D 设点M(x 0,y 0),由点M 满足②,得|2x 0-y 0+3|5=12×|4x 0-2y 0-1|16+4,故2x 0-y 0+132=0或2x 0-y 0+116=0,由点M(x 0,y 0)满足③,根据点到直线的距离公式,得|2x 0-y 0+3|5=25×|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,故x 0-2y 0+4=0或3x 0+2=0,由于点M(x 0,y 0)在第一象限,故3x 0+2=0不符合题意,联立方程得⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12,不符合题意; 联立方程得⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718,即点M 的坐标为⎝ ⎛⎭⎪⎫19,3718.故选D. 13.已知直线l :x -y +3=0.(1)求点A(2,1)关于直线l :x -y +3=0的对称点A′;(2)求直线l 1:x -2y -6=0关于直线l 的对称直线l 2的方程.解:(1)设点A′(x′,y′),由题知⎩⎪⎨⎪⎧y ′-1x′-2×1=-1,x′+22-y′+12+3=0,解得⎩⎪⎨⎪⎧x ′=-2,y′=5, 所以A′(-2,5).(2)在直线l 1上取一点,如M(6,0),则M(6,0)关于直线l 的对称点M′必在l 2上.设对称点为M′(a ,b),则⎩⎪⎨⎪⎧a +62-b +02+3=0,b -0a -6×1=-1,解得M′(-3,9).设l 1与l 的交点为N ,则由⎩⎪⎨⎪⎧x -y +3=0,x -2y -6=0,得N(-12,-9).又因为l 2经过点N(-12,-9),所以直线l 2方程为y -9=9+9-3+12(x +3),即2x -y +15=0. 14.已知△ABC 的顶点A(5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知,k AC =-2,A(5,1),所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C(4,3). 设B(x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B(-1,-3), 所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.。
(江苏专用)新高考数学一轮复习 第二章 函数 强化训练 函数的性质-人教版高三全册数学试题
强化训练 函数的性质1.下列函数中,既是偶函数又在区间(1,2)内单调递减的是( ) A .f (x )=x B .f (x )=1x 2 C .f (x )=2x +2-x D .f (x )=-cos x答案 B解析 函数f (x )=1x2是偶函数,且在(1,2)内单调递减,符合题意. 2.函数f (x )=x +9x (x ≠0)是( )A .奇函数,且在(0,3)上是增函数B .奇函数,且在(0,3)上是减函数C .偶函数,且在(0,3)上是增函数D .偶函数,且在(0,3)上是减函数答案 B解析 因为f (-x )=-x +9-x =-⎝ ⎛⎭⎪⎫x +9x =-f (x ),所以函数f (x )=x +9x 为奇函数. 又f ′(x )=1-9x2,在(0,3)上f ′(x )<0恒成立, 所以f (x )在(0,3)上是减函数.3.若函数f (x )=ax 2+bx +8(a ≠0)是偶函数,则g (x )=2ax 3+bx 2+9x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数答案 A解析 由f (x )是偶函数可得b =0,∴g (x )=2ax 3+9x ,∴g (x )是奇函数.4.(2019·某某某某重点中学联考)已知偶函数f (x )在[0,+∞)上单调递减,f (1)=-1,若f (2x -1)≥-1,则x 的取值X 围为( )A .(-∞,-1]B .[1,+∞)C .[0,1]D .(-∞,0]∪[1,+∞)答案 C解析 由题意,得f (x )在(-∞,0]上单调递增,且f (1)=-1,所以f (2x -1)≥f (1),则|2x -1|≤1,解得0≤x ≤1.故选C.5.若定义在R 上的奇函数f (x )满足对任意的x ∈R ,都有f (x +2)=-f (x )成立,且f (1)=8,则f (2019),f (2020),f (2021)的大小关系是( )A .f (2019)<f (2020)<f (2021)B .f (2019)>f (2020)>f (2021)C .f (2020)>f (2019)>f (2021)D .f (2020)<f (2021)<f (2019)答案 A解析 因为定义在R 上的奇函数f (x )满足对任意的x ∈R ,都有f (x +2)=-f (x )成立,所以f (x +4)=f (x ),即函数f (x )的周期为4,且f (0)=0,f (2)=-f (0)=0,f (3)=-f (1)=-8,所以f (2019)=f (4×504+3)=f (3)=-8,f (2020)=f (4×505)=f (0)=0,f (2021)=f (4×505+1)=f (1)=8,即f (2019)<f (2020)<f (2021).6.