2019-2020学年高一数学 正弦函数图像1导学案.doc
1.5正弦型函数的图象(1)导学案(可编辑修改word版)

1.5函数y =学习目标:A sin(x +) 的图象(1)1.熟练运用“五点法”做函数y=A sin(x +)的图像,理解图像特征,依据图像正确求出解析式.2.掌握振幅变换,相位变换,周期变换,能熟练地把y=A sin(x +)的图像.学习过程:一、情景引入y = sin x 的图像变换为正弦函数y = sin x 是最基本、最简单的三角函数,在物理中,简谐运动中的单摆对平衡位置的位移y 与时间x 的关系等都是形如y=A sin(x +)的函数,我们需要了解它与函数y=sin x的内在联系.、、A是影响函数图像形态的重要参数,对此,我们分别进行探究.二、自我探究1.函数y = sin(x +) ,x ∈R (其中≠ 0 )的图象,可以看作是正弦曲线上所有的点(当>0 时)或(当<0 时)平行移动个单位长度而得到.2.函数y = sin x, x ∈R (其中>0 且≠ 1 )的图象,可以看作是把正弦曲线上所有点的横坐标(当>1 时)或(当 0<<1 时)到原来的倍(纵坐标不变)而得到.3.函数y =A sin x, x ∈R( A >0 且A ≠1)的图象,可以看作是把正弦曲线上所有点的纵坐标(当A>1 时)或(当0<A<1)到原来的A 倍(横坐标不变)而得到的,函数y=Asinx 的值域为.最大值为,最小值为.三、展示点拨例1.画出函数(1) y = 2 s in x ,x ∈R(2) y =12sin x , x ∈R分析:“五点法”,先画[0,2]的简图。
小结 1:1.y=Asinx,x∈R(A>0 且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸sin x长或缩短到原来的 A 倍得到的 2. 它的值域最大值是 , 最小值是3. 若 A <0 可先作 y =-Asinx 的图象 ,再以 x 轴为对称轴翻折 A 称为振幅,这一变换称为振幅变换例 2. 画出函数 (1) y = sin 2x , 2) y = 12x ∈ R 的简图.小结 2:(周期变化,这是由的变化引起的)1、 函数 y =sin x , x ∈R (>0 且≠1)的图象,可看作把正弦曲线上所有点的横坐标缩或伸 1长到原来的 倍(纵坐标不变)2、函数 y =sin x , x ∈R (>0 且≠1)的周期是3、若<0 则可用诱导公式将符号“提出”再作图 决定了函数的周期,这一变换称为周期变换例 3 画出函数 y =sin (x + ),x ∈Ry =sin (x - ),x ∈R 的简图34小结 3:1、函数 y =sin (x + ),x ∈R 的图象可看作把正弦曲线上所有的点向左平行移动3 3个单位长度而得到2、一般地,函数 y =sin (x +),x ∈R (其中≠0)的图象,可以看作把正弦曲线上所有点向左(当>0 时)或向右(当<0 时)平行移动|| 个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”)y =sin (x +)与 y =sinx 的图象只是在平面直角坐标系中的相对位))置不一样,这一变换称为相位变换.1例 4 指出如何由 y =sinx 经过变换得出 y = sin(2x + 2 ) + 2, x ∈ R 4函数的图象:四、反馈检测1 判断正误①y =A sin x 的最大值是 A ,最小值是-A . ()2②y =A sin x 的周期是( )③y =-3sin4x 的振幅是 3,最大值为 3,最小值是-3 ()2 下列变换中,正确的是( )A 将 y =sin2x 图象上的横坐标变为原来的 2 倍(纵坐标不变)即可得到 y =sin x 的图象 1B 将 y =sin2x 图象上的横坐标变为原来的 倍(纵坐标不变)即可得到 y =sin x 的图象21C 将 y =-sin2x 图象上的横坐标变为原来的 倍,纵坐标变为原来的相反数,即得到 y =2sin x 的图象1D 将 y =-3sin2x 图象上的横坐标缩小一倍,纵坐标扩大到原来的 倍,且变为相反数,3即得到 y =sin x 的图象13. 最大值为 ,周期为22,初相是的函数表达式可能是( )3 6 A. y = 1 sin( x + B y = 2 sin( x- 2 3 6 2 6 C y = 1 sin(3x + D y = 1sin(3x - 2 6 2 64. 得到 y = sin(3x - ) 的图象,只要将y = sin 3x 的图象( )4A. 向左平移 个单位 B 向右平移 个单位4 4C .向左平移个单位 D 向右平移个单位12125 函数 y =sin (-2x )的单调减区间是()) )3 3A.[ + 2k , + 2k ], k ∈ Z C.[+ 2k ,3+ 2k ], k ∈ Z2B.[ + 2k , 2 23+ 2k ], k ∈ Z 4D.[- 4+ k , 4+ k], k ∈ Z6..作出下列函数在长度为一个周期的闭区间上的简图(要求用直尺和铅笔规范作图)3 1(1)y = sinx(2)y =sin 3x (3)y =2sin x232 2 7. 将 y = sin 2x 的图象向平移个单位,可得 y = sin 2x - 2 的图象,所得函数周期为33值域为 8. 将 y =sinx 图象上各点的纵坐标变为原来的 且将各点的横坐标变为原来的1可得 y =3sin x 的图象.319 用图象变换的方法在同一坐标系内由 y =sin x 的图象画出函数 y = sin(3x-)的图象2 510. 已知 y = a sinx + b 的最大值为 ,最小值为-21,求 a , b 的值2五、盘点归纳。
