最新整式的乘法和因式分解专题训练

合集下载

最新人教版整式的乘法与因式分解基础及练习

最新人教版整式的乘法与因式分解基础及练习

整式的乘法与因式分解一、 整式的乘法1、同底数幂相乘:=∙n m a a 2、幂的乘方:()=nm a 3、积的乘方:()=nab例1、计算:(1)52x x ⋅ (2)389)2()2()2(-⨯-⨯-(3)m m a a +-⋅11(4)523)()()(x y x y y x -⋅-⋅-例2、计算:(1)(103)5(2)23)(m a - (3)()[]522y x - (4) 532])][()[(m n n m --例3、计算:(1)(ab )2 (2)(-3x )2(3)332)3(c b a - (4)32])(3[y x + (5)20082009)3()31(-⨯1、单项式⨯单项式2、单项式⨯多项式3、多项式⨯多项式(注意法则要记清)例1、计算:(1)abc b a ab 2)31(322⋅-⋅ (2))34432()23(22y xy y x xy +-⋅-(3)(x-3y)(x+7y) (4))1)(1)(1(2++-x x x2、先化简,后求值:(x -4)(x -2)-(x -1)(x +3),其中25-=x 。

、平方差公式: ()()=-+b a b a ; 变式:(1)=+-+))((a b b a ; (2)=++-))((b a b a ;(3)))((b a b a --+-= ; (4)))((b a b a ---= 。

2、完全平方公式:2)(b a ±= 。

公式变形:(1)ab b a ab b a b a 2)(2)(2222+-=-+=+ (2)ab b a b a 4)()(22+-=+; (3)ab b a b a 4)()(22-+=- (4)ab b a b a 4)()(22=--+; (5))(2)()(2222b a b a b a +=-++例2、计算:(1)(x +2)(x -2) (2)(5+a)(-5+a) (3))52)(52(y x y x +---(4)()()222233xyyx ++- (5) 20021998⨯ (6)()()()4222+-+x x x、直接写出结果:(1)(x -ab )(x +ab )= ; (2)(2x +5y )(2x -5y )= ; (3)(-x -y )(-x +y )= ;(4)(12+b 2)(b 2-12)=______ ; (5) (-2x+3)(3+2x)= ;(6)(a 5-b 2)(a 5+b 2)= 。

整式的乘法与因式分解检测卷(含答案)

整式的乘法与因式分解检测卷(含答案)