(2019·大兴区模拟)给出下列函数:①f (x )=sin x ;②f (x )=tan x ;③f (x )=⎩⎪⎨⎪⎧ -x +2,x >1,x ,-1≤x ≤1,-x -2,x <-1;④f (x )=⎩⎪⎨⎪⎧ 2x ,x >0,-2-x ,x <0.则它们共同具有的性质是( )A .周期性B .偶函数C .奇函数D .无最大值答案 C解析 f (x )=sin x 为奇函数,周期为2π且有最大值; f (x )=tan x 为奇函数且周期为π,但无最大值;作出f (x )=⎩⎪⎨⎪⎧ -x +2,x >1,x ,-1≤x ≤1,-x -2,x <-1的图象(图略),由图象可知此函数为奇函数但无周期性和最大值;作出f (x )=⎩⎪⎨⎪⎧ 2x ,x >0,-2-x ,x <0的图象(图略),由图象可知此函数为奇函数但无周期性和最大值.所以这些函数共同具有的性质是奇函数.7.(多选)定义在R 上的奇函数f (x )为减函数,偶函数g (x )在区间[0,+∞)上的图象与f (x )的图象重合,设a >b >0,则下列不等式中成立的是( )A .f (b )-f (-a )<g (a )-g (-b )B .f (b )-f (-a )>g (a )-g (-b )C .f (a )+f (-b )<g (b )-g (-a )D .f (a )+f (-b )>g (b )-g (-a )答案 AC解析 函数f (x )为R 上的奇函数,且为单调减函数,偶函数g (x )在区间[0,+∞)上的图象与f (x )的图象重合,由a >b >0,得f (a )<f (b )<0,f (a )=g (a ),f (b )=g (b );对于A ,f (b )-f (-a )<g (a )-g (-b )⇔f (b )+f (a )-g (a )+g (b )=2f (b )<0(因为f (a )=g (a )在a >0上成立),所以A 正确;对于B ,f (b )-f (-a )>g (a )-g (-b )⇔f (b )+f (a )-g (a )+g (b )=2f (b )>0,这与f (b )<0矛盾,所以B 错误;对于C ,f (a )+f (-b )<g (b )-g (-a )⇔f (a )-f (b )-g (b )+g (a )=2[f (a )-f (b )]<0,这与f (a )<f (b )符合,所以C 正确;对于D ,f (a )+f (-b )>g (b )-g (-a )⇔f (a )-f (b )-g (b )+g (a )=2[f (a )-f (b )]>0,这与f (a )<f (b )矛盾,所以D 错误.8.(多选)(2020·某某模拟)函数f (x )的定义域为R ,且f (x +1)与f (x +2)都为奇函数,则( )A .f (x )为奇函数B.f (x )为周期函数C .f (x +3)为奇函数D.f (x +4)为偶函数答案 ABC解析 由f (x +1)与f (x +2)都为奇函数知函数f (x )的图象关于点(1,0),(2,0)对称, 所以f (x )+f (2-x )=0,f (x )+f (4-x )=0,所以f (2-x )=f (4-x ),即f (x )=f (x +2),所以f (x )是以2为周期的函数.所以函数f (x )的图象关于点(-3,0),(-2,0),(-1,0), (0,0)对称.9.(2019·某某中学调研)已知定义在R 上的函数f (x )满足f (x )=-f ⎝ ⎛⎭⎪⎫x +32,且f (3)=3,则f (2022)=________.答案 3解析 ∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2022)=f (673×3+3)=f (3)=3.10.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,则f (1)+f (2)+f (3)+f (4)+…+f (2020)=________.答案 0解析 因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (4)=f (0)=0,f (3)=f (-1)=-f (1).在f (x +1)=f (-x +1)中,令x =1,可得f (2)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0.所以f (1)+f (2)+f (3)+f (4)+…+f (2020)=505[f (1)+f (2)+f (3)+f (4)]=0.11.