1.4.1正弦、余弦函数的图像

§1.4.1 《正弦函、余弦函数的图像》导学案【学习目标】1.利用单位圆中的三角函数线作出,sin x y =的图象,明确图象的形状 2.理解作正弦函数图象的方法;并掌握会用五点法作正余弦函数简图。
【重点】“五点法”画长度为一个周期的闭区间上的正弦函数图象。
【难点】运用几何法画正弦函数图象。
【使用方法与学法指导】1.用15分钟左右的时间,阅读探究课本的基础知识,从中了解精确的正弦函数图像的画法过程,通过自主高效的预习,提升自己的阅读理解能力。
2.结合课本的基础知识和例题,完成预习案。
3.将预习中不能解决的问题标出来,并写到后面的“我的疑惑”处。
【预习案】一.复习回顾:1.正、余弦函数定义: 。
2.三角函数的定义及实质?三角函数线的作法和作用?二、预习新知:五点作图法中:1.正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是: 、 、 、 、 。
2.作cos y x=在[0,2]π上的图象时,五个关键点是 、 、 、 、 ,步骤:______________,_______________,____________________ 三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容【探究案】探究点一:几何作图法1.创设情境:问题1:怎么在图像中使用三角函数线表示x ∈[0,2π]的三角函数值?问题2:已知了y=sinx ,x ∈[0,2π]的图像,怎么画出y=sinx,x ∈R 的三角函数图像? 探究点二:平移法问题1:回忆三角函数的诱导公式:sin (2π+α)= x ∈R oxy 11-问题2:如何得到y=cosx ,x ∈R 的图象? 【小结】y=f (x )=sinx 向左平移2π个单位得到y=f (x+2π)=sin = 探究点三:五点作图法描出五个关键点,并用光滑的曲线连接起来,称为“五点法”作图。
问题1:画x ∈[0,2π]的正弦函数图象时,关键的五个点是: 、 、 、 、 问题2:如何快速做出余弦函数图像? xcosx【小结】“五点法”作图可步骤: (x ∈(0,2π))关键点是:当x= 、 、 、 、【当堂检测】例1:画出下列函数的简图:y =1+sinx ,x ∈(0,2π)x sinx1+sinx例2:画出下列函数的简图:y=-cosx ,x∈〔0,2π〕【课后练习与提高】1.画出下列函数的简图:(1) y=sinx-1; (2)y=1-sinx2.用五点法作sinx,2y x∈〔0,2π〕的图象。
高一数学 正弦型函数的性质与图像 导学案

高一数学正弦型函数的性质与图像导学案班级:姓名: 使用日期:【课堂探究】一.【素养培育】知识点一正弦型函数y=A sin(ωx+φ),A>0,ω>0中参数的物理意义知识点二φ,ω,A对函数y=A sin(ωx+φ)的图象的影响(1)φ对y=sin(x+φ),x∈R的图象的影响函数y=sin(x+φ)(φ≠0)的图象可以看作是把正弦曲线y=sin x图象上所有的点向(当φ>0时)或向(当φ<0时)平行移动|φ|个单位长度而得到的.(2)ω(ω>0)对y=sin(ωx+φ)的图象的影响函数y=sin(ωx+φ)的图象,可以看作是把y=sin(x+φ)图象上所有点的横坐标(当ω>1时)或(当0<ω<1时)到原来的倍(纵坐标不变)而得到的.(3)A(A>0)对y=A sin(ωx+φ)的图象的影响函数y=A sin(ωx+φ)的图象,可以看作是把y=sin(ωx+φ)图象上所有点的纵坐标(当A>1时)或(当0<A<1时)到原来的倍(横坐标不变)而得到的,函数y=A sin x的值域为,最大值为,最小值为.知识点三由函数y=sin x的图象变换得到函数y=A sin(ωx+φ)的图象的步骤知识点四函数y=A sin(ωx+φ),A>0,ω>0的性质二.【素养提升】例1 把函数y =f (x )的图象上的各点向右平移π6个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的23倍,所得图象的解析式是y =2sin ⎝⎛⎭⎫12x +π3,求f (x )的解析式.跟踪训练1 把函数y =sin x (x ∈R )的图象上所有的点向左平移π3个单位长度,再把所得图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到的图象所表示的函数是________例2 利用五点法作出函数y =3sin ⎝⎛⎭⎫12x -π3在(1)一个周期内的草图.(2)在x ∈[]-22ππ,上的草图.例3 如图是函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象,求A ,ω,φ的值,并确定其函数解析式.跟踪训练3 函数y =A sin(ωx +φ)的部分图象如图所示,则其函数解析式________例4 已知函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象过点P ⎝⎛⎭⎫π12,0,图象上与P 点最近的一个最高点的坐标为⎝⎛⎭⎫π3,5.