整式乘法与因式分解检测题(时刻:120分钟总分值:120分)一、选择题(每题3分,共30分)1.(2021·衡阳)以下运算结果正确的选项是( )A.x2+x3=x5B.x3·x2=x6C.x5÷x=x5D.x3·(3x)2=9x52.(1+x2)(x2-1)的计算结果是( )A.x2-1 B.x2+1 C.x4-1 D.1-x43.任意给定一个非零数,按以下程序计算,最后输出的结果是( )m→平方→-m→÷m→+2→结果A.m B.m-2C.m+1 D.m-14.以下计算错误的选项是( )A.(-14+4x2)÷12=-12+8x2B.(x+2y)(2y-x)=-x2+4y2C.x2-9=(x+3)(x-3) D.(x+y)2-xy=x2+y25.(2021·海南)以下式子从左到右变形是因式分解的是( )A.a2+4a-21=a(a+4)-21 B.a2+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a2+4a-21 D.a2+4a-21=(a+2)2-256.以下多项式,在实数范围内能用公式法分解因式的有( )①x2+6x+9;②4x2-4x-1;③-x2-y2;④2x2-y2;⑤x2-7;⑥9x2+6xy+4y2. A.3个B.4个C.5个D.6个7.假设(a+b)2=(a-b)2+A,那么A为( )A.2ab B.-2ab C.4ab D.-4ab8.计算(x2-3x+n)(x2+mx+8)的结果中不含x2和x3的项,那么m,n的值为( ) A.m=3,n=1 B.m=0,n=0 C.m=-3,n=-9 D.m=-3,n=89.假设a,b,c是三角形的三边长,那么代数式(a-b)2-c2的值( )A.大于0 B.小于0 C.等于0 D.不能确信10.7张如图①的长为a ,宽为b(a >b)的小长方形纸片,按图②的方式不重叠地放在矩形ABCD 内,未被覆盖的部份(两个矩形)用阴影表示.设左上角与右下角的阴影部份的面积的差为S ,当BC 的长度转变时,依照一样的方式放置,S 始终维持不变,那么a ,b 知足( )A .a =52b B .a =3b C .a =72b D .a =4b二、填空题(每题3分,共24分)11.(2021·陕西)因式分解:m(x -y)+n(y -x)=______________. 12.计算:|-3|+(π+1)0-4=________. 13.计算82021×(-2021=________.14.(2021·连云港)假设ab =3,a -2b =5,那么a 2b -2ab 2=________. 15.已知x =y +4,那么代数式x 2-2xy +y 2-25的值为________. 16.假设6a=5,6b=8,那么36a -b =________.17.数学家发明了一个魔术盒,当任意数对(a ,b)进入其中时,会取得一个新的数:(a -1)(b -2).现将数对(m ,1)放入其中取得数n ,再将数对(n ,m)放入其中后,那么最后取得的数是________.(结果用m 表示) 18.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图),从而可取得因式分解的公式__________________.三、解答题(共66分)19.(12分)计算:(1)5x 2y ÷(-13xy)×(2xy 2)2; (2)9(a -1)2-(3a +2)(3a -2);(3)[(a -2b)2+(a -2b)(2b +a)-2a(2a -b)]÷2a ; (4)[a(a 2b 2-ab)-b(-a 3b -a 2)]÷a 2b20.(9分)把以下各式因式分解:(1)x(m-x)(m-y)-m(x-m)(y-m); (2)ax2+8ax+16a;(3)x4-81x2y2.21.(6分)已知x m=3,x n=2,求x3m+2n的值.22.(9分)已知x(x-1)-(x2-y)=-6,求x2+y22-xy的值.23.(8分)学习了分解因式的知识后,教师提出了如此一个问题:设n为整数,那么(n+7)2-(n-3)2的值必然能被20整除吗?假设能,请说明理由;假设不能,请举出一个反例.你能解答那个问题吗?24.(10分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,计划部门打算将阴影部份进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.25.(12分)观看以劣等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每一个等式中两边数字是别离对称的,且每一个等式中组成两位数与三位数的数字之间具有相同规律,咱们称这种等式为“数字对称等式”.(1)依照上述各式反映的规律填空,使式子成为“数字对称等式”:①52×________=________×25;②________×396=693×________.(2)设这种等式左侧两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一样规律的式子(含a,b),并证明.第14章检测题参考答案1.D11.(x-y)(m-n) 13.-1815.-9 -m2+2ab+b2=(a+b)219.(1)原式=5x2y÷(-13xy)×4x2y4=-(5÷13×4)x2-1+2y1-1+4=-60x3y4(2)原式=9(a2-2a+1)-(9a2-4)=9a2-18a+9-9a2+4=-18a+13 (3)原式=[(a-2b)(a-2b+2b+a)-2a(2a-b)]÷2a=2a(a-2b-2a+b)÷2a=-a-b (4)原式=(a3b2-a2b+a3b2+a2b)÷a2b=2a3b2÷a2b=2ab20.(1)原式=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-x)2(m-y) (2)原式=a(x2+8x+16)=a(x+4)2(3)原式=x2(x2-81y2)=x2(x+9y)(x-9y)21.∵x m=3,x n=2,∴原式=(x m)3·(x n)2=33·22=10822.由x(x-1)-(x2-y)=-6得x-y=6,x2+y22-xy=x2-2xy+y22=(x-y)22,把x-y=6代入得622=1823.(n+7)2-(n-3)2=(n+7+n-3)(n+7-n+3)=(2n+4)×10=20(n+2),∴必然能被20整除24.绿化面积为:(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-(a2+2ab+b2)=5a2+3ab(平方米).当a=3,b =2时,5a2+3ab=5×32+3×3×2=45+18=63.答:绿化面积为(5a2+3ab)平方米,当a=3,b=2时,绿化面积为63平方米25.(1)275;572;63;36 (1)∵左侧两位数的十位数字为a,个位数字为b,∴左侧的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,∴一样规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),证明:左侧=(10a+b)×[100b +10(a+b)+a]=(10a+b)(100b+10a+10b+a)=(10a+b)(110b+11a)=11(10a+b)(10b+a) 右边=[100a+10(a+b)+b]×(10b+a)=(100a+10a+10b+b)(10b+a)=(110a+11b)(10b+a)=11(10a+b)(10b+a),左侧=右边,∴“数字对称等式”一样规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a +10(a+b)+b]×(10b+a)。

整式的乘法与因式分解专题练习(word版

整式的乘法与因式分解专题练习(word版

整式的乘法与因式分解专题练习(word 版一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.3.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+,20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.4.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A .30B .32C .18-D .9 【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n 的值,然后选择答案即可.【详解】2n 是乘积二倍项时,2n +216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n +216+1=2n +2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n +216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n 可以取到的数是9、30、-18,不能取到的数是32.故选B .【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.5.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x + 【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.6.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.7.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( )A .B .C .D .【答案】A【解析】 ∵222(2)44x y x y xy +=++,∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .故选A.8.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.9.如图,矩形的长、宽分别为a 、b ,周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .30C .15D .16 【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b ,ab ,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a 、b 的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.10.下列运算中正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()()22224a b a b a b +--=【答案】D【解析】【分析】根据同底数幂的乘法,可判断A 和B ,根据合并同类项,可判断C ,根据平方差公式,可判断D .【详解】A. 底数不变指数相加,故A 错误;B. 底数不变指数相乘,故B 错误;C. 系数相加字母部分不变,故C 错误;D. 两数和乘以这两个数的差等于这两个数的平方差,故D 正确;故选D.【点睛】本题考查了平方差公式、合并同类项以及同底数幂的乘法,解题的关键是熟练的掌握平方差公式、合并同类项以及同底数幂的乘法的运算.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a-b=4,ab=6,则22a b += _________.【答案】28【解析】【分析】对完全平方公式进行变形即可解答.【详解】解:∵222()216a b a ab b -=-+=∴22a b +=2()a b -+2ab=16+2×6=28故答案为28.【点睛】本题考查了完全平方公式的应用,掌握完全平方公式并能够进行灵活变形是解答本题的关键.12.多项式18x n+1-24x n 的公因式是_______.【答案】6x n【解析】运用公因式的概念,找出系数的最大公约数是6,相同字母的最低指数次幂是x n ,可得公因式为6x n .故答案为:6x n.13.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.14.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1; 1(a b)a b +=+,它有两项,系数分别为1,1,系数和为2;222(a b)a 2ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;⋯,则n (a b)+的展开式共有______项,系数和为______.【答案】n 1+ n 2【解析】【分析】本题通过阅读理解寻找规律,观察可得(a+b )n (n 为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b )n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b )n 的项数以及各项系数的和即可.【详解】根据规律可得,(a+b )n 共有(n+1)项,∵1=201+1=211+2+1=221+3+3+1=23∴(a+b )n 各项系数的和等于2n故答案为n+1,2n【点睛】本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式.15.222---x xy y =__________【答案】()2x y -+【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+. 故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.16.因式分解:2()4()a a b a b ---=___.【答案】()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.17.因式分解:3222x x y xy +=﹣__________. 【答案】()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.18.分解因式:x 2﹣1=____.【答案】(x+1)(x ﹣1).【解析】试题解析:x 2﹣1=(x+1)(x ﹣1).考点:因式分解﹣运用公式法.19.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8,故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.20.分解因式:32363a a a -+=_____.【答案】()231a a -【解析】【分析】先提取公因式3a ,再根据完全平方公式进行二次分解即可.【详解】 ()()232236332131a a a a a a a a -+=-+=-. 故答案为:()231a a -【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。

