高中数学必修五知识点大全
高中数学必修5知识点总结
高中数学必修5知识点总结解三角形:正弦定理:对于任意三角形ABC,边长a、b、c分别对应角A、B、C,R为三角形ABC的外接圆半径,则有 a/sinA = b/sinB =c/sinC = 2R。
这是解三角形的基本工具,可用于求解三角形的边长或角度。
余弦定理:对于任意三角形ABC,边长a、b、c分别对应角A、B、C,则有c² = a² + b² - 2ab*cosC,以及类似的公式对于其他两边和对应角度。
余弦定理主要用于已知两边和夹角求第三边,或者已知三边求角度。
三角形的形状判定:通过正弦定理和余弦定理,可以判断三角形的形状。
例如,如果a² + b² = c²,则三角形ABC是直角三角形;如果sinA = sinB = sinC,则三角形ABC是等边三角形。
数列:数列的概念和性质:数列是一种特殊的函数,它的定义域是正整数集或其有限子集。
数列的通项公式、前n项和公式等是数列的基本性质。
等差数列和等比数列:这是两种特殊的数列,它们分别具有等差和等比的性质。
等差数列的通项公式为an = a1 + (n-1)d,前n项和公式为Sn = n/2 * (a1 + an);等比数列的通项公式为an = a1 * q^(n-1),前n项和公式为Sn = a1 * (1 - q^n) / (1 - q)(q ≠ 1)。
数列的极限和收敛性:当n趋于无穷大时,如果数列的项趋于一个常数,则称这个常数为数列的极限,称数列收敛。
否则,称数列发散。
不等式:不等式的概念和性质:不等式是数学中比较基础的概念,它表示两个数之间的大小关系。
不等式的性质包括加法性质、乘法性质、传递性质等。
不等式的解法:不等式的解法主要包括移项、合并同类项、去括号等基本运算,以及利用不等式的性质进行变形和推导。
不等式的应用:不等式在实际生活中有广泛的应用,例如优化问题、最值问题、范围问题等。
以上是高中数学必修5的主要知识点总结。
高中数学必修五知识点大全
知识点串讲必修五第一章:解三角形1.1.1正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abA B =sin cC =一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
2、已知∆ABC 中,∠A 060=,a =求sin sin sin a b c A B C++++ 证明出sin sin a b A B =sin c C ==sin sin sin a b c A B C++++ 解:设sin sin a b A B =(>o)sin c k k C== 则有sin a k A =,sin b k B =,sin c k C = 从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k C A B C++++=k又sin a A =2k ==,所以sin sin sin a b c A B C++++=2 评述:在∆ABC 中,等式sin sin a b A B =sin c C ==()0sin sin sin a b c k k A B C ++=>++ 恒成立。
3、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c(答案:1:2:3)1.1.2余弦定理1、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a c b B ac 222cos 2+-=b a c C ba2、在∆ABC 中,已知=a c 060=B ,求b 及A⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+-=8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2222221,22+-=b c a A bc ∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=21.8 3.6,⨯=∴a <c ,即00<A <090,∴060.=A评述:解法二应注意确定A 的取值范围。
高中数学必修五知识点总结
高中数学必修五知识点总结一、代数部分:1.多项式的基本概念与运算:包括多项式的定义、次数、系数、单项式、多项式的加减乘除等。
2.因式分解与提取公因式:掌握对多项式进行因式分解与提取公因式的方法,包括一元二次、三项完全平方差、简单三项和复杂多项式的因式分解。
3.方程与不等式:掌握一元二次方程与一元二次不等式的解法,包括配方法、公式法、图像法和根与系数关系等。
4.等差数列与等比数列:了解等差数列和等比数列的概念、公式及其应用,包括求和公式、通项公式、项数和值与项数关系等。
二、函数部分:1.函数的基本概念与性质:掌握函数的定义、函数图像、值域、定义域、奇偶性等基本性质。
2.一次函数与二次函数:了解一次函数和二次函数的定义、图像、性质和特征等,包括函数的增减性、最值、交点、轴对称点等内容。
3.三角函数:熟练掌握正弦函数、余弦函数和正切函数的定义、图像、性质和应用,包括变化规律、周期、幅值、对称性和反函数等。
4.指数函数与对数函数:了解指数函数和对数函数的定义、性质和应用,包括指数函数的增减性和指数函数与对数函数的互逆关系等。
三、几何部分:1.平面向量与坐标表示:了解平面向量的定义、平移、线性运算和坐标表示方法,包括平面向量的加减、数量积和向量共线的判定等。
2.绝对值与不等式:熟练掌握绝对值的性质和变形,以及利用绝对值解决各种绝对值不等式的方法。
3.平面几何应用:包括相似三角形的判定与性质、三角形的三边、两边一角和正弦定理、余弦定理及其应用等内容。
四、概率与统计部分:1.事件与概率:了解事件和概率的基本概念和性质,包括样本空间、事件的发生、概率公理及其应用等。
2.随机变量与概率分布:掌握离散型和连续型随机变量及其概率分布的定义、性质和应用,包括离散型随机变量的期望和方差的计算等。
3.抽样与统计推断:了解统计样本、样本估计和假设检验的基本原理和方法,包括样本均值、样本比例的估计和显著性检验等。
五、数学建模部分:1.数学建模的基本步骤:掌握数学建模中的问题分析和模型假设、模型建立、模型求解和模型评价等基本步骤。