(1)求函数解析式; (2)指出函数的增区间; (3)求使y ≤0的x 的取值范围.跟踪训练4 设函数f (x )=sin(2x +φ)(-π<φ<0),函数y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ的值; (2)求函数y =f (x )的单调区间及最值.【课堂评价】三、【课堂小结】1、本节课学了哪些知识内容?2、本节课用了哪些方法思想?四、【课堂达标】1.下列表示函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图正确的是( )2.函数y =2sin ⎝⎛⎭⎫12x +π3在一个周期内的三个“零点”的横坐标可能是( ) A .-π3,5π3,11π3 B .-2π3,4π3,10π3 C .-π6,11π6,23π6 D .-π3,2π3,5π33函数y =sin ⎝⎛⎭⎫5x -π2的图象向右平移π4个单位长度,再把所得图象上各点的横坐标缩短为原来的12,所得图象的函数解析式为____________.4.若函数f (x )=3sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6等于________ 5.把函数y =2sin ⎝⎛⎭⎫x +2π3的图象向左平移m 个单位,所得的图象关于y 轴对称,则m 的最小正值是________.6.关于f (x )=4sin ⎝⎛⎭⎫2x +π3 (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍;②y =f (x )的表达式可改写成y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )图象关于⎝⎛⎭⎫-π6,0对称; ④y =f (x )图象关于x =-π6对称. 其中正确命题的序号为________.。
推荐-正弦函数余弦函数的图象 高一 数学 导学案 学案

正弦函数、余弦函数的图象(1)教学目标:1.理解并掌握作正弦函数图象的方法;2.熟练掌握用五点法作正弦函数简图的方法;牢记五个点的坐标;教学重点难点:用单位圆中的正弦线作正弦函数的图象.学法指导:1、先自习教材,自主完成学案2、加★号的平行班班学生不做教学过程:一、知识回顾:正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM r x ==αcos 二、新课:探究一:正弦函数y=sinx x ∈[0,2π]的图象是什么样子的?作图工具:单位圆中的正弦线、余弦线作图方法:为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.作图步骤:第一步:列表首先在单位圆中画出每个角对应的正弦线.第二步:描点.把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点.第三步:连线得到正弦函数y = sinx ,x ∈[0,2π]的图象.自己动手画一个x 0 2π π 32π 2π sinx作图:探究二:你能根据诱导公式一以正弦函数x ∈[0,2π]的图象为基础,作出正弦函数y = sinx ,x ∈R 的图象吗?分析:想一想: 如何才能得到y = sinx ,x ∈R 的图象呢?利用我们作出的y=sinx ,x ∈[0,2π]的图象,把图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y = sinx ,x ∈R 的图象,叫做正弦曲线.探究三:观察正弦函数y = sinx ,x ∈[0,2π]图象想一想决定图象形状的关键点有哪些?正弦函数y = sinx ,x ∈[0,2π]的图象中,五个关键点是:( , ) ( , ) ( , ) ( , ) ( , ) 作图说明:作简图时只需要先描出这五个关键点再根据正弦曲线的变化趋势用光滑的曲线连接起来既可三、试一试看:作出函数y = - sinx ,x ∈ [ 0 ,2π]的简图作出函数y = 1+ sinx ,x ∈ [ 0 ,2π] 的简图:五个关键点的坐标是:( , ) ( , ) ( , ) ( , ) ( , )知识小结:1、要得到形如y=-f ( x )的函数图象只需将y= f ( x )的图象2、要得到形如y= f ( x ) + a 的函数图象只需将y= f ( x )的图象当堂作业作出下列函数的简图(1) y = 1-sin x,x ∈[ 0 ,2π],(2)y = 3sina x∈[0,2π],★★★(3)y = | sinx | x∈[0,2π],★★★(4)y = sin|x| x∈[-2π,2π]学后反思:。
2019-2020学年新人教A版必修一 正弦、余弦函数的图像 教案

正弦、余弦函数的图象(1)教学目的:知识目标:(1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状;(2)根据关系)2sin(cos π+=x x ,作出R x x y ∈=,cos 的图象; (3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;能力目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法;(2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;德育目标:通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神; 教学重点:用单位圆中的正弦线作正弦函数的图象; 教学难点:作余弦函数的图象,周期性; 授课类型:新授课教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
