二项式定理及其系数的性质
二项式定理的系数和
二项式定理的系数和二项式定理是高中数学中的重要概念之一,它描述了如何展开一个二项式的幂。
在二项式定理中,系数和起着关键的作用。
本文将围绕这个主题展开,介绍二项式定理的系数和的一些性质和应用。
一、二项式定理的系数和二项式定理是代数学中的一个重要定理,它给出了两个数之和的幂的展开形式。
具体而言,设有两个实数a和b,那么对于任意非负整数n,二项式定理可以表示为:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中C(n,k)表示从n个元素中选取k个元素的组合数,也就是二项式系数。
二项式系数的计算公式为:C(n,k) = n! / (k!(n-k)!)这个公式告诉我们,二项式系数是由阶乘运算得到的。
在二项式定理中,系数和是指式子中所有二项式系数的和,也就是:C(n,0) + C(n,1) + C(n,2) + ... + C(n,n-1) + C(n,n)二、二项式定理系数和的性质1. 二项式系数和等于2的n次方。
根据二项式定理的展开形式可以得知,系数和等于幂的次数加1,即 2^n。
2. 二项式系数和满足二项式系数公式。
根据二项式系数的计算公式可以得知,系数和等于 C(n+1,0)。
这是因为二项式系数公式中的 n 被替换为 n+1,而 k 被替换为 0,所以结果为 1。
3. 二项式系数和满足对称性。
根据二项式系数的计算公式可以得知,C(n,k) = C(n,n-k)。
这意味着从n个元素中选取k个元素的组合数等于从n个元素中选取n-k个元素的组合数,所以二项式系数和具有对称性。
三、二项式定理系数和的应用1. 计算二项式系数。
二项式系数在组合数学中有广泛的应用,可以用于计算排列组合问题的解。
例如,在概率论中,可以使用二项式系数计算二项式分布的概率。
2. 证明等式。
二项式系数和可以用于证明等式。
《二项式定理》知识点总结+典型例题+练习(含答案)
二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。
二项式定理
二项式定理1.二项式定理2.(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)C r n an -r b r 是二项展开式的第r 项.(×) (2)二项展开式中,系数最大的项为中间一项或中间两项.(×) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.(√) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.(×)(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.(×) (6)在(x +1)n 的展开式中,每一项的二项式系数就是这项的系数.(√) (7)(a +b )n 与(b +a )n 的展开式中通项公式是一样的.(×)(8)(x -y )n 的展开式中,第m 项的系数为(-1)m C m -1n .(×)(9)(1+2x )5的展开式中含x 的项的系数为5.(×)(10)n x x )12(3 的展开式中不可能有常数项.(×)考点一 二项展开式的通项及应用[例1] (1)(2016·高考全国乙卷)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案)解析:T r +1=C r 5(2x )5-r ·(x )r =25-r C r 5·,令5-r2=3,得r =4,∴T 5=10x 3,∴x 3的系数为10. 答案:10(2)(2016·高考四川卷)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 4解析:∵T r +1=C r 6x r (i)6-r ,∴含x 4的项为T 5=C 46x 4i 2=-15x 4.答案:A(3)(2017·河北唐山一模)322)21(-+xx 展开式中的常数项为( ) A .-8 B .-12 C .-20 D .20解析:∵322)21(-+x x =6)1(xx -,∴T r +1=C r 6x 6-r rx )1(-=C r 6(-1)r x 6-2r ,令6-2r =0,得r =3,∴常数项为C 36(-1)3=-20.答案:C(4)(2015·高考课标全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 解析:法一:利用二项展开式的通项公式求解.(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.答案:C[方法引航] 求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,含字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.1.在本例(1)中,求展开式中系数最大的项是第几项. 解:设第r +1项的系数最大,T r +1=25-r C r 5·,第r 项的系数为26-r C r -15第r +2项的系数为24-r C r +15∴⎩⎨⎧25-r C r 5≥26-r C r -1525-r C r 5≥24-r C r +15,1≤r ≤2当r =1时,T 2= 当r =2时,T 3=故系数最大的项为T 2或T 3.2.在本例(2)中,求展开式中的常数项.解:由T r +1=C r 6x6-r ·i r可知,当r =6时. 常数项为T 7=C 66·i 6=-1. 3.在本例(4)中,求展开式中含x 3y 3的系数.解析:(x 2+x +y )5为5个x 2+x +y 之积,其中有三个取y ,一个取x 2,一个取x 即可,所以x 3y 3的系数为C 35C 12C 11=10×2×1=20.考点二 二项展开式的系数和问题[例2] 在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.解:设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得2(a 0+a 2+…+a 10)=1+510,∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510,∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102; x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.[方法引航] (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.1.5)12)((x x x a x -+的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40 解析:选D.令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此5)12)(1(x x x x -+展开式中的常数项即为5)12(xx -展开式中1x 的系数与x 的系数的和.5)12(xx -展开式的通项为T k +1=C k 5(2x )5-k ·(-1)k ·x -k =C k 525-k x 5-2k·(-1)k .令5-2k =1,得2k =4,即k =2,因此5)12(xx -展开式中x 的系数为C 2525-2(-1)2=80.令5-2k =-1,得2k =6,即k =3,因此5)12(x x -展开式中1x 的系数为C 3525-3·(-1)3=-40. 所以5)12)(1(x x x x -+展开式中的常数项为80-40=40.2.(2017·广西来宾一中检测)(1-x +x 2)3(1-2x 2)4=a 0+a 1x +a 2x 2+…+a 14x 14,则a 1+a 3+a 5+…+a 13的值为________.解析:设f (x )=(1-x +x 2)3(1-2x 2)4.令x 分别取1,-1,f (1)=a 0+a 1+a 2+…+a 13+a 14=1,f (-1)=a 0-a 1+a 2-…-a 13+a 14=27,∴a 1+a 3+a 5+…+a 13=f (1)-f (-1)2=1-272=-13.答案:-13考点三 二项式定理的综合应用[例3] (1)若S =C 127+C 227+…+C 2727,求S 除以9的余数. 解:S =C 127+C 227+…+C 2727=227-1=89-1 =(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2.∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.(2)求1.025的近似值.(精确到两位小数)解:1.025=(1+0.02)5=1+C 15×0.02+C 25×0.022+…+C 55×0.025≈1+5×0.02=1.10.[方法引航] (1)利用二项式定理进行近似计算:当n 不很大,|x |比较小时,(1+x )n ≈1+nx . (2)利用二项式定理证明整除问题或求余数问题:在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都有除式的因式,要注意变形的技巧.1.将本例(1)变为S =1+2+22+…+25n -1.求证:S 能被31整除. 