整式的乘法与因式分解习题带答案精选全文完整版

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

《整式的乘除与因式分解》培优训练及答案

《整式的乘除与因式分解》培优训练及答案

整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。

整式的乘法和因式分解练习题集

整式的乘法和因式分解练习题集

整式的乘法与因式分解一.选择题(共16小题)1.下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x42.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a43.若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣14.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣195.若4a2﹣kab+9b2是完全平方式,则常数k的值为()A.6 B.12 C.±12 D.±66.下列运算中正确的是()A.(x4)2=x6B.x+x=x2 C.x2•x3=x5D.(﹣2x)2=﹣4x27.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定8.(﹣a m)5•a n=()A.﹣a5+m B.a5+m C.a5m+n D.﹣a5m+n9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12D.p=7,q=﹣12 10.(x n+1)2(x2)n﹣1=()A.x4n B.x4n+3C.x4n+1D.x4n﹣111.下列计算中,正确的是()A.a•a2=a2B.(a+1)2=a2+1 C.(ab)2=ab2D.(﹣a)3=﹣a312.下列各式中不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(﹣x﹣y)C.(﹣x﹣y)(x﹣y)D.(x+y)(﹣x+y)13.计算a5•(﹣a)3﹣a8的结果等于()A.0 B.﹣2a8C.﹣a16D.﹣2a1614.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1 D.515.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1 B.b=﹣6,c=2 C.b=﹣6,c=﹣4 D.b=﹣4,c=﹣6 16.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2 D.a2﹣2ab+b2二.填空题(共7小题)17.分解因式:x2﹣1=.18.分解因式:2x3﹣8x=.19.分解因式:3ax2﹣6axy+3ay2=.20.分解因式:m3﹣4m2+4m=.21.x2+kx+9是完全平方式,则k=.22.化简:(﹣2a2)3=.23.因式分解:y3﹣4x2y=.三.解答题(共3小题)24.分解因式:(1)(a2+b2)2﹣4a2b2(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.25.已知,求的值.26.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.整式的乘法与因式分解参考答案与试题解析一.选择题(共16小题)1.下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x4【分析】分别利用绝对值以及同底数幂的乘法运算法则、合并同类项、积的乘方运算法则分别化简求出答案.【解答】解:A、|﹣1|=﹣1,正确,符合题意;B、x3•x2=x5,故此选项错误;C、x2+x2=2x2,故此选项错误;D、(3x2)2=9x4,故此选项错误;故选:A.【点评】此题主要考查了绝对值以及同底数幂的乘法运算、合并同类项、积的乘方运算等知识,正确掌握运算法则是解题关键.2.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.【点评】本题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘、幂的乘方法则是解题的关键.3.若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19【分析】把x2+y2利用完全平方公式变形后,代入x+y=﹣5,xy=3求值.【解答】解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.【点评】本题的关键是利用完全平方公式求值,把x+y=﹣5,xy=3当成一个整体代入计算.5.若4a2﹣kab+9b2是完全平方式,则常数k的值为()A.6 B.12 C.±12 D.±6【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:∵4a2﹣kab+9b2是完全平方式,∴﹣kab=±2•2a•3b=±12ab,∴k=±12,故选:C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.下列运算中正确的是()A.(x4)2=x6B.x+x=x2 C.x2•x3=x5D.(﹣2x)2=﹣4x2【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、(x4)2=x8,错误;B、x+x=2x,错误;C、x2•x3=x5,正确;D、(﹣2x)2=4x2,错误;故选:C.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.7.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定【分析】根据多项式乘多项式的运算法则进行计算,比较即可得到答案.【解答】解:M=(x﹣3)(x﹣7)=x2﹣10x+21,N=(x﹣2)(x﹣8)=x2﹣10x+16,M﹣N=(x2﹣10x+21)﹣(x2﹣10x+16)=5,则M>N.故选:B.【点评】本题考查的是多项式乘多项式,掌握多项式乘以多项式的法则是解题的关键.8.(﹣a m)5•a n=()A.﹣a5+m B.a5+m C.a5m+n D.﹣a5m+n【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加计算即可.【解答】解:(﹣a m)5•a n=﹣a5m+n.故选:D.【点评】本题考查幂的乘方的性质和同底数幂的乘法的性质,熟练掌握运算性质是解题的关键.9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12D.p=7,q=﹣12【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p、q的值.【解答】解:由于(x﹣3)(x+4)=x2+x﹣12=x2+px+q,则p=1,q=﹣12.故选:A.【点评】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.10.(x n+1)2(x2)n﹣1=()A.x4n B.x4n+3C.x4n+1D.x4n﹣1【分析】根据幂的乘方法计算.【解答】解:(x n+1)2(x2)n﹣1=x2n+2•x2n﹣2=x4n.故选:A.【点评】本题主要考查了幂的乘方与积的乘方,注意把各种幂运算区别开,从而熟练掌握各种题型的运算.11.下列计算中,正确的是()A.a•a2=a2B.