2.正、余弦函数定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离r (02222>+=+=y x yx r )则比值ry叫做α的正弦 记作: r y =αsin比值r x叫做α的余弦 记作: rx =αcos3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.二、讲解新课:1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.(1)函数y=sinx 的图象第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象用几何法作余弦函数的图象,可以用“反射法”将角x 的余弦线“竖立”[把坐标轴向下平移,过1O 作与x 轴的正半轴成4π角的直线,又过余弦线1O A 的终点A 作x 轴的垂线,它与前面所作的直线交于A ′,那么1O A 与AA ′长度相等且方向同时为正,我们就把余弦线1O A “竖立”起来成为AA ′,用同样的方法,将其它的余弦线也都“竖立”起来.再将它们平移,使起点与x 轴上相应的点x 重合,则终点就是余弦函数图象上的点.]也可以用“旋转法”把角 的余弦线“竖立”(把角x 的余弦线O 1M 按逆时针方向旋转2π到O 1M 1位置,则O 1M 1与O 1M 长度相等,方向相同.)根据诱导公式cos sin()2x x π=+,还可以把正弦函数x=sin x 的图象向左平移2π单位即得余弦函数y=cosx 的图象. (课件第三页“平移曲线” )正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线. 2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0)余弦函数y=cosx x ∈[0,2π]的五个点关键是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.优点是方便,缺点是精确度不高,熟练后尚可以 3、讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2) y=|sinx |, (3)y=sin |x | 例2 用五点法作函数2cos(),[0,2]3y x x ππ=+∈的简图.例3 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x 的集合:1(1)sin ;2x ≥ 15(2)cos ,(0).22x x π≤<<三、巩固与练习四、小 结:本节课学习了以下内容:1.正弦、余弦曲线 几何画法和五点法 2.注意与诱导公式,三角函数线的知识的联系 五、课后作业:作业:补充:1.分别用单位圆中的三角函数线和五点法作出y=sinx 的图象 2.分别在[-4π,4π]内作出y=sinx 和y=cosx 的图象 3.用五点法作出y=cosx,x ∈[0,2π]的图象六、板书设计:4-1.4.1正弦、余弦函数的图象(2)1、 教学目标:2、 使学生学会用“五点(画图)法”作正弦函数、余弦函数的图象。
人教版高中数学全套教案导学案1.4.1正弦,余弦函数的图像

1. 4.1 正弦函数、余弦函数的图象班级 姓名【教学目标】1、通过本节学习,理解正弦函数、余弦函数图象的画法.2、通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.【教学重点】正弦函数、余弦函数的图象.【教学难点】将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.【教学过程】一、预习提案 (阅读教材第30—33页内容,完成以下问题:)1、借助单位圆中的正弦线在下图中画出正弦函数y=sinx, x ∈[0,2π]的图象。
说明:使用三角函数线作图象时,将单位圆分的份数越多,图象越准确。
在作函数图象时,自变量要采用弧度制,确保图象规范。
3、 观察图象(正弦曲线),说明正弦函数图象的特点:①由于正弦函数y=sinx 中的x 可以取一切实数,所以正弦函数图象向两侧 。
②正弦函数y=sinx 图象总在直线 和 之间运动。
4、观察正弦函数y=sinx, x ∈[0,2π]的图象,找到起关键作用的五个点:, , , ,②函数y=sin (x+2π)的图象相对于正弦函数y=sinx 的图象是如何变化的?③由诱导公式知:sin (x+2π)= ,所以函数y=sin (x+2π)= ④请画出y=cosx 的图象(余弦曲线), , , ,二、新课讲解例1、用“五点作图法”作出y=x sin , x ∈[0,2π]的图象;并通过猜想画出y=x sin 在整个定义域内的图象。
练习:用“五点作图法”作出y=x cos , x ∈[0,2π]的图象;并通过猜想画出y=x cos 在整个定义域内的图象。