证明:∵1+2+22+…+25n -1=25n -12-1=25n-1=32n -1=(31+1)n -1 =C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C nn -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ),显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.2.将本例(2)改为:求1.028的近似值.(精确到小数点后三位)解:1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172.[易错警示]多次应用二项展开式通项公式搭配不全[典例] (x 2+2)52)11(-x的展开式的常数项是( ) A .-3 B .-2 C .2 D .3 [正解] 二项式52)11(-x展开式的通项为: T r +1=C r 5r x-52)1(·(-1)r =C r 5·x 2r -10·(-1)r. 当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5;当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2. ∴展开式中的常数项为5-2=3,故选D. [答案] D [易误] (x 2+2)与52)11(-x的各因式的积为常数项,不只是2与(-1)的积,还有x 2与x -2的积也为常数.[警示] 求几个二项式积的展开式中某项的系数或特定项时,一般要根据这几个二项式的结构特征进行分类搭配,分类时要抓住一个二项式逐项分类,分析其它二项式应满足的条件,然后再求解结果.[高考真题体验]1.(2015·高考课标全国卷Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.解析:(1+x )4的展开式通项为C r 4x r ,其中r 可取0,1,2,3,4. x 的所有奇数次幂为a C 14x ,a C 34x 3,C 04x ,C 24x 3,C 44x 5,∴系数和为8a +8=32,∴a =3. 答案:32.(2014·高考课标全国卷Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)解析:(x -y )(x +y )8=x (x +y )8-y (x +y )8,故展开式中x 2y 7的系数为C 78-C 68=8-28=-20.答案:-203.(2014·高考课标全国卷Ⅱ)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)解析:∵(x +a )10展开式的通项为T r +1=C r 10x10-r a r (r =0,1,…,10), ∴(x +a )10的展开式中x 7的系数为C 310a 3=15,得a =12. 答案:124.(2013·高考课标全国卷Ⅰ)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ) A .5 B .6 C .7 D .8解析:选B.由题意可知a =C m 2m ,b =C m +12m +1,又13a =7b ,即13C m 2m =7C m 2m +1,解得m =6.课时规范训练 A 组 基础演练1.(1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .10解析:选B.T k +1=C k 515-k (2x )k =C k 5×2k ×x k ,令k =2,则可得含x 2项的系数为C 25×22=40.2.532)2(x x -展开式中的常数项为( )A .80B .-80C .40D .-40解析:选C.T k +1=C k 5(x 2)5-k kx )2(3-=C k 5(-2)k x 10-5k,令10-5k =0得k =2.∴常数项为T 3=C 25(-2)2=40.3.(x -2y )8的展开式中,x 6y 2项的系数是( )A .56B .-56C .28D .-28解析:选A.二项式的通项为T r +1=C r 8x 8-r (-2y )r ,令8-r =6,即r =2,得x 6y 2项的系数为C 28(-2)2=56.4.已知8)(x a x -展开式中常数项为1 120,其中a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28解析:选C.由题意知C 48·(-a )4=1 120,解得a =±2,令x =1,得展开式中各项系数的和为(1-a )8=1或38.5.如果nx x )12(2+的展开式中含有常数项,则正整数n 的最小值为( ) A .3 B .5 C .6 D .10解析:选B.n xx )12(2+的展开式的通项为T r +1=C r n ·(2x )n -r rx )1(2=∵n ,r ∈N ,且r ≤n ,∴n =5r ∈N ,即n 的最小值为5.6.在n x x )12(3-的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( ) A .-7 B .7 C .-28 D .28解析:选B.由题意有n =8,T k +1=C k 8k -8)21((-1)kx 8-43k ,k =6时为常数项,常数项为7. 7.已知C 0n +2C 1n +22C 2n +22C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C nn 等于( )A .63B .64C .31D .32解析:选A.逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.8.若n x x )1(2-的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( ) A .-10 B .10 C .-45 D .45解析:选D.因为展开式的通项公式为T r +1=C r n (x 2)n -r·=C r n (-1)r,所以C 2nC 4n=314,解得n =10,所以T r +1=C r 10·(-1)r ·,令20-5r 2=0,则r =8.所以常数项为T 9=C 810=C 210=45.9.在52)12(x x -的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40解析:选D.因为T k +1=C k 5(2x 2)5-k kx )1(-=C k 525-k x 10-2k (-1)k x -k =C k 525-k(-1)k x 10-3k , 令10-3k =1,得k =3,所以x 的系数为C 3525-3(-1)3=-40. 10.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于( ) A .6 B .7 C .8 D .9解析:选B.(1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7.B 组 能力突破1.(4x -2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .20解析:选C.设展开式的常数项是第k +1项,则T k +1=C k 6·(4x )6-k ·(-2-x )k =C k 6·(-1)k ·212x -2kx ·2-kx=C k 6·(-1)k ·212x -3kx ,∴12x -3kx =0恒成立.∴k =4,∴T 5=C 46·(-1)4=15. 2.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于( )A.34(3n -1)B.34(3n -2)C.32(3n -2)D.32(3n -1) 解析:选D.在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)na n =3(1-3n )1-3=32(3n-1).3.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________. 解析:a 10,a 11分别是含x 10和x 11项的系数,所以a 10=-C 1121,a 11=C 1021,所以a 10+a 11=C 1021-C 1121=0.答案:04.(2016·高考山东卷)若52)1(xax +的展开式中x 5的系数是-80,则实数a =________. 解析:T r +1=rrrx C a 251055--,令10-52r =5,解之得r =2,所以a 3C 25=-80,a =-2.答案:-25.(2016·高考天津卷)82)1(xx -的展开式中x 7的系数为________.(用数字作答)解析:T r +1=C r 8x 16-2r (-1)r x -r =(-1)r ·C r 8x 16-3r,令16-3r =7,得r =3,所以x 7的系数为(-1)3C 38=-56.答案:-566.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n=121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项是T 8=C 715(3x )7和T 9=C 815(3x )8. 答案:T 8=C 715(3x )7和T 9=C 815(3x )8。
第3节 二项式定理