高中必修五数学知识点总结
高中必修五数学知识点总结
等差数列:等差数列是一种特殊的数列,其中每一项与它的前一项的差都等于同一个常数,这个常数被称为等差数列的公差。
等差数列的通项公式是 an = a1 + (n - 1)d,其中 a1 是首项,d 是公差,n 是项数。
等差数列还有一个重要的性质,即等差中项,即任意三个连续的项构成等差数列时,中间的项是前后两项的算术平均。
集合:集合是数学中的一个基本概念,它表示一组对象的集合。
集合之间的关系主要有包含关系和相等关系。
如果集合A的每一个元素都是集合B 的元素,那么A是B的子集,记作A⊆B。
如果A是B的子集,且B是A的子集,那么A和B是相等的集合,记作A=B。
函数:函数是描述输入和输出之间关系的一种数学模型。
函数有定义域和值域,定义域是函数可以接受的所有输入值的集合,值域是函数可以产生的所有输出值的集合。
函数可以用列表法、图像法和解析法来表示。
解析法包括以通项公式给出数列和以递推公式给出数列。
以上是高中必修五数学的主要知识点,掌握这些知识点对于理解更高级的数学概念和解决复杂问题至关重要。
同时,也需要通过大量的练习来加深对这些知识点的理解和应用。
(完整)数学必修五知识点,推荐文档
四、求通项公式方法
①观察、归纳、猜想法求数列通项
②应用 an
S n
S1 Sn1
(n 1)
求数列通项
(n 2)
注意:一分为二或合二为一
③累加法:若递推关系式形式为 an1 an f (n) 用累加法
3
④累乘法:若递推关系式形式为 an1 an f (n) 用累乘法
m
a ⑤转化为等差法:若递推关系式形式为 an1 p
.
通项公式特点: an dn (a1 d )
an kn m,(k, m为常数) 是数列 an 成等差数列的充要条件。
3、等差中项
若三个数 a , A , b 组成等差数列,则 A 称为 a 与 b 的等差中项.若 b a c ,则 2
称 b 为 a 与 c 的等差中项.即 a、b、c 成等差数列 b a c 2
若an是等比数列,且 m n p q ( m 、 n 、 p 、 q * ),则 am an ap aq ;
若an是等比数列,且 2n p q ( n 、 p 、 q * ),则 an2 ap aq .
5、等比数列an的前 n 项和的公式:
na1 q 1
(1)公式:
Sn
k an an 1
k d
1 ( an
1 an1 ) ( an
为等差数列)
⑤分组求和
第二章、解三角形
一、正弦定理
1、正弦定理:在 AC 中, a 、 b 、 c 分别为角 A 、 、 C 的对边, R 为 AC 的
外接圆的半径,则有
a b c sin A sin sin C
2R
.
2、正弦定理的变形公式:① a 2R sin A , b 2R sin , c 2R sin C ;
(完整版)人教版高二数学必修5知识点归纳(最完整版).doc
现在的努力就是为了实现小时候吹下的牛逼——标必修五数学知识点归纳资料第一章 解三角形1、三角形的性质:①.A+B+C=,sin( A B) sin C , cos( A B) cosCA B2C sinA2 B cosC222②.在 ABC 中 , a b >c , a b < c ; A > Bsin A > sin B ,A > BcosA < cosB, a >bA >B ③.若 ABC 为锐角,则 A B > ,B+C >,A+C > ;222a 2b 2 >c 2 , b 2 c 2 > a 2 , a 2 + c 2 > b 22、正弦定理与余弦定理:①.正弦定理:abc 2R (2R 为 ABC 外接圆的直径 )sin Bsin Asin Ca 2R sin A 、b 2Rsin B 、c 2R sin C(边化角)sin Aa 、 sin Bb 、 sin Cc(角化边)2R2R 2R面积公式: S ABC1ab sin C1bc sin A1ac sin B222②. 余 弦 定 理 : a 2b 2c 2 2bc cos A、 b 2 a 2 c 22ac cos B 、c 2a 2b 22ab cosCcos A b 2 c 2 a 2 、 cos B a 2 c 2 b 2 、 cosCa 2b 2c 2 (角化边)2bc 2ac2ab补充:两角和与差的正弦、余弦和正切公式:⑴ coscos cos sin sin ;⑵ coscos cos sin sin ; ⑶ sinsin cos cos sin ;⑷ sinsin coscos sin ;⑸ tantan tan( tantantan1 tan tan);1 tantan现在的努力就是为了实现小时候吹下的牛逼——标⑹ tantan tan( tantantan1 tan tan).1 tan tan二倍角的正弦、余弦和正切公式:⑴ sin 2 2sin cos . 1 sin 2sin 2cos 22 sincos(sincos )2⑵ cos2cos 2sin 22cos 2 1 1 2sin 2升幂公式 1 cos2 cos 2 ,1 cos2 sin 222降幂公式 cos2cos2 1, sin 21 cos2 .223、常见的解题方法:(边化角或者角化边)第二章 数列1、数列的定义及数列的通项公式:①.a n( ) ,数列是定义域为 N 的函数 f (n) ,当 n 依次取 , , 时的一列函f n1 2 数值②. a n 的求法:i. 归纳法ii.a nS 1 , n 10 ,则 a n 不分段;若 S 00 ,则 a n 分段S n S n若 S 01, n 2iii. 若 a n 1pa nq ,则可设 a n 1 m p(a n m) 解得 m,得等比数列 a n miv.若 S nf (a n ) ,先求 a 1 ,再构造方程组 : S n f (a n )得到关于 a n 1 和 a n 的递推S n 1 f (a n 1 )关系式例如:2 a n 1S n 2a n 12a n 1 2a nS n 先求 a 1 ,再构造方程组:(下减上) a n 1Sn 12a n 1 12. 等差数列:① 定义: a n 1 a n = d (常数) , 证明数列是等差数列的重要工具。
高中数学必修5全册知识点总结(理科)