例2、用“五点作图法”作出下列函数的简图;(1)y=1+sinx, x ∈[0,2π];(2)y=2cos(2x-3π)练习:用“五点作图法”作出下列函数的简图;(1)y=-cosx, x ∈[0,2π];(2)y=2sin(x-3π)+1三、课堂小结 1、 会用“五点法”作图熟练地画出一些较简单的函数图象.2、关键点是指图象的最高点,最低点及与x 轴的交点。
正弦函数、余弦函数的图象 导学案 高一数学人教A版第一册(全国)

第五章 三角函数5.4.1 正弦函数、余弦函数的图象【学习要求】1.了解正弦函数图象的正弦线画法,掌握正弦函数图象的几何特征;2.掌握五点法,并能熟练画一些简单函数的图象. 【教学过程】 一、情境引入1.终边相同角的诱导公式:sin(2)k απ+= ()k Z ∈.2.周期函数:当函数对于自变量的一切值每增加或减少一个定值(定值可以有很多个),函数值就重复出现时,这个函数就叫做周期函数.一般地,对于函数f (x ),如果存在非零常数T ,使得定义域内的“每一个x 值”,都有f (x+T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做f (x )的周期.3.正弦函数的周期是: ;最小正周期是: .二、知识整理用描点法作出正弦函数在最小正周期上的图象sin ,[0,2]y x x π=∈,(2)描点连线(3)因为终边相同的角的三角函数值相同,所以sin y x =在……,[4,2]ππ--, [2,0]π-,[0,2]π,[2,4]ππ,……的图象与sin y x =,[0,2]x π∈的图象相同.方法小结:(1)用“五点法”作正弦函数的图象; (2)“五点法”作图的关键点.x 0 2π π32π 2πy1-1三、典例选讲例1.作下列函数的简图(1)1sin ,[0,2]y x x π=+∈; (2)sin 2,[0,]y x x π=∈;(3)5sin(),[,]333y x x πππ=+∈-; (4)53sin(2),[,]366y x x πππ=+∈- .思考:几何法(利用三角函数线画正弦函数图象)四、小结提升通过这节课的学习①你经历了什么样的过程?②你获得了什么样的知识、技能、方法?③你感受最深的是什么?五、练习巩固1.1sin y x =+,x ∈[0,2π]的图象与直线y =1.5的交点个数为 .2.在[0,2π]内4sin y x =的单调增区间为 ;单调减区间为 .3.用五点法分别作下列函数在[2,2]ππ-上的图象:(1) sin y x =-; (2) sin 2y x =-.4.把第3题所作的图象和sin y x =,[2,2]x ππ∈-的图象进行比较,说明这些图象与sin y x =,[2,2]x ππ∈-的图象的位置关系.5.画出下列函数的图象(1) sin()y x =-,[0,2];x π∈ (2) sin()4y x π=-,9[,]44x ππ∈(3)12sin()26y x π=-, 13[,]33x ππ∈ (4)sin(2)14y x π=+-, 7[,]88x ππ∈-。
2020版高中数学第一章三角函数1.4.1正弦函数余弦函数的图象导学案新人教A版必修4_166.doc

1.4.1 正弦函数、余弦函数的图象学习目标 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.知识点一 正弦函数、余弦函数的概念思考 从对应的角度如何理解正弦函数、余弦函数的概念?答案 实数集与角的集合之间可以建立一一对应关系,而一个确定的角又对应着唯一确定的正弦(或余弦)值.这样,任意给定一个实数x ,有唯一确定的值sin x (或cos x )与之对应.由这个对应法则所确定的函数y =sin x (或y =cos x )叫做正弦函数(或余弦函数),其定义域是R .知识点二 几何法作正弦函数、余弦函数的图象思考1 课本上是利用什么来比较精确的画出正弦函数的图象的?其基本步骤是什么? 答案 利用正弦线,这种作图方法称为“几何法”,其基本步骤如下:①作出单位圆:作直角坐标系,并在直角坐标系中y 轴左侧的x 轴上取一点O 1,作出以O 1为圆心的单位圆;②等分单位圆,作正弦线:从⊙O 1与x 轴的交点A 起,把⊙O 1分成12等份.过⊙O 1上各分点作x 轴的垂线,得到对应于0,π6,π3,π2,…,2π等角的正弦线;③找横坐标:把x 轴上从0到2π这一段分成12等份;④找纵坐标:把角x 的正弦线向右平移,使它的起点与x 轴上对应的点x 重合,从而得到12条正弦线的12个终点;⑤连线:用光滑的曲线将12个终点依次从左至右连接起来,即得到函数y =sin x ,x ∈[0,2π]的图象,如图.因为终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π),k ∈Z 且k ≠0的图象与函数y =sin x ,x ∈[0,2π)的图象的形状完全一致.于是只要将函数y =sinx ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y=sin x ,x ∈R 的图象,如图.思考2 如何由正弦函数的图象通过图形变换得到余弦函数的图象?答案 把y =sin x ,x ∈R 的图象向左平移π2个单位长度,即可得到y =cos x ,x ∈R 的图象.梳理 正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线. 