第3节二项式定理考试要求 1.能用计数原理证明二项式定理;2.会用二项式定理解决与二项展开式有关的简单问题.知识梳理1.二项式定理(1)二项式定理:(a+b)n =C0n a n +C 1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*);(2)通项公式:T r+1=C r n a n-r b r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质性质性质描述对称性与首末等距离的两个二项式系数相等,即C k n=C n-kn增减性二项式系数C k n 当k<n+12(n∈N*)时,是递增的当k>n+12(n∈N*)时,是递减的二项式系数最大值当n为偶数时,中间的一项取得最大值当n为奇数时,中间的两项与相等且取得最大值(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C n n=2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.[常用结论与微点提醒](a+b)n的展开式形式上的特点(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.(4)二项式系数从C0n,C1n,一直到C n-1n,C n n.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)C k n a n-k b k是二项展开式的第k项.()(2)二项展开式中,系数最大的项为中间一项或中间两项.()(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.()(4)(a+b)n某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.()解析二项展开式中C k n a n-k b k是第k+1项,二项式系数最大的项为中间一项或中间两项,故(1)(2)均不正确.答案(1)×(2)×(3)√(4)√2.(老教材选修2-3P31T4改编)(x-y)n的二项展开式中,第m项的系数是()A.C m nB.C m+1nC.C m-1n D.(-1)m-1C m-1n解析(x-y)n展开式中第m项的系数为C m-1n(-1)m-1. 答案 D3.(老教材选修2-3P35练习A1(3)改编)C02 019+C12 019+C22 019+…+C2 0192 019C02 018+C22 018+C42 018+…+C2 0182 018的值为()A.2B.4C.2 019D.2 018×2 019解析原式=22 01922 018-1=22=4.答案 B4.(2020·潍坊调研)若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为()A.9B.8C.7D.6解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8. 答案 B5.(2020·长沙调研)已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈N +)是一个递增数列,则k 的最大值是( ) A.5B.6C.7D.8解析 由二项式定理知,a n =C n -110(n =1,2,3,…,11).又(x +1)10展开式中二项式系数最大项是第6项, 所以a 6=C 510,则k 的最大值为6. 答案 B6.(2019·天津卷)⎝ ⎛⎭⎪⎫2x-18x 38的展开式中的常数项为________.解析 ⎝ ⎛⎭⎪⎫2x -18x 38的通项为T r +1=C r 8(2x )8-r ·⎝ ⎛⎭⎪⎫-18x 3r =C r 828-r ⎝ ⎛⎭⎪⎫-18r ·x 8-4r .令8-4r =0,得r =2,∴常数项为T 3=C 2826⎝ ⎛⎭⎪⎫-182=28. 答案 28考点一 通项公式及其应用多维探究角度1 求二项展开式中的特定项【例1-1】 (1)(多选题)在二项式⎝ ⎛⎭⎪⎫3x 2-2x 5的展开式中,有( )A.含x 的项B.含1x 2的项 C.含x 4的项D.含1x 4的项(2)⎝⎛⎭⎪⎪⎫3x -123x 10的展开式中所有的有理项为________.解析 (1)二项式⎝ ⎛⎭⎪⎫3x 2-2x 5的展开式的通项公式为T r +1=C r 5·35-r ·(-2)r ·x 10-3r ,r =0,1,2,3,4,5,故展开式中含x 的项为x 10-3r ,结合所给的选项,知ABC 的项都含有.(2)二项展开式的通项公式为T k +1=C k 10⎝ ⎛⎭⎪⎫-12k x 10-2k3.由题意10-2k3∈Z ,且0≤k ≤10,k ∈N . 令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r , ∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8,∴第3项,第6项与第9项为有理项,它们分别为454x 2, -638,45256x -2.答案 (1)ABC (2)454x 2,-638,45256x -2规律方法 求二项展开式中的特定项,一般是化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.角度2 求二项展开式中特定项的系数【例1-2】 (1)(多项式是积.的形式)(2019·全国Ⅲ卷)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A.12B.16C.20D.24(2)(多项式是和.的形式)已知(1+ax )3+(1-x )5的展开式中含x 3的系数为-2,则a 等于( ) A.2 3B.2C.-2D.-1(3)(一题多解)(三项展开式问题)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A.10B.20C.30D.60解析 (1)展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为1×C 34+2C 14=12.(2)(1+ax )3+(1-x )5的展开式中x 3的系数为C 33a 3+C 35(-1)3=a 3-10=-2,则a 3=8,解得a =2.(3)法一 (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.法二 (x 2+x +y )5表示5个x 2+x +y 之积.∴x 5y 2可从其中5个因式中,两个取因式中x 2,剩余的3个因式中1个取x ,其余因式取y ,因此x 5y 2的系数为C 25C 13C 22=30.答案 (1)A (2)B (3)C规律方法 1.求几个多项式积的特定项:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.2.求几个多项式和的特定项:先分别求出每一个多项式中的特定项,再合并,通常要用到方程或不等式的知识求解.3.三项展开式特定项:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项产生的所有可能情形. 【训练1】 (1)(角度1)(2019·佛山二模)已知(1+x )⎝ ⎛⎭⎪⎫x +1x 2n(n ∈N *,n <10)的展开式中没有常数项,则n 的最大值是( ) A.6B.7C.8D.9(2)(角度2)(x +y )(2x -y )5的展开式中x 3y 3的系数为________.(3)(角度2)在(1-3x )7+⎝⎛⎭⎪⎫x +a x 6的展开式中,若x 2的系数为19,则a =________.解析 (1)∵(1+x )⎝ ⎛⎭⎪⎫x +1x 2n (n ∈N *,n <10)的展开式中没有常数项,∴⎝ ⎛⎭⎪⎫x +1x 2n的展开式中没有x -1项和常数项.∵⎝ ⎛⎭⎪⎫x +1x 2n的展开式的通项为T r +1=C r n ·x n -3r ,故n -3r ≠0,且n -3r ≠-1,即n ≠3r ,且n ≠3r -1,∴n ≠3,6,9,且n ≠2,5,8,故n 的最大值为7,故选B.(2)由二项式定理可得,展开式中含x 3y 3的项为x ·C 35(2x )2(-y )3+y ·C 25(2x )3(-y )2=40x 3y 3,则x 3y 3的系数为40.(3)(1-3x )7+⎝ ⎛⎭⎪⎫x +a x 6的展开式中x 2的系数为C 67(-3x )6+C 16(x )5⎝ ⎛⎭⎪⎫a x 1=C 67x 2+C 16x 2a ,则a C 16+C 67=19,解得a =2.答案 (1)B (2)40 (3)2考点二 二项式系数与各项的系数问题【例2】 (1)在⎝⎛⎭⎪⎫x +3x n的展开式中,各项系数和与二项式系数和之比为64∶1,则x 3的系数为( ) A.15B.45C.135D.405(2)若(1-x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 1|+|a 2|+|a 3|+…+|a 9|=( ) A.1B.513C.512D.511解析 (1)由题意知4n 2n =64,得n =6,展开式的通项为T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫3x r=3r C r 6x6-3r2,令6-3r 2=3,得r =2,则x 3的系数为32C 26=135,故选C. (2)令x =0,得a 0=1,令x =-1,得|a 1|+|a 2|+|a 3|+…+|a 9|=[1-(-1)]9-1=29-1=511. 答案 (1)C (2)D规律方法 1.“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法. 2.