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),求:(1)f (0),f (2),f (3)的值;(2)f (2021)+f (-2022)的值.解 (1)f (0)=log 21=0,f (2)=-f (0)=0,f (3)=f (1+2)=-f (1)=-log 2(1+1)=-1.(2)依题意得,当x ≥0时,f (x +4)=-f (x +2)=f (x ),即当x ≥0时,f (x )是以4为周期的函数.因此,f (2 021)+f (-2 022)=f (2 021)+f (2 022)=f (1)+f (2).而f (2)=0,f (1)=log 2(1+1)=1,故f (2 021)+f (-2 022)=1.12.已知g (x )为偶函数,h (x )为奇函数,且满足g (x )-h (x )=2x ,若存在x ∈[-1,1],使得不等式m ·g (x )+h (x )≤0有解,某某数m 的最大值.解 因为g (x )-h (x )=2x ,①所以g (-x )-h (-x )=2-x .又g (x )为偶函数,h (x )为奇函数,所以g (x )+h (x )=2-x ,②联立①②,得g (x )=2x +2-x 2,h (x )=2-x -2x 2. 由m ·g (x )+h (x )≤0,得m ≤2x -2-x 2x +2-x =4x-14x +1=1-24x +1. 因为y =1-24x +1为增函数,所以当x ∈[-1,1]时,⎝ ⎛⎭⎪⎫1-24x +1max =1-24+1=35,所以m ≤35,即实数m 的最大值为35.13.(2020·某某模拟)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则i =1m (x i +y i )等于( ) A .0B .m C .2m D .4m答案 B解析 因为f (x )+f (-x )=2,y =x +1x =1+1x .所以函数y =f (x )与y =x +1x 的图象都关于点(0,1)对称,所以∑i =1m x i =0,∑i =1m y i =m 2×2=m ,故选B. 14.已知函数f (x )=⎩⎪⎨⎪⎧ 2-x -2,x ≤0,f x -2+1,x >0,则f (2019)=________.答案 1010解析 当x >0时,f (x )=f (x -2)+1,则f (2 019)=f (2 017)+1=f (2 015)+2=…=f (1)+1 009=f (-1)+1 010,而f (-1)=0,故f (2 019)=1 010.15.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.答案 -8解析 因为定义在R 上的奇函数满足f (x -4)=-f (x ),所以f (x -4)=f (-x ).由f (x )为奇函数,所以函数图象关于直线x =2对称,且f (0)=0.由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数的周期为8.又因为f (x )在区间[0,2]上是增函数,所以函数在区间[-2,0]上也是增函数,作出函数f (x )的大致图象如图所示,那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4,由对称性可知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-8.16.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值X 围. 解 (1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0.(2)f (x )为偶函数,证明如下:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),所以f (-x )=f (x ),又f (x )的定义域关于原点对称,所以f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,所以f (x -1)<2,等价于f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.所以0<|x -1|<16,解得-15<x <17且x ≠1.所以x 的取值X 围是{x |-15<x <17且x ≠1}.。
人教B版高考总复习一轮数学精品课件 第2章一元二次函数、方程和不等式 第1节等式性质与不等式性质
=1(b≠0)
<1(a,b>0)或 >1(a,b<0)
3.不等式的性质与推论
性质与推论
别名
性质1
可加性
性质2
可乘性
性质3
性质4
传递性
性质5
对称性
推论1
移项法则
推论2
同向可加性
推论3
同向同正可乘性
推论4
可乘方性
推论5
可开方性
性质内容
如果a>b,那么a+c > b+c
如果a>b,c>0,那么ac > bc
=(+),
(+)
∵b>a>0,m>0,∴a-b<0,∴
(-)
<0,∴
(+)
<
+
.