知识点三 “五点法”作正弦函数、余弦函数的图象 思考1 描点法作函数图象有哪几个步骤? 答案 列表、描点、连线.思考2 “五点法”作正弦函数、余弦函数在x ∈[0,2π]上的图象时是哪五个点? 答案梳理 “五点法”作正弦函数y =sin x 、余弦函数y =cos x ,x ∈[0,2π]图象的步骤: (1)列表(2)描点画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0); 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). (3)用光滑曲线顺次连接这五个点,得到正弦曲线、余弦曲线的简图.类型一 “五点法”作图的应用例1 利用“五点法”作出函数y =1-sin x (0≤x ≤2π)的简图. 解 (1)取值列表:描点连线,如图所示.反思与感悟 作正弦曲线要理解几何法作图,掌握五点法作图.“五点”即y =sin x 或y =cos x 的图象在[0,2π]内的最高点、最低点和与x 轴的交点.“五点法”是作简图的常用方法.跟踪训练1 用“五点法”作出函数y =1-cos x (0≤x ≤2π)的简图. 解 列表如下:描点并用光滑的曲线连接起来,如图.类型二 利用正弦、余弦函数的图象求定义域 例2 求函数f (x )=lg sin x +16-x 2的定义域.解 由题意,得x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0,即⎩⎪⎨⎪⎧sin x >0,-4≤x ≤4,作出y =sin x 的图象,如图所示.结合图象可得x ∈[-4,-π)∪(0,π).反思与感悟 一些三角函数的定义域可以借助函数图象直观地观察得到,同时要注意区间端点的取舍.跟踪训练2 求函数y =log 21sin x-1的定义域. 解 为使函数有意义,需满足⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0,即0<sin x ≤12.由正弦函数的图象或单位圆(如图所示),可得函数的定义域为{x |2k π<x ≤2k π+π6或2k π+5π6≤x <2k π+π,k ∈Z }.类型三 与正弦、余弦函数有关的函数零点问题 命题角度1 零点个数问题例3 在同一坐标系中,作函数y =sin x 和y =lg x 的图象,根据图象判断出方程sin x =lg x 的解的个数.解 建立平面直角坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再向右连续平移2π个单位,得到y =sin x 的图象.描出点(1,0),(10,1),并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.反思与感悟 三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.跟踪训练3 方程x 2-cos x =0的实数解的个数是 . 答案 2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象可知,原方程有两个实数解.命题角度2 参数范围问题例4 方程sin(x +π3)=m2在[0,π]上有两实根,求实数m 的取值范围及两实根之和.解 作出y 1=sin(x +π3),y 2=m2的图象如图,由图象可知,要使y 1=sin(x +π3),y 2=m 2在区间[0,π]上有两个不同的交点,应满足32≤m2<1,即3≤m <2.设方程的两实根分别为x 1,x 2,则由图象可知x 1与x 2关于x =π6对称,于是x 1+x 2=2×π6,所以x 1+x 2=π3.反思与感悟 准确作出函数图象是解决此类问题的关键,同时应抓住“临界”情况进行分析. 跟踪训练4 若函数f (x )=sin x -2m -1,x ∈[0,2π]有两个零点,求m 的取值范围. 解 由题意可知,sin x -2m -1=0在[0,2π]上有2个根,即sin x =2m +1有两个根, 可转化为y =sin x 与y =2m +1两函数的图象有2个交点. 由y =sin x 图象可知, -1<2m +1<1,且2m +1≠0, 解得-1<m <0,且m ≠-12.∴m ∈(-1,-12)∪(-12,0).1.用“五点法”作y =2sin 2x 的图象时,首先描出的五个点的横坐标是( ) A.0,π2,π,3π2,2πB.0,π4,π2,3π4,πC.0,π,2π,3π,4πD.0,π6,π3,π2,2π3答案 B解析 “五点法”作图是当2x =0,π2,π,3π2,2π时的x 的值,此时x =0,π4,π2,3π4,π,故选B.2.下列图象中,y =-sin x 在[0,2π]上的图象是( )答案 D解析 由y =sin x 在[0,2π]上的图象作关于x 轴的对称图形,应为D 项. 3.函数y =cos x ,x ∈[0,2π]的图象与直线y =-12的交点有 个.答案 2解析 作y =cos x ,x ∈[0,2π]的图象及直线y =-12(图略),可知两函数图象有2个交点.4.函数y =2sin x -1的定义域为 . 答案 [π6+2k π,5π6+2k π],k ∈Z解析 由题意知,自变量x 应满足2sin x -1≥0, 即sin x ≥12.