若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【训练2】 (1)(2020·青岛模拟)(2x -3y )n (n ∈N *)的展开式中倒数第二项与倒数第三项的系数互为相反数,则(3x -2y )n 的展开式的二项式系数之和等于( ) A.16B.32C.64D.128(2)(2020·宜昌模拟)若(x -2)5-3x 4=a 0+a 1(x -3)+a 2(x -3)2+a 3(x -3)3+a 4(x -3)4+a 5(x -3)5,则a 3=( ) A.-70B.28C.-26D.40解析 (1)∵(2x -3y )n (n ∈N *)的展开式中倒数第二项与倒数第三项的系数互为相反数,∴C n -1n ·21·(-3)n -1=-C n -2n ·22·(-3)n -2,解得n =4,则(3x -2y )4的展开式的二项式系数之和等于24=16.(2)令t =x -3,则(x -2)5-3x 4=a 0+a 1(x -3)+a 2(x -3)2+a 3(x -3)3+a 4(x -3)4+a 5(x -3)5可化为(t +1)5-3(t +3)4=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25-3×C 14×3=10-36=-26. 答案 (1)A (2)C考点三 二项式系数的性质 多维探究角度1 二项式系数的最值问题【例3-1】 (2020·天津和平区模拟)在⎝ ⎛⎭⎪⎫x +2x 2n(n ∈N *)的展开式中,若二项式系数最大的项仅是第六项,则展开式中常数项是( ) A.180B.120C.90D.45解析 在⎝ ⎛⎭⎪⎫x +2x 2n(n ∈N *)的展开式中,若二项式系数最大的项仅是第六项,则n=10,则⎝ ⎛⎭⎪⎫x +2x 2n=⎝ ⎛⎭⎪⎫x +2x 210的展开式的通项为T r +1=C r 10·2r ·x 5-5r 2,令5-5r 2=0,得r =2,可得展开式中常数项为C 210·22=180. 答案 A规律方法 二项式系数最大项的确定方法:当n 为偶数时,展开式中第n2+1项的二项式系数最大,最大值为;当n 为奇数时,展开式中第n +12项和第n +32项的二项式系数最大,最大值为或.角度2 项的系数的最值问题【例3-2】 (多填题)已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,则在⎝ ⎛⎭⎪⎫2x -1x 2n的展开式中,二项式系数最大的项为______,系数的绝对值最大的项为________.解析 由题意知,22n -2n =992,即(2n -32)(2n +31)=0,故2n =32,解得n =5.由二项式系数的性质知,⎝ ⎛⎭⎪⎫2x -1x 10的展开式中第6项的二项式系数最大,故二项式系数最大的项为T 6=C 510(2x )5⎝ ⎛⎭⎪⎫-1x 5=-8 064.设第k +1项的系数的绝对值最大,则T k +1=C k 10·(2x )10-k ·⎝ ⎛⎭⎪⎫-1x k=(-1)k C k 10·210-k·x 10-2k ,令⎩⎪⎨⎪⎧C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1,得⎩⎪⎨⎪⎧C k 10≥2C k -110,2C k 10≥C k +110,即⎩⎪⎨⎪⎧11-k ≥2k ,2(k +1)≥10-k ,解得83≤k ≤113. ∵k ∈Z ,∴k =3.故系数的绝对值最大的项是第4项, T 4=-C 310·27·x 4=-15 360x 4. 答案 -8 064 -15 360x 4规律方法 二项展开式系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.【训练3】 ⎝⎛⎭⎪⎪⎫x +13x n 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63xB.4xC.4x 6xD.4x或4x 6x解析 令x =1,可得⎝⎛⎭⎪⎪⎫x +13x n 的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎪⎫13x 2=63x . 答案 A考点四 二项式定理的应用【例4】 (1)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a 等于( ) A.0B.1C.11D.12(2)设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019等于( ) A.iB.-iC.-1+iD.-1-i解析 (1)∵512 012+a =(52-1)2 012+a =C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012·52·(-1)2 011+C 2 0122 012·(-1)2 012+a ,∵C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012·52·(-1)2 011能被13整除且512 012+a 能被13整除,∴C 2 0122 012·(-1)2 012+a =1+a 也能被13整除,因此a 的值为12.(2)x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,由于C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x2 019=(1+x )2 019-1=i 2 019-1=-i -1. 答案 (1)D (2)D规律方法 1.逆用二项式定理的关键根据所给式子的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.2.利用二项式定理解决整除问题的思路 (1)观察除式与被除式间的关系; (2)将被除式拆成二项式; (3)结合二项式定理得出结论.【训练4】 中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m同余,记为a =b (mod m ).若a =C 020+C 120·2+C 220·22+…+C 2020·220,a =b (mod 10),则b 的值可以是( ) A.2 011B.2 012C.2 013D.2 014解析 ∵a =(1+2)20=320=910=(10-1)10=C 0101010-C 110109+…-C 91010+1,∴被10除得的余数为1,而2 011被10除得的余数是1,故选A.答案 AA 级 基础巩固一、选择题1.已知⎝ ⎛⎭⎪⎫x -1x 7的展开式的第4项等于5,则x 等于( )A.17B.-17C.7D.-7解析 由T 4=C 37x 4⎝ ⎛⎭⎪⎫-1x 3=5,得x =-17. 答案 B2.⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( ) A.-20B.-5C.5D.20解析 T r +1=C r 5⎝ ⎛⎭⎪⎫12x 5-r·(-2y )r =C r 5·⎝ ⎛⎭⎪⎫125-r·(-2)r ·x 5-r ·y r .当r =3时,展开式中x 2y 3的系数为C 35⎝ ⎛⎭⎪⎫122×(-2)3=-20.故选A. 答案 A3.若二项式⎝ ⎛⎭⎪⎫x -2x n展开式中的第5项是常数,则自然数n 的值为( )A.6B.10C.12D.15解析 由二项式⎝ ⎛⎭⎪⎫x -2x n展开式的第5项C 4n (x )n -4·⎝ ⎛⎭⎪⎫-2x 4=16C 4n x n 2-6是常数项,可得n2-6=0,解得n =12. 答案 C4.(2020·广东名校联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29B.210C.211D.212解析 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.故选A.答案 A5.(2019·枣庄二模)若(x 2-a )⎝ ⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2解析 ⎝ ⎛⎭⎪⎫x +1x 10展开式的通项公式为T r +1=C r 10·x 10-r ·⎝ ⎛⎭⎪⎫1x r=C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310,令10-2r =6,解得r =2,所以x 6项的系数为C 210,所以(x 2-a )⎝ ⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2. 答案 D6.若二项式⎝ ⎛⎭⎪⎫x 2+a x 7的展开式中的各项系数之和为-1,则含x 2的项的系数为( ) A.560B.-560C.280D.-280解析 取x =1,得二项式⎝ ⎛⎭⎪⎫x 2+a x 7的展开式中的各项系数之和为(1+a )7,即(1+a )7=-1,解得a =-2.二项式⎝ ⎛⎭⎪⎫x 2-2x 7的展开式的通项为T r +1=C r 7·(x 2)7-r ·⎝ ⎛⎭⎪⎫-2x r =C r 7·(-2)r ·x 14-3r.令14-3r =2,得r =4.因此,二项式⎝ ⎛⎭⎪⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560,故选A. 答案 A7.若(1-3x )2 018=a 0+a 1x +…+a 2 018x 2 018,x ∈R ,则a 1·3+a 2·32+…+a 2 018·32 018的值为( ) A.22 018-1 B.82 018-1 C.22 018D.82 018解析 由已知,令x =0,得a 0=1,令x =3,得a 0+a 1·3+a 2·32+…+a 2 018·32 018=(1-9)2 018=82 018,所以a 1·3+a 2·32+…+a 2 018·32 018=82 018-a 0=82 018-1,故选B. 