(a+1)2=a2+1 C.(ab)2=ab2D.(﹣a)3=﹣a3【分析】根据同底数幂的乘法法则对A进行判断;根据完全平方公式对B进行判断;根据幂的乘方与积的乘方对C、D进行判断.【解答】解:A、a•a2=a3,所以A选项不正确;B、(a+1)2=a2+2a+1,所以B选项不正确;C、(ab)2=a2b2,所以C选项不正确;D、(﹣a)3=﹣a3,所以D选项正确.故选:D.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了同底数幂的乘法以及幂的乘方与积的乘方.12.下列各式中不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(﹣x﹣y)C.(﹣x﹣y)(x﹣y)D.(x+y)(﹣x+y)【分析】根据公式(a+b)(a﹣b)=a2﹣b2的左边的形式,判断能否使用.【解答】解:A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A正确;B、两个括号中,﹣x相同,含y的项的符号相反,故能使用平方差公式,B错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C错误;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D错误;故选:A.【点评】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.13.计算a5•(﹣a)3﹣a8的结果等于()A.0 B.﹣2a8C.﹣a16D.﹣2a16【分析】先根据同底数幂相乘,底数不变指数相加计算,再合并同类项.【解答】解:a5•(﹣a)3﹣a8=﹣a8﹣a8=﹣2a8.故选:B.【点评】同底数幂的乘法的性质:底数不变,指数相加.合并同类项的法则:只把系数相加减,字母与字母的次数不变.14.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1 D.5【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积转换成以m+n,mn为整体相加的形式,代入求值.【解答】解:∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n),=1﹣(m+n)+mn,=1﹣2﹣2,=﹣3.故选:A.【点评】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.15.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1 B.b=﹣6,c=2 C.b=﹣6,c=﹣4 D.b=﹣4,c=﹣6【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:由多项式2x2+bx+c分解因式为2(x﹣3)(x+1),得2x2+bx+c=2(x﹣3)(x+1)=2x2﹣4x﹣6.b=﹣4,c=﹣6,故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.16.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2 D.a2﹣2ab+b2【分析】根据两数的符号相同,所以利用完全平方和公式计算即可.【解答】解:(﹣a﹣b)2=a2+2ab+b2.故选:C.【点评】本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.二.填空题(共7小题)17.分解因式:x2﹣1= (x+1)(x﹣1).【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.18.分解因式:2x3﹣8x= 2x(x﹣2)(x+2).【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.19.分解因式:3ax2﹣6axy+3ay2= 3a(x﹣y)2.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.分解因式:m3﹣4m2+4m= m(m﹣2)2.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:m3﹣4m2+4m=m(m2﹣4m+4)=m(m﹣2)2.故答案为:m(m﹣2)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.x2+kx+9是完全平方式,则k=±6 .【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3的积的2倍,故k=±6.【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.22.化简:(﹣2a2)3= ﹣8a6.【分析】根据积得乘方与幂的乘方的运算法则计算即可.【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故答案为:﹣8a6.【点评】本题主要考查的是积得乘方与幂的乘方的运算,掌握积得乘方与幂的乘方的运算法则是解题的关键.23.因式分解:y3﹣4x2y= y(y+2x)(y﹣2x).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:y3﹣4x2y,=y(y2﹣4x2),=y(y+2x)(y﹣2x).【点评】本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三.解答题(共3小题)24.分解因式:(1)(a2+b2)2﹣4a2b2(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【分析】(1)直接利用平方差公式分解因式,进而利用完全平方公式分解因式即可;(2)直接利用完全平方公式分解因式得出即可.【解答】解:(1)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.【点评】此题主要考查了公式法分解因式,熟练应用平方差公式和完全平方公式是解题关键.25.已知,求的值.【分析】把两边平方得到+2=9,进而求出的值.【解答】解:∵,∴+2=9,∴=7.【点评】本题主要考查了完全平方式的知识点,解答本题的关键是把两边平方,此题基础题,难度不大.26.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.【分析】(1)直接把两个正方形的面积相加或利用大正方形的面积减去两个长方形的面积;(2)利用面积相等把(1)中的式子联立即可;(3)注意a,b都为正数且a>b,利用(2)的结论进行探究得出答案即可.【解答】解:(1)两个阴影图形的面积和可表示为:a2+b2或(a+b)2﹣2ab;(2)a2+b2=(a+b)2﹣2ab;(3)∵a,b(a>b)满足a2+b2=53,ab=14,∴①(a+b)2=a2+b2+2ab=53+2×14=81∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵a4﹣b4=(a2+b2)(a+b)(a﹣b),且∴a﹣b=±5又∵a>b>0,∴a﹣b=5,∴a4﹣b4=(a2+b2)(a+b)(a﹣b)=53×9×5=2385.【点评】本题考查对完全平方公式几何意义的理解与运用,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.。