由y =sin x 在[0,2π]的图象,可知π6≤x ≤5π6,所以y =2sin x -1的定义域为⎣⎢⎡⎦⎥⎤π6+2k π,5π6+2k π,k ∈Z .5.请用“五点法”画出函数y =12sin ⎝ ⎛⎭⎪⎫2x -π6的图象.解 令X =2x -π6,则x 变化时,y 的值如下表:描点画图:将函数在⎣⎢⎡⎦⎥⎤π12,13π12上的图象向左、向右平移即得y =12sin ⎝⎛⎭⎪⎫2x -π6的图象.1.对“五点法”画正弦函数图象的理解(1)与前面学习函数图象的画法类似,在用描点法探究函数图象特征的前提下,若要求精度不高,只要描出函数图象的“关键点”,就可以根据函数图象的变化趋势画出函数图象的草图. (2)正弦型函数图象的关键点是函数图象中最高点、最低点以及与x 轴的交点. 2.作函数y =a sin x +b 的图象的步骤:3.用“五点法”画的正弦型函数在一个周期[0,2π]内的图象,如果要画出在其他区间上的图象,可依据图象的变化趋势和周期性画出.课时作业一、选择题1.对于正弦函数y =sin x 的图象,下列说法错误的是( ) A.向左右无限伸展B.与y =cos x 的图象形状相同,只是位置不同C.与x 轴有无数个交点D.关于y 轴对称答案 D解析 由正弦曲线知,A ,B ,C 均正确,D 不正确.2.用五点法画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A.⎝⎛⎭⎪⎫π6,12B.⎝ ⎛⎭⎪⎫π2,1 C.(π,0) D.(2π,0)答案 A 解析 易知⎝⎛⎭⎪⎫π6,12不是关键点.3.已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2,则将f (x )的图象( )A.与g (x )的图象相同B.与g (x )的图象关于y 轴对称C.向左平移π2个单位,得g (x )的图象D.向右平移π2个单位,得g (x )的图象答案 D解析 f (x )=sin ⎝⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2=cos ⎝⎛⎭⎪⎫π2-x =sin x , f (x )的图象向右平移π2个单位得到g (x )的图象.4.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )答案 D5.方程sin x =x10的根的个数是( )A.7B.8C.9D.10 答案 A解析 在同一坐标系内画出y =x10和y =sin x 的图象如图所示.根据图象可知方程有7个根.6.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )答案 D解析 由题意得y =⎩⎪⎨⎪⎧2cos x ,0≤x ≤π2或3π2≤x ≤2π,0,π2<x <3π2.显然只有D 合适.7.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( ) A.4 B.8 C.2π D.4π 答案 D解析 作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形为如图所示的阴影部分.利用图象的对称性可知,该阴影部分的面积等于矩形OABC 的面积,又∵OA =2,OC =2π, ∴S 阴影部分=S 矩形OABC =2×2π=4π. 二、填空题8.函数f (x )=lg cos x +25-x 2的定义域为 . 答案 ⎣⎢⎡⎭⎪⎫-5,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,5 解析 由题意,得x 满足不等式组⎩⎪⎨⎪⎧cos x >0,25-x 2≥0,即⎩⎪⎨⎪⎧cos x >0,-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得x ∈⎣⎢⎡⎭⎪⎫-5,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,5. 9.函数y =sin x ,x ∈[0,2π]的图象与直线y =-12的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2= . 答案 3π 解析 如图所示,x 1+x 2=2×3π2=3π. 10.函数f (x )=⎩⎪⎨⎪⎧sin x ,x ≥0,x +2,x <0,则不等式f (x )>12的解集是 .答案 {x |-32<x <0或π6+2k π<x <5π6+2k π,k ∈N }解析 在同一平面直角坐标系中画出函数f (x )和y =12的图象(图略),由图易得-32<x <0或π6+2k π<x <5π6+2k π,k ∈N . 11.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为 .答案 ⎣⎢⎡⎦⎥⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象,如图所示.观察图象知x ∈⎣⎢⎡⎦⎥⎤π4,5π4.三、解答题12.用“五点法”画出函数y =12+sin x ,x ∈[0,2π]的简图.解 (1)取值列表如下:(2)描点、连线,如图所示.13.利用正弦曲线,求满足12<sin x ≤32的x 的集合.