答案 B8.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( ) A.2nB.3n -12C.2n +1D.3n +12解析 设f (x )=(1+x +x 2)n ,则f (1)=3n =a 0+a 1+a 2+…+a 2n ①,f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ②,由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1),所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12.答案 D 二、填空题9.(2019·上饶一模)若⎝ ⎛⎭⎪⎫ax -b x 6的展开式中的常数项为-160,则a 2+b 2的最小值为________.解析 二项式⎝ ⎛⎭⎪⎫ax -b x 6的通项为T r +1=C r 6(ax )6-r ⎝ ⎛⎭⎪⎫-b x r=C r 6a 6-r(-b )r x 6-2r (r =0,1,…,6),当r =3时,常数项为-C 36a 3b 3=-160,解得ab =2,则a 2+b 2≥2ab=4,即a 2+b 2的最小值为4,当且仅当a =b =2或a =b =-2时取等号,故填4. 答案 410.(2019·江苏卷改编)若(1+3)5=a +b 3,其中a ,b ∈N *,则a 2-3b 2的值为________.解析 (1+3)5=C 05+C 153+C 25(3)2+C 35(3)3+C 45(3)4+C 55(3)5=a +b 3. 因为a ,b ∈N *,所以a =C 05+3C 25+9C 45=76, b =C 15+3C 35+9C 55=44,从而a 2-3b 2=762-3×442=-32. 答案 -3211.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C nn 等于________.解析 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.答案 6312.9192除以100的余数是________.解析 9192=(90+1)92=C 0929092+C 1929091+…+C 9092902+C 919290+C 9292=k ×100+92×90+1=k ×100+82×100+81(k 为正整数), 所以9192除以100的余数是81. 答案 81B 级 能力提升13.(2020·河南百校联盟模拟)(3-2x -x 4)(2x -1)6的展开式中,含x 3项的系数为( ) A.600B.360C.-600D.-360解析 由二项展开式的通项可知,展开式中含x 3项的系数为3×C 3623(-1)3-2×C 4622(-1)4=-600.故选C.答案 C14.若多项式(2x +3y )n 展开式仅在第5项的二项式系数最大,则多项式⎝ ⎛⎭⎪⎫x 2+1x 2-4n -4展开式中x 2的系数为( ) A.-304B.304C.-208D.208解析 多项式(2x +3y )n 展开式仅在第5项的二项式系数最大,故展开式有9项,所以n =8,多项式⎝ ⎛⎭⎪⎫x 2+1x 2-44的展开式的通项公式T r +1=C r 4(-4)4-r ⎝ ⎛⎭⎪⎫x 2+1x 2r(0≤r ≤4).⎝ ⎛⎭⎪⎫x 2+1x 2r的通项公式T k +1=C k r (x 2)r -k ⎝ ⎛⎭⎪⎫1x 2k=C k r x 2r -4k(0≤k ≤r ).令2r -4k =2,即r =2k +1,所以k =0,r =1;k =1,r =3,所以展开式中x 2的系数为C 14·(-4)3+C 24·C 12·(-4)=-256-48=-304. 答案 A15.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________. 解析 设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3. 答案 316.(2020·济南模拟)设(1-ax )2 020=a 0+a 1x +a 2x 2+…+a 2 020x 2 020,若a 1+2a 2+3a 3+…+2 020a 2 020=2 020a (a ≠0),则实数a =________.解析 已知(1-ax )2 020=a 0+a 1x +a 2x 2+…+a 2 020x 2 020,两边同时对x 求导, 得2 020(1-ax )2 019(-a )=a 1+2a 2x +3a 3x 2+…+2 020a 2 020x 2 019, 令x =1得,-2 020a (1-a )2 019=a 1+2a 2+3a 3+…+2 020a 2 020=2 020a , 又a ≠0,所以(1-a )2 019=-1,即1-a =-1,故a =2. 答案 2C 级 创新猜想17.(多选题)若⎝ ⎛⎭⎪⎫x 2+2x 3n展开式存在常数项,则n 的取值可以为下列选项中的( )A.3B.4C.5D.10解析 ⎝ ⎛⎭⎪⎫x 2+2x 3n的展开式的通项公式为T r +1=C r n ·(x 2)n -r ·⎝ ⎛⎭⎪⎫2x 3r=C r n ·2r ·x 2n -5r,r =0,1,2,…,n ,由题意可得2n -5r =0,即n =5r2,由n 为正整数,可得r =2时,n 取得最小值5,当r =4时,n =10.故选CD.答案CD18.(多填题)(2019·浙江卷)在二项式(2+x)9的展开式中,常数项是______,系数为有理数的项的个数是______.解析由二项展开式的通项公式可知T r+1=C r9·(2)9-r·x r,r∈N,0≤r≤9,当r=0时,第1项为常数项,所以常数项为T1=C09·(2)9·x0=(2)9=16 2. 当项的系数为有理数时,9-r为偶数,可得r=1,3,5,7,9,即系数为有理数的项的个数为5.答案162 5。
二项式定理知识点总结
二项式定理一、二项式定理:ab n CaCabCabCb0n1n1knkknnnnnn (nN)等号右边的多项式叫做nab的二项展开式,其中各项的系数kC(k0,1,2,3n)叫做二项式系数。
n对二项式定理的理解:(1)二项展开式有n1项(2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立,通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
在定理中假设a1,bx,则nCxCxCxCx1x(nN)nnnn0n1knknn(4)要注意二项式定理的双向功能:一方面可将二项式nab展开,得到一个多项式;n 另一方面,也可将展开式合并成二项式ab二、二项展开式的通项:knkk T k1Cabn二项展开式的通项knkkT k1Cab(k0,1,2,3n)是二项展开式的第k1项,它体现了n二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项knkkT k1Cab(k0,1,2,3n)的理解:n(1)字母b的次数和组合数的上标相同(2)a与b的次数之和为n(3)在通项公式中共含有a,b,n,k,Tk这5个元素,知道4个元素便可求第5个元素1例1.132933等于()n1nC n CCCnnnA.n4B。
n4n34C。
13D.n431例2.(1)求7(12x)的展开式的第四项的系数;(2)求19(x)x的展开式中3x的系数及二项式系数三、二项展开式系数的性质:①对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 0n1n12n2knk C n C,CC,C C,CCnnnnnnn,②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。
二项式定理
- - -
+ n· 2n-1=(n+2)· 2n-1, 故 3n>(n+2)· 2n-1.
2 n 例 4:已知( x- 2) (n∈N*)的展开式中第五项的系数与第三 x 项的系数的比是 10∶1. (1)求展开式中各项系数的和; (2)求展开式中含x 的项; (3)求展开式中系数最大的项和二项式系数最大的项.
2 3 1 ( x 2) 【 3】 展开式中的常数项是_______. 2 x
20
1 1 3 3 C x C 2 C1 ( 2) C3 (2) x
1 3 2 1 2
20.
( x 2 12 2)3 ( x 1 )6 x x
Tr +1 = (1) C x
r n- r r n- r r a=2x,b=3y,Tr+1=Cn2 · 3 x y ,其中 r Cn
2n-r3r 就是 Tr+1 项的系数.
求展开式中的特定项或特 定项的系数
1 x+ n 例 1 在二项式 4 的展开式中,前三项的系数成等 2 x 差数列,求展开式中的有理项和二项式系数最大的项.
4 所以x的系数为 C4 5 3 2 240.
【点评】三项式不能用二项式定理,必须转化 为二项式.
例1. 求(x2十3x十2)5的展开式中x的系数. 解法二:因为 (x2 十 3x 十 2)5 = (x2 十 3x 十 2)(x2 十 3x十2)(x2十3x十2)(x2十3x十2)(x2十3x十2), 所以 (x2 十 3x 十 2)5 展开式的各项是由五个 因式中各选一项相乘后得到的. 则它的一次项只能从五个因式中的一个取 一次项3x,另四个因式中取常数项2相乘得到.