高中数学必修5知识点第一章解三角形(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c RC ===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c abc+-A =第二章数列1、数列中n a 与n S 之间的关系:11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。
2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n≥2,n∈N +),那么这个数列就叫做等差数列。
⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔=⑶通项公式:1(1)()n m a a n d a n m d=+-=+-或(n a pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb +(k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。
高中数学必修5的知识点
2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤:
(1)将数据列成表格; ( 2)列出约束条件与目标函数; ( 3)根据求最值方法:①画:画可行域;②移:移
与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;
( 4)验证。
两类主要的目标函数的几何意义 :
高中数学必修 5 知识点总结
(一)解三角形:
1、正弦定理:在
C 中, a 、 b 、 c 分别为角 、 、 C 的对边,,则有 a
b
c 2R
sin sin sin C
( R为
C 的外接圆的半径 )
2、正弦定理的变形公式:① a 2Rsin , b 2Rsin , c 2Rsin C ;
② sin
a , sin
ap aq Sn , S3n
S2 n 成等差数列
则 am an a p aq 3. Sn , S2n Sn , S3n
S2n 成等比
数列
(三)不等式
1、 a b 0 a b ; a b 0 a b ; a b 0 a b .
2、不等式的性质: ① a b b a ; ② a b, b c a c ; ③ a b a c b c ;
5、均值定理的应用:设 x 、 y 都为正数,则有
s2 ⑴若 x y s (和为定值) ,则当 x y 时,积 xy 取得最大值 .
4
⑵若 xy p (积为定值) ,则当 x y 时,和 x y 取得最小值 2 p .
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高考试题来源: /zyk/gkst/
赠送以下资料
英语万能作文 (模板型) Along with the advance of the society more and more problems are brought to our
数学必修五知识点总结
数学必修五知识点总结1、数列概念①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N某或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
等差数列1、等差数列通项公式an=a1+(n—1)dn=1时a1=S1n≥2时an=Sn—Sn—1an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b2、等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷23、前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①Sn=an+an—1+an—2+······+a1=an+(an—d)+(an—2d)+······+[an—(n—1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n—1)d÷2Sn=dn2÷2+n(a1—d÷2)亦可得a1=2sn÷n—an=[sn—n(n—1)d÷2]÷nan=2sn÷n—a1有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+14、等差数列性质一、任意两项am,an的关系为:an=am+(n—m)d它可以看作等差数列广义的通项公式。
高中数学必修5知识点
高中数学必修5知识点在C ∆AB 中 1、正弦定理: R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B .2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④合比定理sin sin sin sin sin sin a b c a b c C C ++===A +B +A B =++=++=CB cb B A b a sin sin sin sin3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理: 2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >.《7、在C ∆AB 中; sinA= sin(B+C); cosA= - cos(B+C); tanA= - tan(B+C)数列求数列通项公式的常用方法:(1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、数字、字母与项数n 在变化过程中的联系,初步归纳公式。
(2)公式法:等差数列与等比数列。