解 首先作出y =sin x 在[0,2π]上的图象,如图所示,作直线y =12,根据特殊角的正弦值,可知该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π6和5π6; 作直线y =32,该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π3和2π3. 观察图象可知,在[0,2π]上,当π6<x ≤π3或2π3≤x <5π6时,不等式12<sin x ≤32成立. 所以12<sin x ≤32的解集为{x |π6+2k π<x ≤π3+2k π或2π3+2k π≤x <5π6+2k π,k ∈Z }.四、探究与拓展14.已知函数y =2sin x (π2≤x ≤5π2)的图象与直线y =2围成一个封闭的平面图形,那么此封闭图形的面积为( ) A.4 B.8 C.4π D.2π答案 C解析 数形结合,如图所示.y =2sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,5π2的图象与直线y =2围成的封闭平面图形的面积相当于由x =π2,x =5π2,y =0,y =2围成的矩形面积,即S =⎝ ⎛⎭⎪⎫5π2-π2×2=4π.15.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].图象如图所示,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据图象可得k 的取值范围是(1,3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高一数学 正弦函数图像1导学案
学会用参数思想讨论()sin y A x ωϕ=+函数的图象变换过程,掌握图象变换与函数解析式的内在联系的认识,会用五点法作图。
二、文本研读
阅读教材P49——P50探究(一)回答下列问题
1、你能说出sin 3y x π⎛⎫=+
⎪⎝⎭
和y=sinx 的关系?请把研究办法写出
2、请大家协同完成函数sin 4y x π⎛⎫=- ⎪⎝
⎭的图象,并与y=sinx 的图象比较并与上面的到的结论的共同点写出
阅读教材P50——P51探究(二)回答下列问题
1、sin 2sin y x y x ==与图象的关系你知道吗?作图试验一下。
2、sin 2sin 33y x y x ππ⎛
⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝
⎭与的关系与上面一样吗?比较后写出结论
三、知识应用
1、完成下列各题
(1)y =s in(x +
4
π)是由y =sin x 向_______平移_____-个单位得到的 (2)y =sin(x -4
π)是由y =sin x 向______平移________个单位得到的 (3)y =sin(x -4π)是由y =sin(x +4π)向______平移______个单位得到的 2、下列变换中,正确的是( )
A 将y =sin2x 图象上的横坐标变为原来的2倍(纵坐标不变)即可得到 y =sin x 的图象
B 将y =s in2x 图象上的横坐标变为原来的2
1倍(纵坐标不变)即可得到 y =sin x 的图象 C 将y =-sin2x 图象上的横坐标变为原来的2
1倍,纵坐标变为原来的相反 数,即得到y =sin x 的图象 D 将y =-3sin2x 图象上的横坐标缩小一倍,纵坐标扩大到原来的
31倍, 且变为相反数,即得到y =sin x 的图象
4、把函数y =cos(3x +
4π)的图象适当变动就可以得到y =cos(3x )的图象,这种变动可以是( ) A 向右平移4π B 向左平移4
π C 向右平移12π D 向左平移12π 四、实战演练
2.为了得到sin(3)4y x π=-
的图象,只要将sin 3y x =的图象( )
A .向左平移4π个单位
B 向右平移4π个单位
C .向左平移12π个单位
D 向右平移12π个单位
5、用图象变换的方法写出在同一坐标系内由y =sin x 的图象画出函数y =sin(2x+5
π)的图象的方法。
1.3sin().5y x C π=+已知函数的图象为()(1)3sin(),5(). ().5522(). ().
55y x C A B C D πππππ=-为了得到函数的图象只要把上所有的点向右平行移动个单位长度向左平行移动个单位长度向右平行移动
个单位长度向左平行移动个单位长度()3sin(2),51()2, (),21()2, (),2y x C A B C D π=+3.为了得到函数的图象只要把上所有的点横坐标伸长到原来的倍纵坐标不变横坐标缩短到原来的倍纵坐标不变纵坐标伸长到原来的倍横坐标不变纵坐标缩短到原来的倍横坐标不变
五、能力提升
1、把函数y =cos(3x +
4
π)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A 向右平移
4π B 向左平移4
π C 向右平移12π D 向左平移12π 4、将函数y =f (x )的图象沿x 轴向右平移3π,再保持图象上的纵坐标不变,而横坐标变为原来的2倍,得到的曲线与y =sin x 的图象相同,则y =f (x )是( )
A y =sin(2x +3π) B
y =sin(2x -3π) C y =sin(2x +32π
) D
y =sin(2x -32π) 六、归纳小结。