二项式定理及其系数的性质
03
这些性质在解决某些数学问题 时非常有用,如求和、求积等 。
03 系数性质分析
组合数性质回顾
组合数定义
$C_n^k = frac{n!}{k!(n-k)!}$,表示从 $n$个不同元素中选取$k$个元素的组合数。
VS
组合数性质
$C_n^k = C_n^{n-k}$(互补性), $C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$(帕斯卡三角形), $C_n^0 + C_n^1 + ldots + C_n^n = 2^n$(二项式定理特例)。
根据二项式定理的通项公式,可以直接计算出展开式中 任意一项的系数。具体方法为:确定该项在展开式中的 位置(即序号$k$),然后代入通项公式计算即可。
若需要求多项式的某一项系数,可以先将多项式按照 二项式定理展开,然后找到对应位置的项并计算其系 数。
THANKS FOR WATCHING
感谢您的观看
常见问题一
根据二项式定理的通项公式,若某项 的系数为0,则该项不存在于展开式 中。因此,可以通过判断通项公式中 组合数或二项式系数的值是否为0来 确定某项是否存在。
VS
当$n<k$时,组合数$C_n^k=0$, 因此对应的二项式系数也为0。此时, 展开式中不存在该项。
常见问题二:如何求展开式中特定项系数?
在二项式定理的通项公式$T_{k+1}=C_n^k cdot a^{n-k} cdot b^k$中,混淆$n$、$k$、$a$、$b$的含义和取值范围。其 中,$n$表示二项式的次数,$k$表示项的序号(从0开始计数),$a$和$b$分别表示二项式中的两个实数。
错误地认为通项公式中的组合数$C_n^k$与二项式系数完全相同,实际上二者在数值上相等,但意义不同。组合数表示从 $n$个不同元素中取出$k$个元素的组合数,而二项式系数表示$(a+b)^n$展开后各项的系数。
8.3二项式定理(教师版)
科 目数学 年级 高三 备课人 高三数学组 第 课时 8.3二项式定理考纲定位 掌握二项式定理及其性质;会用二项式定理的知识解决系数和、常数项等问题.【考点整合】1、二项式定理:()n a b += ;通项1k T += .2、二项式系数的性质:(1)对称性:(2)增减性与最大值:(3)各二项式系数的和:012...n n n n nC C C C ++++= ; 当n 为偶数时,024...n n n n nC C C C ++++= = ; 当n 为奇数时,0241...n n n n nC C C C -++++= = ; (4)思考:二项式系数与项的系数一样吗?如果不一样,则区别在哪儿?【典型例题】一、利用二项式的通项公式求项数和特殊项例1、(1)已知2()n x x -的展开式中所有项的二项式系数之和为64,则常数项为( )A.80B.160C.-80D.-160(2)1(2)n x x -的展开式中含有21x 项的系数与含41x的系数之比为-5,则n= ;并求含2x 项的二项式系数、系数分别为 和 .(请用数字作答)二、有关二项展开式的系数问题例2、设5250125(21)...x a a x a x a x -=++++,求:(1)012345a a a a a a +++++;(2)012345a a a a a a -+-+-;(3)135a a a ++;(4)01234a a a a a ++++.【高考真题】1、(2012 安徽)2521(2)(1)x x+-的展开式的常数项是( )D A.-3 B.-2 C.2 D.3 2、(2012 天津)在251(2)x x -的二项展开式中,x 的系数为( )DA.10B.-10C.40D.-40 3、(2012 湖北)设a Z ∈,且013a ≤<,若201251a +能被13整除,则a =( )D A.0 B.1 C.11 D.124、(2012 重庆)81()2x x+的展开式中常数项为( )BA.3516B.358C.354D.105 5、(2011 新课标)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( )D A.-40 B.-20 C.20 D.406、(2011 福建)5(21)x +的展开式中,2x 的系数等于( )BA.80B.40C.20D.107、(2011 天津)在62()2x x-的二项展开式中2x 的系数为( )C A.154- B.154 C.38- D.388、(2010 陕西)5()ax x +的展开式中3x 的系数为10,则实数a 等于( )D A.-1 B.12C.1D.2 9、(2010 江西)8(2)x -展开式中不含4x 项的系数的和为( )BA.-1B.0C.1D.210、(2012 湖南)61(2)x x -的二项展开式中的常数项为 .(用数字作答)-16011、(2010 四川)631(2)x -的展开式中的第四项是 .160x - 【课后反思】。
二项式定理复习理
a 的指数由 n 逐项减少到 0,b 的指数由 0 逐项增加到 n, 简称“一降二升”;
(3)注意区分“项”、“项数”、“系数”、“二项式系数”等概念 的区别.
2.二项式系数的性质 (1)对称性 与首末两端“等距离”的两个二项式系数相等,事实上这一
性质直接由公式 Ckn=Cnn-k 得到.
(2)增减性 ∵Ckn=n-kk+1Ckn-1,
n+1 ∴当 k< 2 时,二项式系数逐渐增大,由对称性知
后半部分是逐渐减小的.
(3)最大值
当 n 为偶数时,中间一项(第 n2+1 n
项)的二项式系数最
大,最大值为
C
2 n
.
当 n 为奇数时,中间两项(第
n-2 1+1
【点评】求展开式中系数最大项的步骤是:先假设 第 r+1 项系数最大,则它比相邻两项的系数都不小,列 出不等式组并解此不等式组求得.
变式题
[2009·全国卷Ⅰ]
x-y
10
的展开式中,x7y3
的系数与 x3y7 的系数之和等于________.
【思路】根据二项展开式的通项公式分别找到所求 两项的系数即可.
例 3 已知(1-2x)7=a0+a1x+a2x2+…+a7x7. 求:(1) a1+a2+…+a7;
(2)a1+a3+a5+a7; (3)a0+a2+a4+a6; (4)a0+a1+a2+…+a7.
【思路】利用赋值法可求得.
【解答】令 x=1 则 a0+a1+a2+a3+a4+a5+a6+a7 =-1,①
【解答】 B 对于 Tr+1=Cr5(x2)5-r-1xr =(-1)rC5rx10-3r,对于 10-3r=4, ∴r=2,则 x4 的项的系数是 C25(-1)2=10.