(3)利用n S 与n a 的关系求n a :11,(1),(2)n nn S n a S S n -=⎧=⎨-≥⎩(4)构造新数列法;(5)叠加相消法法;(6)叠乘相消法 2.等差数列{}n a 中:(1)等差数列公差的取值与等差数列的单调性; (2)1(1)n a a n d =+-()m a n m d =+-;n ma a dn m-=-(3){}n ka 也成等差数列;(4)两等差数列对应项和(差)组成的新数列仍成等差数列.、(5) ,,,,34232k k k k k k k s s s s s s s ---仍成等差数列.(6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22n d dS n a n =+-(即S n =An 2+Bn 2), (7)若m n p q +=+,则m n p q a a a a +=+;k n k n n n n a a a a a =+-++=+=112则推广为 (8)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和; (9)等差中项:若,,a A b 成等差数列,则2a bA +=叫做,a b 的等差中项。
高中数学必修5知识点总结归纳8篇
高中数学必修5知识点总结归纳8篇篇1一、引言高中数学必修5是整个数学学科体系中重要的一部分,它涵盖了代数、几何、三角学等多个领域的知识点。
本文将对该课程的核心知识点进行系统的总结归纳,以便学生更好地掌握数学基础知识,提高数学应用能力。
二、代数部分1. 集合与函数:集合的运算、集合的表示方法、函数的定义、函数的性质、函数的图像等。
2. 不等式:不等式的性质、一元二次不等式的解法、绝对值不等式的解法等。
3. 数列与极限:数列的定义、等差数列与等比数列、数列的极限等。
三、几何部分1. 平面解析几何:直线的方程、圆的方程、二次曲线的方程及其性质等。
2. 立体几何:空间向量、空间角、距离公式、几何体的表面积与体积等。
四、三角学部分1. 三角函数:三角函数的定义、性质、图像,三角函数的和差公式、倍角公式等。
2. 解三角形:正弦定理、余弦定理、三角形的面积公式等。
五、知识点详解1. 代数式的化简与求值:掌握代数式的运算规则,能够对方程进行化简和求值。
2. 不等式的解法:掌握一元二次不等式和绝对值不等式的解法,能够解决实际问题中的不等式问题。
3. 数列的性质与应用:了解数列的定义、性质,掌握等差数列与等比数列的通项公式和求和公式,能够应用数列知识解决实际问题。
4. 平面解析几何:掌握直线与二次曲线的方程,能够求解与几何图形相关的问题。
5. 立体几何的体积与表面积:熟悉几何体的体积与表面积公式,能够计算不规则几何体的体积与表面积。
6. 三角函数的性质与应用:掌握三角函数的性质,如周期性、奇偶性,熟悉三角函数的和差公式和倍角公式,能够应用三角函数解决实际问题。
7. 解三角形的方法:掌握正弦定理和余弦定理,能够解决与三角形相关的问题,如三角形的角度、边长等。
六、学习方法与建议1. 掌握基础知识:牢固掌握必修5中的基本概念和性质,这是解题的基础。
2. 多做练习:通过大量的练习来巩固知识点,提高解题能力。
3. 归纳总结:对学过的知识点进行总结归纳,形成知识体系和框架。
高中数学必修5知识点
高中数学必修5知识点1、正弦定理:在C ∆A B 中,a,b .c 分别为角A,B,C 的对边,R 为C ∆A B 的外接圆的半径,则有2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②③::sin :sin :sin a b c C =A B ; ④.3、三角形面积公式:.4、余弦定理:在C ∆A B 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:6、设a,b .c 是C ∆A B 的角A,B,C 的对边,则:①若222a b c +=,则 90C = ;②若222a b c+>,则90C < ;③若222a b c+<,则90C > .7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列 {}n a 的第n 项与序号n 之间的关系的公式. 16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若 ,则称b 为a与c 的等差中项.19、若等差数列 {}n a 的首项是1a ,公差是d ,则 ()11n a a n d =+-.20、通项公式的变形:① ()n m a a n m d =+-;② ()11n a a n d =--;③; ④ ⑤.21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则 m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则 2n p q a a a =+. 22、等差数列的前n 项和的公式:① ;②.23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶, (其中n S na =奇,()1n S n a =-偶).24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.26、若等比数列{}n a 的首项是1a ,公比是q ,则 11n n a a q -=.27、通项公式的变形:①n m n m a a q -=;②()11n n a a q --=;③ ;④.28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅.29、等比数列{}n a 的前n 项和的公式:30、等比数列的前n 项和的性质:若项数为 ()*2n n ∈N ,则.① n n m n m S S q S +=+⋅.② n S ,2n n S S -,32n n S S -成等比数列.31、0a ba b->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ① a b b a >⇔<;② ,a b b c a c >>⇒>; ③ a b a c b c >⇒+>+;④ ,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<; ⑤ ,a b c d a c b d >>⇒+>+; ⑥ 0,0a b c d ac bd >>>>⇒>; ⑦ ()0,1n n a b a b n n >>⇒>∈N > ⑧)0,1a b n n >>⇒∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式. 36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P .