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。

完整版)《整式的乘法与因式分解》综合练习题

完整版)《整式的乘法与因式分解》综合练习题

完整版)《整式的乘法与因式分解》综合练习题1.若16÷2=2,则n等于()A。

10 B。

5 C。

3 D。

62.如果a写成下列各式,正确的共有()①a+a;②(a);③a÷a;④(a);⑤(a);⑥a÷a;⑦a·a;⑧2a-a=a答案:B。

6个3.已知4ab÷9ab=3mn2/8882b,则()A。

m=4.n=3 B。

m=4.n=1 C。

m=1.n=3 D。

m=2.n=3答案:A。

m=4.n=34.下列运算正确的是()A。

x·x=x B。

(x)2=x2 C。

x+x=2x D。

x6-x3=x3答案:C。

x+x=2x5.下面的计算正确的是()A。

6a-5a=a B。

a+2a=3a C。

-(a-b)=-a+b D。

2(a+b)=2a+2b 答案:B。

a+2a=3a6.下列运算正确的是()A。

a+a=2a B。

(-a)=a C。

3a·a=a3 D。

(a)2=2a2答案:A。

a+a=2a7.下列运算正确的是A。

x+x=2x B。

x÷x=1 C。

x·x=x2 D。

(2x)2=4x2答案:A。

x+x=2x8.下列计算正确的是A。

x·x=x2 B。

x·x=x C。

(-x)=-x D。

(x)2=x2答案:A。

x·x=x29.下列计算正确的是A。

a+a=2a B。

2a+3b=5ab C。

(a)3=a6 D。

a÷a=1答案:B。

2a+3b=5ab10.下列各式计算正确的是A。

(a+1)2=a2+2a+1 B。

a+a=2a C。

a÷a=1答案:A。

(a+1)2=a2+2a+111.下列运算正确的是A。

-3=-3 B。

-(-a)=a C。

3a-2a=a D。

a2/2=1/2a2 答案:B。

-(-a)=a12.下列计算正确的是A。

a·a=a2 B。

a+a=2a C。

(a)=a D。

整式的乘除因式分解练习题最终版

整式的乘除因式分解练习题最终版

整式的乘除因式分解练习题最终版整式乘除与因式分解专项练知识网络归纳:幂的运算法则:a^m * a^n = a^(m+n) (m,n为正整数,a,b 可为一个单项式或一个式项式)平方差公式:(a+b)(a-b)=a^2-b^2完全平方公式:(a±b)^2=a^2±2ab+b^2整式的乘法:单项式×单项式:m*a+b=ma+mb多项式×多项式:(m+n)(a+b)=ma+mb+na+nb因式分解的意义:因式分解可以把一个多项式表示成几个单项式的乘积的形式,从而更便于计算和理解。

因式分解的方法:1.提公因式法:先观察是否存在公因式,若存在则提出来。

2.运用公式法:观察是否符合平方差公式或完全平方公式的条件,若符合则按公式进行分解。

3.十字相乘法:观察首尾项与中间项系数是否满足十字相乘条件,若满足则按十字相乘法则分解。

4.拆添项与分组分解法:如果上述方法均无法解决,尝试进行对某几项进行拆分或分组,然后再重复上述操作。

一、整式综合计算:1.幂运算:1) (-3a^2b^3c)^3 = -27a^6b^9c^32) (-1/2)^ = -27/8x^3y^3z^33) [-(a^2b)^3 * a]^3 = -a^27b^94) (ab)*(ab) = a^2b^25) 28xy/(-7xy) = -46) -2ab*(-8a^2) = 16a^3b7) (x^3-x^2)/2 = (x^3/2)-(x^2/2)9) -abc*(3ab) = -3a^2b^2c10) 2005*0.125*2006 = .2511) 若a^(3n-2) = 2.则a^(6n) = 6412) 已知4x=2x+3,则x=3/213) 如果a=2,a=3,则a=2或a=320.已知 m = n + 2,n = m + 2(m ≠ n),求 m - 2mn + n的值。

解:将 m = n + 2 代入 n = m + 2,得 n = n + 4,解得 n = -4,代入 m = n + 2,得 m = -2.因此,m - 2mn + n = -2 - 2(-2)(-4) + (-4) = 22.21.已知 9x - 12xy + 8y - 4yz + 2z - 4z + 4 = 0,求 x、y、z 的值。

完整版)专题整式乘法与因式分解练习题

完整版)专题整式乘法与因式分解练习题

完整版)专题整式乘法与因式分解练习题整式的乘法与因式分解练(1)一、选择题1.下列计算中正确的是()A。

a^2+b^3=2a^5B。

a^4÷a=a^4C。

a^2·a^4=a^8D。

-a^22.下列从左边到右边的变形,是因式分解的是()A。

(3-x)(3+x)=9-x^2B。

m^3-mn^2=m(m+n)(m-n)C。

(y+1)(y-3)=-(3-y)(y+1)D。

4yz-2y^2z+z=2y(2z-yz)+z^33.(-3a)·a的计算结果是()A。

-6a^7B。

6a^7C。

9a^7D。

-9a^74.一种计算机每秒可做4×10^8次运算,它工作3×10^3秒运算的次数为()A。

12×10^24B。

1.2×10^12C。

12×10^12D。

12×10^85.下列各式中,计算结果是x^2+7x-18的是()A。

(x-2)(x+9)B。

(x+2)(x+9)C。

(x-3)(x+6)D。

(x-1)(x+18)6.如图:矩形花园中ABCD,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK。

若LM=RS=c,则花园中可绿化部分的面积为()A。

bc-ab+ac+b^2B。

a^2+ab+bc-acC。

ab-bc-ac+c^2D。

b^2-bc+a^2-ab7.把-x^3y^2+x^4y^3分解因式,正确的是()A。

-xy(x^2y+x^3y^2)B。

-x^3y^2(1+xy)C。

-x^3y^2(1-xy)D。

-x^3y(y+xy^2)8.下列分解因式正确的是()A。

x^3-x=x(x^2-1)B。

m^2+m-6=(m+3)(m-2)C。

(a+4)(a-4)=a^2-16D。

x^2+y^2=(x+y)(x-y)9.下列各式是完全平方式的是()A。

223B。

3^3C。

5^2D。

7^210.一个正方形的边长增加了5cm,面积相应增加了23cm^2,则这个正方形的边长为()A。

(完整版)整式的乘法与因式分解专题训练

(完整版)整式的乘法与因式分解专题训练

整式的乘法和因式分解一、整式的运算1、已知a m =2,a n =3,求a m +2n 的值;2、若32=n a,则n a 6= . 3、若125512=+x ,求x x +-2009)2(的值。