二项式定理的性质
二项式定理的一般形式
二项式定理的一般形式是指将任意实数的幂展开为多项式的形式。该形式是 二项式定理的拓展和推广,适用于更加广泛的数学领域。
二项式定理的证明方法
二项式定理的证明方法有多种,主要有代数证明、组合证明和数学归纳法。 不同的证明方法提供了不同的视角和思路,加深了对定理的理解。
二项式定理的不等式性质
二项式定理具有多种有趣的不等式性质,如二项式展开的不等式、二项式系数的不等式等。这些性质在 数学推导和证明中具有重要的应理是数学中描述两个数相加或相乘的定理,用于展开二项式和计算多项式。该定理广泛应用于 代数、组合数学和概率论等领域。
二项式系数
二项式系数是二项式定理中的重要参数,表示在展开二项式时每个项的系数。 二项式系数由组合数学中的组合公式计算得出。
二项式定理的展开式
二项式定理可以将以二项式为底数的幂展开为多项式。展开式的项数为等差 数列,具有一定规律。展开式的具体形式可由二项式系数和幂运算计算得出。
二项式定理的性质
二项式定理是数学中重要的定理之一,涉及多个方面的性质和应用。本文将 介绍二项式定理的各种性质和相关内容。
二项式定理的公式
二项式定理是数学中用于展开二项式的重要公式,其形式为:$$(a+b)^n = \sum_{k=0}^{n} C(n, k) a^{n-k} b^{k}$$ 其中,$C(n, k)$表示二项式系数。
二项式定理及二项式系数的性质应用
累加性质
01
二项式系数满足累加性质,即对 于任意非负整数$n$和$k$($0 leq k leq n-1$),有$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$。
02
这一性质表明,在二项式展开 式中,相邻两项的二项式系数 之和等于下一项的二项式系数 。
03
通过累加性质,可以推导出二 项式系数的其他性质,如求和 公式等。
二项式系数与通项公式
二项式系数是指$(a+b)^n$展开后各项的系数,记作$C_n^k$,表示从$n$个不同元素中取出$k$个元素 的组合数。
二项式系数的通项公式为$C_n^k=frac{n!}{k!(n-k)!}$,其中$n!$表示$n$的阶乘。
二项式定理展开方法
二项式定理的展开方法是通过组合数公式和乘法分配律逐步推导出来的。
02
在组合数学中,多项式定理可用 于推导组合恒等式和求解组合问
题。
在物理学和工程学中,多项式定 理可用于描述多维空间中的物理 量和场分布。
03
在计算机科学中,多项式定理可 用于设计和分析算法的时间复杂
度和空间复杂度。
04
05 思考题与练习题选讲
思考题选讲
题目1
证明二项式定理对任意正整数$n$都成立。
对于$(a+b)^n$,可以先将其表示成$(a+b)(a+b)cdots(a+b)$的形式, 然后按照乘法分配律进行展开。
在展开过程中,每一项都是$a$和$b$的乘积,且$a$和$b$的指数之和为 $n$。根据组合数公式,可以计算出每一项的系数。
02 二项式系数性质
对称性
二项式系数具有对称性,即对于任意 非负整数$n$和$k$($0 leq k leq n$),有$C_n^k = C_n^{n-k}$。
二项式定理(通项公式)
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;。
二项式定理知识点总结
二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。
具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。
+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。
右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。
二项式定理的理解:1)二项展开式有n+1项。
2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。
3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。
通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。
+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。
二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。
具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。
通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。
它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。
三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。
二项式定理
二项式定理1.二项式定理(1)定理:公式(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)叫做二项式定理.(2)通项:T k+1=C k n a n-k b k为展开式的第k+1项.2.二项式系数与项的系数(1)二项式系数:二项展开式中各项的系数C k n(k∈{0,1,…,n})叫做二项式系数.(2)项的系数:项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念.3.二项式系数的性质性质内容对称性与首末两端等距离的两个二项式系数相等,即C m n=C n-mn增减性当k<n+12时,二项式系数逐渐增大;当k>n+12时,二项式系数逐渐减小最大值当n是偶数时,中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大,最大值为C n2n;当n是奇数时,中间两项⎝⎛第n-12+1项和第n+12+1)项的二项式系数相等,且同时取得最大值,最大值为12C-nn或12C+nn4.各二项式系数的和(a+b)n的展开式的各个二项式系数的和等于2n,即C0n+C1n+C2n+…+C k n+…+C n n=2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C1n+C3n+C5n+…=C0n+C2n+C4n+…=2n-1.1.二项式的通项易误认为是第k项实质上是第k+1项.2.(a+b)n与(b+a)n虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.3.易混淆二项式中的“项”,“项的系数”、“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n (k =0,1,…,n ).[试一试]1.(2014·黄冈模拟)设复数x =2i 1-i(i 是虚数单位),则C 12 013x +C 22 013x 2+C 32 013x 3+…+C 2 0132 013x 2 013=( ) A .i B .-i C .-1+iD .1+i解析:选C x =2i 1-i =-1+i ,C 12 013x +C 22 013x 2+…+C 2 0132 013x2 013=(1+x )2 013-1=i 2 013-1=i -1,选C.2.(2014·深圳调研)若(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 3=________.解析:根据已知条件得,T 3+1=C 35(2x )3=80x 3,∴a 3=80. 答案:803.设二项式(x -a x )6的展开式中x 2的系数为A ,常数项为B ,若B =4A ,则a =________.解析:T k +1=C k 6x 6-k ·⎝⎛⎭⎫-a x k =(-a )k C k 6x 6-2k ,令6-2k =2,得k =2,A =a 2C 26=15a 2;令6-2k =0,得k =3,B =-a 3C 36=-20a 3,代入B =4A 得a =-3.答案:-31.赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.2.利用二项式定理解决整除问题的思路要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.3.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝⎛第n +12项与第⎝⎛⎭⎫n +12+1 )项的二项式系数相等并最大. 4.二项展开式系数最大项的求法:如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1A k ≥A k +1从而解出k 来,即得. [练一练]1.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11D .122.若x ∈(0,+∞),则(1+2x )15的二项展开式中系数最大的项为( ) A .第8项 B .第9项 C .第8项和第9项 D .第11项考点一二项式中的特定项或特定项的系数1.(2013·江西高考)⎝⎛⎭⎫x 2-2x 35展开式中的常数项为( ) A .80 B .-80 C .40D .-402.(2014·浙江五校联考)在⎝⎛⎭⎫x 2+1x 5的展开式中x 的系数为( ) A .5 B .10 C .20 D .40.3.(2013·安徽高考)若⎝⎛⎭⎪⎫x +a 3x 8的展开式中x 4的系数为7,则实数a =________.[类题通法]。
第10章 第3节 二项式定理
大各二项式系数和 (1)(a+b)n 展开式的各二项式系数和:C0n+C1n+C2n+…+Cnn= 2n . (2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即 C0n+C2n+C4n +…=C1n+C3n+C5n+…= 2n-1 .
返回导航
2019版高三一轮
返回导航
2019版高三一轮
-5 [由题知,二项式展开式为 C04x-1x4·(-1)0+C14x-1x3·(-1)+ C24x-1x2·(-1)2+C34x-1x·(-1)3+C44x-1x0·(-1)4,则常数项为 C04·C24-C24·C12+ C44=6-12+1=-5.]
返回导航
2019版高三一轮
10 243 [x2的系数为 C15×2=10;令 x=1,得各项系数之和为(1+2)5=243.]
返回导航
(对应学生用书第 173 页) 二项展开式中的特定项或特定项的系数
2019版高三一轮
◎角度 1 求展开式中的某一项 (2018·合肥二测)在x-1x-14的展开式中,常数项为________.
◎角度 2 求展开式中的项的系数或二项式系数
(2017·全国卷Ⅰ)1+x12(1+x)6 展开式中 x2 的系数为(
二项式定理
2
4
10-2r ∈Z, 3 (3)根据通项公式,由题意 0≤r≤10, r∈N. 10-2r 3 令 =k(k∈Z),则 10-2r=3k,即 r=5- k, 3 2 ∵r∈N,∴k 应为偶数. ∴k 可取 2,0,-2,即 r 可能取 2,5,8. 所以第 3 项,第 6 项与第 9 项为有理项,它们分别为 15 1 12 2 2 5 8 ,C10- 8x-2. C10(- ) x ,C10 - 2
nr
[自主解答] (1)通项为
1 n 2 r r =Cn-2r x 3 ,
Tr+1=Cr x n
3
1 - r x 2
r 3
n-2r 因为第 6 项为常数项,所以 r=5 时,有 =0, 3 即 n=10. n-2r 1 1 (2)令 =2,得 r= (n-6)= ×(10-6)=2, 3 2 2 ∴所求的系数为 1 2 45 2 C10 - = .