+
题组三连线高考
7.(2019·全国Ⅱ,理6)已知a>b,则有( C )
A.ln(a-b)>0
B.3a<3b
C.a3-b3>0
D.|a|>|b|
解析 令
1
a=1,b= ,则
2
a>b,但
[对点训练2](2024·浙江宁波模拟)已知b<a<-3b,则 的取值范围为( B )
A.(0,3)
B.[0,3)
C.(3,+∞)
D.(1,3)
解析 因为 b<a<-3b,所以
可得-3< <1,所以
0≤
1
b<0,则有 <0,将不等式
(新课改地区)2021版高考数学一轮复习第二章函数及其应用2.1函数及其表示练习新人教B版
2.1 函数及其表示核心考点·精准研析考点一函数的定义域1.函数y=的定义域是( )A.(-1,3)B.(-1,3]C.(-1,0)∪(0,3)D.(-1,0)∪(0,3]2.若函数y=f(x)的定义域是[0,2 020],则函数g(x)=f(x+1)(x≠1)的定义域是( )A.[-1,2 019]B.[-1,1)∪(1,2 019]C.[0,2 020]D.[-1,1)∪(1,2 020]3.(2020·抚州模拟)若函数f(x)的定义域为[0,6],则函数的定义域为( ) A.(0,3) B.[1,3)∪(3,8]C.[1,3)D.[0,3)4.函数f(x)=lg+(4-x)0的定义域为____________.【解析】1.选D.由题意得解得-1<x≤3且x≠0,所以函数的定义域为(-1,0)∪(0,3].2.选B.由0≤x+1≤2 020,得-1≤x≤2 019,又因为x≠1,所以函数g(x)的定义域是[-1,1)∪(1,2 019].3.选D.因为函数f(x)的定义域为[0,6],所以0≤2x≤6,解得0≤x≤3.又因为x-3≠0,所以函数的定义域为[0,3).4.由已知得解得x>2且x≠3且x≠4,所以函数的定义域为(2,3)∪(3,4)∪(4,+∞).答案:(2,3)∪(3,4)∪(4,+∞)题2中,若将“函数y=f(x)的定义域是[0,2 020]”改为“函数y=f(x-1)的定义域是[0,2 020]”,则函数g(x)=f(x+1)(x≠1)的定义域为__________.【解析】由0≤x≤2 020,得-1≤x-1≤2 019,再由-1≤x+1≤2 019,解得-2≤x≤2 018,又因为x≠1,所以函数g(x)的定义域是[-2,1)∪(1,2 018].答案:[-2,1)∪(1,2 018]1.具体函数y=f(x)的定义域序号f(x)解析式定义域1 整式R2 分式分母≠03 偶次根式被开方数≥04 奇次根式被开方数∈R5 指数式幂指数∈R6 对数式真数>0;底数>0且≠17 y=x0底数x≠02.抽象函数(没有解析式的函数)的定义域解题方法:精髓是“换元法”,即将括号内看作整体,关键是看求x,还是求整体的取值范围.(1)已知y=f(x)的定义域是A,求y=f(g(x))的定义域:可由g(x)∈A,求出x的范围,即为y=f(g(x))的定义域.(2)已知y=f(g(x))的定义域是A,求y=f(x)的定义域:可由x∈A求出g(x)的范围,即为y=f(x)的定义域.【秒杀绝招】1.排除法解T1,可依据选项的特点,将0,3代入验证.2.转化法解T4,将二次函数的定义域转化为二次不等式的解集,利用三个二次的关系解题. 考点二求函数解析式【典例】1.已知f=ln x,则f(x)=________.2.已知f=x2+x-2,则f(x)=________.3.已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,则f(x)=________.4.已知函数f(x)的定义域为(0,+∞),且f(x)=2f·-1,则f(x)=________.【解题导思】序号联想解题1由f,想到换元法2由f,想到配凑法3 由f(x)是二次函数,想到待定系数法4由f,想到消去(也称解方程组)法【解析】1.设t=+1(t>1),则x=,代入f=ln x得f(t)=ln,所以f(x)=ln (x>1).答案:ln(x>1)2.