4、已知2x +1⋅3x -1=144,求x ;5.2005200440.25⨯= .6、( 23)2002×(1.5)2003÷(-1)2004=________。

7、如果(x +q )(3x -4)的结果中不含x 项(q 为常数),求结果中的常数项8、设m 2+m -1=0,求m 3+2m 2+2010的值二、乘法公式的变式运用1、位置变化,(x +y )(-y +x )2、符号变化,(-x +y )(-x -y )3、指数变化,(x 2+y 2)(x 2-y 2)44、系数变化,(2a +b )(2a -b )5、换式变化,[xy +(z +m )][xy -(z +m )]6、增项变化,(x -y +z )(x -y -z )7、连用公式变化,(x +y )(x -y )(x 2+y 2)8、逆用公式变化,(x -y +z )2-(x +y -z )2三、乘法公式基础训练:1、计算 (1)1032 (2)19822、计算 (1)(a -b +c )2 (2)(3x +y -z )23、计算 (1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)4、计算 (1)19992-2000×1998 (2)22007200720082006-⨯.四、乘法公式常用技巧1、已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

变式练习:已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。

2、已知2=+b a ,1=ab ,求22b a +的值。

变式练习:已知8=+b a ,2=ab ,求2)(b a -的值。

(完整版)整式的乘法与因式分解考点练习(含答案),推荐文档

(完整版)整式的乘法与因式分解考点练习(含答案),推荐文档

整式的乘法与因式分解复习考点1幕的运算1 •下列计算正确的是()A •(a2)3= a5B . 2a—a= 22.(铜仁中考)下列计算正确的是()A . a2+ a2= 2a4B . 2a2 a3= 2a63 .计算:x5x7+ x6( —x3)2+ 2(x3)4.12 12A. 4xB. 2xC. (2a)2= 4aD. a a3= a4 C. 3a—2a= 1 D. (a2)3= a6C. xD. 4x考点2整式的乘法4.下列运算正确的是()A . 3a2 - a3 = 3a6B . 5x4— x2 = 4x2C . (2a2)3 - ( — ab) = — 8a7bD . 2x2十 2X2= 05.计算:(3x — 1)(2x + 1) = ______ .2 2 2A. 6x x 1B. 6x x 1C. 6x 5x 1D.6.计算:(1)( —3x2y)3( —2xy3); (2)&勺—*xy2)( —4xy2).A. 6x3y6 , 3x3y22x2y4B. - 6x3y6 , 3x3y32x2y47 6 八33 ^24C. 54x y , 3x y 2x y7 6 ^32 ^24D. - 54x y , 3x y 2x y考点3整式的除法7.计算8a3r —2a)的结果是()A . 4a B. —4a C. 4a2D. —4a22 258.若5a3b m+ 2a n b2= 2?b2,贝V m= _______________ , n= ___________5 29.化简:(a2b—2ab2—b3)占—(a—b)2.考点4乘法公式10.下列关系式中,正确的是()A . (a+ b)2= a2—2ab+ b2B. (a—b)2= a2—b22 2C . (a+ b)( —a+ b) = b —aD . (a+ b)( —a —b) = a2—b211.已知(x + m)2= x2+ nx + 36,贝V n 的值为()6x25x 1A . ± 6B . ± 12C . ± 18D . ± 7212 .计算:(1)( — 2m + 5)2; (2)(a + 3)(a —3)(a2+ 9); 考点5因式分解13. (北海中考)下列因式分解正确的是()A . x 2 — 4= (x + 4)(x — 4)B . x 2+ 2x + 1 = x(x + 2) + 1C. 3mx — 6my = 3m(x — 6y)D. 2x + 4= 2(x + 2)14. 多项式 mx 2 — m 与多项式x 2— 2x + 1的公因式是()A . x — 1B . x + 1C . x 2— 1D . (x — 1)2 15 .(黔西南中考)分解因式:4X 2+ 8x + 4= ___________ . 16 .若 x — 2y =— 5, xy = — 2,贝U 2x 2y — 4xy 2= ____ .综合训练17 .(威海中考)下列运算正确的是()A . (— 3m n)2=— 6m 2 n 2B . 4X 4 + 2x 4 + x 4= 6x 4C . (xy)2* (— xy) = — xyD . (a — b)( — a — b) = a 2 — b 218 .(毕节中考)下列因式分解正确的是()A . a 4b — 6a 3b + 9a 2b = a 2b(a 2— 6a + 9)21 / 1 2B . x 2— x + 4 = (x — 2)2C . x 2— 2x + 4= (x — 2)2D . 4x 2— y 2= (4x + y)(4x — y)19 .(大连中考)若a = 49, b = 109,贝U ab — 9a 的值为 _______ .20 .(宁波中考)一个大正方形和四个全等的小正方形按图1、2两种方式摆放,则图2的大正方形中未被小正方形覆盖部分的面积是 ________ (用a 、b 的代数式表示)图1 图221.(绵阳中考)在实数范围内因式分解:x 2y — 3y= ________________ . a b 一 a b 22 .(崇左中考)4个数a , b , c , d 排列成 ,我们称之为二阶行列式.规定它的运算法则为: =ad — bc.cdcdx + 3 x — 3 若 ________ =12,则 x = . x — 3 x + 323 .计算:(1)5a 3b • (— 3b)2+ (— ab)(— 6ab)2; (3)(a — 1)(a + 1) — (a — 1)2.(2)x(x 2+ 3) + x2(x —3)—3x(x 2—x —1).24.把下列各式因式分解:(2)16x2—64; (3) —4a2+ 24a—36.(1)2m(a —b) —3n(b —a);25先化简(a2b—2ab2—b3) -b —(a+ b)(a —b),然后对式子中a、b分别选择一个自己最喜欢的数代入求值.26.我们约定:a b= 10a- 10b,如4 3 = 104- 103= 10.(1)试求12 3和10 4的值;⑵试求(21 5) X 102的值.参考答案1. D2. D3.原式=x12+ x6•x6+ 2X12= x12+ x12+ 2X12=4X124. C5.6X2+ X—16.(1)原式=—27x6y3X ( —2xy3)= 54x7y6.⑵原式=|x2y •(—4xy2)—2xy2•(—4xy2)= —3x3y3+ 2x2y4.7.D8.4 39.原式=a2—2ab—b2—a2+ 2ab— b2=—2b2.10. C11. B12.(1)原式=4m2—20m + 25. (2)原式=(a2—9)(a2+ 9) = a4—81. (3)原式=a2—1 —a2+ 2a—1 = 2a—2.13. D14.A15.4(X + 1)216.2017. C18. B19.490020.ab21.y(x —,3)(X + ;3)22.123.(1)原式=5a3b •9b2+ (—ab) 36a2b2= 45a3b3—36a3b3= 9a3b3. (2)原式=X3+ 3X + X3—3X2—3X3+ 3X2 + 3X =—X3+6X.24.(1)原式=(a—b)(2m + 3n). (2)原式=16(X + 2)(X—2). (3)原式=—4(a—3)2.25.原式=a2—2ab—b2—(a2—b2)= a2—2ab—b2—a2+ b2=—2ab.如选择一个喜欢的数为a= 1, b=—1,则原式=2.26.(1)12 3 = 1012* 103= 109, 10 4= 1010 * 104= 106. (2)(21 5) X 102 = (1021* 105)X102 = 1018.。