⇒5≤r≤6.∴r=5 或 r=6.
∵r∈{0,1,2,…,8}. ∴系数最大的项为 T6=1792x5,T7=1792x6.
6. C n 2 C n 4 C n 2 C n 等于(
0 1 2 n n
A)
3 1
n
(A) 3
n
(B) 2 3
2 2
n
(C)
3 3
2
n
1
n n
0 4 Cn+C2 +Cn+… n =
2n-1 .
[思考探究2] 二项式系数与项的系数有什么区别? 提示:二项式系数与项的系数是完全不同的两个概念.二项 式系数是指 ,它只与各项的项数有关,而与a,
b的值无关;而项的系数是指该项中除变量外的部分,它不 仅与各项的二项式系数有关,而且也与a,b的值有关.
3.二项式定理
例讲三:多项式的展开式问题
1.在(1+x)+(1+x)2+(1+x)3+…+(1+x)11 的展开式中,x2 项的系数是 2.(1+2x2)(1+x)4 的展开式中 x3 的系数为 3.已知(x-1)(ax+1)6 的展开式中含 x2 项的系数为 0,则正实数 a=________. 4.(x2-x+1)10 的展开式中 x3 项的系数为 5.(x2+x+y)5 的展开式中 x5y2 的系数为
二项式定理
一.二项式定理及性质
1.定理:(a+b)n=C 0n an+C 1nan -1b+…+C knan-k bk+…+C nn bn(n ∈N*).
2.通项:第 k+1 项为 Tk+1=Cknan-kbk. 3.二项式系数:二项展开式中各项的二项式系数为:Ckn (k=0,1,2,…,n).
64∶1,则
x3
的系数为
2.若(1-x)9=a0+a1x+a2x2+…+a9x9,则|a1|+|a2|+|a3|+…+|a9|=
【解析】 (1)由题意知42nn=64,得 n=6,展开式的通项为 Tr+1=Cr6x6-r 3xr=3rCr6x6-32r, 令 6-32r=3,得 r=2,则 x3 的系数为 32C26=135.故选 C. (2)令 x=0,得 a0=1,令 x=-1,得|a1|+|a2|+|a3|+…+|a9|=[1-(-1)]9-1=29-1= 511.
2.若
x+1 x
n展开式的二项式系数之和为
64,则展开式的常数项为_系数为 C25-122=52.
(2)ax2+
1x5的展开式的通项
Tr+1=C5r (ax2)5-r×
1xr=Cr5a5-rx10-52r,令
10-52r=0,得
r=4,所以 C45a5-4=-10,解得 a=-2.
二项式系数
二项式系数第二节二项式定理1、二项式定理:(1)(a+b)n=Can+Can-1b+…+Can-rbr+…+Cbn。
(2)通项公式:Tr+1=Can-rbr (r=0,1,2,…,n)为展开式第r+1项。
(3)展开式的特点:共有n+1项;第r+1项的二项式系数为C;2、二项式系数的性质:(1)C=C。
(2)若n为偶数,中间一项+1的二项式系数最大;若n奇数,中间两项、+1的二项式系数相等并且最大.(3)C+C+C+…+C=2n。
(4)C+C+C。
=C+C+C+。
=2n-1、3、二项式中的最值问题求(a+b)n展开式中系数最大的项,通常用待定系数法,设展开式各项系数分别为A1,A2,…,An+1设第r+1项系数最大,则4、二项式定理的主要应用(1)赋值求值;(2)证明一些整除问题或求余数;(3)证明有关等式与不等式;(4)进行近似计算。
例1、(1)求的值。
(2)求展开式中含项的系数为?(3)求展开式中所有有理项。
练习1:(1+3)(+)6展开式中的常数项为_____.例2、已知(+)n(n∈N)的展开式中第五项的系数与第三项的系数的比是10:1、(1)求展开式中各项系数和及二项式系数和;(3)求展开式中系数最大的项和二项式系数最大的项.例3、已知(3-1)7=a07+a16+…+a6+a7。
(1)求a0+a1+a2+…+a7的值;(2)求,a0,+,a1,+,a2,+…+,a7,的值;(3)求a1+a3+a5+a7的值.解析(1)令=1,得a0+a1…+a7=(31-1)7=27=128。
(2)易知a1,a3,a5,a7为负值,,a0,+,a1,+,a2,+…+,a7,=a0-a1+a2-…-a7=-(-a0+a1-a2+…+a7)-[3(-1)-1]7=47。
(3)令f()=(3-1)7,则f(1)=a0+a1+a2+a3+…+a7,f(-1)=-a0+a1-a2+…+a7。
∴2(a1+a3+a5+a7)=f(1)+f(-1)=27-47。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 2、在(2- x )9的展开式中,是它 的第______ 项 ,这项的系数是 ___________ 这项的二项式系数 是 _______________
• 3、设s=
(x- 1)4+4(x-1)3+6(x-1)2+4(x-1)+1, 则 s
等于( C )
A.(x-2) 4 B. (x-1) 4 C. x 4 D.(x+1)4
• 4、在 展开式
x
1 3x
10
中的常数项是__________
• 5=、__2_c_1n__2_2_c_n2__…__+_2_n_1c_nn_1 2ncnn
• 6、(1.01)10=_______(保留 到小数点后三位)
再见!
• 一、教学过程: • Ⅰ、课前准备 • (1)填写公式:(a+b)n的二
项展开式 是 ___________________________ • 通项公式是 _______________ ; • (a-b)n的二项展开式是 _______________________ • (1+i)10=____________________
• 一、教学目标: • 1、知识目标:掌握二项式定理及有关概
念,通项公式,二项式系数的性质;
• 2、思想方法目标:使学生领悟并掌握方 程的思想方法,赋值法,构造法,并通 过变式提高学生的应变能力,创造能力 及逻辑思维能力。
• 3、情感目标:通过学生的主体活动,营 造一种愉悦的情境,使学生自始至终处 于积极思考的氛围中,不断获得成功的 体验,从而对自己的数学学习充满信心。
二项式定理 及其系数的性质源自• 一、本节教材地位及命题趋势:
• 高考对本单元的特点是基础和 全面,每年对本单元知识点的考 查没有遗漏。估计每年一道排列 组合题,一道二项式定理题是不 会变的,试题难度仍然回维持在 较易到中等的程度。二项式定理 的试题是多年来最缺少变化的试 题,今后也很难有什么大的改变。
• 三、复习策略:
• 本节知识的学习或复习要 重视基础,要按教学大纲 和考试说明的要求弄懂遇 按理,适当掌握一些方法, 会分析。
名好榜样:老师要做学生的~。只是~不理想。指人死后灵魂投生为人。【表象】biǎoxiànɡ名经过感知的客观事物在脑中再现的形象。别的人相应作答 (大多按照原韵):他们经常以诗词~。【唱词】chànɡcí名戏曲、曲艺中唱的词句。比喻沿袭老一套,参看778页〖空城计〗。 通称标尺。 【补偏救