①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方. 39、在平面直角坐标系中,已知直线0x y C A +B +=.①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.②若0B<,则0A+B+>表示直线0x y Cx y CA+B+<表示直线0A+B+=上方x y Cx y CA+B+=下方的区域;0的区域.40、线性约束条件:由x,y的不等式(或方程)组成的不等式组,是x,y的线性约束条件.目标函数:欲达到最大值或最小值所涉及的变量x,y的解析式.线性目标函数:目标函数为x,y的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.可行解:满足线性约束条件的解(),x y.可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.41、设a、b是两个正数,则称为正数a、b的算术平均数为正数a、b的几何平均数.42、均值不等式定理:若0b>,则a ba>,0+≥即.43、常用的基本不等式:①()222,+≥∈;a b ab a b R②③④.44、极值定理:设x、y都为正数,则有⑴若x y s+=(和为定值),则当x y=时,积xy取得最大值.⑵若xy p=(积为定值),则当x y+取得最小值=时,和x y。
数学必修五知识点归纳
数学必修五知识点归纳【数学必修五知识点归纳(上)】一、函数与导数1. 函数及其图像的性质:定义域、值域、单调性、奇偶性、周期性、反函数2. 函数的运算:和、差、积、商、复合函数3. 导数的概念及其意义:导数的定义、导数的几何意义、导数的物理意义4. 导数的计算:导数的四则运算、链式法则、反函数求导法、隐函数求导法、参数方程求导法5. 应用:切线方程、法线方程、最值问题、凹凸性判别、用导数研究函数的单调性、函数的极值及最值,曲率与几何和物理的应用二、不等式与极限1. 不等式性质:同增性、奇偶性、加减倍数不等式、取等条件2. 一元二次不等式及其应用3. 数列基本概念:项、项数、通项公式、公式和、等差数列、等比数列、等比数列的和4. 数列极限的概念及性质:极限的定义、唯一性、极限的四则运算、夹逼准则、单调有界原理5. 无穷数列的极限:等比数列的通项公式、通项求和公式、有限项和公式、无限项和公式【数学必修五知识点归纳(下)】三、三角函数1. 正弦、余弦函数及其图像、对称轴、周期、定义域、值域、单调性等2. 正切、余切函数及其图像、对称轴、周期、定义域、值域、单调性等3. 三角函数的基本性质:同角关系、和角公式、差角公式、倍角公式、半角公式、余角公式4. 三角函数的图像变换:平移、反转、伸缩5. 应用:三角函数在平面直角坐标系中的应用、导数的运算、解最值、求交点、航空与航海问题中的运用四、解析几何1. 点、向量、向量的基本运算、数量积、向量积及其基本性质2. 直线的表示方法、两条非平行直线的位置关系、直线的方程一般式、点斜式、两点式、截距式及其相互转化3. 平面的表示方法、平面的解析方程、点与平面的位置关系、直线与平面的位置关系、平面与平面的位置关系、直线与直线的位置关系4. 球面的基本性质、球面的方程及其应用、空间直角坐标系、空间直角坐标系下的图形方程五、概率统计与选修课内容1. 随机事件与概率、概率的基本性质、几何概型、条件概率、独立性、全概率公式、贝叶斯公式、重复试验及其概率2. 随机变量的概念、离散随机变量及其概率分布、连续随机变量及其概率密度函数、随机变量的数学期望、方差及标准差等基本概念3. 统计学基础:样本、总体、样本均值、标准差、Z分数、t分数与t分布、样本容量与抽样分布、样本相关系数4. 必修三选修一:容斥原理、锦标赛问题、排队论、模拟算法、线性规划、动态规划、离散数学常用算法。
(完整版)高中数学必修五知识点总结【经典】
《必修五知识点总结》第一章:解三角形知识重点一、正弦定理和余弦定理1C中,a b c、、C的对边,,则有a b c2R、正弦定理:在、、分别为角sin sin sin C ( R为 C 的外接圆的半径)正弦定理的变形公式:① a2Rsin, b2R sin , c2Rsin C ;② sin a, sin b, sin Cc;2 R2R 2 R③a : b : c sin :sin :sin C ;2、余弦定理:在 C 中,有a2b2c22bc cos,推论:cos Ab2a2c22ac cos B ,推论:cos Bc2a2b22ab cosC ,推论: cosC3、三角形面积公式:S C 1bc sin1ab sin C1ac sin222b2c2a22bca 2c2b22aca2b2c22ab.二、解三角形办理三角形问题,一定联合三角形全等的判断定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种状况,依据已知条件判断解的状况,并能正确求解1、三角形中的边角关系(1)三角形内角和等于 180°;(2)三角形中随意两边之和大于第三边,随意两边之差小于第三边;(3)三角形中大边对大角,小边对小角;- 1 -( 4)正弦定理中, a=2 R·sinA,b=2R·sinB,c=2R·sinC,此中 R 是△ ABC 外接圆半径 .(5)在余弦定理中 :2bccosA= b 2 c2 a2 .( 6)三角形的面积公式有 :S= 1ah,S=1absinC=1bcsinA=1acsinB ,S= P( P a) (P b)( P c)其2222中, h 是 BC 边上高, P 是半周长 .2、利用正、余弦定理及三角形面积公式等解随意三角形( 1)已知两角及一边,求其余边角,常采纳正弦定理 .( 2)已知两边及此中一边的对角,求另一边的对角,常采纳正弦定理.( 3)已知三边,求三个角,常采纳余弦定理.( 4)已知两边和它们的夹角,求第三边和其余两个角,常采纳( 5)已知两边和此中一边的对角,求第三边和其余两个角,常采纳余弦定理.正弦定理.3、利用正、余弦定理判断三角形的形状常用方法是:①化边为角;②化角为边.4、三角形中的三角变换( 1)角的变换由于在△ABC 中,A+B+C=π,因此sin(A+B)=sinC ;cos(A+B)= -cosC;tan(A+B)= -tanC。