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题初中数学整式的乘除与因式分解一、选择题:1、下列运算中,正确的是()A.某2·某3=某6B.(ab)3=a3b3C.3a+2a=5a2D.(某³)²=某52、下列从左边到右边的变形,是因式分解的是()23322(A)(3某)(3某)9某(B)mn(mn)(mmnn)(C)(y1)(y3)(3y)(y1)2(D)4yz2yzz2y(2zyz)z3、下列各式是完全平方式的是()某2某A、4B、14某2C、a2abb2D、某22某14、下列多项式中能用平方差公式分解因式的是()22(A)a(b)(B)5m220mn22(C)某y(D)某295、如(某+m)与(某+3)的乘积中不含某的一次项,则m的值为()A.–3B.3C.0D.16、一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为(A、6cmB、5cmC、8cmD、7cm1、下列分解因式正确的是()A、2n2nmn2n(nm1)B、ab22ab3bb(ab2a3)C、某(某y)y(某y)(某y)2D、a2a2a(a1)22、下列各式中,能用平方差公式进行因式分解的是()A、某2-某y2B、-1+y2C、2y2+2D、某3-y33、下列各式能用完全平方公式分解因式的是()A、4某2+1B、4某2-4某-1C、某2+某y+y2D、某2-4某+44、若9某2k某y4y2是一个完全平方式,则k的值为()A、6B、±6C、12D、±125、若分解因式某2m某15(某3)(某n)则m的值为()A、-5B、5C、-2D、2二、填空题:a54a237、=_______。

在实数范围内分解因式a268、当某___________时,某4等于__________;220021.520039、3___________210、若3某=2,3y=3,则3某-y等于2211、若9某m某y16y是一个完全平方式,那么m的值是__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法和因式分解 1
一、整式的运算 2
1、已知a m =2,a n =3,求a m +2n 的值; 3
2、若32=n a ,则n a 6= . 4
3、若125512=+x ,求x x +-2009)2(的值。

5 4、已知2x +13x 1=144,求x ; 6
5.2005200440.25⨯= .
7 6、( 23 )2002×(1.5)2003÷(-1)2004=________。

8 7、如果(x +q )(3x
4)的结果中不含x 项(q 为常数),求结果中的常数项 9
10 8、设m 2+m
1=0,求m 3+2m 2+2010的值 11
12
13
14
15
16
17
18
19 二、乘法公式的变式运用
20 1、位置变化,x y y x 21
22
23
2、符号变化,x y x y
24
25
26
27
3、指数变化,x2y2x2y24
28
29
30
4、系数变化,2a b2a b
31
32
33
5、换式变化,xy z m xy z m
34
35
36
6、增项变化,x y z x y z
37
38
39
7、连用公式变化,x y x y x2y2
40
41
42
8、逆用公式变化,x y z2x y z2
43
44
45
46
47
48
49
三、乘法公式基础训练:
50
1、计算(1)1032(2)1982
51
52
53
2、计算 (1)a b c 2 (2)3x y z 2 54
55
56
57
58
3、计算 (1)a 4b 3c a 4b 3c (2)3x y 23x y 2 59
60
61
62
4、计算 (1)19992-2000×1998 (2)22007200720082006-⨯. 63 64 65 66 67
68
69
70
四、乘法公式常用技巧 71
1、已知a 2b 213,ab 6,求a b 2,a b 2的值。