因为f=x2+x-2=-2,又因为x+≤-2或x+≥2,所以f(x)=x2-2(x≤-2或x≥2).答案:x2-2(x≤-2或x≥2)3.设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2,f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1,即2ax+a+b=x-1,所以即所以f(x)=x2-x+2.答案:x2-x+24.在f(x)=2f·-1中,将x换成,则换成x,得f=2f(x)·-1,由解得f(x)=+.答案:+函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.(3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式.(4)消去(方程组)法:已知f(x)与f或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).1.已知f(+1)=x+2,则f(x)=________.【解析】令+1=t(t≥1),则x=(t-1)2,代入原式得f(t)=(t-1)2+2(t-1)=t2-1,所以f(x)=x2-1(x≥1).答案:x2-1(x≥1)2.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,则f(x)=________.【解析】设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=ax+5a+b,所以ax+5a+b=2x+17对任意实数x都成立,所以解得所以f(x)=2x+7.答案:2x+7考点三分段函数及其应用命题精解读考什么:(1)考查求函数值、解方程、解不等式等问题.(2)考查数学运算、数学抽象、直观想象等核心素养.怎么考:基本初等函数、函数的单调性、不等式交汇考查函数的概念、图象等知识.新趋势:以基本初等函数为载体,与其他知识交汇考查为主.学霸好方法1.求值问题的解题思路(1)求函数值:当出现f(f(x))的形式时,应从内到外依次求值.(2)求自变量的值:依据题设条件,在各段上得出关于自变量的方程,然后求出相应自变量的值.2.交汇问题:与方程、不等式交汇时,要依据“分段问题,分段解决”进行讨论,最后将结果并起来.分段函数的求值问题【典例】已知f(x)=则f+f的值为( )A. B.- C.-1 D.1【解析】选D.f+f=f+1+f=cos+1+cos=1.如何求分段函数的函数值?提示:分段函数求函数值时,要根据自变量选取函数解析式,然后再代入.分段函数与方程问题【典例】已知函数f(x)=且f(a)=-3,则f(6-a)=( )A.-B.-C.-D.-【解析】选A.当a≤1时不符合题意,所以a>1,即-log2(a+1)=-3,解得a=7,所以f(6-a)=f(-1)=2-2-2=-.求分段函数含有参数的函数值,如何列方程?提示:列方程时,若自变量的范围确定时,则直接代入;若不确定,则需要分类讨论.分段函数与不等式问题【典例】设函数f(x)=则满足f(x)+f>1的x的取值范围是________.【解析】令g(x)=f(x)+f,当x≤0时,g(x)=f(x)+f=2x+;当0<x≤时,g(x)=f(x)+f=2x+x+;当x>时,g(x)=f(x)+f=2x-1,写成分段函数的形式:g(x)=f(x)+f=函数g(x)在区间(-∞,0],,三段区间内均连续单调递增,且g=1,20+0+>1,(+2)×20-1>1,可知x的取值范围是.答案:如何求解由分段函数构成的不等式?提示:求解分段函数构成的不等式,关键是确定自变量在分段函数的哪一段,用对解析式.1.设函数f(x)=则f(-2)+f(log212)= ( )A.3B.6C.9D.12【解析】选C.因为函数f(x)=所以f(-2)=1+log2(2+2)=1+2=3,f(log212)==×=12×=6,则有f(-2)+f(log212)=3+6=9.2.