高中数学必修五知识点总结整理【经典最全版】.docx
《必修五知识点整理》第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1、正眩定理:在一个三角形屮,各边和它所对角的正眩的比相等,即一纟一=-^一=亠- sin A sin B sinC 正弦定理推论:①~^— = ~^— = ~^ = 2Rsin A sin B sin C®a = 2Rsm A, b = 2Rsin B, c = 2/?sinC @a:b:c = sinA:sinB: sin C ⑤ -------------------sin A sin B sin C sin A + sin B + sinC2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。
任何一个三角形都有六个元素:三条边(a,b,c )和三个内角(A,B,C ).在三角形中,己知三 角形的几个元素求其他元素的过程叫做解三角形。
3、正眩泄理确定三角形解的情况(/?为三角形外接圆的半径)a sin A h sin B a sin A®~ =-—,-=-—,-=-—b sin Bc sin C c sinC b c a+b+c4. 任意三角形而积公式为:=—he sin A = — acsin B = —ah sinC =2 2 21.1.2余弦定理5、余弦定理:三角形屮任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角 的余弦的积的两倍,即a 2 =b 2 +c 2 - 2bccos A , b 2 = a 2 + c 2 一 2ca cos B, c 2 = a 2 +b 2- lab cos C .6、不常用的三角函数值15° 75° 105° 165°sin erV6-V2 V6+V2 V6 + V2V6 — V24 4 4 4 COS (7V6 + V2V6-V2 —V6 + V2V6+V2 4 4 4 4 tana2-V32 + V3-2-V3-2 + V31.2应用举例(浏览即可)1、 方位角:如图1,从正北方向顺时针转到目标方向线的水平角。
数学必修5重点知识点总结
数学必修5重点知识点总结一、集合和函数1. 集合的基本概念集合是指具有一定共同性质的个体的总体。
集合可以用大写字母A、B、C等来表示,其中的元素用小写字母a、b、c等来表示。
集合中的元素可以是数字、字母、图形、颜色等具体的对象。
2. 集合的运算① 并集:集合A和集合B的并集,表示为A∪B,表示A和B中所有的元素的集合。
② 交集:集合A和集合B的交集,表示为A∩B,表示A和B共有的元素的集合。
③ 补集:集合A的补集,表示为A',表示全集中不属于A的元素的集合。
④ 差集:集合A和集合B的差集,表示为A-B,表示A中有而B中没有的元素的集合。
3. 函数的概念和表示函数是一个对应关系,对于每一个自变量,对应一个因变量。
用f(x)表示,其中f是函数名称,x是自变量,f(x)是因变量。
4. 函数的性质① 单调性:函数的单调性是指函数在定义域上的增减规律。
② 奇偶性:函数的奇偶性是指函数在定义域上的对称性。
③ 周期性:函数的周期性是指函数的值在一定的长度内重复出现的规律性。
④ 初等函数的基本性质:包括平移、伸缩和翻转等基本性质。
二、三角函数1. 角度和弧度角度是用度数来表示角的大小,而弧度是用弧长与半径的比值来表示角的大小,用π来表示。
因此,1弧度等于180/π度。
2. 三角函数的基本性质① 正弦函数:sinθ = y/r,其中θ是角度,y是对边长度,r是斜边长度。
② 余弦函数:cosθ = x/r,其中θ是角度,x是邻边长度,r是斜边长度。
③ 正切函数:tanθ = y/x,其中θ是角度,y是对边长度,x是邻边长度。
3. 三角函数的图像和性质① 正弦函数的图像是一条周期函数,呈现上下波动的波形。
它的最大值为1,最小值为-1,周期为2π。
② 余弦函数的图像是一条周期函数,呈现上下波动的波形。
它的最大值为1,最小值为-1,周期为2π。
③ 正切函数的图像是一条周期函数,呈现上下波动的波形。
它在每个周期内有无数个极值点。
数学必修五知识点归纳
数学必修五知识点归纳一、函数与导数1. 函数的定义与性质:函数的自变量、函数值、定义域、值域、奇偶性、单调性。
2. 导数的定义:导数的几何意义、代数意义、物理意义以及求导公式。
3. 导数的运算:和、差、积、商的导数运算法则。
4. 泰勒公式:泰勒公式的推导、泰勒公式的应用。
5. 高阶导数:高阶导数的定义、求导及其物理应用。
6. 函数的极值:极值的概念、求极值及其物理应用等。
二、三角函数1. 弧度制:度数制与弧度制的关系、弧度与角度之间的换算关系。
2. 基本三角函数:正弦函数、余弦函数、正切函数的定义、性质和图像。
3. 周期性与对称性:三角函数的周期、奇偶性和对称性、三角函数的正负性。
4. 三角函数的运算:三角函数的和、差、积、商等基本公式及其应用。
5. 反三角函数:反正弦函数、反余弦函数、反正切函数等的定义、性质及其应用。
三、平面向量1. 向量的概念:向量的定义、向量的长度、方向和单位向量。
2. 向量的运算:向量的加减及其物理意义、数量积和叉积的定义及其物理意义。
3. 向量的坐标表示:向量的坐标、向量的模长公式、向量的夹角及其余弦公式。
4. 平面向量的几何应用:向量表示平面图形、平面向量的线性运动及其相关问题、平面向量与解析几何的应用。
四、立体几何1. 立体几何的基本概念:立体、平面、曲线、点、直线、角、面等基本概念。
2. 立体图形的计算:立体图形的表面积、体积和重心的计算方法。
3. 空间向量的几何应用:向量的共面、共线、垂直等相关问题,空间向量与解析几何之间的关系。
4. 空间几何问题的解决技巧:立体几何问题的转化、对称性、相似性等几何思想的运用。
五、概率与统计1. 随机事件与概率:随机事件及其分类、概率的概念、基本概率公式。
2. 条件概率:相互独立事件、条件概率及其公式、事件的相互独立性及其判定。