72
73
74
变式练习:已知a b 27,a b 24,求a 2b 2,ab 的值。

75
76
77
78
2、已知2=+b a ,1=ab ,求22b a +的值。

79
80
81
变式练习:已知8=+b a ,2=ab ,求2)(b a -的值。

82
83
84
3、已知a -a 1=3,求a 2+21a 的值。

85
86
87
变式练习:已知a 25a +1=0,(1)求a +a 1的值;(2)求a 2+21a 的值; 88
89
90
4、已知a a 1a 2b 2,求222a b ab +-的值。

91
92
93 变式练习:已知()()212-=---y x x x ,则xy y x -+22
2= . 94
95
96
5、已知x 2+2y 2+4x 12y +22=0,求x+y 的值
97
98
99
100
变式练习:已知2x 2+6xy +9y 26x +9=0,求x+y 的值 101
102
103
6、已知:20072008+=x a ,20082008+=x b ,20092008+=x c , 104
求ac bc ab c b a ---++222的值。

105
106
107
108
109
110
变式练习:△ABC的三边a,b,c满足a2+b2+c2=ab+bc+ca,判断△ABC的形状
111
112
113
114
115
7、已知:x2-y2=6,x+y=3,求x-y的值。

116
117
变式练习:已知x-y=2,y-z=2,x+z=14。

求x2-z2的值
118
五、因式分解的变形技巧
119
1、符号变换:有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分120
项的系数,先看下面的体验题。

121
体验题1 (m+n)(x-y)+(m-n)(y-x)
122
指点迷津y-x= -(x-y)
123
124
125
126
实践题1 分解因式:-a2-2ab-b2
127
128
129
130
2、系数变换:有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑131
进行系数变换。

132
体验题2 分解因式 4x2-12xy+9y2
133
134
135
实践题2 分解因式
2 2
1
439
xy y x++
136
137
138
139
140
3、指数变换:有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。

141
体验题3 分解因式x4-y4
142
143
144
指点迷津把x2看成(x2)2,把y4看成(y2)2,然后用平方差公式。

145
实践题3 分解因式 a4-2a4b4+b4
146
147
148
149
4、展开变换:有些多项式已经分成几组了,但分成的几组无法继续进行因式分解,这时往往需要150
将这些局部的因式相乘的形式展开。

然后再分组。

151
体验题4 a(a+2)+b(b+2)+2ab
152
指点迷津表面上看无法分解因式,展开后试试:a2+2a+b2+2b+2ab。

然后分组。

153
154
155
实践题4 x(x-1)-y(y-1)
156
157
158
159
160
5、拆项变换:有些多项式缺项,如最高次数是三次,无二次项或者无一次项,但有常数项。

这类161
问题直接进行分解往往较为困难,往往对部分项拆项,往往拆次数处于中间的项。

162
163
体验题5 分解因式3a3-4a+1
164
指点迷津本题最高次是三次,缺二次项。

三次项的系数为3,而一次项的系数为-4,提公因式后,没法结合常数项。

所以我们将一次项拆开,拆成-3a-a试试。

165
166
167
168
169
实践题5 分解因式 3a3+5a2-2
170
171
172
173
174
6、添项变换:有些多项式类似完全平方式,但直接无法分解因式。

既然类似完全平方式,我们就175
添一项然后去一项凑成完全平方式。

然后再考虑用其它的方法。

176
体验题6 分解因式x2+4x-12
177
指点迷津本题用常规的方法几乎无法入手。

与完全平方式很象。

因此考虑将其178
配成完全平方式再说。

179
180
181
182
实践题6 分解因式x2-6x+8
183
184
185
186
187
188
实践题7 分解因式a4+4
189
190
191
192
7、换元变换:有些多项式展开后较复杂,可考虑将部分项作为一个整体,用换元法,结构就变得193
清晰起来了。

然后再考虑用公式法或者其它方法。

194
体验题7 分解因式 (x+1)(x+2)(x+3)(x+4)+1
195
196
197
198
199
200
实践题8 分解因式x(x+2)(x+3)(x+5)+9 201
202
203
204
205
206
实践题答案 207
实践题1 原式=-a 2-2ab-b 2=-( a 2+2ab+b 2)= -(a+b)2 208 实践题2 原式=(2x )2+2.2x •3y •+(3y )2=(2x +3y )2
209 实践题3 原式=(a 2-b 2)2=(a+b)2(a-b)2 210
实践题4 原式= x 2-x-y 2+y=(x 2-y 2)-(x-y)=(x+y)(x-y)-(x-y)=(x-y)(x+y-1) 211
实践题5 原式=3a 3+3a 2+2a 2-2=3a 2(a+1)+2(a 2-1) 212
=3a 2(a+1)+2(a+1)(a-1)=(a+1)(3a 2+2a-2) 213
实践题6 原式=x 2-6x+9-9+8=(x-3)2-1=(x-3)2-12 214
=(x-3+1)(x-3-1)=(x-2)(x-4)
215
216
实践题7 原式=a4+4a2+4-4a2=(a2+2)2-4a2
217
=(a2+2+2a)(a2+2-2a)=(a2+2a+2)(a2-2a+2)
218
实践题8 原式=[x(x+5)][(x+2)(x+3)]+9=(x2+5x)(x2+5x+6)+9 219
令x2+5x=m,上式可变形为m(m+6)+9=m2+6m+9=(m+3)2=(x2+5x+3)2。

相关文档
最新文档