已知函数f(x)=5|x|,g(x)=ax2-x(a∈R).若f(g(1))=1,则a= ( )A.1B.2C.3D.-1【解析】选A.因为g(x)=ax2-x,所以g(1)=a-1.因为f(x)=5|x|,所以f(g(1))=f(a-1)=5|a-1|=1,所以|a-1|=0,所以a=1.1.已知函数f(x)的定义域为(-∞,+∞),如果f(x+2 020)=那么f·f= ( )A.2 020B.C.4D.【解析】选C.当x≥0时,有f=sin x,所以f=sin =1,当x<0时,f=lg(-x),所以f(-7 980)=f(-10 000+2 020)=lg10 000=4,f·f=1×4=4.2.在一个展现人脑智力的综艺节目中,一位参加节目的少年能将圆周率π准确地记忆到小数点后面200位,更神奇的是,当主持人说出小数点后面的位数时,这位少年都能准确地说出该数位上的数字.如果记圆周率π小数点后第n位上的数字为y.那么你认为y是n的函数吗?如果是,请写出函数的定义域、值域与对应关系.如果不是,请说明理由.【解析】y是n的函数.理由如下:n任取一个数字,就有0到9之间的一个数字与之对应,符合函数的定义,所以函数的定义域是{1,2,3,4,…,n}(其中n是圆周率小数点后面的位数);值域是{0,1,2,3,4,5,6,7,8,9};对应关系是y与π的小数点后第n位上的数字对应.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[练案12]第九讲函数与方程
A组基础巩固
一、单选题
1.设函数f(x)=3x+x,则函数f(x)存在零点的区间是( C ) A.(0,1) B.(1,2)
C.(-1,0) D.(-2,-1)
[解析] 函数f(x)为增函数,因为f(-1)=3-1-1=-2
3
,f(0)=1+0=1,
所以函数f(x)的零点所在的区间为(-1,0).故选C.
2.二次函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为( C )
A.至多有一个B.有一个或两个
C.有且仅有一个D.—个也没有
[解析] 因为f(1)>0,f(2)<0,所以f(x)在(1,2)上必有零点,又因为函数为二次函数,所以有且仅有一个零点.故选C.
3.(2020·山东青岛模拟)已知a是函数f(x)=2x-log1
2
x的零点,若0<x0<a,则f(x0)的值满足( C )
A.f(x0)=0 B.f(x0)>0
C.f(x0)<0 D.f(x0)≤0
[解析] 在同一坐标系中作出函数y=2x,y=log1
2
x的图象,由图象可知,
当0<x0<a时,有2x0<log1
2
x0,即f(x0)<0.
4.(2020·湖南永州模拟)若函数f(x)=2|x|-k 存在零点,则k 的取值范围是( D )
A .(-∞,0)
B .[0,+∞)
C .(-∞,1)
D .[1,+∞)
[解析] 由函数f(x)=2|x|-k 存在零点,得2|x|=k 有解,作出函数y =2|x|的图象如图所示,则由图象可知,要使函数f(x)=2|x|-k 存在零点,只需y =2|x|与y =k 的图象有交点,则k ≥1,故选D.
5.函数f(x)=xcos x 2在区间[0,4]上的零点个数为( C ) A .4 B .5 C .6
D .7
[解析] 由f(x)=xcos x 2=0,得x =0或cos x 2=0.又x ∈[0,4],所以x 2∈[0,16].由于cos(π2+k π)=0(k ∈Z),而在π2+k π(k ∈Z)的所有取值中,只有π
2,
3π2,5π2,7π2,9π
2
满足在[0,16]内,故零点个数为1+5=6.故选C. 6.(2020·广西宜州联考)若定义在R 上的偶函数f(x)满足f(x +2)=f(x),且当x ∈[0,1]时,f(x)=x ,则函数y =f(x)-log 3|x|的零点个数是( B )
A .5
B .4
C .3
D .2
[解析] ∵偶函数f(x)满足f(x +2)=f(x),∴函数的周期为2.当x ∈[0,1]时,。