3. 期望与方差:随机变量、离散型随机变量、连续型随机变量、期望及其性质、方差及其意义。
4. 统计分析:样本与总体、基本统计学方法、参数与统计量等基本概念,统计分类、频数、频率、直方图、分布图等基本统计图的绘制与分析。
高中必修五数学知识点笔记整理
高中必修五数学知识点笔记整理高中必修五数学知识点一、基础知识(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)区分逆命题与命题的否定;(2)理解充分条件与必要条件;(3)椭圆、双曲线与抛物线的定义;(4)椭圆与双曲线的几何性质,特别是离心率问题;(5)直线与圆锥曲线的位置关系问题;(6)直线与圆锥曲线中的弦长与面积问题;(7)直线与圆锥曲线问题中的参数求解与性质证明;(8)轨迹与轨迹求法;(9)运用空间向量求空间中的角度与距离;(10)立体几何中的动态问题探究.高中必修五数学必背知识点一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
必修5数学知识点总结
必修5数学知识点总结关于必修5数学知识点总结指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且∈,当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。
此时,的次方根用符号表示。
式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。
当是偶数时,正数的次方根有两个,这两个数互为相反数。
此时,正数的正的次方根用符号表示,负的次方根用符号—表示。
正的次方根与负的次方根可以合并成±(0)。
由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,2、分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。
(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。
正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点串讲必修五第一章:解三角形1.1.1正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abA B =sin cC =一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
2、已知∆ABC 中,∠A 060=,a =求sin sin sin a b c A B C++++ 证明出sin sin a b A B =sin c C ==sin sin sin a b c A B C++++ 解:设sin sin a b A B =(>o)sin c k k C== 则有sin a k A =,sin b k B =,sin c k C = 从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k C A B C++++=k又sin a A =02sin60k ==,所以sin sin sin a b c A B C ++++=2 评述:在∆ABC 中,等式sin sin a b A B =sin c C ==()0sin sin sin a b c k k A B C ++=>++ 恒成立。
3、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c(答案:1:2:3)1.1.2余弦定理1、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a c b B ac222cos 2+-=b a c C ba2、在∆ABC 中,已知=a c 060=B ,求b 及A⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+-=8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=21.8 3.6,⨯=∴a <c ,即00<A <090,∴060.=A评述:解法二应注意确定A 的取值围。
3、在∆ABC 中,若222a b c bc =++,求角A (答案:A=1200)1.1.3解三角形的进一步讨论1、在∆ABC 中,已知,,a b A ,讨论三角形解的情况 分析:先由sin sin b A B a =可进一步求出B ; 则0180()C A B =-+ 从而sin a C c A=1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。
2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解。
(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且sin b A a b <<时,有两解;其它情况时则只有一解或无解。
2、(1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。
(2)在∆ABC 中,若1a =,12c =,040C ∠=,则符合题意的b 的值有_____个。
(3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值围。
(答案:(1)有两解;(2)0;(3)2x <<3、在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型。
解:222753>+,即222a b c >+,∴ABC 是钝角三角形∆。
4、(1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型。
(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。
(答案:(1)ABC 是钝角三角形∆;(2)∆ABC 是等腰或直角三角形)5、在∆ABC 中,060A =,1b =,求sin sin sin a b c A B C++++的值 sin sin abA B =sin cC ==sin sin sin a b c A B C++++解:由1sin 22S bc A ==得2c =,则2222cos a b c bc A =+-=3,即a = 从而sin sin sin a b c A B C ++++2sin a A==1.2解三角形应用举例1、两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少? 解略:2a km2、 某人在M 汽车站的北偏西20︒的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶。
公路的走向是M 站的北偏东40︒。
开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米。
问汽车还需行驶多远,才能到达M 汽车站?解:由题设,画出示意图,设汽车前进20千米后到达B 处。
在∆ABC 中,AC=31,BC=20,AB=21,由余弦定理得cosC=BC AC AB BC AC ⋅-+2222=3123, 则sin 2C =1- cos 2C =231432, sinC =31312, 所以 sin ∠MAC = sin (120︒-C )= sin120︒cosC - cos120︒sinC =62335在∆MAC 中,由正弦定理得 MC =AMC MAC AC ∠∠sin sin =2331⨯62335=35 从而有MB= MC-BC=15答:汽车还需要行驶15千米才能到达M 汽车站。
3、S=21absin C ,,S=21bcsin A, S=21acsinB 4、在∆ABC 中,求证:(1);sin sin sin 222222CB A c b a +=+ (2)2a +2b +2c =2(bccosA+cacosB+abcosC ) 证明:(1)根据正弦定理,可设 A a sin = B b sin = Cc sin = k 显然 k ≠0,所以左边=Ck B k A k c b a 222222222sin sin sin +=+ =CB A 222sin sin sin +=右边 (2)根据余弦定理的推论,右边=2(bc bc a c b 2222-++ca ca b a c 2222-++ab abc b a 2222-+)=(b 2+c 2- a 2)+(c 2+a 2-b 2)+(a 2+b 2-c 2)=a 2+b 2+c 2=左边变式练习1:已知在∆ABC 中,∠B=30︒,b=6,c=63,求a 及∆ABC 的面积S提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。
答案:a=6,S=93;a=12,S=1835、如图,在四边形ABCD 中,∠ADB=∠BCD=75︒,∠ACB=∠BDC=45︒,DC=3,求:(1) AB 的长(2) 四边形ABCD 的面积略解(1)因为∠BCD=75︒,∠ACB=45︒,所以∠ACD=30︒ ,又因为∠BDC=45︒,所以∠DAC=180︒-(75︒+ 45︒+ 30︒)=30︒,所以 AD=DC=3在∆BCD 中,∠CBD=180︒-(75︒+ 45︒)=60︒,所以 ︒75sin BD = ︒60sin DC ,BD = ︒︒60sin 75sin 3= 226+ 在∆ABD 中,AB 2=AD 2+ BD 2-2⨯AD ⨯BD ⨯cos75︒= 5,所以得 AB=5(3) S ABD ∆=21 ⨯AD ⨯BD ⨯sin75︒=4323+ 同理, S BCD ∆= 433+ 所以四边形ABCD 的面积S=4336+第二章:数列2.1数列的概念与简单表示法1、概括数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。
辩析数列的概念:“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢?给出首项与第n 项的定义及数列的记法:{a n}2、数列的分类: 有穷数列与无穷数列;递增数列与递减数列,常数列。
3、数列的表示方法:项公式列表和图象等方法表示数列4、 = 2 a n-1 + 1(n ∈N ,n>1),(※) 式称为递推公式。
递推公式也是数列的一种表示方法。
2.2 等差数列1、数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d 表示。
2、个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,这时,A 叫做a 与b 的等差中项。
3、等差数列中,若m+n=p+q 则q p n m a a a a +=+4、通项公式:以1a 为首项,d 为公差的等差数列}{n a 的通项公式为:d n a a n )1(1-+=5、迭加法和迭代法推导等差数列的通项公式:(迭加法): }{n a 是等差数列,所以 ,1d a a n n =--,21d a a n n =---,32d a a n n =---……,12d a a =-两边分别相加得 ,)1(1d n a a n -=-所以 d n a a n )1(1-+=(迭代法):}{n a 是等差数列,则有 d a a n n +=-1d d a n ++=-2d a n 22+=-d d a n 23++=-d a n 33+=-……d n a )1(1-+=所以 d n a a n )1(1-+=6、 ⑴求等差数列8,5,2,…的第20项.⑵-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?解:⑴由1a =8,d=5-8=-3,n=20,得49)3()121(820-=-⨯-+=a⑵由1a =-5,d=-9-(-5)=-4,得这个数列的通项公式为,14)1(45--=---=n n a n 由题意知,本题是要回答是否存在正整数n,使得-401=-4n-1成立。
解这个关于n 的方程,得n=100,即-401是这个数列的第100项。
7、某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4km (不含4千米)计费10元。